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1 Review

• The pure-strategy Nash equilibrium may not exist (e.g. matching pennies);
However, the mixed-strategy Nash equilibrium always exists. Nash’s Theo-
rem: In the n-player normal-form game G = {S1, . . . , Sn;u1, . . . , un}, if Si

is finite for every i, then there exists at least one Nash equilibrium, possibly
involving mixed strategies.

• In the n-player normal-form game G = {S1, . . . , Sn;u1, . . . , un}, suppose Si =
{si1, . . . , siKi

}. Then each strategy sik ∈ Si is called a Player i’s pure
strategy. A Player i’s mixed strategy is a probability distribution pi =
(pi1, . . . , piKi

), where pi1 + · · ·+ piKi
= 1 and 0 ≤ pik ≤ 1.

• In the 2-player normal-form gameG = {S1, S2;u1, u2}, suppose S1 = {s11, . . . , s1J},
and S2 = {s21, . . . , s2K}. If Player 1 believes that Player 2 will play the strate-
gies (s21, . . . , s2K) with the probabilities p2 = (p21, . . . , p2K), then Player 1’s
expected payoff from playing the mixed strategy p1 = (p11, . . . , p1J) is

U1(p1, p2) =
J∑

j=1

p1jU1(s1j, p2) =
J∑

j=1

K∑
k=1

p1jp2ku1(s1j, s2k).

Here we assume that Players 1 and 2 are independent.

Similarly, if Player 2 believes that Player 1 will play the strategies (s11, . . . , s1J)
with the probabilities p1 = (p11, . . . , p1J), then Player 2’s expected payoff
from playing the mixed strategy p2 = (p21, . . . , p2K) is

U2(p1, p2) =
K∑
k=1

p2kU2(p1, s2k) =
K∑
k=1

J∑
j=1

p2kp1ju2(s1j, s2k).

∗Corrections are always welcome.
†Email: xiangsun@nus.edu.sg; Mobile: 9169 7677; Office: S17-06-14.
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• In the 2-player normal-form game G = {S1, S2;u1, u2}, let p1 = (r, 1− r) and
p2 = (q, 1− q) be the Players 1 and 2’smixed strategies. Given p2,

r∗(q) ≡ arg max
0≤r≤1

U1(p1, p2) ⊂ [0, 1]1

is called Player 1’s best response. The function r∗(·) is called the best-
response correspondence.

• In the 2-player normal-form game G = {S1, S2;u1, u2}, the mixed strategy
profile (p∗1, p

∗
2) is a mixed-strategy Nash equilibrium if each player’s mixed

strategy is the best response to the other player’s mixed strategies:

U1(p
∗
1, p
∗
2) ≥ U1(p1, p

∗
2), U2(p

∗
1, p
∗
2) ≥ U2(p

∗
1, p2)

for all probability distributions p1 and p2, on S1 and S2, respectively.

2 How to find the Nash equilibrium(a)?

2.1 Pure-strategy Nash equilibrium(a)

• There are 2/3 players, and for each player, the strategy set is finite. Then we
will represent the game as a bi-matrix or tri-matrix, apply IESDS, underline
the best responses for each player, and find the cell in which both/all numbers
are underlined. For example, the prisoners’ dilemma.

• There are 2 players, for Player 1, the strategy set is finite, and for Player
2, the strategy set is infinite. Then we will fix Player 1’s strategy s1j, find
Player 2’s best response R∗2(s1j), and then check whether the fixed strategy
s1j is a best response for some strategy in R∗2(s1j). For example, Exercise 3
in Tutorial 2.

• There are 2 players, for each player, the strategy set is infinite. Then we will
find the best response correspondence for each player.

– If there is a player whose best response correspondence is a function
by cases, then we will draw the graphs of both best response corre-
spondences, and find the intersection points which give us the NE. For
example, Exercise 2 in Tutorial 2.

– Otherwise, we assume (s∗1, s
∗
2) is a NE, substitute into the Equations

derived from the definition of NE and the best response correspondences,
and resolve them which will give us the NE. In this subcase, there could
be more than 2 players. For example, Exercise 1 in Tutorial 2.

1arg max0≤r≤1 U1(p1, p2) = {r : 0 ≤ r ≤ 1, r is a maximizer of U1(p1, p2)}
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2.2 Mixed-strategy Nash equilibrium(a)

There are 2 players, and for each player, the strategy set is finite. Then we will
represent the game as a bi-matrix or tri-matrix, apply IESDS to find reduced game,
and find the best response correspondence for each player.

