SOLUTION TO TUTORIAL 4
2012/2013 Semester I MA4264 Game Theory

Tutor: Xiang Sun*

October 22, 2012

1 Review

e Backwards induction will give us:

(1) backwards-induction outcome: dynamic game with complete and perfect in-
formation;

(2) subgame-perfect outcome: dynamic game with complete and imperfect infor-
mation;

(3) subgame-perfect Nash equilibrium (SPE): dynamic game with complete infor-
mation (including both perfect and imperfect information).

e Standard methods to find SPE:

— Backwards induction:
(1) IESDS;
(2) Find all information sets (strategies) and subgames;
(3) Apply backwards induction.
— SPE C NE:
(1) IESDS;
(2) Find all information sets (strategies) and subgames;
(3) Construct the normal-from representation;
(4) Find all Nash equilibria;
()

5) For each NE, check whether it is subgame-perfect.

2 Tutorial

Exercise 1. Suppose a parent and a child play the following game. First, the child takes
an action, A € R, that produces income for the child, Ic(A) =5 — (A — 3)%, and income
for the parent, Ip(A) = 5 — (A — 1)2. Second, the parent observes the incomes Ic and
Ip and then chooses a bequest, B, to leave to the child. The child’s payoff is U(Ic + B);
the parent’s is V(Ip — B) + U(Ic + B), where the utility functions U(z) = Inz and
V(z) =In(4+ z).

(i) Find the backwards-induction outcome of the game.
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B
U(Ic¢ + B), V(Ip — B) + U(I¢ + B)

Figure 1: The extensive-form representation

(ii) Prove the “Rotten Kid” Theorem: in the backwards-induction outcome, the child
chooses the action that mazimizes the family’s aggregate income, Ic(A) + Ip(A),
even though only the parent’s payoff exhibits altruism.

(i) Now consider general functions Ic, Ip, U and V. Assume that all functions are
differentiable and strictly concave, and U and V are strictly increasing. Assume
also that maximizers of the parent’s payoff and the child’s payoff exist. Show that
the Rotten Kid Theorem holds true.

Solution and Proof. (i) Figure 1 is the extensive-form representation of the game. It is
a dynamic game with complete and perfect information, and there are two stages.
The child and parent’s strategy sets are R and [0, +00), respectively.

e In a backwards-induction outcome, after observing Ip and Io, the parent
chooses B > 0 in the second stage to maximize his utility

V(Ip—B)+U(lc + B) =In(4 + Ip — B) + In(Ic + B).

Given I and Ip, In(4 + Ip — B) + In(I¢ + B) is a strictly concave function
in terms of B since the second derivative is negative. Hence by the first order
condition, the unique maximizer is

_ 4+ 1p(A) - Ic(4A)
2
4+ (A-1%—[5—(A-3)7

5 6

B'(4)

e In the first stage, the child chooses A to maximize his utility
U(lc + B) =In(Ic(A) + B*(A))
=In(5—(A—-3)?+6—-2A4) =In(—A% + 44 + 2),

which is also a concave function. By the first order condition, the unique
maximizer is A* = 2.

Therefore B* = B*(A*) = 2, and hence the backwards-induction outcome is: the
child chooses A* = 2 in the first stage, and the parent chooses B* = 2 in the second
stage.

(ii) It suffices to show A* is a maximizer of the function Ic(A) + Ip(A).

Ic(A) +Ip(A) =[5 — (A -3+ 5 — (A—1)}] = —24% + 84
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is a strictly concave function, and hence the unique maximizer is A* = 2 by the first
order condition.

(ili) We need to prove the child’s maximizer A* will maximize the aggregate income
Io(A) + Ip(A).

Firstly, we try to find the backwards-induction outcome:

e In the second stage, given A, the best response B*(A)! maximizes the parent’s
payoff
V(IP(A) - B) + U(Ic(A) + B)

Since V and U are differentiable and strictly concave, V (Ip(A)—B)+U (Ic(A)+
B) is also strictly concave in terms of B, and hence B*(A) should satisfy the
first order condition:

—V'(Ip(A) — B*(A)) + U'(Ic(A) + B*(4)) =0 (1)

holds for all A.
e In the first stage, A* maximizes the child’s payoff

U(lc(A) + B*(A)).

