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1 Review
e Backwards induction will give us:

(1) backwards-induction outcome: dynamic game with complete and perfect
information;

(2) subgame-perfect outcome: dynamic game with complete and imperfect
information;

(3) subgame-perfect Nash equilibrium (SPE): dynamic game with complete
information (including both perfect and imperfect information).

e Standard methods to find SPE:

— Backwards induction:
(1) IESDS;
(2) Find all information sets (strategies) and subgames;
(3) Apply backwards induction.
— SPE C NE:
(1) IESDS;
(2) Find all information sets (strategies) and subgames;
(3) Construct the normal-from representation;
(4) Find all Nash equilibria;
(5) Check whether each NE is subgame-perfect.

*Corrections are always welcome.
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U(Ic + B), V(Ip — B) + U(I¢ + B)

Figure 1: The extensive-form representation

2 Tutorial

Exercise 1. Suppose a parent and a child play the following game. First, the child
takes an action, A € R, that produces income for the child, Ic(A) =5 — (A — 3)?,
and income for the parent, Ip(A) = 5 — (A — 1)2. Second, the parent observes
the incomes Ic and Ip and then chooses a bequest, B, to leave to the child. The
child’s payoff is U(Ic+ B); the parent’s is V(Ip — B)+ U (Ic + B), where the utility
functions U(x) =Inz and V(x) = In(4 + x).

(i) Find the backwards-induction outcome of the game.

(i1) Prove the “Rotten Kid” Theorem: in the backwards-induction outcome, the
child chooses the action that mazimizes the family’s aggregate income, 1o(A)+
Ip(A), even though only the parent’s payoff exhibits altruism.

(i1i) Now consider general functions Ic, Ip, U and V. Assume that all functions
are differentiable and strictly concave, and U and V are strictly increasing.
Assume also that mazximizers of the parent’s payoff and the child’s payoff exist.
Show that the Rotten Kid Theorem holds true.

Solution and Proof. (i) Figure 1 is the extensive-form representation of the game.
It is a dynamic game with complete and perfect information, and there are two
stages. The child and parent’s strategy sets are R and [0, +00), respectively.

e In a backwards-induction outcome, after observing Ip and I, the parent
chooses B > 0 in the second stage to maximize his utility

V(Ip—B)4+U(lc+ B) =14+ Ip — B) + In(Ic + B).

Given I¢ and Ip, In(4+Ip— B)+1In(Ic+ B) is a strictly concave function
in terms of B since the second derivative is negative. Hence by the first
order condition, the unique maximizer is

B (4) = 44 Ip(A) — Ic(A)

A (A B (A,
2
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e In the first stage, the child chooses A to maximize his utility

U(Ic + B) = In(Io(A) + B*(A))
=In(5—(A—=3)2+6—-24) =In(—A> +4A +2),

which is also a concave function. By the first order condition, the unique
maximizer is A* = 2.

Therefore B* = B*(A*) = 2, and hence the backwards-induction outcome is:
the child chooses A* = 2 in the first stage, and the parent chooses B* = 2 in
the second stage.

(ii) It suffices to show A* is a maximizer of the function Io(A) + Ip(A).
Ic(A)+Ip(A)=[F—(A=3)2]+[F - (A—-1)"] = —2A% 4+ 84

is a strictly concave function, and hence the unique maximizer is A* = 2 by
the first order condition.

(iii) We need to prove the child’s maximizer A* will maximize the aggregate income
Io(A) + Ip(A).

Firstly, we try to find the backwards-induction outcome:

1

e In the second stage, given A, the best response B*(A)' maximizes the

parent’s payoff
V(Ip(A)— B)+U(lc(A) + B).

Since V' and U are differentiable and strictly concave, V(Ip(A) — B) +
U(lc(A) + B) is also strictly concave in terms of B, and hence B*(A)
should satisfy the first order condition:

—V'(Ip(A) = B*(A))+ U'(Ic(A) + B*(A)) =0 (1)

holds for all A.
e In the first stage, A* maximizes the child’s payoff

U(lc(A) + B*(A)).