• If there is a player whose best response correspondence is a function by
cases, then we will draw the graphs of both best response correspondences,
and find the intersection points which give us the NE. For example, Exercises
5, 6, and 7 in Tutorial 2.

• Otherwise, we assume ((r∗, 1 − r∗), (q∗, 1 − q∗)) is a NE, substitute into the
Equations derived from the definition of NE and the best response correspon-
dences, and resolve them which will give us the NE.

3 Tutorial

Exercise 1. Suppose there are n firms in the Cournot oligopoly model. Let qi denote
the quantity produced by firm i, and let Q = q1 + · · · + qn denote the aggregate
quantity on the market. Let P denote the market-clearing price and assume that
inverse demand is given by P (Q) = a−Q (assuming Q < a, else P = 0). Assume
that the total cost of firm i from producing quantity qi is Ci(qi) = cqi. That is, there
are no fixed costs and the marginal cost is constant at c, where we assume c < a.
Following Cournot, suppose that the firms choose their quantities simultaneously.
What is the Nash equilibrium? What happens as n approaches infinity?

Solution. We assume c > 0.

• Set of players: {1, 2, . . . , n};

• For each i, Player i’s strategy set: Si = [0,+∞);

• For each i, Player i’s payoff function:

πi(qi, q−i) = qi(max{a− qi − q−i, 0} − c)

=

{
(a− qi − q−i − c)qi, if qi + q−i < a;

−cqi, if qi + q−i ≥ a,

where q−i =
∑

j 6=i qj.

In the following, given q−i, we try to find Player i’s best response:

(i) When a ≤ q−i, then we have qi + q−i ≥ a, and hence

πi(qi, q−i) = −cqi
{
< 0, if qi > 0;

= 0, if qi = 0.

Therefore, in this case, the best response for Player i is qi = 0.
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(ii) When a− c ≤ q−i < a, then we have

πi(qi, q−i) =


0, if qi = 0;

(a− qi − q−i − c)qi < 0, if 0 < qi ≤ a− q−i;
−cq−i < 0, if qi ≥ a− q−i.

Therefore, in this case, the best response for Player i is qi = 0.

(iii) When 0 ≤ q−i < a− c, then we have

πi(qi, q−i) =


0, if qi = 0;

(a− qi − q−i − c)qi > 0, if 0 < qi ≤ a− q−i;
−cq−i < 0, if a− q−i < qi.

The function (a− qi− q−i− c)qi is concave for qi, because its 2nd derivative is
−2 < 0. The local maximum can be determined by the first order condition
(the 1st derivative equals zero) a − q−i − c − 2qi = 0, thus the best response
for Player i is a−c−q−i

2
.

Therefore Player i’s best response is

R∗i (q−i) =

{
{0}, if a− c ≤ q−i;

{a−c−q−i

2
}, if 0 ≤ q−i < a− c.

Remark: We can not draw graphs to find Nash equilibrium(a), since there are
more than 2 players.

Claim: There does not exist a NE in which some players choose 0. We will prove
this claim by contradiction:

1. Assume there is a NE (q∗1, q
∗
2, . . . , q

∗
n), where

J ≡ {i : q∗i = 0} 6= ∅.

Let J c = {1, 2, . . . , n} − J , then for any j ∈ J c, q∗j =
a−c−q∗−j

2
.

2. Since for any i ∈ J , q∗i = 0, we will have q∗−i ≥ a−c, which implies
∑

j∈Jc q∗j ≥
a− c.

3. Since for any i ∈ J , q∗i = 0, we will have

q∗−j =
∑

k∈Jc,k 6=j

q∗k,

for each j ∈ J c, and hence

q∗j =
a− c−∑

k∈Jc,k 6=j q
∗
k

2
, ∀j ∈ J c.
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Summing this |J c| equations, we will have∑
j∈Jc

q∗j =
a− c

2
|J c| − 1

2
(|J c| − 1)

∑
j∈Jc

q∗j ,

which implies ∑
j∈Jc

q∗j =
|J c|
|J c|+ 1

(a− c) < a− c.

Contradiction.

