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1 Review

• Backwards induction will give us:

(1) backwards-induction outcome: dynamic game with complete and perfect
information;

(2) subgame-perfect outcome: dynamic game with complete and imperfect
information;

(3) subgame-perfect Nash equilibrium (SPE): dynamic game with complete
information (including both perfect and imperfect information).

• Standard methods to find SPE:

– Backwards induction:

(1) IESDS;

(2) Find all information sets (strategies) and subgames;

(3) Apply backwards induction.

– SPE ⊂ NE:

(1) IESDS;

(2) Find all information sets (strategies) and subgames;

(3) Construct the normal-from representation;

(4) Find all Nash equilibria;

(5) Check whether each NE is subgame-perfect.

∗Corrections are always welcome.
†Email: xiangsun@nus.edu.sg; Mobile: 9169 7677; Office: S17-06-14.
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A

Child

B

U(IC +B), V (IP −B) + U(IC +B)

Parent

Figure 1: The extensive-form representation

2 Tutorial

Exercise 1. Suppose a parent and a child play the following game. First, the child
takes an action, A ∈ R, that produces income for the child, IC(A) = 5− (A− 3)2,
and income for the parent, IP (A) = 5 − (A − 1)2. Second, the parent observes
the incomes IC and IP and then chooses a bequest, B, to leave to the child. The
child’s payoff is U(IC +B); the parent’s is V (IP −B)+U(IC +B), where the utility
functions U(x) = ln x and V (x) = ln(4 + x).

(i) Find the backwards-induction outcome of the game.

(ii) Prove the “Rotten Kid” Theorem: in the backwards-induction outcome, the
child chooses the action that maximizes the family’s aggregate income, IC(A)+
IP (A), even though only the parent’s payoff exhibits altruism.

(iii) Now consider general functions IC, IP , U and V . Assume that all functions
are differentiable and strictly concave, and U and V are strictly increasing.
Assume also that maximizers of the parent’s payoff and the child’s payoff exist.
Show that the Rotten Kid Theorem holds true.

Solution and Proof. (i) Figure 1 is the extensive-form representation of the game.
It is a dynamic game with complete and perfect information, and there are two
stages. The child and parent’s strategy sets are R and [0,+∞), respectively.

• In a backwards-induction outcome, after observing IP and IC , the parent
chooses B ≥ 0 in the second stage to maximize his utility

V (IP −B) + U(IC +B) = ln(4 + IP −B) + ln(IC +B).

Given IC and IP , ln(4+IP −B)+ln(IC+B) is a strictly concave function
in terms of B since the second derivative is negative. Hence by the first
order condition, the unique maximizer is

B∗(A) =
4 + IP (A)− IC(A)

2

=
4 + [5− (A− 1)2]− [5− (A− 3)2]

2
= 6− 2A.
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• In the first stage, the child chooses A to maximize his utility

U(IC +B) = ln(IC(A) +B∗(A))

= ln(5− (A− 3)2 + 6− 2A) = ln(−A2 + 4A+ 2),

which is also a concave function. By the first order condition, the unique
maximizer is A∗ = 2.

Therefore B∗ = B∗(A∗) = 2, and hence the backwards-induction outcome is:
the child chooses A∗ = 2 in the first stage, and the parent chooses B∗ = 2 in
the second stage.

(ii) It suffices to show A∗ is a maximizer of the function IC(A) + IP (A).

IC(A) + IP (A) = [5− (A− 3)2] + [5− (A− 1)2] = −2A2 + 8A

is a strictly concave function, and hence the unique maximizer is A∗ = 2 by
the first order condition.

(iii) We need to prove the child’s maximizer A∗ will maximize the aggregate income
IC(A) + IP (A).

Firstly, we try to find the backwards-induction outcome:

• In the second stage, given A, the best response B∗(A)1 maximizes the
parent’s payoff

V (IP (A)−B) + U(IC(A) +B).

Since V and U are differentiable and strictly concave, V (IP (A) − B) +
U(IC(A) + B) is also strictly concave in terms of B, and hence B∗(A)
should satisfy the first order condition:

− V ′(IP (A)−B∗(A)) + U ′(IC(A) + B∗(A)) = 0 (1)

holds for all A.

• In the first stage, A∗ maximizes the child’s payoff

U(IC(A) +B∗(A)).

