
Solution to Tutorial 5

2012/2013 Semester I MA4264 Game Theory

Tutor: Xiang Sun∗

October 8, 2012

1 Review

• Sequential bargaining game

– Three-period bargaining game

– Infinite-horizon bargaining game, could be reduced to a three-period bargaining
game

• Infinitely repeated game

– In the stage game, every player has at least two actions: cooperative action
and non-cooperative action.

– Non-cooperative strategy: in every stage game, choosing the non-cooperative
action.

– Cooperative strategy: in every stage game, choosing the cooperative action.

– Trigger strategy: choosing the cooperative action if previous histories are all
cooperative actions, and choosing the non-cooperative action otherwise.

2 Tutorial

Exercise 1. Consider the following two-period political game with two players, the work-
ing class and the elite. In the first period, the elite decides whether to redistribute or not,
and then the working class decides whether to carry out a revolution. Redistribution and
no revolution gives a utility of 10 to the working class and 15 to the elite. If there is no
redistribution and no revolution, the working class gets 0 and the elite gets 25. And if
there is a revolution (irrespective of redistribution), the working class gets 15 and the elite
gets 0.

If there is a revolution, then that is the end of the game, and the payoffs are final.
If there is no revolution, the game proceeds to the second period, where both parties get
additional payoffs. But first, nature determines whether or not the working class has the
opportunity to carry out a revolution. The probability that this opportunity exists for the
working class is q. Observing whether the working class has the opportunity to carry out
a revolution, the elite again decides whether to redistribute. Once again, without redis-
tribution, the elite gets an additional utility of 25 and the working class gets 0. With
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redistribution, the working class gets an additional utility of 10 and the elite 15. Also,
again a revolution gives a utility of 15 to the working class and nothing to the elite (ir-
respective of whether there is redistribution in the second period or not). There is no
discounting between the two periods.

(i) For each q ∈ [0, 1], find all the subgame perfect Nash equilibrium of this game.

(ii) Explain briefly why a high value of q, probability of revolution opportunity in the
second period, prevents a revolution in the first period.

Solution. The extensive-form representation is given in Figure 1.
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Figure 1

(i) In subgames I and I’, the working class will choose “revolution” at every node with
her/his move; apply backwards induction, “redistribution” and “no redistribution”
are equivalent for the elite.

In subgames II and II’, the working class has no opportunity to revolution, so the
elite will choose “no redistribution”.

Hence, the original game could be reduced to the following game given in Figure 2,
where 40− 25q and 15q+ 10 are expected payoffs for the elite and the working class
respectively.
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Figure 2

• If q = 1, there are 8 subgame-perfect Nash equilibria: (RRNRN,nrrrrr),
(NRNRN,nnrrrr), (RRNNN,nrrrrr), (NRNNN,nnrrrr), (RNNRN,nrrrrr),
(NNNRN,nnrrrr), (RNNNN,nrrrrr), (NNNNN,nnrrrr).

• If 1 > q > 1
3 , there are 4 subgame-perfect Nash equilibria: (RRNRN,nrrrrr),

(RRNNN,nrrrrr), (RNNRN,nrrrrr), (RNNNN,nrrrrr).

• If q = 1
3 , there are 12 subgame-perfect Nash equilibria: (RRNRN, rrrrrr),

(RRNNN, rrrrrr), (RNNRN, rrrrrr), (RNNNN, rrrrrr), (NRNRN, rrrrrr),
(NRNNN, rrrrrr), (NNNRN, rrrrrr), (NNNNN, rrrrrr), (RRNRN,nrrrrr),
(RRNNN,nrrrrr), (RNNRN,nrrrrr), (RNNNN,nrrrrr).

• If 1
3 > q, there are 8 subgame-perfect Nash equilibria: (RRNRN, rrrrrr),

(RRNNN, rrrrrr), (RNNRN, rrrrrr), (RNNNN, rrrrrr), (NRNRN, rrrrrr),
(NRNNN, rrrrrr), (NNNRN, rrrrrr), (NNNNN, rrrrrr).

(ii) Obvious. It suffices to consider the reduced game.

Exercise 2. Suppose the players in Rubinstein’s infinite-horizon bargaining game have
different discount factors: δ1 for Player 1 and δ2 for Player 2. Adapt the argument in the
lecture to show that in the backwards-induction outcome, Player 1 offers the settlement(

1− δ2
1− δ1δ2

,
δ2(1− δ1)
1− δ1δ2

)
to Player 2, who accepts.

Proof. Let (s, 1−s) be the (optimal) payoffs players can receive in the backwards-induction
outcome. Adapting the argument in the lecture, the game can be reduced to a three-period
bargaining game, which is represented by Figure 3.