Assume that (q∗1, q
∗
2, . . . , q

∗
n) is a pure-strategy Nash equilibrium, then based on

the claim above, we will have q∗i =
a−c−q∗−i

2
, for all i = 1, 2, . . . , n. Hence

q∗i = a− c−Q∗, ∀i = 1, 2, . . . , n,

where Q∗ =
∑n

i=1 q
∗
i . Summing the n equations above, we obtain

Q∗ =
n

n+ 1
(a− c).

Substituting this into each of the above n equations, we obtain

q∗1 = q∗2 = · · · = q∗n =
a− c
n+ 1

.

As n approaches infinity, the total output Q∗ = n
n+1

(a − c) approaches a − c

(perfect-competition output) and the price a−Q∗ = a+nc
n+1

approaches c (the perfect-
competition price).

Exercise 2. Consider the Cournot duopoly model where inverse demand is P (Q) =
a − Q but firms have asymmetric marginal costs: c1 for firm 1 and c2 for firm 2.
What is the Nash equilibrium if 0 < ci < a/2 for each firm? What if c1 < c2 < a
but 2c2 > a+ c1?

Solution. • Set of players: {1, 2};

• For each i, Player i’s strategy set: Si = [0,+∞);

• For each i, Player i’s payoff function:

πi(qi, qj) = qi(max{a− qi − qj, 0} − ci),

where i 6= j.
By similar method of Exercise 1, we will obtain Player i’s best response:

R∗i (qj) =

{
{a−ci−qj

2
}, if qj ≤ a− ci;

{0}, if qj > a− ci.

1. If 0 < c1, c2 <
a
2
, then a−ci

2
< a

2
< a− cj, where i 6= j. Hence we have the Fig-

ure (1a), and from it we will obtain the Nash equilibrium: (a−2c1+c2
3

, a−2c2+c1
3

).
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R∗
2(q1)

R∗
1(q2)

a

a− c1

a−c2
2

O a−c1
2

a− c2 a

NE=(a−2c1−c2
3

, a−2c2−c1
3

)

q1

q2

R∗
2(q1)

R∗
1(q2)

a

a− c1

a−c2
2

O a−c1
2

a− c2 a

NE=(a−c1
2

, 0)

q1

q2

Figure 1: Intersection of best-response correspondences

2. If 0 < c1 < c2 < a and 2c2 > a + c1, then a − c1 > a − c2 > a−c2
2

> 0 and
a−c1
2

> a− c2 > 0. Hence we have the Figure (1b), and from it we will obtain
the Nash equilibrium: (a−c1

2
, 0).

Exercise 3. Consider a market of duopoly. The two firms produce the same product.
Let qi be the quantity of the product produced by firm i, i = 1, 2. Let the market
price be

P (q1, q2) =

{
25− q1 − q2, if q1 + q2 < 25;

0, if q1 + q2 ≥ 25.

Let the cost of producing a unit of the product be c1 = 6 for firm 1 and c2 = 5
for firm 2. Due to the restriction of technology, firm 1 can produce either q1 = 5
or q1 = 10. Firm 2 can produce any quantity q2 ≥ 0. Firm i’s payoff is its profit
qi(P (q1, q2)− ci).

Find the Nash equilibrium of the game.

Solution. • Set of players: {1, 2};

• Player 1 and Player 2’s strategy sets are {0, 5, 10} and [0,+∞), respectively;

• Player i’s payoff function is

πi(qi, qj) = qi(max{25− qi − qj, 0} − ci),

where i 6= j.
It is easier to analyze Player 2’s best-response first, since Player 1 has only 3

pure strategies.

1. When q1 = 0, Player 2’s payoff function is

π2(q2) = q2(max{25− 0− q2, 0} − 5).
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When q2 > 20, π2(q2) < 0; when q2 ≤ 20, π2(q2) ≥ 0. Hence the local
maximum should solve the optimization problem

max
0≤q2≤20

q2(25− q2 − 5).

Therefore R∗2(0) = {10}.
Now if suffices to check whether 0 is a Player 1’s best response to 10: Given
q2 = 10, Player 1’s payoff function is

π1(q1) =


0(25− 0− 10− 6) = 0, if q1 = 0;

5(25− 5− 10− 6) = 20, if q1 = 5;

10(25− 10− 10− 6) = −10, if q1 = 10.

Therefore Player 1’s best response is R∗1(10) = {5}, and hence there is no
Nash equilibrium in which Player 1’s strategy is 0.