Since U is strictly increasing, A* should maximize I(A)+ B*(A). Hence
by the first order condition, we have

IL(A*) + B¥(A*) = 0.2 (2)

1B*(A) may not exist. We need additional assumptions: V’(—o0) = U’(—o0) = oco.
2We need to show B*(A) is differentiable: let f(A, B) = —V'(Ip(A)—B)+U’(Ic(A)—B). Then

% = U’ 4+ V' # 0. By implicit function theorem and uniqueness B*(A), B*(A) is continuously

differentiable.
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Differentiating A in Equation (1), by the chain rule we have
—V"(:) x [[p(A) = BY(A)]+ U"(-) x [Io(A) + BY(4)] = 0.
Taking A = A*, then by Equation (2) we have
V() x [Ip(A") = B*(A")] = 0.

Since V is strictly concave, we have V' < 0, and hence

Ip(A7) = BY(A7) = 0. (3)
Combining Equations (2) and (3), we have

IL(AY) + T (AY) = 0.

Since I¢(A) 4+ Ip(A) is strictly concave in A, we have A* is a maximizer.
[

Exercise 2. Now suppose the parent and child play a different game. Let the
incomes Ic = 80 and Ip = 100 be fized exogenously. First, the child decides how
much of the income I¢ to save (S) for the future, consuming the rest (Ic—S) today.
Second, the parent observes the child’s choice of S and chooses a bequest, B. The
child’s payoff is the sum of current and future utilities: u.(S,B) = In(Ic — S) +
2In(S + B). The parent’s payoff is u,(S, B) = In(Ip — B) + u.(S, B).

(i) Find the backwards-induction outcome of the game.

(ii) Show that there is a “Samaritan’s Dilemma”: in the backwards-induction out-
come, the child saves too little, so as to induce the parent to leave a larger
bequest (i.e., both the parent’s and child’s payoffs could be increased if S were
suitably larger and B suitably smaller). (Hint: Let S = S*+t§ and B = B*—4,
where (S*, B*) is the backwards-induction outcome and t is any number > 3.
Show that both payoffs u. and u, increase as § increases from 0 to a small
positive number.)

Solution and Proof. (i) Figure 2 is the extensive-form representation of the game.
It is a dynamic game with complete and perfect information, and there are
two stages. The child and parent’s strategy sets are [0,80] and [0, +00), re-
spectively.

e In the second stage, given the child’s action S, the parent chooses B*(S)
to maximize his payoff
uy(S, B) = In(Ip — B) 4+ u.(S, B)
= In(100 + B) + In(80 — S) + 21In(S + B)

which is strictly concave in terms of B since the second derivative is
negative. By the first order condition, the unique maximizer is

2008
==

B*(S5)
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Figure 2: The extensive-form representation

e In the first stage, the child chooses S* to maximize his payoff

(S, B*(S)) = In(80 — S) + 21n(S + B*(S))
200 + 28

=1In(80 —S)+21In 3

which is strictly concave. Then by the first order condition again, the
unique maximizer is S* = 20, and hence B* = B*(S*) = 60.

Therefore, the backwards-induction outcome is: the child chooses 20 in the
first stage, and the parent chooses 60 in the second stage.

(ii) Let S=S*+41td, B= B*— 4, and
f(0) = u.(S, B) = In(60 — td) + 21In(80 + (¢ — 1)J).

In order for f to be increasing for small §, we only need to verify that f/(0) is

positive.
/ 2t — 1)
/5:
FO) =5—wtsra-19
i £ t—1 -3
FO="%*""% =10

When t > 3, f/(0) > 0, and hence there exists € > 0, such that /() > 0 when
d € [0,€). Therefore, u.(S, B) = f is increasing in [0, €).