• Consider the period 2. By the Figure 4a, Player 1 accepts if and only if 1−s2 ≥ δ1s,
i.e., s2 ≤ 1− δ1s.

– If Player 2 chooses s2 > 1− δ1s, then Player 1 will reject, and Player 2 will get
1− s (present value is δ2(1− s) ≤ 1− s ≤ 1− δ1s);
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Figure 3: The extensive-form representation

– If Player 2 chooses s2 < 1 − δ1s, then Player 1 will accept, and Player 2 will
get s2 < 1− δ1s;

– If Player 2 chooses s2 = 1 − δ1s, then Player 1 will accept (accept and reject
are indifferent for Player 1), and Player 2 will get s2 = 1− δ1s.1

Therefore Player 2’s best strategy is to choose s2 = 1−δ1s, and Player 1 will accept
this offer.

• Consider the period 1. By the Figure 4b, Player 2 accepts if and only if 1−s1 ≥ δ2s2,
i.e., s1 ≤ 1− δ2s2.

– If Player 1 chooses s1 > 1 − δ2s2, then Player 2 will reject, and Player 1 will
get 1− s2 (present value is δ1(1− s2) ≤ 1− s2 ≤ 1− δ2s2);

– If Player 1 chooses s1 < 1− δ2s2, then Player 2 will accept, and Player 1 will
get s1 < 1− δ2s2;

– If Player 1 chooses s1 = 1 − δ2s2, then accept and reject are indifferent for
Player 2, and Player 1 will get s1 = 1− δ2s2.

Therefore Player 1’s best strategy is to choose s1 = 1− δ2s2 = 1− δ2(1− δ1s), and
Player 2 will accept this offer.

1There is an issue: why Player 1 can not choose “reject” when Player 2 chooses s2 = 1 − δ1s. After
discussing with Prof. Zhao, we have the following explaining: when finding backwards-induction outcomes,
we always assume there is unique optimal action at each decision node (otherwise, there is no backwards-
induction outcome in some case, e.g., Remark after Question 2 in “Solution to Assignment 2”). Hence,
here we assume Player 1 will choose “accept” rather then “reject” when Player 2 chooses s2 = 1− δ1s for
sake of simplification. Thanks for Mr. Yusheng Luo pointing out this issue.



MA4264 Game Theory 5/10 Solution to Tutorial 5

• To determine s, using the same trick as in the lecture, we have

s = 1− δ2(1− δ1s).

So Player 1 will get s = 1−δ2
1−δ1δ2 , and Player 2 will get 1− s = δ2(1−δ1)

1−δ1δ2 .

s2

2

R

δ1s, δ2(1 − s)

A

1− s2, s2

1

s1

1

R

δ1(1− s2), δ2s2

A

s1, 1− s1

2

Figure 4

Exercise 3. Let the game given below be the stage game of an infinitely repeated game
where δ1 and δ2 are the discount factors for Players 1 and 2.

L R
A 1, 2 5, 0
B 1, 8 4, 6

(i) Determine the ranges of δ1 and δ2 for which the trigger strategies for both players
are a Nash equilibrium. The trigger strategy for Player 1 (2) is to play B (R) if all
preceding actions are (B,R); to play A (L) otherwise.

(ii) Show that the Nash equilibrium in part (i) is also a subgame-perfect Nash equilibrium.

(iii) Show that playing (A,L) in every stage is a subgame-perfect Nash equilibrium.

(iv) In (i), is the trigger strategy a Nash equilibrium if to play B (L) instead of A (L)?

Solution and Proof. (i) Assume that Player 2 chooses the trigger strategy T2. We want
to find the condition which guarantees the trigger strategy T1 to be Player 1’s best
response.

• If Player 1 does not chooses trigger strategy, then we consider the following
two cases:

– If Player 1 always chooses the cooperative action B in every stage game
(it is a strategy for Player 1, but not the trigger strategy), then the payoff
is as same as the payoff when she/he chooses trigger strategy.2

2Thanks for Mr. Yusheng Luo for pointing out this issue.
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– If Player 1 chooses the non-cooperative action A in some stage, without
loss of generality, we assume that the t-th stage is the first stage when
Player 1 chooses A, then she/he can get 5 at this stage.
From the (t + 1)-th stage on, Player 2 will play non-cooperative action L
to punish Player 1 in each stage. Thus Player 1 will receive 1 in each of
the subsequent stages since A and B are indifferent, and the t-th stage’s
present value of his payoff from the t-th stage onwards is

5 + δ1 + δ21 + · · · = 5 +
δ1

1− δ1
.

It is easy to understand when looking at the following table, where ∗ means
we do not know exactly the action of Player 1 at that stage.

