Solution to Assignment 3

Tutor: Xiang Sun*

October 25, 2012

1. Question 5, in Tutorial set 5;
2. Question 4, in Tutorial set 6 ;
3. Question 4, in Tutorial set 7.

Solution for Question 1 Calculate firm i 's price and profit in the collusion, Bertrand competition, and deviation from punishment cases, respectively:

- Cooperative price and profit: In the collusion, the price is $p_{i}^{c}=\frac{a+c}{2}$, and profit is $\pi_{i}^{c}=\frac{(a-c)^{2}}{8}$;
- Non-cooperative price and profit: In the Bertrand competition, price is $p_{i}^{m}=c$, and profit is $\pi_{i}^{m}=0$;
- Deviation price and profit: Firm j 's price is $p_{j}^{c}=\frac{a+c}{2}$, Firm $i \neq j$ can increases its profit by choosing a price $p_{i}^{d}<\frac{a+c}{2}$, but as close as possible to $\frac{a+c}{2}$, and profit is almost equal to monopoly profit $\pi_{i}^{d}=\frac{(a-c)^{2}}{4}$.

For each i, consider the following trigger strategy T_{i} for Firm i :

- In the first stage, choose price p_{i}^{c}.
- In the t-th stage, choose p_{i}^{c} if Firm j chooses price p_{j}^{c} in each of the $t-1$ previous stages; otherwise, choose price p_{i}^{m}.

For any i, assume that Firm $j \neq i$ chooses the trigger strategy T_{j}. We want to find the condition which guarantees the trigger strategy T_{i} to be Firm i 's best response.

- If Firm i does not choose the trigger strategy, then we consider the following two cases:
- If Firm i always chooses the cooperative production p_{i}^{c} in every stage game (it is a strategy for Firm i, but not the trigger strategy), then the payoff is as same as the payoff when it chooses trigger strategy.

[^0]- If Firm i deviates in some stage and the profit maxizer is p_{i}^{d}. Without loss of generality, we assume that the t-th stage is the first stage when Firm i deviates, then it can get at most π_{i}^{d} at this stage.
From the $(t+1)$-th stage on, Firm $j \neq i$ will choose non-cooperative price p_{j}^{m}. Thus Firm i will receive at most $\pi_{m}^{i}=0$ in each of the subsequent stages, and the t-th stage's present value of its payoff from the t-th stage onwards is at most

$$
\pi_{i}^{d}
$$

It is easy to understand when looking at the following table, where $*$ means we do not know exactly the action of Firm i at that stage.

Stage	1	\cdots	$t-1$	t	$t+1$	$t+2$	$t+3$	\cdots
Firm $j \neq i$	p_{j}^{c}	\cdots	p_{j}^{c}	p_{j}^{c}	p_{j}^{m}	p_{j}^{m}	p_{j}^{m}	\cdots
Firm i	p_{i}^{c}	\cdots	p_{i}^{c}	p_{i}^{d}	$*$	$*$	$*$	\cdots
Firm i 's payoff	π_{i}^{c}	\cdots	π_{i}^{c}	π_{i}^{d}	$\leq \pi_{i}^{m}$	$\leq \pi_{i}^{m}$	$\leq \pi_{i}^{m}$	\cdots

- If Firm i chooses the trigger strategy T_{i}, then it will receive π_{i}^{c} in each stage, and the present value of its payoff from t-th stage onwards is

$$
\pi_{i}^{c}+\delta \pi_{i}^{c}+\delta^{2} \pi_{i}^{c}+\cdots=\frac{\pi_{i}^{c}}{1-\delta} .
$$

In order for firm i to play trigger strategy T_{i}, we should have

$$
\frac{\pi_{i}^{c}}{1-\delta} \geq \pi_{i}^{d}
$$

that is $\delta \geq \frac{1}{2}$.