Note that the parent’s payoff is In(40 + ¢) + u.(S, B), so it is also increasing
in [0, €) since each term is increasing in [0, €).
0

Exercise 3. Consider two countries denoted by i = 1,2, each of which has one firm
producing a homogenous product only for export, to be sold in the world market.
The price for the product is p(Q) = a — Q, where Q = q1 + q2 and ¢; is the output
level of the firm in country ©. The pre-innovation cost function of each firm is
Ci(g:) = cqi, i = 1,2. (Assume 0 < 5a < ¢ < a.) Let x; denote the amount of
research and development (R& D) sponsored by the government in country i. We
assume that when government i undertakes R& D at level x;, the cost function of
the firm in country i becomes Ci(q;, x;) = (¢ — x;)q;, i = 1,2. Also assume that the
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Figure 3: The extensive-form representation

The

o |§M

total cost to government i of engaging in R&D at level x; is TC;(x;) =
game takes place in two stages:

e Governments choose R&D levels x; > 0 simultaneously;

e Observing both governments’ choice of R& D, firms simultaneously choose out-
put level q; > 0.

The payoff functions of the firms are given by

7Tz'(Q1, q2, 5U17932) = Qi(p(Q) - Ci(%l"i))
= qi(a— (¢ + q;) — (c — z)), i=1,2, j#i

and those of the governments by

VVi(Qh g2, %1, Iz) = 7Ti<Q17 g2, I17$2) - Toi(xi)
2

I%(a—(Qz‘Jr%)—(C—%))—?a i=1,2, j#1i
Find the subgame-perfect outcome.

Solution. Figure 3 is the extensive-form representation of the game. It is a dynamic
game with complete and imperfect information, and there are two stages. For
countries 1 and 2, the strategy set is [0, ¢]. (we need z; < ¢ because firms’ marginal
cost can not be negative.)

e In the second stage, given x; and x5, two firms play a Cournot duopoly game,
where the total demand is a, and marginal cost for firm i is ¢; = ¢ — z;. Given
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¢, Firm 4’s best response is

\ (=51}, ifg<a-—c;
R; (Qj) = 2 7
{0}, if ¢; > a—c.

Based on Question 2 in Tutorial 2, we have the following 3 cases:

—If a—cy < %52 (w2 << 1), then ¢5 = 0, and hence W, < 0.
—If a—c; < %52 (21 << x3), then ¢f = 0, and hence W < 0.

— Ifa—cy > %5 and a — ¢; > “5%, then the unique Nash equilibrium is

. . a—2c1+cy a—2c+c
(g1 (w1, 72), g3 (21, 22)) = ( 31 27 32 1)

(a—c+2ry —xy a—c+2ry — 1
B 3 ’ 3 ‘

In this case, we will see that W, and W5 may be positive. Therefore, in
a subgame-perfect outcome, governments 1 and 2 will not choose x; and
xo so that the first 2 cases occur, and hence we should focus on this case.

e In the first stage, given z;, government i’s best response R;(z;) is the set

argimax Wi(‘ﬁ(l'ly 5132)7 q;(%, -’E2)7 Ty, $2),

where

a—c+2m—x;\° 2
3 2

Wi(Qik(l‘l, $2)7 q;(%, Iz), Ty, xz) = (

is a strictly concave function in terms of x; since the second derivative is —%.

Then by the first order condition, W;’s unique maximizer is 4(a — ¢ — x;), and
hence Rf(x;) = {4(a —c — z;)}.

Assume z7 and x3 are best response to each other, then we have z = 4(a —
¢ —a%) and =5 = 4(a — ¢ — 27), which imply
4

Ty =125 = g(a —¢) < ¢ (because 4/9a < ¢),

and hence ¢f = ¢; = 2(a —¢).

To summarize, the subgame-perfect outcome is: each government chooses 2(a — c)

5
in the first stage, and each firm chooses 2(a — ¢) in the second stage. O

Exercise 4. Give the extensive-form and normal-form representations and find the
Nash equilibria and subgame-perfect equilibria of (i) Game 1 in Tutorial 3 Question
3, and (ii) the bank-runs game.
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2,1 0,0 6,4 1,5
Figure 4: The extensive-form representation and subgame-perfect Nash equilibrium

Player 2
LL LR RL RR
Player 1 v 121 21 0,0 (0,0
D [6,4 |15 |64 | 1,5

Figure 5: The normal-form representation and Nash equilibria

Solution. (i) Figures 4 and 5 are the extensive-form and normal-form represen-
tations of the game, respectively.

Bi-matrix 5 tells us the all Nash equilibria: (U, LR) and (D, RR).