Since U is strictly increasing, A∗ should maximize IC(A)+B∗(A). Hence
by the first order condition, we have

I ′C(A
∗) +B∗′(A∗) = 0.2 (2)

1B∗(A) may not exist. We need additional assumptions: V ′(−∞) = U ′(−∞) = ∞.
2We need to show B∗(A) is differentiable: let f(A,B) = −V ′(IP (A)−B)+U ′(IC(A)−B). Then

∂f
∂B = U ′ + V ′ ̸= 0. By implicit function theorem and uniqueness B∗(A), B∗(A) is continuously
differentiable.
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Differentiating A in Equation (1), by the chain rule we have

−V ′′(·)× [I ′P (A)−B∗′(A)] + U ′′(·)× [I ′C(A) +B∗′(A)] = 0.

Taking A = A∗, then by Equation (2) we have

V ′′(·)× [I ′P (A
∗)−B∗′(A∗)] = 0.

Since V is strictly concave, we have V ′′ < 0, and hence

I ′P (A
∗)−B∗′(A∗) = 0. (3)

Combining Equations (2) and (3), we have

I ′C(A
∗) + I ′P (A

∗) = 0.

Since IC(A) + IP (A) is strictly concave in A, we have A∗ is a maximizer.

Exercise 2. Now suppose the parent and child play a different game. Let the
incomes IC = 80 and IP = 100 be fixed exogenously. First, the child decides how
much of the income IC to save (S) for the future, consuming the rest (IC−S) today.
Second, the parent observes the child’s choice of S and chooses a bequest, B. The
child’s payoff is the sum of current and future utilities: uc(S,B) = ln(IC − S) +
2 ln(S +B). The parent’s payoff is up(S,B) = ln(IP −B) + uc(S,B).

(i) Find the backwards-induction outcome of the game.

(ii) Show that there is a “Samaritan’s Dilemma”: in the backwards-induction out-
come, the child saves too little, so as to induce the parent to leave a larger
bequest (i.e., both the parent’s and child’s payoffs could be increased if S were
suitably larger and B suitably smaller). (Hint: Let S = S∗+tδ and B = B∗−δ,
where (S∗, B∗) is the backwards-induction outcome and t is any number > 3.
Show that both payoffs uc and up increase as δ increases from 0 to a small
positive number.)

Solution and Proof. (i) Figure 2 is the extensive-form representation of the game.
It is a dynamic game with complete and perfect information, and there are
two stages. The child and parent’s strategy sets are [0, 80] and [0,+∞), re-
spectively.

• In the second stage, given the child’s action S, the parent chooses B∗(S)
to maximize his payoff

up(S,B) = ln(IP −B) + uc(S,B)

= ln(100 +B) + ln(80− S) + 2 ln(S +B)

which is strictly concave in terms of B since the second derivative is
negative. By the first order condition, the unique maximizer is

B∗(S) =
200− S

3
.
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uc(S,B), up(S,B)
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Figure 2: The extensive-form representation

• In the first stage, the child chooses S∗ to maximize his payoff

uc(S,B
∗(S)) = ln(80− S) + 2 ln(S +B∗(S))

= ln(80− S) + 2 ln
200 + 2S

3

which is strictly concave. Then by the first order condition again, the
unique maximizer is S∗ = 20, and hence B∗ = B∗(S∗) = 60.

Therefore, the backwards-induction outcome is: the child chooses 20 in the
first stage, and the parent chooses 60 in the second stage.

(ii) Let S = S∗ + tδ, B = B∗ − δ, and

f(δ) ≡ uc(S,B) = ln(60− tδ) + 2 ln(80 + (t− 1)δ).

In order for f to be increasing for small δ, we only need to verify that f ′(0) is
positive.

f ′(δ) =
t

δ − 60
+

2(t− 1)

80 + (t− 1)δ
,

so

f ′(0) = − t

60
+

t− 1

40
=

t− 3

120
.

When t > 3, f ′(0) > 0, and hence there exists ϵ > 0, such that f ′(δ) > 0 when
δ ∈ [0, ϵ). Therefore, uc(S,B) = f is increasing in [0, ϵ).

Note that the parent’s payoff is ln(40 + δ) + uc(S,B), so it is also increasing
in [0, ϵ) since each term is increasing in [0, ϵ).

Exercise 3. Consider two countries denoted by i = 1, 2, each of which has one firm
producing a homogenous product only for export, to be sold in the world market.
The price for the product is p(Q) = a−Q, where Q = q1 + q2 and qi is the output
level of the firm in country i. The pre-innovation cost function of each firm is
Ci(qi) = cqi, i = 1, 2. (Assume 0 < 4

9
a ≤ c < a.) Let xi denote the amount of

research and development (R&D) sponsored by the government in country i. We
assume that when government i undertakes R&D at level xi, the cost function of
the firm in country i becomes Ci(qi, xi) = (c− xi)qi, i = 1, 2. Also assume that the
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x1

Government 1

x2

Government 2

q1

Firm 1

q2

π1, π2, W1, W2

Firm 2

Figure 3: The extensive-form representation

total cost to government i of engaging in R&D at level xi is TCi(xi) =
x2
i

2
. The

game takes place in two stages:

• Governments choose R&D levels xi ≥ 0 simultaneously;

• Observing both governments’ choice of R&D, firms simultaneously choose out-
put level qi ≥ 0.

