Solution to Tutorial 9

Tutor: Xiang Sun*

November 2, 2012

Exercise 1. We consider a game between two software developers, who sell operating systems (OS) for personal computers (PC). Simultaneously, each software developer i offers "bribe" b_{i} to the PC maker. (The bribes are in the form of contracts.) Looking at the offered bribes b_{1} and b_{2}, the PC maker accepts the highest bribe (and tosses a fair coin to choose between them if they happen to be equal), and he rejects the other. If a software developers offer is rejected, it goes out of business, and gets 0 profit. Let i^{*} denote the software developer whose bribe is accepted. Then, i^{*} pays the bribe $b_{i^{*}}$, and the PC maker develops its PC compatible only with the OS of i^{*}. Then in the next stage, i^{*} becomes the monopolist in the market for operating systems. In this market the price is given by

$$
P=1-Q,
$$

where P is the price of the $O S$ and Q is the supply for the OS. The marginal cost of producing the OS for each software developer i is c_{i}. The costs c_{1} and c_{2} are independently and identically distributed with the uniform distribution on $[0,1]$. The software developer i knows its own marginal costs, but the other developer does not know. Each software developer tries to maximize its own expected profit. Everything described so far is common knowledge.
(i) What quantity a software developer i would produce if it becomes monopolist? What would be its profit?
(ii) Compute a Bayesian Nash equilibrium in which each software developers bribe is in the form of $b_{i}=a_{i}+e_{i}\left(1-c_{i}\right)^{2}$.

Solution. Leave as Question 2 of Assignment 4.
Exercise 2. Find the Bayesian equilibria for the first case of the job-market signaling games in which the output is changed to (i) $y(\eta, e)=3 \eta+e$, and (ii) $y(\eta, e)=4 \eta$.

Solution. (i) Assume $y(\eta, e)=3 \eta+e$. The extensive-form representation is as follows:

[^0]

The normal-form representation is as follows:

- $T=\left\{\eta_{H}, \eta_{L}\right\}, M=\left\{e_{c}, e_{s}\right\}, A=\left\{w_{H}, w_{L}\right\}$.
- Payoff table:

Firm

Worker	$\begin{aligned} & e_{c} e_{c} \\ & e_{c} e_{s} \end{aligned}$	$w_{H} w_{H}$	$w_{H} w_{L}$	$w_{L} w_{H}$	$w_{L} w_{L}$
		21, -117/2	21, -117/2	23/2, -247/2	23/2, -247/2
		24, -116	19,-26	19,-221	14, -131
	$e_{s} e_{c}$	47/2, -41	37/2, -101	19,-1	14, -61
	$e_{s} e_{s}$	$53 / 2,-197 / 2$	$33 / 2,-137 / 2$	53/2, -197/2	33/2, -137/2

Therefore, there are two pure-strategy Nash equilibria $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ and $\left(e_{s} e_{s}, w_{L} w_{L}\right)$. For $\left(e_{c} e_{c}, w_{H} w_{L}\right)$:

- Requirement 1: Assume the believes on left information set and right information set are $(p, 1-p)$ and $(q, 1-q)$, respectively, displayed in the figure.
- Requirement 2 S : Holds automatically. (since $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ is a Nash equilibrium)
- Requirement $2 \mathrm{R}: q \leq \frac{3}{5}$.
- Requirement 3: $p=\frac{1}{2}, q \in[0,1]$.

Thus, $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ with $p=\frac{1}{2}$ and $q \leq \frac{3}{5}$ is a perfect Bayesian equilibrium.
For $\left(e_{s} e_{s}, w_{L} w_{L}\right)$:

- Requirement 1: Assume the believes on left information set and right information set are $(p, 1-p)$ and $(q, 1-q)$, respectively, displayed in the figure.
- Requirement 2S: Holds automatically. (since $\left(e_{s} e_{s}, w_{L} w_{L}\right)$ is a Nash equilibrium)
- Requirement 2R: $p \leq \frac{4}{15}$.
- Requirement 3: $p \in[0,1], q=\frac{1}{2}$.

