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1 Review

• “Static” means one-shot, or simultaneous-move; “Complete information”
means that the payoff functions are common knowledge.

• Normal-form representation: G = {S1, . . . , Sn;u1, . . . , un}, where n is finite.

• s′i is strictly dominated by s′′i , if

ui(s
′
i, s−i) < ui(s

′′
i , s−i), ∀s−i ∈ S−i.

• Rational players do not play strictly dominated strategies, since they are
always not optimal no matter what strategies others would choose.

• Iterated elimination of strictly dominated strategies. This process is order-
independent.

• Given other players’ strategies s−i ∈ S−i, Player i’s best response, denoted
by Ri(s−i), is the set of maximizers of maxsi∈Si

ui(si, s−i), i.e.,

Ri(s−i) =
{
si ∈ Si : ui(si, s−i) = max

s′i∈Si

ui(s
′
i, s−i)

}
⊂ Si.

We call Ri the best-response correspondence for player i.

• Given s−i, the best response Ri(s−i) is a set.

• In the n-player normal-form game G = {S1, . . . , Sn;u1, . . . , un}, the strategy
profile (s∗1, . . . , s

∗
n) is a pure-strategy Nash equilibrium if

s∗i ∈ Ri(s
∗
−i), ∀i = 1, . . . , n,

equivalently,

ui(s
∗
i , s
∗
−i) = max

si∈Si

ui(si, s
∗
−i), ∀i = 1, . . . , n.

• {Nash equilibrium(a)} ⊂ {Outcomes of IESDS}.
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2 Tutorial

Exercise 1. In the following normal-form games, what strategies survive iterated
elimination of strictly dominated strategies? What are the pure-strategy Nash equi-
libria?

L C R
T 2, 0 1, 1 4, 2
M 3, 4 1, 2 2, 3
B 1, 3 0, 2 3, 0

L R
U 1, 3 −2, 0
M −2, 0 1, 3
D 0, 1 0, 1

Solution. 1. In the left game, for Player 1, B is strictly dominated by T and will
be eliminated. Then the bi-matrix becomes to the reduced bi-matrix G1.

In the bi-matrix G1, for Player 2, C is strictly dominated by R and the bi-
matrix G1 becomes to the reduced bi-matrix G2.

In the bi-matrix G2, for Players 1 and 2, no strategies is strictly dominated.

Hence the strategies T , M , L and R will survive iterated elimination of strictly
dominated strategies.

L C R
T 2, 0 1, 1 4, 2
M 3, 4 1, 2 2, 3

G1

L R
T 2, 0 4, 2
M 3, 4 2, 3

G2

L R
U 1, 3 −2, 0
M −2, 0 1, 3
D 0, 1 0, 1

H

In the bi-matrix G2, we will obtain that the Nash equilibria are (M,L) and
(T,R) (red pairs in the bi-matrix).

2. In the right game, it is easy to see that no strategy is strictly dominated.
Hence all strategies will survive iterated elimination of strictly dominated
strategies.

From the bi-matrix H, we will obtain that the Nash equilibria are (U,L) and
(M,R) (red pairs in the bi-matrix).

Exercise 2. An old lady is looking for help crossing the street. Only one person is
needed to help her; more are okay but no better than one. You and I are the two
people in the vicinity who can help, each has to choose simultaneously whether to do
so. Each of us will get pleasure worth of 3 from her success (no matter who helps
her). But each one who goes to help will bear a cost of 1, this being the value of our
time taken up in helping. Set this up as a game. Write the payoff table, and find
all pure-strategy Nash equilibria.

Solution. • There are two players: You (Player 1) and I (Player 2);

• For each player, he/she has 2 strategies: “Help” and “Not Help”.



MA4264 Game Theory 3/10 Solution to Tutorial 1

Player 1

Player 2
Help Not help

Help 2, 2 2, 3
Not help 3, 2 0, 0

K

• Since there are 2 players, and 2 pure strategies for each player, the payoff
function can be represented by a bi-matrix K:

From the bi-matrix K, we will find the Nash equilibria are (Help, Not help) and
(Not help, Help) (red pairs in the bi-matrix).