2. When q1 = 5, Player 2’s payoff function is

π2(q2) = q2(max{25− 5− q2, 0} − 5).

When q2 > 15, π2(q2) < 0; when q2 ≤ 15, π2(q2) ≥ 0. Hence the local
maximum should solve the optimization problem

max
0≤q2≤15

q2(20− q2 − 5).

Therefore R∗2(5) = {15
2
}.

Now if suffices to check whether 5 is a Player 1’s best response to 15
2

: Given
q2 = 15

2
, Player 1’s payoff function is

π1(q1) =


0(25− 0− 15

2
− 6) = 0, if q1 = 0;

5(25− 5− 15
2
− 6) = 32.5, if q1 = 5;

10(25− 10− 15
2
− 6) = 15, if q1 = 10.

Therefore the best response for Player 1 is R∗1(
15
2

) = {5}, and hence (5, 15
2

) is
a Nash equilibrium.

3. When q1 = 10, Player 2’s payoff function is

π2(q2) = q2(max{25− 10− q2, 0} − 5).

When q2 > 10, π2(q2) < 0; when q2 ≤ 10, π2(q2) ≥ 0. Hence the local
maximum should solve the optimization problem

max
0≤q2≤10

q2(15− q2 − 5).

Therefore R∗2(10) = {5}.
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Now if suffices to check whether 10 is a Player 1’s best response to 5: Given
q2 = 5, then Player 1’ payoff function is

π1(q1) =


0(25− 0− 5− 6) = 0, if q1 = 0;

5(25− 5− 5− 6) = 45, if q1 = 5;

10(25− 10− 5− 6) = 40, if q1 = 10.

Therefore the best response for Player 1 is R∗1(5) = {5}, and hence there is
no Nash equilibrium when Player 1’s strategy is 10.

Therefore there is only one Nash equilibrium: (5, 15
2

).

Exercise 4. Prove the following statement for a two-player game. If a strategy
skj ∈ Sk(k = 1, 2) is played with nonzero probability in a mixed-strategy Nash
equilibrium, then skj cannot be eliminated in the iterated elimination of strictly
dominated strategies. (Similar to Proposition 1.1.)

Proof. Let Sk = {sk1, sk2, . . . , sknk
}, k = 1, 2. Assume that (p∗1, p

∗
2) is a mixed-

strategy Nash equilibrium, where p∗k = (p∗k1, p
∗
k2, . . . , p

∗
knk

) is Player k’s mixed strat-
egy and p∗kj is the probability that Player k plays skj.

Assume that skj is the first of the strategies played with positive probability to
be eliminated for being strictly dominated. Then there should exist a strategy skl
that has not yet been eliminated from Sk that strictly dominates skj. By definition,
we have

uk(skj, s−kt) < uk(skl, skt),

for each skt have not yet been eliminated from the other Player’s strategy set.
Since skj is the first of the strategies played with positive probability to be

eliminated for being strictly dominated, we have

uk(skj, p
∗
−k) < uk(skl, p

∗
−k).

Now we will construct another mixed strategy p∗∗k for Player k:
p∗∗kj = 0

p∗∗kl = p∗kl + p∗kj
p∗∗ki = p∗ki, i 6= j, l.

Since uk(skj, p
∗
−k) < uk(skl, p

∗
−k), we have

uk(p∗k, p
∗
−k) < uk(p∗∗k , p

∗
−k),

which contracts that (p∗k, p
∗
−k) is a mixed-strategy Nash equilibrium.

Hence, skj will not be eliminated in the iterated elimination of strictly dominated
strategies.

Exercise 5. Find the mixed-strategy Nash equilibrium of the following normal-form
games.
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L R
T 2, 1 0, 2
B 1, 2 3, 0

L C R
T 2, 0 1, 1 4, 2
M 3, 4 1, 2 2, 3
B 1, 3 0, 2 3, 0

Solution. 1. In the left game, it is trivial that there is no pure-strategy Nash
equilibrium. Let p1 = (r, 1 − r) be a mixed-strategy in which Player 1 plays
T with probability r. Let p2 = (q, 1− q) be a mixed-strategy in which Player
2 plays L with probability q. Then Player 1’s expected payoff is:

U1(T, p2) = 2q,

U1(B, p2) = q + 3(1− q) = 3− 2q.