Thus, $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ with $p \leq \frac{4}{15}$ and $q=\frac{1}{2}$ is a perfect Bayesian equilibrium.
To summarize, there are three pure-strategy perfect Bayesian equilibria:

- $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ with $p=\frac{1}{2}$ and $q \leq \frac{3}{5}$;
- $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ with $p \leq \frac{4}{15}$ and $q=\frac{1}{2}$.
(ii) Assume $y(\eta, e)=4 \eta$. The extensive-form representation is as follows:

The normal-form representation is as follows:

- $T=\left\{\eta_{H}, \eta_{L}\right\}, M=\left\{e_{c}, e_{s}\right\}, A=\left\{w_{H}, w_{L}\right\}$.
- Payoff table:

Firm

	$w_{H} w_{H}$					$w_{H} w_{L}$	$w_{L} w_{H}$	$w_{L} w_{L}$
	$e_{c} e_{c}$	$43 / 2,-116$	$43 / 2,-116$	$23 / 2,-136$				
Worker	$e_{c} e_{s}$	$24,-116$	$19,-26$	$19,-226$				
	$24,-136$							
	$e_{s} e_{c}$	$24,-116$	$19,-226$	$19,-26$				
	$e_{s} e_{s}$	$53 / 2,-116$	$33 / 2,-136$	$53 / 2,-116$				
				$33 / 2,-136$				

Therefore, there are three pure-strategy Nash equilibria $\left(e_{c} e_{c}, w_{h} w_{L}\right),\left(e_{s} e_{s}, w_{H} w_{H}\right)$ and $\left(e_{s} e_{s}, w_{L} w_{H}\right)$.
For $\left(e_{c} e_{c}, w_{H} w_{L}\right)$:

- Requirement 1: Assume the believes on left information set and right information set are $(p, 1-p)$ and $(q, 1-q)$, respectively, displayed in the figure.
- Requirement 2S: Holds automatically. (since $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ is a Nash equilibrium)
- Requirement 2R: $q \leq \frac{9}{20}$.
- Requirement 3: $p=\frac{1}{2}, q \in[0,1]$.

Thus, $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ with $p=\frac{1}{2}$ and $q \leq \frac{9}{20}$ is a perfect Bayesian equilibrium.
For $\left(e_{s} e_{s}, w_{H} w_{H}\right)$:

- Requirement 1: Assume the believes on left information set and right information set are $(p, 1-p)$ and $(q, 1-q)$, respectively, displayed in the figure.
- Requirement 2S: Holds automatically. (since $\left(e_{s} e_{s}, w_{H} w_{H}\right)$ is a Nash equilibrium)
- Requirement 2R: $p \leq \frac{9}{20}$.
- Requirement 3: $p \in[0,1], q=\frac{1}{2}$.

Thus, $\left(e_{s} e_{s}, w_{H} w_{H}\right)$ with $p \leq \frac{9}{20}$ and $q=\frac{1}{2}$ is a perfect Bayesian equilibrium.
For $\left(e_{s} e_{s}, w_{L} w_{H}\right)$:

- Requirement 1: Assume the believes on left information set and right information set are $(p, 1-p)$ and $(q, 1-q)$, respectively, displayed in the figure.
- Requirement 2S: Holds automatically. (since $\left(e_{s} e_{s}, w_{L} w_{H}\right)$ is a Nash equilibrium)
- Requirement 2R: $p \geq \frac{9}{20}$.
- Requirement 3: $p \in[0,1], q=\frac{1}{2}$.

Thus, $\left(e_{s} e_{s}, w_{L} w_{H}\right)$ with $p \geq \frac{9}{20}$ and $q=\frac{1}{2}$ is a perfect Bayesian equilibrium.
To summarize, there are three pure-strategy perfect Bayesian equilibria:

- $\left(e_{c} e_{c}, w_{H} w_{L}\right)$ with $p=\frac{1}{2}$ and $q \leq \frac{9}{20}$;
- $\left(e_{s} e_{s}, w_{H} w_{H}\right)$ with $p \leq \frac{9}{20}$ and $q=\frac{1}{2}$;
- $\left(e_{s} e_{s}, w_{L} w_{H}\right)$ with $p \geq \frac{9}{20}$ and $q=\frac{1}{2}$.