Stage 1 · · · t− 1 t t+ 1 t+ 2 t+ 3 · · ·
Player 1 B · · · B A ∗ ∗ ∗ · · ·
Player 2 R · · · R R L L L · · ·

Player 1’s payoff 4 · · · 4 5 1 1 1 · · ·
• If Player 1 chooses trigger strategy T1, then in each stage she/he will choose

the cooperative action B, and receive 4. Hence, the t-th stage’s present value
of his payoff from the t-th stage onwards is

4 + δ14 + δ214 + · · · = 4

1− δ1
.

• In order for Player 1 to play trigger strategy T1, we should have

4

1− δ1
≥ 5 +

δ1
1− δ1

,

that is (1 >)δ1 ≥ 1
4 .

Assume that Player 1 chooses the trigger strategy T1. We want to find the condition
which guarantees the trigger strategy T2 to be Player 2’s best response.

• If Player 2 does not choose the trigger strategy, then we consider the following
two cases:

– If Player 2 always chooses the cooperative action R in every stage game
(it is a strategy for Player 2, but not the trigger strategy), then the payoff
is as same as the payoff when she/he chooses trigger strategy.

– If Player chooses L in some stage, without loss of generality, we assume
that the t-th stage is the first stage when Player 2 chooses L, then she/he
can get 8 at this stage.
From the (t+ 1)-th stage on, Player 1 will play the non-cooperative action
A to punish Player 2 in each stage. Thus Player 2 will receive at most 2
in each of the subsequent stages, and the t-th stage’s present value of his
payoff from the t-th stage onwards is at most

8 + δ22 + δ222 + · · · = 8 +
2δ2

1− δ2
.

It is easy to understand when looking at the following table, where ∗ means
we do not know exactly the action of Player 1 at that stage.
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Stage 1 · · · t− 1 t t+ 1 t+ 2 t+ 3 · · ·
Player 1 B · · · B B A A A · · ·
Player 2 R · · · R L ∗ ∗ ∗ · · ·

Player 2’s payoff 6 · · · 6 8 ≤ 2 ≤ 2 ≤ 2 · · ·
• If Player 2 chooses the trigger strategy T2, then she/he will receive 6 in each

stage, and the t-th stage’s present value of his payoff from the t-th stage onwards
is

6 + δ26 + δ226 + · · · = 6

1− δ2
.

• In order for Player 2 to play trigger strategy T2, we should have

6

1− δ2
≥ 8 +

2δ2
1− δ2

,

that is (1 >)δ2 ≥ 1
3 .

(ii) In an infinitely repeated game, a subgame is characterized by its previous history.
The subgames can be grouped as follows:

(a) Subgames whose previous histories are always finite sequence of (B,R).

(b) Subgames whose previous histories contain other outcomes different from (B,R).

If the trigger strategy is played in the original game, then:

(A) In (a), (T1, T2) is played, which is a Nash equilibrium in the subgame;

(B) In (b), (NC1, NC2) is played, which is a Nash equilibrium in the subgame.

Therefore, the trigger strategy Nash equilibrium in the original game constitutes
a Nash equilibrium in every subgame, i.e., (T1, T2) in (a), (NC1, NC2) in (b), and
hence it is a subgame-perfect Nash equilibrium.

(iii) The strategy profile constitutes a Nash equilibrium in every stage game is a subgame-
perfect Nash equilibrium.

(iv) The modified trigger strategies cannot constitute a Nash equilibrium if to play B
(L) instead of A (L). The reason is because Player 2 will have an incentive to play
L instead R in the first period.

Exercise 4. Suppose there are n firms in a Cournot oligopoly. Inverse demand is given
by P (Q) = a−Q, where Q = q1 + · · ·+ qn and qi is the quantity to be produced by firm i.
Each firm has a constant marginal cost of production, c, and no fixed cost. Consider the
infinitely repeated game based on this stage game.

(i) What is the lowest value of δ such that the firms can use trigger strategies to sustain
the monopoly output level in a subgame-perfect Nash equilibrium?

(ii) How does the answer vary with n?

Solution. Calculate Firm i’s production and profit in the collusion, Cournot competition,
and deviation from punishment cases, respectively:

• Cooperative production and profit: In the collusion, the production is qci = a−c
2n ,

and profit is πci = (a−c)2
4n ;
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• Non-cooperative production and profit: In the Cournot competition, production is

qmi = a−c
n+1 , and profit is πmi = (a−c)2

(n+1)2
;

• Deviation production and profit: For each j 6= i, Firm j produces qcj = a−c
2n , then

Firm i can increases its profit by producing qdi = (n+1)(a−c)
4n , and profit is πdi =

(n+1)2(a−c)2
(4n)2

.

For each i, consider the following trigger strategy Ti for Firm i:

• In the first stage produce qci .

