Solution to Assignment 4

Tutor: Xiang Sun*

November 18, 2012

1. In the Game $1,((A, B, L),(p, 1-p))$ is a perfect Bayesian equilibrium, where p is the player 3's belief for the left decision node. What can you get about the range of p, based only on Requirement 4. Specify your reason.

Figure 1
2. Question 1, in Tutorial set 9 ;
3. Question 7, in Tutorial set 10.

Solution for Question $1 \quad p$ can be arbitrary.
Reason: for the information set off the equilibrium path, Bayes' law can be applied only when we can find a subgame, in which this information set is on the equilibrium path. To be more precise, consider the following example first.

Assume that $\left(\left(A, L, L^{\prime}\right),(p, 1-p)\right)$ is a perfect Bayesian equilibrium. There is a subgame, and if we apply Bayes' law in this subgame, we will get $p=1$.

For the game 1, there is no subgame, so we can not apply Bayes' law to get the belief, and hence p can be arbitrary.

[^0]

Figure 2

Solution for Question 2

(i) Developer i consider the following maximization problem

$$
\max _{q}\left(1-q-c_{i}\right) q
$$

and the maximizer is $q^{*}=\frac{1-c_{i}}{2}$. Profit is $\left(\frac{1-c_{i}}{2}\right)^{2}$.
(ii) We have a first price auction where the valuation of developer i is $v_{i}=\left(1-c_{i}\right)^{2} / 4$. His payoff from paying bribe b_{i} is

$$
U_{i}\left(b_{i} ; c_{i}\right)=\left(v_{i}-b_{i}\right) \operatorname{Prob}\left(b_{j}<b_{i}\right)
$$

where

$$
\begin{aligned}
\operatorname{Prob}\left(b_{j}<b_{i}\right) & =\operatorname{Prob}\left(a_{j}+e_{j}\left(1-c_{j}\right)^{2}<b_{i}\right) \\
& =\operatorname{Prob}\left(c_{j}>1-\sqrt{\left(b_{i}-a_{j}\right) / e_{j}}\right) \\
& =1-\operatorname{Prob}\left(c_{j} \leq 1-\sqrt{\left(b_{i}-a_{j}\right) / e_{j}}\right) \\
& =1-\left(1-\sqrt{\left(b_{i}-a_{j}\right) e_{j}}\right)=\sqrt{\left(b_{i}-a_{j}\right) e_{j}}
\end{aligned}
$$

Hence

$$
U_{i}\left(b_{i} ; c_{i}\right)=\left(v_{i}-b_{i}\right) \sqrt{\left(b_{i}-a_{j}\right) e_{j}}
$$

But maximizing $U_{i}\left(b_{i} ; c_{i}\right)$ is the same as maximizing

$$
e_{j}^{-1} U_{i}\left(b_{i} ; c_{i}\right)^{2}=\left(v_{i}-b_{i}\right)^{2}\left(b_{i}-a_{j}\right)
$$

The first order condition yields

$$
2\left(b_{i}-v_{i}\right)\left(b_{i}-a_{j}\right)+\left(b_{i}-v_{i}\right)^{2}=0
$$

hence

$$
b_{i}=\frac{1}{3} v_{i}+\frac{2}{3} a_{j}=\frac{1}{12}\left(1-c_{i}\right)^{2}+\frac{2}{3} a_{j}
$$

Therefore,

$$
e_{i}=\frac{1}{12} \text { and } a_{i}=\frac{2}{3} a_{j}=\left(\frac{2}{3}\right)^{2} a_{i},
$$

yielding

$$
b_{i}=\frac{1}{12}\left(1-c_{i}\right)^{2} .
$$

Solution for Question 3 Assume that the core is nonempty, and $x=\left(x_{1}, \ldots, x_{n}\right)$ is an element in it. Since

$$
\sum_{i \in N} \frac{v(N-\{i\})}{n-1} \leq \sum_{i \in N}\left(\frac{1}{n-1} \sum_{j \neq i} x_{j}\right)=\sum_{j \in N} x_{j}\left(\sum_{i \neq j} \frac{1}{n-1}\right)=\sum_{j \in N} x_{j}=v(N),
$$

we have $\sum_{i \in N} v(N-\{i\}) \leq(n-1) v(N)$, and hence

$$
v(N) \leq n \cdot v(N)-\sum_{i \in N} v(N-\{i\})=\sum_{i \in N}[v(N)-v(N-\{i\})]=\sum_{i \in N} \delta_{i}
$$

which is a contradiction.
Remark 1. Bondareva-Shapley Theorem: Let (N, v) be a cooperative game, where N is the set of players, and v is the characteristic function. The core of (N, v) is nonempty if and only if for every function $\lambda: 2^{N}-\{\emptyset\} \rightarrow[0,1]$, where for any $i \in N, \sum_{S \ni i} \lambda(S)=1$, the following condition holds:

$$
\sum_{S \in 2^{N}-\{\emptyset\}} \lambda(S) v(S) \leq v(N) .
$$

[^0]: *E-mail: xiangsun@nus.edu.sg. Suggestion and comments are always welcome.