Hence

r∗(q) ≡ arg max
0≤r≤1

U1(p1, p2) =


{1}, if q > 3

4
;

{0}, if q < 3
4
;

[0, 1], if q = 3
4
.

Similarly, Player 2’s expected payoff is:

U2(p1, L) = r + 2(1− r) = 2− r,
U2(p1, R) = 2r.

Hence

q∗(r) ≡ arg max
0≤q≤1

U2(p1, p2) =


{1}, if r < 2

3
;

{0}, if r > 2
3
;

[0, 1], if r = 2
3
.

We draw the graphs of r∗(q) and q∗(r) together in Figure (2):

q∗(r)r∗(q)

(0, 1)

(0, 3
4
)

O (1, 0)(2
3
, 0)

NE=(2
3
T + 1

3
B, 3

4
L+ 1

4
R)

r

q

Figure 2: Intersection of best-response correspondences

The graphs of the best response correspondences r∗(q) and q∗(r) intersect at
only one point (r = 2

3
, q = 3

4
). Hence, there is only one mixed-strategy Nash

equilibrium (2
3
T + 1

3
B, 3

4
L+ 1

4
R) (or ((2

3
, 1
3
), (3

4
, 1
4
))).
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2. We have no idea how to find the mixed-strategy Nash equilibrium for the
game in which some player has more than 2 strategies. However, after iterated
elimination of strictly dominated strategies, we will obtain the reduced game
(3):

L R
T 2, 0 4, 2
M 3, 4 2, 3

Figure 3: Reduced game

It is trivial that there are two pure-strategy Nash equilibria: (M,L) and
(T,R).

Let p1 = (r, 1 − r) be a mixed strategy in which Player 1 plays T with
probability r. Let p2 = (q, 1− q) be a mixed strategy in which Player 2 plays
L with probability q. Then Player 1’s expected payoff is:

U1(T, p2) = 2q + 4(1− q) = 4− 2q,

U1(B, p2) = 3q + 2(1− q) = 2 + q.

Hence

r∗(q) ≡ arg max
0≤r≤1

U1(p1, p2) =


{1}, if q < 2

3
;

{0}, if q > 2
3
;

[0, 1], if q = 2
3
.

Similarly, Player 2’s expected payoff is:

U2(p1, L) = 4(1− r) = 4− 4r,

U2(p1, R) = 2r + 3(1− r) = 3− r.

Hence

q∗(r) ≡ arg max
0≤q≤1

U2(p1, p2) =


{1}, if r < 1

3
;

{0}, if r > 1
3
;

[0, 1], if r = 1
3
.

We draw the graphs of r∗(q) and q∗(r) together in Figure (4):
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q∗(r)

r∗(q)

(0, 1)

(0, 2
3
)

O (1, 0)(1
3
, 0)

mixed NE (1
3
T + 2

3
M, 2

3
L+ 1

3
R) pure NE (T,R)

pure NE (M,L)

r

q

Figure 4: Intersection of best-response correspondences

The graphs of the best response correspondences r∗(q) and q∗(r) intersect at
3 points (r = 1

3
, q = 2

3
), (r = 1, q = 0) and (r = 0, q = 1). Hence, there are 3

mixed-strategy Nash equilibria

• (1T, 1R) (or ((1, 0, 0), (0, 0, 1))),

• (1M, 1L) (or ((0, 1, 0), (1, 0, 0))),

• (1
3
T + 2

3
M, 2

3
L+ 1

3
R) (or ((1

3
, 2
3
, 0), (2

3
, 0, 1

3
))).

Exercise 6. Consider the following two-person game.

Player 1

Player 2
X Y

A 9, 9 0, 8
B 8, 0 7, 7

(i) Suppose that Player 1 thinks that Player 2 will play her strategy X with prob-
ability y and her strategy Y with probability 1 − y. For what value of y will
Player 1 be indifferent between his two strategies?

(ii) If y is less than this value what strategy will Player 1 prefer? If y is greater
than that value?

(iii) Graph the best responses of Player 1 to Player 2’s mixed strategy.

(iv) Repeat this analysis with the roles of the players reversed.

Solution. (i) Player 1’s expected payoff is:

U1(A, p2) = 9y,

U1(B, p2) = 8y + 7(1− y) = 7 + y.

Hence when 9y = 7 + y, that is, y = 7
8
, Player 1 will be indifferent between

his two strategies.
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(ii) If y > 7
8
, then Player 1 prefers A, otherwise Player 1 prefers B.