Exercise 3. Consider the job-market signaling game where $c(\eta, e)$ and $y(\eta, e)$ are general functions and w is chosen from the action space $[0, \infty)$.
(i) For each of the separating strategies $\left(e_{c}, e_{s}\right)$ and $\left(e_{s}, e_{c}\right)$, write down conditions on c and y under which the separating perfect Bayesian equilibria exist.
(ii) Find concrete and reasonable examples of $c(\eta, e)$ and $y(\eta, e)$ which satisfy the conditions you present in (i).
Solution. (i) Suppose in a perfect Bayesian equilibrium, $e_{c} e_{s}$ is worker's strategy. Then by Bayes' rule, we have $p=1$ and $q=0$.
For firm, given message e_{c}, his maximization problem is

$$
\max _{0 \leq w}-\left[w-y\left(\eta_{H}, e_{c}\right)\right]^{2}
$$

and hence the best choice is $w_{c}^{*}=y\left(\eta_{H}, e_{c}\right)$. Similarly, given message e_{s}, firm's best choice is $w_{s}^{*}=y\left(\eta_{L}, e_{s}\right)$.
For worker, given firm's strategy $\left(w_{c}^{*}, w_{s}^{*}\right)$, when η_{H} occurs, e_{c} is the best response, that is,

$$
y\left(\eta_{H}, e_{c}\right)-c\left(\eta_{H}, e_{c}\right) \geq y\left(\eta_{L}, e_{s}\right)-e\left(\eta_{H}, e_{s}\right) .
$$

Similarly, when η_{L} occurs, we have

$$
y\left(\eta_{H}, e_{c}\right)-c\left(\eta_{L}, e_{c}\right) \leq y\left(\eta_{L}, e_{s}\right)-c\left(\eta_{L}, e_{s}\right) .
$$

Thus,

$$
c\left(\eta_{L}, e_{c}\right)-c\left(\eta_{L}, e_{s}\right) \geq y\left(\eta_{H}, e_{c}\right)-y\left(\eta_{L}, e_{s}\right) \geq c\left(\eta_{H}, e_{c}\right)-c\left(\eta_{H}, e_{s}\right) .
$$

(ii) Exercise.

Exercise 4. Suppose the HAL Corporation is a monopolist in the Cleveland market for mainframe computers. We will suppose that the market is a "natural monopoly", meaning that only one firm can survive in the long run. HAL faces only one potential competitor, DEC. In the first period, HAL moves first and chooses one of two prices for its computers: High or Low. DEC moves second and decides whether to enter the market or not. Here are the first-period profits of the two firms: In the second period, three things can occur:

DEC

		Enter	StayOut
	High	0,0	5,0
	Low	0,0	1,0

(a) DEC did not enter in the first period. Then HAL retains its monopoly forever and earns monopoly profits of $125-C$, where C is its costs. DEC earns zero profits.
(b) DEC entered in the first period and has the lower costs. HAL leaves the market and $D E C$ gets the monopoly forever, earning the monopoly profits of $100=125-25$, where 25 are its costs, which is common knowledge. HAL earns zero profits.
(c) DEC entered in the first period and HAL has the lower costs. In this case, DEC drops out of the market, HAL retains its monopoly forever, and it earns monopoly profits of $125-C$, where C is its costs. DEC earns zero profits.

DEC's payoff from playing this game equals 0 if it decides to stay out, and it equals the sum of its profits in the two periods minus entry costs of 40 if it decides to enter. HAL's payoff equals the sum of its profits in the two periods. HAL's costs, C, can be either 30 (high) or 20 (low). This cost information is private information. DEC only knows that $\operatorname{Prob}(C=20)=0.75$ and $\operatorname{Prob}(C=30)=0.25$.

Formulate the problem as a signaling game and find all perfect Bayesian equilibria.
Solution. The signaling game is as follows:

- $T=\left\{c_{L}=20, c_{H}=30\right\}, M=\{H($ igh $), L(o w)\}$, and $A=\{E($ nter $), S($ tayout $)\}$.
- The extensive-form representation is as follows:

The normal-form representation is:

	DEC			
	$E E$	$E S$	$S E$	SS
H	78.75, -15	78.75, -15	107.5, 0	107.5, 0
HAL HL	$78.75,-15$	102.75, -30	82.5, 15	106.5, 0
HAL LH	$78.75,-15$	79.5, 15	103.75, -30	104.5, 0
LL	$78.75,-15$	103.5, 0	$78.75,-15$	103.5, 0

There are three pure-strategy Nash equilibria $(H H, S E),(H H, S S)$ and $(L L, E S)$. For $(H H, S E)$:

- Requirement 1: Assume the believes on left information set and right information set are $(p, 1-p)$ and $(q, 1-q)$, respectively, displayed in the figure.
- Requirement 2S: Holds automatically. (since $(H H, S E)$ is a Nash equilibrium)
- Requirement 2R: $q \leq 0.6$.
- Requirement 3: $p=\frac{3}{4}, q \in[0,1]$.