Since U is strictly increasing, A* should maximize I¢(A) + B*(A). Hence by
the first order condition, we have

IH(A*) + B¥(A*) = 0.2 (2)
Differentiating A in Equation (1), by the chain rule we have
—V"(:) x [Ip(A) = B(A)] + U" (") x [Ic(A) + BY'(A)] = 0.
Taking A = A*, then by Equation (2) we have
V() x [Ip(A*) = BY(A%)] = 0.

Since V is strictly concave, we have V" < 0, and hence

Ip(A*) - B*(4%) = 0. 3)
Combining Equations (2) and (3), we have

IH(A*) + Ip(A*) = 0.

Since I¢(A) + Ip(A) is strictly concave in A, we have A* is a maximizer.
O

! B*(A) may not exist. We need additional assumptions: V’(—o00) = U’(—00) = c0.
*We need to show B*(A) is differentiable: let f(A, B) = —V'(Ip(A) — B) + U'(Ic(A) — B). Then
% = U’ + V' # 0. By implicit function theorem and uniqueness of B*(A4), B*(A) is continuously

differentiable.
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uc(S, B), up(S, B)

Figure 2: The extensive-form representation

Exercise 2. Now suppose the parent and child play a different game. Let the incomes
Ic = 80 and Ip = 100 be fizxed exogenously. First, the child decides how much of the
income Ic to save (S) for the future, consuming the rest (Ic — S) today. Second, the
parent observes the child’s choice of S and chooses a bequest, B. The child’s payoff is the
sum of current and future utilities: uc(S,B) = In(Ic — S) + 2In(S + B). The parent’s
payoff is up(S, B) = In(Ip — B) + u.(S, B).

(i) Find the backwards-induction outcome of the game.

(ii) Show that there is a “Samaritan’s Dilemma”: in the backwards-induction outcome,
the child saves too little, so as to induce the parent to leave a larger bequest (i.e.,
both the parent’s and child’s payoffs could be increased if S were suitably larger and
B suitably smaller). (Hint: Let S = S* +1t6 and B = B* — 0, where (S*, B*) is the
backwards-induction outcome and t is any number > 3. Show that both payoffs u.
and u, increase as § increases from 0 to a small positive number.)

Solution and Proof. (i) Figure 2 is the extensive-form representation of the game. It is
a dynamic game with complete and perfect information, and there are two stages.
The child and parent’s strategy sets are [0,80] and [0, +00), respectively.

e In the second stage, given the child’s action S, the parent chooses B*(S) to
maximize his payoff

up(S, B) =In(Ip — B) + u.(S, B)
= In(100 + B) + 1n(80 — §) + 2In(S + B)

which is strictly concave in terms of B since the second derivative is negative.
By the first order condition, the unique maximizer is
200 — S

B'(S) = =

e In the first stage, the child chooses S* to maximize his payoff

ue(S, B*(S)) = In(80 — S) + 21n(S + B*(S))
200 + 25

=In(80—S5)+2In 3

which is strictly concave. Then by the first order condition again, the unique
maximizer is S* = 20, and hence B* = B*(S*) = 60.
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Therefore, the backwards-induction outcome is: the child chooses 20 in the first
stage, and the parent chooses 60 in the second stage.

(ii) Let S = S* +t6, B= B* — 9, and
£(6) = ue(S, B) = In(60 — t8) + 2In(80 + (t — 1)3).

In order for f to be increasing for small §, we only need to verify that f'(0) is

positive.
t 2(t—1
f/((s) — ( ) ,
d—60 80+ (t—1)d
i tt—1 t—3
/ S S R S
F(0) = 60 ~ 40 120

When ¢ > 3, f/(0) > 0, and hence there exists ¢ > 0, such that f’(§) > 0 when
d € [0,€). Therefore, u.(S, B) = f is increasing in [0, €).

Note that the parent’s payoff is In(40 4+ §) + u.(S, B), so it is also increasing in [0, €)
since each term is increasing in [0, €).