The payoff functions of the firms are given by

πi(q1, q2, x1, x2) = qi(p(Q)− Ci(qi, xi))

= qi(a− (qi + qj)− (c− xi)), i = 1, 2, j ̸= i

and those of the governments by

Wi(q1, q2, x1, x2) = πi(q1, q2, x1, x2)− TCi(xi)

= qi(a− (qi + qj)− (c− xi))−
x2
i

2
, i = 1, 2, j ̸= i

Find the subgame-perfect outcome.

Solution. Figure 3 is the extensive-form representation of the game. It is a dynamic
game with complete and imperfect information, and there are two stages. For
countries 1 and 2, the strategy set is [0, c]. (we need xi ≤ c because firms’ marginal
cost can not be negative.)

• In the second stage, given x1 and x2, two firms play a Cournot duopoly game,
where the total demand is a, and marginal cost for firm i is ci = c−xi. Given
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qj, Firm i’s best response is

R∗
i (qj) =

{
{a−ci−qj

2
}, if qj ≤ a− ci;

{0}, if qj > a− ci.

Based on Question 2 in Tutorial 2, we have the following 3 cases:

– If a− c2 ≤ a−c1
2

(x2 << x1), then q∗2 = 0, and hence W2 ≤ 0.

– If a− c1 ≤ a−c2
2

(x1 << x2), then q∗1 = 0, and hence W1 ≤ 0.

– If a− c2 >
a−c1
2

and a− c1 >
a−c2
2

, then the unique Nash equilibrium is

(q∗1(x1, x2), q
∗
2(x1, x2)) =

(
a− 2c1 + c2

3
,
a− 2c2 + c1

3

)
=

(
a− c+ 2x1 − x2

3
,
a− c+ 2x2 − x1

3

)
.

In this case, we will see that W1 and W2 may be positive. Therefore, in
a subgame-perfect outcome, governments 1 and 2 will not choose x1 and
x2 so that the first 2 cases occur, and hence we should focus on this case.

• In the first stage, given xj, government i’s best response R∗
i (xj) is the set

argmax
xi≥0

Wi(q
∗
1(x1, x2), q

∗
2(x1, x2), x1, x2),

where

Wi(q
∗
1(x1, x2), q

∗
2(x1, x2), x1, x2) =

(
a− c+ 2xi − xj

3

)2

− x2
i

2

is a strictly concave function in terms of xi since the second derivative is −1
9
.

Then by the first order condition, Wi’s unique maximizer is 4(a− c−xj), and
hence R∗

i (xj) = {4(a− c− xj)}.
Assume x∗

1 and x∗
2 are best response to each other, then we have x∗

1 = 4(a −
c− x∗

2) and x∗
2 = 4(a− c− x∗

1), which imply

x∗
1 = x∗

2 =
4

5
(a− c) ≤ c (because 4/9a ≤ c),

and hence q∗1 = q∗2 = 3
5
(a− c).

To summarize, the subgame-perfect outcome is: each government chooses 4
5
(a− c)

in the first stage, and each firm chooses 3
5
(a− c) in the second stage.

Exercise 4. Give the extensive-form and normal-form representations and find the
Nash equilibria and subgame-perfect equilibria of (i) Game 1 in Tutorial 3 Question
3, and (ii) the bank-runs game.
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DU

1

R

0, 0

L

2, 1

2

R

1, 5

L

6, 4

2

Figure 4: The extensive-form representation and subgame-perfect Nash equilibrium

Player 1

Player 2
LL LR RL RR

U 2, 1 2, 1 0, 0 0, 0
D 6, 4 1, 5 6, 4 1, 5

Figure 5: The normal-form representation and Nash equilibria

Solution. (i) Figures 4 and 5 are the extensive-form and normal-form represen-
tations of the game, respectively.

Bi-matrix 5 tells us the all Nash equilibria: (U,LR) and (D,RR).

Since SPE ⊂ NE, it suffices to check whether each NE is subgame perfect.
There are 2 subgames, and L and R are the Nash equilibria in left and right
subgames, respectively. Therefore, the unique subgame-perfect equilibrium is
(U,LR).
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(ii) Figures 6 and 7 are the extensive-form and normal-form representations of the
game, respectively.