Since SPE C NE, it suffices to check whether each NE is subgame perfect.
There are 2 subgames, and L and R are the Nash equilibria in left and right
subgames, respectively. Therefore, the unique subgame-perfect equilibrium is

(U, LR).
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(ii) Figures 6 and 7 are the extensive-form and normal-form representations of the
game, respectively.

8,8 10,6 6,10 9,9

Figure 6: The extensive-form representation

Player 2
ww WD DW DD
WWwW | 44 | 44 |53 |53
Player 1 WD | 4,4 | 44 | 5,3 | 53
DW | 3,5 | 3,5 [ 8,8 [10,6
DD | 3,5 | 3,5 [6,10 ] 9,9

Figure 7: The normal-form representation and Nash equilibria
Bi-matrix 7 tells us the all Nash equilibria: (WW, WW), (WW, WD), (WD, WW),
(WD, WD), and (DW, DW).

There is only one subgame, displayed in Figure 8, and the Nash equilibrium

in this subgame is (W, W), Therefore, the all subgame-perfect equilibria are
(WW,WW) and (DW, DW).

]
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8,8 10,6 6,10 9,9

Figure 8

Exercise 5. For each of the following games.
(i) find the subgame-perfect outcome;
(i1) give the normal-form representation;
(i1i) find all Nash equilibria;
(v) find all subame-perfect Nash equilibria.

(v) In game 3, there is a Nash equilibrium which is not subgame perfect. Ezplain
why it is a Nash equilibrium and why it is not a “good” equilibrium.

Solution. (1) Game 1:

(i) From Figure 9, we have the subgame-perfect outcome: in the first stage
Player 1 chooses A, and in the second stage Player 2 chooses L.

4,6 0,5 5,0 1,8

Figure 9: The extensive-form representation and subgame-perfect outcome

equilibria: (A, LR) and (B, RR).

Player 2
LL LR RL RR
Player 1 A 14,6 |46 10,5 10,5
B |50 [ 1,8 |50 | 1,8

Figure 10: The normal-form representation and Nash equilibria

(iv) Since it is a dynamic game with complete and perfect information, based
on Figure 9, we have the unique subgame-perfect Nash equilibrium: (A, LR).
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(2) Game 2:

(i) From Figure 1la, we have the subgame-perfect outcome: since M is
strictly dominated by U, we only need to consider the reduced game,
displayed in Figure 11b. Hence the subgame-perfect outcome is: Player 1
chooses U in the first stage, and Player 2 chooses L in the second stage.

3,1 2,0 0,0 1,3 2,2 3,0 3,1 2,0 2,2 3,0

Figure 11: The extensive-form representation and subgame-perfect outcome

equilibria: (U, LP), (U, LQ) and (D, RP).

Player 2
LP LQ RP RQ
U [ 3,1 31 20 [2,0
Player 1 M | 0,0 | 0,0 | 1,3 | 1,3
D[22 |30 22 ] 30

Figure 12: The normal-form representation and Nash equilibria

(iv) There is only one subgame, in which Player 2 will choose P. Therefore
the unique subgame-perfect Nash equilibrium is (U, LP).

Remark: there is no subgame-perfect outcome for Game 13.

3,1 0,0 0,0 1,3 2,2 3,0

Figure 13: There is no subgame-perfect outcome

(3) Game 3:
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(i) From Figure 14, we have the subgame-perfect outcome: in the first stage
Player 1 chooses B, and in the second stage Player 2 chooses D.

~100, —100 0,0

Figure 14: The extensive-form representation and subgame-perfect outcome

equilibria: (A,C) and (B, D).

Player 2
C D
A [ ~10,10 10, 10
Player 1% 160, ~100 0,0

Figure 15: The normal-form representation and Nash equilibria

(iv) Since it is a dynamic game with complete and perfect information, based

on Figure 14, we have the unique subgame-perfect Nash equilibrium:
(B, R).

(v) It is a Nash equilibrium because A is the best response of Player 1 if
Player 2 plays C', and C' is the best response of Player 2 if Player 1 plays
A (actually, Player 2 is indifferent between C' and D).

It is not a good equilibrium because it is not subgame-perfect. If the game
reaches to the second stage, Player 2 will choose to play D instead of C.
This Nash equilibrium is based on a non-credible threat.