O]

Exercise 3. Consider two countries denoted by i = 1,2, each of which has one firm
producing a homogenous product only for export, to be sold in the world market. The
price for the product is p(Q) = a — Q, where Q = q1 + g2 and q; is the output level of the
firm in country i. The pre-innovation cost function of each firm is Ci(q;) = cq;, i = 1,2.
(Assume 0 < ga < ¢ < a.) Let x; denote the amount of research and development (R&D)
sponsored by the government in country i. We assume that when government i undertakes
R& D at level x;, the cost function of the firm in country i becomes C;(q;, z;) = (¢ — x;)q;,
i =1,2. Also assume that the total cost to government i of engaging in R&D at level x;

2
is TCi(z;) = % The game takes place in two stages:
e Governments choose R&D levels x; > 0 simultaneously;

e Observing both governments’ choice of R&D, firms simultaneously choose output
level q; > 0.

The payoff functions of the firms are given by

7i(q1, 42, v1, 22) = ¢i(p(Q) — Ci(qs, 74))
=qi(a — (¢ +q;) — (c — x)), i=1,2, j#i

and those of the governments by
Wilq1, g2, v1, w2) = mi(q1, g2, 21, ¥2) — TCy ()
ZQi(a—(Qi+Qj)—(C—$i))—a§, i=1,2, j#1i
Find the subgame-perfect outcome.

Solution. Figure 3 is the extensive-form representation of the game. It is a dynamic game
with complete and imperfect information, and there are two stages. For countries 1 and
2, the strategy set is [0,¢]. (we need z; < ¢ because firms’ marginal cost can not be
negative.)
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Government 1

Governpent 2

T2

Firm 1

w1, 2, Wi, Wa

Figure 3: The extensive-form representation

e In the second stage, given z; and x3, two firms play a Cournot duopoly game, where
the total demand is a, and marginal cost for firm 7 is ¢; = ¢ — z;. Given ¢, Firm i’s
best response is

R (q;) = {WL ifqj <a—c;
Eh {0}, if gj > a—c;.

Based on Question 3 in Tutorial 2, we have the following 3 cases:
— If a — g <952 (22 << 71), then ¢ = 0, and hence Wy < 0.

— Ifa—c1 < %52 (21 << 22), then ¢f = 0, and hence W; < 0.

—Ifa—cy > *5% and a — ¢; > “5%2, then the unique Nash equilibrium is

a—2c+cy a—2c+c
(q1 (w1, 22),q5 (21, 22)) = ( 31 2, 32 1)

. a—c+2x1—x2 a—c+2x2—x1
B 3 ’ 3 '

In this case, we will see that W, and W5 may be positive. Therefore, in a
subgame-perfect outcome, governments 1 and 2 will not choose x; and z2 so
that the first 2 cases occur, and hence we should focus on this case.

e In the first stage, given z;, government i’s best response R (x;) is the set

arg max Wi(qy(x1,22), g3 (21, 22), 21, 2),
T2

where

v |3,

a—c+2x; —x; 2
3

Wi(QT(ﬂcl,wz),q;($1,$2)7$1,9€2) = <
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is a strictly concave function in terms of x; since the second derivative is —%.

Then by the first order condition, W;’s unique maximizer is 4(a — ¢ —x;), and hence
Ri(z;) = {4(a — ¢ — zj)}.
Assume z} and x3 are best response to each other, then we have z} = 4(a — ¢ — %)
and =5 = 4(a — ¢ — z7), which imply
4
] =5 = g(a —¢) < ¢ (because 4/9a < ¢),
and hence gj = ¢ = 2(a — ¢).

To summarize, the subgame-perfect outcome is: each government chooses 2 (a — ¢) in the

5
first stage, and each firm chooses %(a — ¢) in the second stage. O

Exercise 4. Give the extensive-form and normal-form representations and find the Nash
equilibria and subgame-perfect equilibria of (i) Game 1 in Tutorial 3 Question 3, and (ii)
the bank-runs game.

Solution. (i) Figures 4 and 5 are the extensive-form and normal-form representations
of the game, respectively.