Solution for Question 2

- There are 2 players: Player I and Player II;
- Type spaces: $T_{1}=\{\{1\},\{2,3\}\}$, and $T_{2}=\{\{1,3\},\{2\}\}$;
- Action spaces: $A_{1}=\{T, B\}$, and $A_{2}=\{L, R\} ;$
- Strategy spaces: $S_{1}=\{T T, T B, B T, B B\}$, and $S_{2}=\{L L, L R, R L, R R\}$.

Now we will find the best-response correspondence for each player and each associated type: let a_{1} and a_{2} be Player I's actions in Game 1, and Games 2 and 3 , respectively, b_{1} and b_{2} Player II's actions in Games 1 and 3, and Game 2, respectively.

- If Game 1 is drawn, then Player I's best-response correspondence is

$$
a_{1}^{*}\left(b_{1}\right)= \begin{cases}T, & \text { if } b_{1}=L ; \\ T, & \text { if } b_{1}=R .\end{cases}
$$

- If Game 1 is not drawn, then by considering the expected payoff, Player I's bestresponse correspondence is

$$
a_{2}^{*}\left(b_{1} b_{2}\right)= \begin{cases}T, & \text { if } b_{1} b_{2}=L L \\ T, & \text { if } b_{1} b_{2}=L R \\ B, & \text { if } b_{1} b_{2}=R L \\ B, & \text { if } b_{1} b_{2}=R R\end{cases}
$$

- If Game 2 is drawn, then Player II's best-response correspondence is

$$
b_{2}^{*}\left(a_{2}\right)= \begin{cases}L, & \text { if } a_{2}=T \\ R, & \text { if } a_{2}=B\end{cases}
$$

- If Game 2 is not drawn, then by considering the expected payoff, Player II's bestresponse correspondence is

$$
b_{1}^{*}\left(a_{1} a_{2}\right)= \begin{cases}R, & \text { if } a_{1} a_{2}=T T \\ L, & \text { if } a_{1} a_{2}=T B \\ R, & \text { if } a_{1} a_{2}=B T \\ L, & \text { if } a_{1} a_{2}=B B\end{cases}
$$

Therefore, by definition, there is no Bayesian Nash equilibrium. The reason is as follows:

- If Player I chooses $T T$, then Player II should choose $R L$; on the other hand, $T T$ is not a best response for $R L$. So there is no Bayesian Nash equilibrium when Player I chooses TT.
- If Player I chooses $T B$, then Player II should choose $L R$; on the other hand, $T B$ is not a best response for $L R$. So there is no Bayesian Nash equilibrium when Player I chooses $T B$.
- If Player I chooses $B T$, then Player II should choose $R L$; on the other hand, $B T$ is not a best response for $R L$. So there is no Bayesian Nash equilibrium when Player I chooses BT.
- If Player I chooses $B B$, then Player II should choose $L R$; on the other hand, $B B$ is not a best response for $L R$. So there is no Bayesian Nash equilibrium when Player I chooses $B B$.

Solution for Question 3

- There are two players: seller (s) and buyer (b);
- Type spaces: $T_{s}=\left[\alpha_{s}, \beta_{s}\right]$ and $T_{b}=\left[\alpha_{b}, \beta_{b}\right]$;
- Action spaces: $A_{s}=A_{b}=[0, \infty)$;
- Strategy spaces: $S_{b}=\left\{\right.$ function from T_{b} to $\left.A_{b}\right\}$, and $S_{s}=\left\{\right.$ function from T_{s} to $\left.A_{s}\right\} ;$
- Payoff:

$$
\begin{aligned}
& u_{s}\left(p_{s}, p_{b} ; v_{s}, v_{b}\right)= \begin{cases}\frac{p_{s}+p_{b}}{2}-v_{s}, & p_{b} \geq p_{s} \\
0, & p_{b}<p_{s}\end{cases} \\
& u_{b}\left(p_{s}, p_{b} ; v_{s}, v_{b}\right)= \begin{cases}v_{b}-\frac{p_{s}+p_{b}}{2}, & p_{b} \geq p_{s} \\
0, & p_{b}<p_{s}\end{cases}
\end{aligned}
$$