(4) Game 4:

(i) From Figure 16, we have the subgame-perfect outcome: in the first stage
Player 1 chooses A, in the second stage Player 2 chooses D, and game
ends.

equilibria: (AG,DFE) and (AH, DFE).

(iv) Since it is a dynamic game with complete and perfect information, based
on Figure 16, we have the unique subgame-perfect Nash equilibrium:

(AG, DE).
O
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3,2 1,6

Figure 16: The extensive-form representation and subgame-perfect outcome

Player 2
CE CF DE  DF
AG | 1,-1 | 1,-1 | 0,0 0,0
Player 1 AH | 1,—1 | 1,—-1 | 0,0 0,0
BG | 1,5 | 3,2 | —=1,5 | 3,2
BH | -1,5 | 1,6 | —1,5 1,6

Figure 17: The normal-form representation and Nash equilibria

Exercise 6. Players 1 and 2 are bargaining over one dollar in two periods: In the
first period, Player 1 proposes s1 for himself and 1 — s1 for player 2. In the second
period, player 2 decides whether to accept the offer or to reject the offer. If player
2 accepts the offer, the payoff are sy for player 1 and 1 — sy for player 2. If player
2 rejects the offer, the payoff are zero for both players.

(i) Describe all strategies of player 1 and player 2.
(ii) Find some (as many as you can) Nash equilibria.
(11i) Find a subgame-perfect Nash equilibrium of the game (write down your proof ).

(iv) Find some Nash equilibria which are not subgame-perfect (write down your
proof ).

Solution. Figure 18 is the extensive-form representation of the game.

(i) It is easy to see that Player 1’s strategy space is S; = [0, 1]. Since a strategy is
a complete plan of actions in every contingency when a player is called upon
to make, a strategy for Player 2 can be represented as a function

f:10,1] — {A, R}.

For example,

R, otherwise

A, if0<s <3
f(Sl)Z{ - o=



MA4264 Game Theory 14/15 Solution to Tutorial 4

S1

81,1—81 0,0

Figure 18: The extensive-form representation of the game

is a strategy of Player 2 in which Player 2 will accept if Player 1 offers any
51 < % and otherwise she will reject.

Thus, the space of all strategies of Player 2 is the set of all functions from
[0,1] to {A, R}. We denote it by Sy.”

(ii)) e Player 1’s best-response correspondence: Given a strategy f of Player
2, note that for any s; € f71(A), Player 2 will accept the offer. Hence,
given f, Player 2 will choose the maximum in f~1(A) if it exists. Thus,
Player 1’s best-response correspondence is

[07 1]7 if fﬁl(A) = @;
Bi(f) =< {s*}, if f7}(A) has a maximum s*;

0, if f7'(A) has no maximum.

e Player 2’s best-response correspondence: note that Player 2’s strategy is
a function

B*(S)_ {fESQ:f(Sl):A}, 1f0§81<1’
2 SQa ifSlzl.

That means for any s; < 1, Player 1 will accept. If s; = 1, Player 1 is
indifferent between the two actions (accept or reject).

e We can use various combinations of the conditions in the expression of
B} and Bj to construct all the Nash equilibria:

— When f*7'(A) # 0, (s}, f*) is a Nash equilibrium if and only if

st =sup f* 1 (A) = max f* 1 (A);
— When f*'(A) = 0, (s}, f*) is a Nash equilibrium if and only if

s7]=1.

(iii) For each given s;, we need to consider a corresponding subgame, displayed
in Figure 19. We know if f* is subgame-perfect, f*(s;) = A for any s; < 1.

3There are other ways to represent the strategies of Player 2, but this seems the most natural
way.
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2
A B
S1, 1-— S1 O, 0
Figure 19

Hence, if (s7, f*) is subgame-perfect, f* should be either f; or f;:

A, if 1;
fr(s1) = {R: ; : : 1? or f5(s1) = A for all sy.

It is easy to check that only (s7 = 1, f5) is the unique subgame-perfect Nash
equilibrium.

(iv) (s = 1,f* = R) is a Nash equilibrium but not a subgame-perfect Nash
equilibrium.

O
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