Exercise 3. There are three computer companies, each of which can choose to make
large (L) or small (S) computers. The choice of company 1 is denoted by S1 or L1,
and similarly, the choices of companies 2 and 3 are denoted Si or Li of i = 2 or
3. The following table shows the profit each company would receive according to the
choices which the three companies could make. What is the outcome of IESDS and
the Nash equilibria of the game?

S2S3 S2L3 L2S3 L2L3

S1 −10,−15, 20 0,−10, 60 0, 10, 10 20, 5, 15
L1 5,−5, 0 −5, 35, 15 −5, 0, 15 −20, 10, 10

Solution. 1. (a) From the following table, we can obtain that either S1 or L1

can not be strictly dominated.

Player 2’s strategy Player 3’s strategy Player 1’s best response
S2 S3 L1

S2 L3 S1

L2 S3 S1

L2 L3 S1

(b) From the following table, we can obtain that either S2 or L2 can not be
strictly dominated.

Player 1’s strategy Player 3’s strategy Player 2’s best response
S1 S3 L2

S1 L3 L2

L1 S3 L2

L1 L3 S2

(c) From the following table, we can obtain that either S3 or L3 can not be
strictly dominated.

Player 1’s strategy Player 2’s strategy Player 3’s best response
S1 S2 L3

S1 L2 L3

L1 S2 L3

L1 L2 S3

To summarize, no strategy will be eliminated in IESDS.
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S2S3 S2L3 L2S3 L2L3

S1 −10,−15, 20 0,−10, 60 0, 10, 10 20, 5, 15
L1 5,−5, 0 −5, 35, 15 −5, 0, 15 −20, 10, 10

2. From the following payoff table,

we will obtain that the Nash equilibrium is (S1, L2, L3).

Exercise 4. Players 1 and 2 are bargaining over how to split one dollar. Both
players simultaneously name shares they would like to have, s1 and s2, where 0 ≤
s1, s2 ≤ 1. If s21 + s22 ≤ 1/2, then the players receive the shares they named; if
s21 + s22 > 1/2, then both players receive zero. What are the pure-strategy Nash
equilibria of this game? Now we change the payoff rule as follows: If s21 + s22 < 1/2,
then the players receive the shares they named; if s21 + s22 ≥ 1/2, then both players
receive zero. What are the pure-strategy Nash equilibria of this game?

Solution (1st method). 1. Given Player 2’s strategy s2, the best response of Player
1 is:

R1(s2) =


{√

1
2
− s22

}
, if s2 <

1√
2
;

[0, 1], if s2 ≥ 1√
2
.

Note that if s2 <
1√
2
, then Player 1 should choose s1 as much as possible, so

that s21 + s22 ≤ 1
2
. Hence,

{√
1
2
− s22

}
is Player 1’s best response to s2.

If s2 ≥ 1√
2
, no matter what Player 1 chooses, his payoff is always 0. Thus

Player 1 can choose any value between 0 and 1.

The graph of R1 is showed in Figure (a), and by symmetry, we can also get
the best response of Player 2, showed in Figure (b).

x2 + y2 = 1/2

O 1

1
(1,1)

1√
2

1√
2

s1

s2

(a) Graph of R1

x2 + y2 = 1/2

O 1

1
(1,1)

1√
2

1√
2

s1

s2

(b) Graph of R2

Then the intersection of R1 and R2 is
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x2 + y2 = 1/2

O 1

1
(1,1)

1√
2

1√
2

s1

s2

So the pure-strategy Nash equilibria are{
(s1, s2) | s1 ≥ 0, s2 ≥ 0, s21 + s22 =

1

2

}
∪
([

1√
2
, 1

]
×
[

1√
2
, 1

])
.

