Solution to Assignment 1

Tutor: Xiang Sun*

September 6, 2012

1. Question 4 part 2, in Tutorial set 1 ;
2. Question 3 part 2, in Tutorial set 2;
3. Question 8, in Tutorial set 2.

Solution for Question 1 Under the new payoff rules, the best response becomes:

$$
R_{i}\left(s_{j}\right)= \begin{cases}\emptyset, & \text { if } s_{j}<\frac{1}{\sqrt{2}} \\ {[0,1],} & \text { if } s_{j} \geq \frac{1}{\sqrt{2}}\end{cases}
$$

where $(i, j)=(1,2)$ or $(2,1)$. Note that when $s_{j}<\frac{1}{\sqrt{2}}$, Player i does not have the best response, because he will try to choose s_{i} as close as possible to $\sqrt{1 / 2-s_{j}^{2}}$, but can not achieve $\sqrt{1 / 2-s_{j}^{2}}$. The detailed discussion is as follows:

- For any $1 \geq s_{i} \geq \sqrt{1 / 2-s_{j}^{2}}$, Player i 's payoff is 0 , which is less than the payoff when Player i chooses $\frac{1}{2} \sqrt{1 / 2-s_{j}^{2}}$; Hence such a s_{i} can not be a best response.
- For any $0 \leq s_{i}<\sqrt{1 / 2-s_{j}^{2}}$, Player i 's payoff is s_{i}, which is less than the payoff when Player i chooses $\frac{s_{i}+\sqrt{1 / 2-s_{j}^{2}}}{2}$; Hence such a s_{i} can not be a best response.

Therefore, the pure-strategy Nash equilibria are

$$
\left[\frac{1}{\sqrt{2}}, 1\right] \times\left[\frac{1}{\sqrt{2}}, 1\right] .
$$

Solution for Question 2 If $0<c_{1}<c_{2}<a$ and $2 c_{2}>a+c_{1}$, then $a-c_{1}>$ $a-c_{2}>\frac{a-c_{2}}{2}>0$ and $\frac{a-c_{1}}{2}>a-c_{2}>0$. Hence we have the Figure (1), and from it we will obtain the Nash equilibrium: $\left(\frac{a-c_{1}}{2}, 0\right)$.

[^0]

Figure 1: Intersection of best-response correspondences

Solution for Question 3

(i) (1) C is strictly dominated by A and will be eliminated;
(2) L is strictly dominated by M and will be eliminated;
(3) B is strictly dominated by D and will be eliminated.

Hence we will obtain the reduced game G_{1}.

(ii) From the bi-matrix G_{2}, we obtain the pure-strategy Nash equilibria: (A, M) and (D, R) (red pairs) with payoffs $(2,5)$ and $(3,3)$, respectively.
(iii) Let $p_{1}=(r, 1-r)$ be a mixed strategy in which Player 1 plays A with probability r. Let $p_{2}=(q, 1-q)$ be a mixed strategy in which Player 2 plays M with probability q. Then Player 1's expected payoff is:

$$
\begin{aligned}
& U_{1}\left(A, p_{2}\right)=2 q+2(1-q)=2, \\
& U_{1}\left(D, p_{2}\right)=q+3(1-q)=3-2 q .
\end{aligned}
$$

Hence

$$
r^{*}(q) \equiv \underset{0 \leq r \leq 1}{\arg \max } U_{1}\left(p_{1}, p_{2}\right)= \begin{cases}\{1\}, & \text { if } q>\frac{1}{2} \\ \{0\}, & \text { if } q<\frac{1}{2} \\ {[0,1],} & \text { if } q=\frac{1}{2}\end{cases}
$$

Similarly, Player 2's expected payoff is:

$$
\begin{aligned}
U_{2}\left(p_{1}, M\right) & =5 r+(1-r)=1+4 r, \\
U_{2}\left(p_{1}, R\right) & =3(1-r) .
\end{aligned}
$$

Hence

$$
q^{*}(r) \equiv \underset{0 \leq q \leq 1}{\arg \max } U_{2}\left(p_{1}, p_{2}\right)= \begin{cases}\{1\}, & \text { if } r>\frac{2}{7} ; \\ \{0\}, & \text { if } r<\frac{2}{7} ; \\ {[0,1],} & \text { if } r=\frac{2}{7}\end{cases}
$$

We draw the graphs of $r^{*}(q)$ and $q^{*}(r)$ together:

Figure 2: Intersection of best-response correspondences

The graphs of the best response correspondences $r^{*}(q)$ and $q^{*}(r)$ intersect at 3 points $\left(r=\frac{2}{7}, q=\frac{1}{2}\right),(0,0)$ and $(1,1)$. Hence, there are 3 mixed-strategy Nash equilibria:

- $(1 A, 1 M)$ (or $((1,0,0,0),(0,1,0)))$ with expected payoff $(2,5)$,
- $(1 D, 1 R)$ (or $((0,0,0,1),(0,0,1)))$ with expected payoff $(3,3)$,
- $\left(\frac{2}{7} A+\frac{5}{7} D, \frac{1}{2} M+\frac{1}{2} R\right)$ (or $\left.\left(\left(\frac{2}{7}, 0,0, \frac{5}{7}\right),\left(0, \frac{1}{2}, \frac{1}{2}\right)\right)\right)$, with expected payoff $\left(2, \frac{15}{7}\right)$.

[^0]: *Email: xiangsun@nus.edu.sg. Suggestion and comments are always welcome.