• In the t-th stage (t > 1), produce qci if every Firm j has produced qcj in each of the
t− 1 previous stages; otherwise, produce qmi .

(i) Fix Firm i, and assume that each other Firm j 6= i chooses the trigger strategy Tj .
We want to find the condition which guarantees the trigger strategy Ti to be Firm
i’s best response.

• If Firm i does not choose the trigger strategy, then we consider the following
two cases:

– If Firm i always chooses the cooperative production qci in every stage game
(it is a strategy for Firm i, but not the trigger strategy), then the payoff
is as same as the payoff when it chooses trigger strategy.

– If Firm i deviates in some stage and the profit maximizer is qdi . Without
loss of generality, we assume that the t-th stage is the first stage when Firm
i deviates, then it can get at most πdi at this stage.
From the (t+1)-th stage on, every other Firm j will produce non-cooperative
production qmj . Thus Firm i will receive at most πmi in each of the subse-
quent stages, and the t-th stage’s present value of its payoff from the t-th
stage onwards is at most

πdi + δπmi + δ2πmi + · · · = πdi +
δπmi
1− δ .

It is easy to understand when looking at the following table, where ∗ means
we do not know exactly the action of Firm i at that stage.

Stage 1 · · · t− 1 t t+ 1 t+ 2 t+ 3 · · ·
Firm j 6= i qcj · · · qcj qcj qmj qmj qmj · · ·

Firm i qci · · · qcj qdi ∗ ∗ ∗ · · ·
Firm i’s payoff πci · · · πci πdi ≤ πmi ≤ πmi ≤ πmi · · ·

• If Firm i chooses the trigger strategy Ti, then it will receive πci in each stage,
and the t-th stage’s present value of its payoff from the t-th stage onwards is

πci + δπci + δ2πci + · · · = πci
1− δ .

• In order for Firm i to play trigger strategy Ti, we should have

πci
1− δ ≥ π

d
i +

δπmi
1− δ ,

that is δ ≥ (n+1)2

(n+1)2+4n
.
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(ii) Since limn→∞
(n+1)2

(n+1)2+4n
= 1, the lowest value of δ approaches 1. That is, as n

increases, a larger δ is required to deter the deviation. In other words, there is more
incentive to deviate the trigger strategy.

Exercise 5. Find δ > 0 such that the trigger strategy is a subgame-perfect Nash equilib-
rium for the game which infinitely repeats the stage game of Bertrand model with homo-
geneous products described in the lecture.

Solution. Leave as Question 1 of Assignment 3.

Exercise 6. Consider a Cournot duopoly operating in a market with inverse demand
P (Q) = a − Q, where Q = q1 + q2 is the aggregate quantity on the market. Both firms
have total costs ci(qi) = cqi, but demand is uncertain: it is high (a = aH) with probability
θ and low (a = aL) with probability 1 − θ. Furthermore, information is asymmetric:
firm 1 knows whether demand is high or low, but firm 2 does not. All of this is common
knowledge. The two firms simultaneously choose quantities. What are the strategy spaces
for the two firms? What is the Bayesian Nash equilibrium of this game, (assuming aH ,
aL, θ and c are such that all equilibrium quantities are positive)?

Solution. • Firm i’s action space is {q : q ≥ 0}.

• Firm 1’s type space T1 = {H,L}; Frim 2 has only one type.

• Strategy space: S1 = {(q1H , q1L) : q1H , q1L ≥ 0}, and S2 = {q2 : q2 ≥ 0}.
Suppose that ((q∗1H , q

∗
1L), q∗2) is a Bayesian Nash equilibrium, then by definition we

will have:

• If the demand is high, Firm 1 will choose q∗1H to maximize its payoff

q1H [aH − c− q∗2 − q1H ],

which is a concave function, and hence

q∗1H =
aH − c− q∗2

2
. (1)

• If the demand is low, Firm 1 will choose q∗1L to maximize its payoff

q1L[aL − c− q∗2 − q1L],

which is a concave function, and hence

q∗1L =
aL − c− q∗2

2
. (2)

• Firm 2 does not know the exact type of the demand, so it will choose q∗2 to maximize
its expected payoff

θq2[aH − c− q∗1H − q2] + (1− θ)q2[aL − c− q∗1L − q2],

and hence

q∗2 =
θ(aH − q∗1H) + (1− θ)(aL − q∗1L)− c

2
.3 (3)

3I correct a typo here. Thanks for a student, and I am sorry for not remebering her name.
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Combining Equations (1), (2) and (3), we get

q∗1H =
aH − c

2
− θaH + (1− θ)aL − c

6
,

q∗1L =
aL − c

2
− θaH + (1− θ)aL − c

6
,

q∗2 =
θaH + (1− θ)aL − c

3
.

End of Solution to Tutorial 5
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