2. Under the new payoff rules, the best response becomes:

Ri(sj) =

{
∅, if sj <

1√
2
;

[0, 1], if sj ≥ 1√
2
,

where (i, j) = (1, 2) or (2, 1). Note that when sj <
1√
2
, Player i does not

have the best response, because he will try to choose si as close as possible

to
√

1/2− s2j , but can not achieve
√

1/2− s2j . The detailed discussion is as

follows:

• For any 1 ≥ si ≥
√

1/2− s2j , Player i’s payoff is 0, which is less than the

payoff when Player i chooses 1
2

√
1/2− s2j ; Hence such a si can not be a

best response.

• For any 0 ≤ si <
√

1/2− s2j , Player i’s payoff is si, which is less than

the payoff when Player i chooses
si+
√

1/2−s2j
2

; Hence such a si can not be
a best response.

Therefore, the pure-strategy Nash equilibria are[
1√
2
, 1

]
×
[

1√
2
, 1

]
.

Solution (2nd method for 1st sub-question). Let s = (s1, s2) ∈ [0, 1] × [0, 1]. We
distinguish the following three cases:

1. if s21 + s22 < 1/2, each player i can do better by choosing si + ε. Thus, s is not
a Nash equilibrium.
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2. if s21+s22 = 1/2, no player can do better by unilaterally changing his/her strat-
egy (because i’s payoff is 0 by choosing si + ε). Thus, s is a Nash equilibrium.

3. if s21 + s22 > 1/2, then we further distinguish two subcases:

(a) if s2i < 1/2, then j can do better by choosing si + ε. Thus, s in this
subcase is not a Nash equilibrium.

(b) if s21 ≥ 1/2 and s22 ≥ 1/2, then no player can do better by unilaterally
changing his/her strategy (because i’s payoff is always 0 if s2j ≥ 1/2).
Thus, s in this subcase is a Nash equilibrium.

Exercise 5. In the movie, “A Beautiful Mind”, John Nash gets the idea for Nash
equilibrium in a student hangout where he is sitting with three buddies. Five women
walk in, four brunettes and a stunning blonde. Each of the four buddies starts
forward to introduce himself to the blonde. Nash stops them, though, saying, “If
we all go for the blonde, we will all be rejected and none of the brunettes will talk
to us afterwards because they will be offended. So let’s go for the brunettes.” The
next thing we see is the four buddies dancing with the four brunettes and the blonde
standing alone, looking unhappy.

Assume that if more than one buddy goes after a single woman, they will all be
rejected by the woman and end up alone. The payoffs are as follows. Ending up
with the blonde has a payoff of 4, ending up with a brunette has a payoff of 1, and
ending up alone is 0. The four buddies are players in this noncooperative game.

(i) Is the result in the story a Nash equilibrium?

(ii) Find all pure-strategy Nash equilibria for this game.

(iii) Are the Nash equilibria you find better than what Nash suggested?

Solution. (i) It is not a Nash equilibrium. If three guys stick to their strategies of
dancing with brunettes, the fourth guy can become better off by going after
the blonde.

(ii) There are 4 Nash equilibria: (blonde, brunette, brunette, brunette), (brunette,
blonde, brunette, brunette), (brunette, brunette, blonde, brunette), and (brunette,
brunette, brunette, blonde), where in the strategy profile (a, b, c, d), Players
1, 2, 3 and 4 choose a, b, c and d, respectively. Here we assume that the four
Brunettes are indistinguishable.

Each strategy profile above is a Nash equilibrium, since no one will be better
off by changing strategy unilaterally. For example, if a guy who is dancing
with one of the brunettes is unhappy and wants to change his strategy. If he
goes for the blonde, he will end up being alone since another guy is already
dancing with the blonde. So he will not gain by deviating from his current
strategy.

Claim: there is no other Nash equilibrium: Any strategy profile is in one of
the following 3 types:
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(a) One approaches the Blonde;

(b) No one approaches the Blonde;

(c) More than one approaches the Blonde.

It is easy to check that any strategy profile in type (b) or type (c) is not a
Nash equilibrium. Thus, all Nash equilibria are of type (a), which are the four
listed above.