DW

1

D

5, 3

W

4, 4

2

DW

3, 5

2

DW

1

D

10, 6

W

8, 8

2

D

9, 9

W

6, 10

2

Figure 6: The extensive-form representation

Player 1

Player 2
WW WD DW DD

WW 4, 4 4, 4 5, 3 5, 3
WD 4, 4 4, 4 5, 3 5, 3
DW 3, 5 3, 5 8, 8 10, 6
DD 3, 5 3, 5 6, 10 9, 9

Figure 7: The normal-form representation and Nash equilibria

Bi-matrix 7 tells us the all Nash equilibria: (WW,WW ), (WW,WD), (WD,WW ),
(WD,WD), and (DW,DW ).

There is only one subgame, displayed in Figure 8, and the Nash equilibrium
in this subgame is (W,W ), Therefore, the all subgame-perfect equilibria are
(WW,WW ) and (DW,DW ).
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DW

1

D

10, 6
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2
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W
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2

Figure 8

Exercise 5. For each of the following games.

(i) find the subgame-perfect outcome;

(ii) give the normal-form representation;

(iii) find all Nash equilibria;

(iv) find all subame-perfect Nash equilibria.

(v) In game 3, there is a Nash equilibrium which is not subgame perfect. Explain
why it is a Nash equilibrium and why it is not a “good” equilibrium.

Solution. (1) Game 1:

(i) From Figure 9, we have the subgame-perfect outcome: in the first stage
Player 1 chooses A, and in the second stage Player 2 chooses L.

BA

1

R

0, 5

L

4, 6

2

R

1, 8

L

5, 0

2

Figure 9: The extensive-form representation and subgame-perfect outcome

(ii,iii) Figure 10 is the normal-form representation, and it tells us the all Nash
equilibria: (A,LR) and (B,RR).

Player 1

Player 2
LL LR RL RR

A 4, 6 4, 6 0, 5 0, 5
B 5, 0 1, 8 5, 0 1, 8

Figure 10: The normal-form representation and Nash equilibria

(iv) Since it is a dynamic game with complete and perfect information, based
on Figure 9, we have the unique subgame-perfect Nash equilibrium: (A,LR).
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(2) Game 2:

(i) From Figure 11a, we have the subgame-perfect outcome: since M is
strictly dominated by U , we only need to consider the reduced game,
displayed in Figure 11b. Hence the subgame-perfect outcome is: Player 1
chooses U in the first stage, and Player 2 chooses L in the second stage.

DU
M

1

R

2, 0

L

3, 1

2

R

1, 3

L

0, 0

2

Q

3, 0

P

2, 2

2

DU

1

R

2, 0

L

3, 1

2

Q

3, 0

P

2, 2

2

Figure 11: The extensive-form representation and subgame-perfect outcome

(ii,iii) Figure 12 is the normal-form representation, and it tells us the all Nash
equilibria: (U,LP ), (U,LQ) and (D,RP ).

Player 1

Player 2
LP LQ RP RQ

U 3, 1 3, 1 2, 0 2, 0
M 0, 0 0, 0 1, 3 1, 3
D 2, 2 3, 0 2, 2 3, 0

Figure 12: The normal-form representation and Nash equilibria

(iv) There is only one subgame, in which Player 2 will choose P . Therefore
the unique subgame-perfect Nash equilibrium is (U,LP ).

Remark: there is no subgame-perfect outcome for Game 13.

DU
M

1

R

0, 0

L

3, 1

2

R

1, 3

L

0, 0

2

Q

3, 0

P

2, 2

2

Figure 13: There is no subgame-perfect outcome

(3) Game 3:
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(i) From Figure 14, we have the subgame-perfect outcome: in the first stage
Player 1 chooses B, and in the second stage Player 2 chooses D.

BA

−10, 10

1

D

0, 0

C

−100,−100

2

Figure 14: The extensive-form representation and subgame-perfect outcome

(ii,iii) Figure 15 is the normal-form representation, and it tells us the all Nash
equilibria: (A,C) and (B,D).

Player 1

Player 2
C D

A −10, 10 −10, 10
B −100,−100 0, 0

Figure 15: The normal-form representation and Nash equilibria

(iv) Since it is a dynamic game with complete and perfect information, based
on Figure 14, we have the unique subgame-perfect Nash equilibrium:
(B,R).

(v) It is a Nash equilibrium because A is the best response of Player 1 if
Player 2 plays C, and C is the best response of Player 2 if Player 1 plays
A (actually, Player 2 is indifferent between C and D).

It is not a good equilibrium because it is not subgame-perfect. If the game
reaches to the second stage, Player 2 will choose to play D instead of C.
This Nash equilibrium is based on a non-credible threat.