2,1 0,0 6,4 1,5

Figure 4: The extensive-form representation and subgame-perfect Nash equilibrium

Player 2
LL LR RL RR
v |21 2,1 |00 |0,0
Pl 1 ) ) b )
YUY D 64 1,5 16,4 | 1,5

Figure 5: The normal-form representation and Nash equilibria

Bi-matrix 5 tells us the all Nash equilibria: (U, LR) and (D, RR).

Since SPE C NE, it suffices to check whether each NE is subgame perfect. There
are 2 subgames, and L and R are the Nash equilibria in left and right subgames,
respectively. Therefore, the unique subgame-perfect equilibrium is (U, LR).

(ii) Figures 6 and 7 are the extensive-form and normal-form representations of the game,
respectively.

Bi-matrix 7 tells us the all Nash equilibria: (WW, WW), (WW, WD), (WD, WW),
(WD, WD), and (DW, DW).

There is only one subgame, displayed in Figure 8, and the Nash equilibrium in this
subgame is (W, W), Therefore, the all subgame-perfect equilibria are (WW, WW)
and (DW, DW).

O
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8.8 10,6 6,10 9,9

Figure 6: The extensive-form representation

Player 2
ww WD DW DD
WWwW | 4,4 4,4 5,3 5,3
WD | 4,4 4,4 5,3 5,3
Player 1 2 2
DW | 3,5 3,5 8,8 | 10,6
DD | 3,5 3,5 16,10 | 9,9

Figure 7: The normal-form representation and Nash equilibria

8,8 10,6 6,10 9,9

Figure 8
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Exercise 5. For each of the following games.
(i) find the subgame-perfect outcome;
(ii) give the normal-form representation;
(iii) find all Nash equilibria;
(i) find all subame-perfect Nash equilibria.

(v) In game 3, there is a Nash equilibrium which is not subgame perfect. Explain why
it is a Nash equilibrium and why it is not a “good” equilibrium.

Solution. (1) Game 1:

(i) From Figure 9, we have the subgame-perfect outcome: in the first stage Player
1 chooses A, and in the second stage Player 2 chooses L.

4,6 0,5 5,0 1,8

Figure 9: The extensive-form representation and subgame-perfect outcome

ria: (A, LR) and (B, RR).

Player 2
LL LR RL RR
A [ 46 [46 [0,5 0,5
Player 1
B |50 | 1,8 |50 | 1,8

Figure 10: The normal-form representation and Nash equilibria

(iv) Since it is a dynamic game with complete and perfect information, based on
Figure 9, we have the unique subgame-perfect Nash equilibrium: (A4, LR).

(2) Game 2: Leave as Question 2 of Assignment 2.
(3) Game 3:

(i) From Figure 11, we have the subgame-perfect outcome: in the first stage Player
1 chooses B, and in the second stage Player 2 chooses D.

ria: (A,C) and (B, D).
(iv) Since it is a dynamic game with complete and perfect information, based on
Figure 11, we have the unique subgame-perfect Nash equilibrium: (B, R).
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—100, —100 0,0

Figure 11: The extensive-form representation and subgame-perfect outcome

Player 2
C D
Player 1 A —10, 10 —10,10
B | —100,—100 0,0

Figure 12: The normal-form representation and Nash equilibria

(v) It is a Nash equilibrium because A is the best response of Player 1 if Player 2
plays C, and C' is the best response of Player 2 if Player 1 plays A (actually,
Player 2 is indifferent between C' and D).

It is not a good equilibrium because it is not subgame-perfect. If the game
reaches to the second stage, Player 2 will choose to play D instead of C'. This
Nash equilibrium is based on a non-credible threat.

(4) Game 4:

(i) From Figure 13, we have the subgame-perfect outcome: in the first stage Player
1 chooses A, in the second stage Player 2 chooses D, and game ends.

3,2 1,6

Figure 13: The extensive-form representation and subgame-perfect outcome

ria: (AG,DE) and (AH,DE).