(iii) In terms of total payoff, Nash equilibrium is better than the outcome in the
film.

Exercise 6. Two firms may compete for a given market of total value, V , by invest-
ing a certain amount of effort into the project through advertising, securing outlets,
etc. Each firm may allocate a certain amount for this purpose. If firm 1 allocates
x ≥ 0 and firm 2 allocates y ≥ 0, then the proportion of the market that firm 1 cor-
ners is x/(x+ y). The firms have different difficulties in allocating these resources.
The cost per unit allocation to firm i is ci, i = 1, 2. Thus the profits to the two
firms are

π1(x, y) = V · x

x+ y
− c1x,

π2(x, y) = V · y

x+ y
− c2y.

If both x and y are zero, the payoffs to both are V/2.
Find the equilibrium allocations, and the equilibrium profits to the two firms, as

functions of V , c1 and c2.

Solution. It is natural to assume V , c1 and c2 are positive.

1. Given Player 2’s strategy y = 0, there is no best response for Player 1: The
payoff of Player 1 is as follows

π1(x, 0) =

{
V − c1x, if x > 0;
V
2
, if x = 0.

Player 1 will try to choose x 6= 0 as close as possible to 0:

• We may choose x small enough, such that V
2
< V − c1x, so x = 0 can

not be a best response;

• For any x > 0, we will have V − c1x < V − c1 x2 , so x can not be a best
response.

Hence, the strategy profiles (x, 0) and (0, y) are not Nash equilibria. Therefore,
we will assume that x, y > 0.
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2. Given Player 2’s strategy y > 0, Player 1’s best response x∗(y) should satisfy
∂π1
∂x

(x) = 0, which implies

V y

(x∗(y) + y)2
− c1 = 0.

That is
y

c1
=

(x∗(y) + y)2

V
. (1)

Similarly, given Player 1’s strategy x > 0, we will get that Player 2’s best
response y∗(x) satisfies

x

c2
=

(x+ y∗(x))2

V
. (2)

Let (x∗, y∗) be a Nash equilibrium, that is, x∗ and y∗ are best responses of
each other, and hence (x∗, y∗) should satisfy Equations (1) and (2). From
Equations (1) and (2), we will have

y∗

c1
=

(x∗ + y∗)2

V
=
x∗

c2
.

Substitute this equation into Equations (1) and (2), we will obtain that

x∗ =
V c2

(c1 + c2)2
, y∗ =

V c1
(c1 + c2)2

.

Notice that x∗, y∗ are both positive, so they could be the solution of this
problem. Hence (x∗, y∗) is the only Nash equilibrium.

Exercise 7. A two-person game is called a zero-sum game (also called a matrix
game) if u1(s1, s2) + u2(s1, s2) = 0 for all s1 ∈ S1 and s2 ∈ S2. Show that (s∗1, s

∗
2) is

a pure-strategy Nash equilibrium of a two-person zero-sum game if and only if

u1(s1, s
∗
2) ≤ u1(s

∗
1, s
∗
2) ≤ u1(s

∗
1, s2), ∀s1 ∈ S1, s2 ∈ S2.

Consider a two-person zero-sum game in strategic form with finitely many strate-
gies for each player (not just two), and assume that player I has two particular pure
strategies T and B and that player II has two pure strategies l and r so that both
(T, l) and (B, r) are Nash equilibria of the game. Show that there are at least two
further pure-strategy Nash equilibria.

Prove that, for each player, the payoffs for the given equilibria are equal.