Thus, $(H H, S E)$ with $p=\frac{3}{4}$ and $q \leq 0.6$ is a perfect Bayesian equilibrium.
For $(H H, S S)$:

- Requirement 1: Assume the believes on left information set and right information set are $(p, 1-p)$ and $(q, 1-q)$, respectively, displayed in the figure.
- Requirement 2S: Holds automatically. (since (HH,SS) is a Nash equilibrium)
- Requirement 2R: $q \geq 0.6$.
- Requirement 3: $p=\frac{3}{4}, q \in[0,1]$.

Thus, $(H H, S S)$ with $p=\frac{3}{4}$ and $q \geq 0.6$ is a perfect Bayesian equilibrium.
For $(L L, E S)$:

- Requirement 1: Assume the believes on left information set and right information set are $(p, 1-p)$ and $(q, 1-q)$, respectively, displayed in the figure.
- Requirement 2 S : Holds automatically. (since $(L L, E S)$ is a Nash equilibrium)
- Requirement 2R: $p \leq 0.6$.
- Requirement 3: $p \in[0,1], q=\frac{3}{4}$.

Thus, $(L L, E S)$ with $p \leq 0.6$ and $q=\frac{3}{4}$ is a perfect Bayesian equilibrium.
To summarize, there are three pure-strategy perfect Bayesian equilibria:

- $(H H, S E)$ with $p=\frac{3}{4}$ and $q \leq 0.6$;
- $(H H, S S)$ with $p=\frac{3}{4}$ and $q \geq 0.6$;
- $(L L, E S)$ with $p \leq 0.6$ and $q=\frac{3}{4}$.

Exercise 5. There are two Players in the game: Judge and Plaintiff. The Plaintiff has been injured. Severity of the injury, denoted by v, is the Plaintiff's private information. The Judge does not know v and believes that v is uniformly distributed on $\{0,1, \ldots, 9\}$ (so that the probability that $v=i$ is $\frac{1}{10}$ for any $i \in\{0,1, \ldots, 9\}$). The Plaintiff can verifiably reveal v to the Judge without any cost, in which case the Judge will know v. The order of the events is as follows. First, the Plaintiff decides whether to reveal v or not. Then, the Judge rewards a compensation R which can be any nonnegative real number. The payoff of the Plaintiff is $R-v$, and the payoff of the Judge is $-(v-R)^{2}$. Everything described so far is common knowledge. Find a perfect Bayesian equilibrium.

Solution. The signaling game is as follows: types $T=\{0,1, \ldots, 9\} ;$ signals $M=\{R, N\}$, where R is "Reveal" and N is "Not Reveal"; actions $A=\mathbb{R}_{+}$.

From the extensive-form representation, there are 10 subgames, and Judge has 11 information sets $I_{0}, I_{1}, \ldots, I_{9}$, where for $v=0,1 \ldots, 9, I_{v}$ denotes that Plaintiff reveals v to Judge, and I_{10} denotes the case that Plaintiff does not reveal the value.

Plaintiff's strategy space is

$$
S=\left\{s=\left(s_{0}, s_{1}, \ldots, s_{9}\right) \mid s_{v}=R \text { or } N, v=0,1, \ldots, 9\right\} .
$$

For a particular strategy of Plaintiff $s=\left(s_{0}, s_{1}, \ldots, s_{9}\right), s_{v}$ is the action of Plaintiff when she/he faces injury v.

Judge's strategy space is

$$
Q=\left\{q=\left(x_{0}, x_{1}, \ldots, x_{9}, x_{10}\right) \mid x_{v} \geq 0, v=0,1, \ldots, 9,10\right\}
$$

For a particular strategy of Judge $q=\left(x_{0}, x_{1}, \ldots, x_{9}, x_{10}\right), x_{v}$ is the action of Judge at the information set I_{v}.

Given any strategy s of Plaintiff, let $s^{-1}(N)=\{v: s(v)=N\}$, which denotes the set of Plaintiff's types at which the value is not revealed to Judge.

Claim 1: In any perfect Bayesian equilibrium $\left(s^{*}, q^{*}, p^{*}\right)$, if Plaintiff chooses R when $v=0$, that is $s_{0}^{*}=R$, then Judge's action on information set I_{10} should be 0 , that is, $x_{10}^{*}=0$.