(iii) Let p1 = (x, 1 − x) be a mixed strategy in which Player 1 plays A with
probability x. Then

x∗(y) ≡ arg max
0≤y≤1

U1(p1, p2) =


{1}, if y > 7

8
;

{0}, if y < 7
8
;

[0, 1], if y = 7
8
.

Then the blue line in the Figure (5) is the graph of the best responses of Player
1 to Player 2’s mixed strategy p2 = (y, 1− y).

y∗(x)

x∗(y)

(0, 1)

(0, 7
8
)

O (1, 0)(7
8
, 0)

mixed NE (7
8
A+ 1

8
B, 7

8
X + 1

8
Y )

pure NE (B, Y )

pure NE (A,X)

x

y

Figure 5: Intersection of best-response correspondences

(iv) By symmetry, we obtain that

y∗(x) ≡ arg max
0≤x≤1

U2(p1, p2) =


{1}, if x > 7

8
;

{0}, if x < 7
8
;

[0, 1], if x = 7
8
.

Hence, the red line in the Figure (5) is the graph of the best responses of
Player 2 to Player 1’s mixed strategy p1 = (x, 1− x).

Exercise 7. Consider the following game:

(i) Eliminate strictly dominated strategies.

(ii) Find all pure-strategy Nash equilibria and write down the corresponding pay-
offs.

(iii) Find all mixed-strategy Nash equilibria and write down the corresponding ex-
pected payoffs.
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Player 1

Player 2
L M R

A 4, 3 2, 5 2, 0
B 6, 2 0, 3 1, 4
C 3, 1 1, 0 1, 2
D 3, 0 1, 1 3, 3

Solution. (i) (1) C is strictly dominated by A and will be eliminated;

(2) L is strictly dominated by M and will be eliminated;

(3) B is strictly dominated by D and will be eliminated.

Hence we will obtain the reduced game G1.

Player 1

Player 2
M R

A 2, 5 2, 0
D 1, 1 3, 3

G1

Player 1

Player 2
M R

A 2, 5 2, 0
D 1, 1 3, 3

G2

(ii) From the bi-matrix G2, we obtain the pure-strategy Nash equilibria: (A,M)
and (D,R) (red pairs) with payoffs (2, 5) and (3, 3), respectively.

(iii) Let p1 = (r, 1− r) be a mixed strategy in which Player 1 plays A with prob-
ability r. Let p2 = (q, 1 − q) be a mixed strategy in which Player 2 plays M
with probability q. Then Player 1’s expected payoff is:

U1(A, p2) = 2q + 2(1− q) = 2,

U1(D, p2) = q + 3(1− q) = 3− 2q.

Hence

r∗(q) ≡ arg max
0≤r≤1

U1(p1, p2) =


{1}, if q > 1

2
;

{0}, if q < 1
2
;

[0, 1], if q = 1
2
.

Similarly, Player 2’s expected payoff is:

U2(p1,M) = 5r + (1− r) = 1 + 4r,

U2(p1, R) = 3(1− r).
Hence

q∗(r) ≡ arg max
0≤q≤1

U2(p1, p2) =


{1}, if r > 2

7
;

{0}, if r < 2
7
;

[0, 1], if r = 2
7
.

We draw the graphs of r∗(q) and q∗(r) together:

The graphs of the best response correspondences r∗(q) and q∗(r) intersect at
3 points (r = 2

7
, q = 1

2
), (0, 0) and (1, 1). Hence, there are 3 mixed-strategy

Nash equilibria:



MA4264 Game Theory 14/14 Solution to Tutorial 2

q∗(r)

r∗(q)

(0, 1)

(0, 1
2
)

O (1, 0)(2
7
, 0)

mixed NE (2
7
A+ 5

7
D, 1

2
M + 1

2
R)

pure NE (D,R)

pure NE (A,M)

r

q

Figure 6: Intersection of best-response correspondences

• (1A, 1M) (or ((1, 0, 0, 0), (0, 1, 0))) with expected payoff (2, 5),

• (1D, 1R) (or ((0, 0, 0, 1), (0, 0, 1))) with expected payoff (3, 3),

• (2
7
A + 5

7
D, 1

2
M + 1

2
R) (or ((2

7
, 0, 0, 5

7
), (0, 1

2
, 1
2
))), with expected payoff

(2, 15
7

).
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