(iv) Since it is a dynamic game with complete and perfect information, based on
Figure 13, we have the unique subgame-perfect Nash equilibrium: (AG, DE).
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Player 2
CE CF DE  DF
AG | 1,-1 | 1,-1 | 0,0 0,0
Player 1 AH | 1,-1 |1,-1 | 0,0 0,0
BG | -1,5 | 3,2 | —-1,5 | 3,2
BH | -1,5 1,6 | -1,5 1,6

Figure 14: The normal-form representation and Nash equilibria

O

Exercise 6. Players 1 and 2 are bargaining over one dollar in two periods: In the first
period, Player 1 proposes si1 for himself and 1 — s1 for player 2. In the second period,
player 2 decides whether to accept the offer or to reject the offer. If player 2 accepts the
offer, the payoff are s1 for player 1 and 1 — sy for player 2. If player 2 rejects the offer,

the payoff are zero for both players.

(i) Describe all strategies of player 1 and player 2.

(ii) Find some (as many as you can) Nash equilibria.

(iii) Find a subgame-perfect Nash equilibrium of the game (write down your proof).

(iv) Find some Nash equilibria which are not subgame-perfect (write down your proof).

Solution. Figure 15 is the extensive-form representation of the game.

1

S1

81,1—81 0,0

Figure 15: The extensive-form representation of the game

(i) It is easy to see that Player 1’s strategy space is S; = [0, 1].
complete plan of actions in every contingency when a player is called upon to make,

a strategy for Player 2 can be represented as a function

f:0,1] — {A, R}.

For example,

f(Sl)Z{

is a strategy of Player 2 in which Player 2 will accept if Player 1 offers any s; <

and otherwise she will reject.

Aa 1f0§81§%7

R, otherwise

Since a strategy is a

1
2
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Thus, the space of all strategies of Player 2 is the set of all functions from [0, 1] to
{A, R}. We denote it by S.°

(ii) e Player 1’s best-response correspondence: Given a strategy f of Player 2, note
that for any s; € f~1(A), Player 2 will accept the offer. Hence, given f, Player
1 will choose the maximum in f~1(A) if it exists. Thus, Player 1’s best-response
correspondence is

0,1], if F71(4) = 0,

[0,1], if 0 is the maximum of f~1(A);
{s*}, if f71(A) has a maximum s* # 0;
0

, if f~1(A) has no maximum.

e Player 2’s best-response correspondence: note that Player 2’s strategy is a
function

B*(S )_ {fGSQ:f(Sl):A}, 1f0§81<1,
2 527 if81:1.

That means for any s; < 1, Player 2 will accept. If s; = 1, Player 2 is indifferent
between the two actions (accept or reject).

e We can use various combinations of the conditions in the expression of B} and
B3 to construct all the Nash equilibria:
— When f*71(A) # 0, (s§, f*) is a Nash equilibrium if and only if s% =
sup f* 71 (A) = max f*~' (4);
— When f*71(A) =0, (s, f*) is a Nash equilibrium if and only if s* = 1.

(iii) For each given s1, we need to consider a corresponding subgame, displayed in Figure
16. We know if f* is subgame-perfect, f*(s;) = A for any s; < 1. Hence, if (s}, f*)

2
A R
S1, 1-— S1 0, 0
Figure 16

is subgame-perfect, f* should be either f{ or f5:

A, if s < 1
* = ’ " or f¥ = A for all s7.
f1(s1) {R, e =1 f3(s1) rall s

It is easy to check that only (s =1, f5) is the unique subgame-perfect Nash equi-
librium.

(iv) (s7 =1, f* = R) is a Nash equilibrium but not a subgame-perfect Nash equilibrium.

O]

3There are other ways to represent the strategies of Player 2, but this seems the most natural way.
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Exercise 7. Players 1 and 2 are bargaining over how to split 20 dollars. Player 1 proposes
to take s1 dollars (s1 should be an integer), leaving (20 — s1) dollars for player 2. Then
player 2 either accepts or rejects the offer. If player 2 accepts the offer, then the payoffs
are s1 dollars to player 1, and (20 — s1) dollars to player 2. If player 2 rejects the offer,
then the payoffs are zero to both.

(i) Find all the pure-strategy Nash equilibria.
(ii) Find all the pure-strategy subgame-perfect Nash equilibria.

Solution. Leave as Question 3 of Assignment 2.

End of Solution to Tutorial 4
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