Proof of Claim 1: Otherwise, Plaintiff can be better off by deviating from R to N : If Plaintiff chooses R when $v=0$, then she/he will get 0 when $v=0$; otherwise she/he will get $x_{10}^{*}>0$. Therefore, such a strategy s^{*} can not be a strategy in a perfect Bayesian equilibrium, which is a contradiction.

Claim 2: In a perfect Bayesian equilibrium $\left(s^{*}, q^{*}, p^{*}\right)$, if $\left(s^{*}\right)^{-1}(N) \neq \emptyset$, then Judge's strategy should be

$$
q^{*}=\left(0,1, \ldots, 9, \sum_{v \in s^{-1}(N)} \frac{v}{n}\right)
$$

where $n=\left|s^{-1}(N)\right|$.
Motivation of Claim 2: Based on Judge's belief p^{*}, her/his optimal action x_{10}^{*} should be wighted payoff

$$
0 \cdot p_{0}^{*}+1 \cdot p_{1}^{*}+2 \cdot p_{2}^{*}+\cdots+9 \cdot p_{9}^{*} .
$$

Given Plaintiff's strategy s^{*}, Judge's belief p^{*} on the information set I_{10} can be determined by Bayes' law.

Proof of Claim 2: $\left(s^{*}, q^{*}\right)$ should be a subgame-perfect Nash equilibrium, and hence on the information set $I_{v}(v=0,1, \ldots, 9)$, Judge will choose optimal action based on her/his payoff $-\left(v-x_{v}\right)^{2}$. Therefore, Judge's action on the information set I_{v} should be $v(v=0,1,2 \ldots, 9)$.

On the information set I_{10}, which is on the equilibrium path, only the branches v, where $v \in s^{-1}(N)$ can be reached. Thus, by Bayes' rule, Judge believes that these branches are reached with equal probability, $\frac{1}{n}$, where $n=\left|s^{-1}(N)\right|$. Thus, Judge will choose the optimal action based on her/his expected payoff, and the optimal action is the maximizer of the following maximization problem

$$
\max _{x_{10} \geq 0}-\frac{1}{n} \sum_{v \in s^{-1}(N)}\left(v-x_{10}\right)^{2} .
$$

By first order condition, it is easy to find the unique maximizer $x_{10}^{*}=\frac{1}{n} \sum_{v \in s^{-1}(N)} v$.

Claim 3: In any perfect Bayesian equilibrium $\left(s^{*}, q^{*}, p^{*}\right)$, Plaintiff's strategy s^{*} should be

$$
(R, R, \ldots, R) \text { or }(N, R, \ldots, R)
$$

Proof of Claim 3: Case 1: assume $\left(s^{*}\right)^{-1}(N)=\left\{v_{0}\right\}$, where $v_{0} \neq 0$. Given such a Plaintiff's strategy s^{*}, that is, $\left(s^{*}\right)^{*}\left(v_{0}\right)=N$, and $\left(s^{*}\right)^{*}(v)=R$ for others v, by Claim 2, Judge's best response is

$$
q^{*}=\left(0,1,2, \ldots, 9, v_{0}\right)
$$

However, s^{*} is not a best response for Plaintiff given Judge's strategy $q^{*}(s)$: when $v=0$, Plaintiff can be better off if she/he chooses N rather then R : if she/he chooses R, she/he will get 0 ; otherwise, she/he will get $v_{0}>0$.

Case 2: assume $\left(s^{*}\right)^{-1}(N)$ contains at least 2 elements. Let $v_{1}=\min \left(s^{*}\right)^{-1}(N)$, and $v_{2}=\max \left(s^{*}\right)^{-1}(N)$. Note that,

$$
v_{1}<x_{10}^{*}=\frac{1}{n} \sum_{v \in s^{-1}(N)} v<v_{2}
$$

By Claim 2, Judge's best response is

$$
q^{*}=\left(0,1,2, \ldots, 9, \sum_{v \in s^{-1}(N)} \frac{v}{n}\right)
$$

However, s^{*} is not a best response for Plaintiff given Judges' strategy q^{*} : when the injury is v_{2}, Plaintiff can get a higher amount v_{2} by revealing: if she/he chooses N, she/he will get $x_{10}^{*}-v_{2}<0$; otherwise she/he will get 0 .