Suppose $\left(p_{s}^{*}, p_{b}^{*}\right)$ is a linear Bayesian Nash equilibrium, where

$$
p_{s}^{*}\left(v_{s}\right)=a_{s}+c_{s} v_{s}, \quad p_{b}^{*}\left(v_{b}\right)=a_{b}+c_{b} v_{b}
$$

Note that $a_{s}, c_{s}, a_{b}, c_{b}$ are to be determined. Here we should assume $c_{s}, c_{b}>0$.

- For seller, when v_{s} is drawn, given buyer's strategy $p_{b}^{*}, p_{s}^{*}\left(v_{s}\right)$ will maximize his expected payoff

$$
\begin{aligned}
& \mathbb{E}\left[u_{s}\left(p_{s}, p_{b}^{*} ; v_{s}, v_{b}\right)\right] \\
= & \frac{1}{\beta_{b}-\alpha_{b}} \int_{p_{s} \leq p_{b}^{*}\left(v_{b}\right) \leq p_{b}^{*}\left(\beta_{b}\right)} \frac{p_{s}+p_{b}^{*}\left(v_{b}\right)}{2}-v_{s} \mathrm{~d} v_{b}+\frac{1}{\beta_{b}-\alpha_{b}} \int_{p_{b}^{*}\left(\alpha_{b}\right) \leq p_{b}^{*}\left(v_{b}\right)<p_{s}} 0 \mathrm{~d} v_{b} \\
= & \frac{1}{\beta_{b}-\alpha_{b}} \int_{\frac{p_{s}-a_{b}}{c_{b}}}^{\beta_{b}} \frac{p_{s}+a_{b}+c_{b} v_{b}}{2}-v_{s} \mathrm{~d} v_{b} \\
= & \frac{1}{\beta_{b}-\alpha_{b}}\left[\left(\frac{p_{s}+a_{b}}{2}-v_{s}\right)\left(\beta_{b}-\frac{p_{s}-a_{b}}{c_{b}}\right)+\frac{c_{b}}{2} \int_{\frac{p_{s}-a_{b}}{c_{b}}}^{\beta_{b}} v_{b} \mathrm{~d} v_{b}\right] \\
= & \frac{1}{\beta_{b}-\alpha_{b}}\left[\left(\frac{p_{s}+a_{b}}{2}-v_{s}\right)\left(\beta_{b}-\frac{p_{s}-a_{b}}{c_{b}}\right)+\frac{c_{b}}{4}\left(\beta_{b}-\frac{p_{s}-a_{b}}{c_{b}}\right)\left(\beta_{b}+\frac{p_{s}-a_{b}}{c_{b}}\right)\right] \\
= & \frac{1}{\beta_{b}-\alpha_{b}}\left(\beta_{b}-\frac{p_{s}-a_{b}}{c_{b}}\right)\left[\left(\frac{p_{s}+a_{b}}{2}-v_{s}\right)+\frac{c_{b}}{4}\left(\beta_{b}+\frac{p_{s}-a_{b}}{c_{b}}\right)\right] \\
= & \frac{c_{b}}{\beta_{b}-\alpha_{b}}\left(c_{b} \beta_{b}-p_{s}+a_{b}\right)\left[-v_{s}+\frac{3}{4} p_{s}+\frac{1}{4}\left(a_{b}+c_{b} \beta_{b}\right)\right]
\end{aligned}
$$

Therefore, by the first order condition,

$$
p_{s}^{*}\left(v_{s}\right)=\frac{2}{3} v_{s}+\frac{1}{3} a_{b}+\frac{1}{3} c_{b} \beta_{b}
$$

and hence

$$
\begin{equation*}
c_{s}=\frac{2}{3}, \quad a_{s}=\frac{1}{3}\left(a_{b}+c_{b} \beta_{b}\right) \tag{1}
\end{equation*}
$$