Proof. 1.“⇒”: Assume that (s∗1, s
∗
2) is a Nash equilibrium, by definition, for

Player 1, we have

u1(s1, s
∗
2) ≤ u1(s

∗
1, s
∗
2), ∀s1 ∈ S1. (3)
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Similarly, for Player 2, we have

u2(s
∗
1, s
∗
2) ≥ u2(s

∗
1, s2), ∀s2 ∈ S2. (4)

Notice u1(·, ·) + u2(·, ·) = 0, by Equation (4), we have

u1(s
∗
1, s
∗
2) ≤ u1(s

∗
1, s2), ∀s2 ∈ S2. (5)

Combining Equations (3) and (5), we have the following characterization
of a Nash Equilibrium,

u1(s1, s
∗
2) ≤ u1(s

∗
1, s
∗
2) ≤ u1(s

∗
1, s2), ∀s1 ∈ S1, s2 ∈ S2. (6)

“⇐”: Assume

u1(s1, s
∗
2) ≤ u1(s

∗
1, s
∗
2) ≤ u1(s

∗
1, s2), ∀s1 ∈ S1, s2 ∈ S2.

The 2nd part implies

u2(s
∗
1, s
∗
2) ≥ u2(s

∗
1, s2), ∀s2 ∈ S2,

since u1(·, ·) + u2(·, ·) = 0.

Combining the 1st part, we have (s∗1, s
∗
2) is a Nash equilibrium.

1’ Remark: Zero-sum games are special in that payoff in each cell of payoff table
sums to zero. This allows us to simplify the payoff table by giving only the
payoff of Player 1. For example, We can represent a zero-sum game as the
following:

L R
U 2,−2 3,−3
D −1, 1 2,−2

=⇒
L R

U 2 3
D −1 2

So if Player 1 plays U and Player 2 plays L, Player 1’s payoff is 2 and player
2’s payoff is −2.

The 1st sub-question gives us a nice property of zero-sum games: Entry (i, j)
is a NE with payoff p for Player 1, iff p is the maximum on jth column and
the minimum on the ith row. Here is a simple example:

s∗2 s2 s′2
s∗1 a b c
s1 d ∗ ∗
s′1 e ∗ ∗

In this game, (s∗1, s
∗
2) is a NE, iff d, e ≤ a ≤ b, c.
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l r · · ·
T a b ∗
B c d ∗
· · · ∗ ∗ ∗

2. 1st method for 2nd sub-question: Now we will apply the Remark here: Given
the payoff table for a zero-sum game with NE (T, l) and (B, r):

Since (T, l) is a NE, we have c ≤ a ≤ b. Since (B, r) is a NE, we have
b ≤ d ≤ c. Therefore a = b = c = d.

Since a is the maximum on 1th column and the minimum on the 1th row, we
have that b is the minimum on the 1th row, and c is the maximum on 1th
column.

Since d is the maximum on 2th column and the minimum on the 2th row, we
have that c is the minimum on the 2th row, and b is the maximum on 2th
column.

Applying the Remark again, we will have (T, r) and (B, l) are NE.

2’. 2nd method for 2nd sub-question: Suppose, T,B ∈ S1, l, r ∈ S2, and both
(T, l) and (B, r) are Nash equilibria, then by Equation (6), we have,

u1(s1, l) ≤ u1(T, l) ≤ u1(T, s2), ∀s1 ∈ S1, s2 ∈ S2; (7)

u1(s1, r) ≤ u1(B, r) ≤ u1(B, s2), ∀s1 ∈ S1, s2 ∈ S2. (8)

Take s1 = B, s2 = r in (7) and s1 = T, s2 = l (8), combine (7) and (8)
together, we have

u1(B, l) ≤ u1(T, l) ≤ u1(B, r) ≤ u1(B, r) ≤ u1(B, l). (9)

Using the 2nd part of (7) and the 1st of (8), notice u1(T, l) = u1(B, r) =
u1(T, r), we have

u1(s1, r) ≤ u1(T, r) ≤ u1(T, s2), ∀s1 ∈ S1, s2 ∈ S2. (10)

Therefore, by part 1, (T, r) is also a Nash equilibrium. Similarly, (B, l) is a
Nash equilibrium, too.

3. Since u1(T, l) = u1(B, r) = u1(B, l) = u1(T, r), the all Nash equilibria yield
the same payoff for Player 1, and also same for Player 2.
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