Case 2 implies that there is at most 1 type at which Plaintiff chooses N in a perfect Bayesian equilibrium; and Case 1 implies that this unique type can only be $v=0$.

Based on Claim 3, we have the following two claims:

Claim 4:

$$
s^{*}=(N, R, \ldots, R), \quad q^{*}=(0,1,2, \ldots, 9,0)
$$

with belief $(1,0, \ldots, 0)$ on I_{10} is a perfect Bayesian equilibrium.

Proof of Claim 4: Routine.

Claim 5:

$$
s^{*}=(R, R, \ldots, R), \quad q^{*}=(0,1,2, \ldots, 9,0)
$$

with belief $(1,0, \ldots, 0)$ on I_{10} is a perfect Bayesian equilibrium:

Proof of Claim 5: By Claims 1, 2 and 3, this strategy profile could be a strategy profile in a perfect Bayesian equilibrium.

Assume Judge's belief on the information set I_{10} is $\left(p_{0}^{*}, p_{1}^{*}, \ldots, p_{9}^{*}\right)$, then Judge's maximization problem is

$$
\max _{x_{10} \geq 0}-p_{0}^{*}\left(x_{10}-0\right)^{2}-p_{1}^{*}\left(x_{10}-1\right)^{2}-\cdots-p_{9}^{*}\left(x_{10}-9\right)^{2}
$$

Then the unique maximizer is $x_{10}^{*}=p_{0}^{*} \cdot 0+p_{1}^{*} \cdot 1+\cdots+p_{9}^{*} \cdot 9$. We have already known that $x_{10}^{*}=0$, this implies $p_{0}^{*}=1$ and $p_{1}^{*}=p_{2}^{*}=\cdots=p_{9}^{*}=0$, that is, Judge believes that $v=0$ with probability 1.

Exercise 6. Player 1 has two types, intelligent or dumb, with equal probability of each type. Player 1 may choose either to drop out of high school or finish high school. If he finishes high school, player 2 must decide whether or not to hire player 1. Player 1 knows his type, but player 2 does not. If player 1 drops out, both players get zeros. If player 1 finishes high school, but is not employed by player 2, player 2 gets nothing, and player 1 gets x if intelligent, and y if dumb, where $y>x>0$, and $1>x$, but y may be either larger or smaller than 1. If player 1 finishes high school and is employed, player 2 gets a if player 1 is intelligent and b if player 1 is dumb, where $a>b$. Here $a>0$ but b may be either positive or negative. Player 1 gets $1-x$ if intelligent and $1-y$ if dumb.
(a) For what values of a, b, x, y is there a perfect Bayesian equilibrium in which both types drop out?
(b) For what values of a, b, x, y is there a perfect Bayesian equilibrium which is separating.

Solution. Figure 1 is the extensive-form representation of this game.

Figure 1
The normal-form representation is as follows:

- $S_{1}=\{d d, d f, f d, f f\}$, where d and f denote "drop out" and "finish", respectively. $S_{2}=\{h, n\}$, where h and n denote "hire" and "not hire", respectively.
- Payoff table:
(a) Since $x<1, \frac{1-x}{2}>0$, and hence $d d$ could not be a best response to h. Since $y>x>0$, $d d$ is a best response to n.

Player 2

Player 1

	h	
$d d$	0,0	0,0
	$\frac{1-y}{2}, \frac{b}{2}$	$-\frac{y}{2}, 0$
$f d$	$\frac{1-x}{2}, \frac{a}{2}$	$-\frac{x}{2}, 0$
$f f$	$\frac{1-x}{2}+\frac{1-y}{2}, \frac{b}{2}+\frac{a}{2}$	$-\frac{x}{2}-\frac{y}{2}, 0$

Since Player 1 chooses $d d$, Player 2's information set will not be reached, and hence the belief could be arbitrary by Requirement 4 . To support n is Player 2's best choice given his belief, b should be nonpositive, otherwise n is strictly dominated by h.
To summarize, we need $b \leq 0$.
(b) Since $x, y>0$, each of $d f$ and $f d$ can not be a best response to n. Since $y>x, d f$ can no be a best response to h.
$f d$ to be a best response to h if and only if $y \geq 1$. By Bayes' rule, $p=1$, and since $a>0, h$ is a best choice given this belief.

To summarize, we need $y \geq 1$.

End of Solution to Tutorial 9

[^0]: *E-mail: xiangsun@nus.edu.sg. Suggestion and comments are always welcome.