- For buyer, when v_{b} is drawn, given seller's strategy $p_{s}^{*}, p_{b}^{*}\left(v_{b}\right)$ will maximize his expected payoff

$$
\begin{aligned}
& \mathbb{E}\left[u_{b}\left(p_{s}^{*}, p_{b} ; v_{s}, v_{b}\right)\right] \\
= & \frac{1}{\beta_{s}-\alpha_{s}} \int_{p_{s}^{*}\left(\alpha_{s}\right) \leq p_{s}^{*}\left(v_{s}\right) \leq p_{b}} v_{b}-\frac{p_{s}^{*}\left(v_{s}\right)+p_{b}}{2} \mathrm{~d} v_{s}+\frac{1}{\beta_{s}-\alpha_{s}} \int_{p_{b}<p_{s}^{*}\left(v_{s}\right) \leq p_{s}^{*}\left(\beta_{s}\right)} 0 \mathrm{~d} v_{s} \\
= & \frac{1}{\beta_{s}-\alpha_{s}} \int_{\alpha_{s}}^{\frac{p_{b}-a_{s}}{c_{s}}} v_{b}-\frac{a_{s}+c_{s} v_{s}+p_{b}}{2} \mathrm{~d} v_{s} \\
= & \frac{1}{\beta_{s}-\alpha_{s}}\left[\left(v_{b}-\frac{a_{s}+p_{b}}{2}\right)\left(\frac{p_{b}-a_{s}}{c_{s}}-\alpha_{s}\right)-\frac{c_{s}}{2} \int_{\alpha_{s}}^{\frac{p_{b}-a_{s}}{c_{s}}} v_{s} \mathrm{~d} v_{s}\right] \\
= & \frac{1}{\beta_{s}-\alpha_{s}}\left[\left(v_{b}-\frac{a_{s}+p_{b}}{2}\right)\left(\frac{p_{b}-a_{s}}{c_{s}}-\alpha_{s}\right)-\frac{c_{s}}{4}\left(\frac{p_{b}-a_{s}}{c_{s}}-\alpha_{s}\right)\left(\frac{p_{b}-a_{s}}{c_{s}}+\alpha_{s}\right)\right] \\
= & \frac{1}{\beta_{s}-\alpha_{s}}\left(\frac{p_{b}-a_{s}}{c_{s}}-\alpha_{s}\right)\left[\left(v_{b}-\frac{a_{s}+p_{b}}{2}\right)-\frac{c_{s}}{4}\left(\frac{p_{b}-a_{s}}{c_{s}}+\alpha_{s}\right)\right] \\
= & \frac{c_{s}}{\beta_{s}-\alpha_{s}}\left(p_{b}-a_{s}-c_{s} \alpha_{s}\right)\left[v_{b}-\frac{3}{4} p_{b}-\frac{1}{4}\left(a_{s}+c_{s} \alpha_{s}\right)\right]
\end{aligned}
$$

Therefore, by the first order condition,

$$
p_{b}^{*}\left(v_{b}\right)=\frac{2}{3} v_{b}+\frac{1}{3} a_{s}+\frac{1}{3} c_{s} \alpha_{s}
$$

and hence

$$
\begin{equation*}
c_{b}=\frac{2}{3}, \quad a_{b}=\frac{1}{3}\left(a_{s}+c_{s} \alpha_{s}\right) \tag{2}
\end{equation*}
$$

Solving Equations (1) and (2), we will have

$$
a_{s}=\frac{\alpha_{s}}{12}+\frac{\beta_{b}}{4}, \quad a_{b}=\frac{\beta_{b}}{12}+\frac{\alpha_{s}}{4} .
$$

[^0]: *E-mail: xiangsun@nus.edu.sg. Suggestion and comments are always welcome.