(4) Game 4:

(i) From Figure 16, we have the subgame-perfect outcome: in the first stage
Player 1 chooses A, in the second stage Player 2 chooses D, and game
ends.

(ii,iii) Figure 17 is the normal-form representation, and it tells us the all Nash
equilibria: (AG,DE) and (AH,DE).

(iv) Since it is a dynamic game with complete and perfect information, based
on Figure 16, we have the unique subgame-perfect Nash equilibrium:
(AG,DE).
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BA

1

D

0, 0
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1,−1

2
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−1, 5

2

H

1, 6
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3, 2

2

Figure 16: The extensive-form representation and subgame-perfect outcome

Player 1

Player 2
CE CF DE DF

AG 1,−1 1,−1 0, 0 0, 0
AH 1,−1 1,−1 0, 0 0, 0
BG −1, 5 3, 2 −1, 5 3, 2
BH −1, 5 1, 6 −1, 5 1, 6

Figure 17: The normal-form representation and Nash equilibria

Exercise 6. Players 1 and 2 are bargaining over one dollar in two periods: In the
first period, Player 1 proposes s1 for himself and 1− s1 for player 2. In the second
period, player 2 decides whether to accept the offer or to reject the offer. If player
2 accepts the offer, the payoff are s1 for player 1 and 1− s1 for player 2. If player
2 rejects the offer, the payoff are zero for both players.

(i) Describe all strategies of player 1 and player 2.

(ii) Find some (as many as you can) Nash equilibria.

(iii) Find a subgame-perfect Nash equilibrium of the game (write down your proof).

(iv) Find some Nash equilibria which are not subgame-perfect (write down your
proof).

Solution. Figure 18 is the extensive-form representation of the game.

(i) It is easy to see that Player 1’s strategy space is S1 = [0, 1]. Since a strategy is
a complete plan of actions in every contingency when a player is called upon
to make, a strategy for Player 2 can be represented as a function

f : [0, 1] → {A,R}.

For example,

f(s1) =

{
A, if 0 ≤ s1 ≤ 1

2
;

R, otherwise
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s1

1

R

0, 0

A

s1, 1− s1

2

Figure 18: The extensive-form representation of the game

is a strategy of Player 2 in which Player 2 will accept if Player 1 offers any
s1 ≤ 1

2
and otherwise she will reject.

Thus, the space of all strategies of Player 2 is the set of all functions from
[0, 1] to {A,R}. We denote it by S2.

3

(ii) • Player 1’s best-response correspondence: Given a strategy f of Player
2, note that for any s1 ∈ f−1(A), Player 2 will accept the offer. Hence,
given f , Player 2 will choose the maximum in f−1(A) if it exists. Thus,
Player 1’s best-response correspondence is

B∗
1(f) =


[0, 1], if f−1(A) = ∅;
{s∗}, if f−1(A) has a maximum s∗;

∅, if f−1(A) has no maximum.

• Player 2’s best-response correspondence: note that Player 2’s strategy is
a function

B∗
2(s1) =

{
{f ∈ S2 : f(s1) = A}, if 0 ≤ s1 < 1;

S2, if s1 = 1.

That means for any s1 < 1, Player 1 will accept. If s1 = 1, Player 1 is
indifferent between the two actions (accept or reject).

• We can use various combinations of the conditions in the expression of
B∗

1 and B∗
2 to construct all the Nash equilibria:

– When f ∗−1(A) ̸= ∅, (s∗1, f
∗) is a Nash equilibrium if and only if

s∗1 = sup f ∗−1(A) = max f ∗−1(A);

– When f ∗−1(A) = ∅, (s∗1, f
∗) is a Nash equilibrium if and only if

s∗1 = 1.

(iii) For each given s1, we need to consider a corresponding subgame, displayed
in Figure 19. We know if f ∗ is subgame-perfect, f ∗(s1) = A for any s1 < 1.

3There are other ways to represent the strategies of Player 2, but this seems the most natural
way.
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B

0, 0

A

s1, 1− s1

2

Figure 19

Hence, if (s∗1, f
∗) is subgame-perfect, f ∗ should be either f ∗

1 or f ∗
2 :

f ∗
1 (s1) =

{
A, if s1 < 1;

R, if s1 = 1.
or f ∗

2 (s1) ≡ A for all s1.

It is easy to check that only (s∗1 = 1, f ∗
2 ) is the unique subgame-perfect Nash

equilibrium.

(iv) (s∗1 = 1, f ∗ ≡ R) is a Nash equilibrium but not a subgame-perfect Nash
equilibrium.
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