Summary for "Greatest Common Divisor"

Xiang Sun* ${ }^{*}$

October 31, 2010

1 Divisibility

Definition 1.1. Let m, n be integers, we say m divides n if there exists an integer q, such that $n=m q$. Notation: $m \mid n$. If $m \mid n$, then we say that m is divisor.
Proposition 1.2 (Theorem 11.2). Let a, b, c be integers with $a \neq 0$

1. If $a \mid b$, then $a \mid(b c)$;
2. If $a \mid b$ and $b \mid c$, where $b \neq 0$, then $a \mid c$.
3. If $a \mid b$ and $b \mid c$, then $a \mid(b x+c y)$ for all integers x, y.

Proof. Please refer to Theorem 11.2 in the textbook.
Proposition 1.3 (Theorem 11.3). Let a, b be nonzero integers.

1. If $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
2. If $a \mid b$, then $|a| \leq|b|$.

Proof. Please refer to Theorem 11.3 in the textbook.
Theorem 1.4 (The Division Algorithm).

- (Theorem 11.4) Original case: For all positive integers a and b, there exist unique integers q and r, such that

$$
b=a q+r, \text { where } 0 \leq r<a .
$$

- (Corollary 11.5) Generalization: For all integers a and b, there exist unique integers q and r, such that

$$
b=a q+r \text {, where } 0 \leq r<|a| .
$$

Here allow a and b to be negative.
Proof. Please refer to Theorem 11.4 and Corollary 11.5 in the textbook.

2 Greatest Common Divisor

Definition 2.1. Let a, b be integers, and d a nonzero integer. We say d is a common divisor of a and b if $d \mid a$ and $d \mid b$. We use $\operatorname{cd}(a, b)$ to denote the set of all common divisors of a and b.
Remark 1. - For any integers a and b, 0 can not be a common divisor of a and b.

- The notation $\operatorname{cd}(a, b)$ is not defined in the textbook, if you want to use it, you had better give the precise definition.
Definition 2.2. Let a, b be integers, not both zero. The largest integer that divides both a and b is called the greatest common divisor of a and b. Notation: $\operatorname{gcd}(a, b)$.
Remark 2. - $\operatorname{gcd}(a, b)=\max \operatorname{cd}(a, b)$. (very useful)
- $\operatorname{gcd}(0,0)$ is not defined.

Definition 2.3 (Working definition). Let a, b be integers, not both zero, and $d \in \mathbb{N}$.

$$
d=\operatorname{gcd}(a, b) \Leftrightarrow\left\{\begin{array}{l}
d \mid a \text { and } d \mid b ; \\
\text { for all } k \in \mathbb{N}, \text { if } k|a, k| b, \text { then } k \leq d .
\end{array}\right.
$$

[^0]
3 Theorems and Propositions

Proposition 3.1. Let a be a nonzero integer. Then

1. $\operatorname{gcd}(a, 0)=|a|$;
2. $\operatorname{gcd}(a, a)=|a|$;
3. $\operatorname{gcd}(a, a n)=|a|$ for all $n \in \mathbb{Z}$.

Proof. 1. If a is positive, then a is a common divisor of a and 0 . For any other common divisor k, we have $k \mid a$, and hence $k \leq a$ by Proposition 1.3. Thus, by working definition (Definition 2.3), a is the greatest common divisor of a and 0 .
If a is negative, then $-a>0$ is a common divisor of a and 0 . For any other common divisor k, we have $k \mid a$, and hence $k \mid(-a)$ by Proposition 1.3. Thus $k \leq-a$. Therefore, by working definition (Definition 2.3), $-a$ is the greatest common divisor of a and 0 .
Combining the two cases above, we have $\operatorname{gcd}(a, 0)=|a|$.
2. If a is positive, then a is a common divisor of a and a. For any other common divisor k, we have $k \mid a$, and hence $k \leq a$ by Proposition 1.3. Thus, by working definition (Definition 2.3), a is the greatest common divisor of a and a.
If a is negative, then $-a>0$ is a common divisor of a and a. For any other common divisor k, we have $k \mid a$, and hence $k \mid(-a)$. Thus $k \leq-a$ by Proposition 1.3. Therefore, by working definition (Definition 2.3), $-a$ is the greatest common divisor of a and a.
Combining the two cases above, we have $\operatorname{gcd}(a, a)=|a|$.
3. For any divisor d of a, d is also a divisor of $a n$ for all $n \in \mathbb{Z}$. Hence $\operatorname{cd}(a, a n)$ is the set of all divisors of a, in which $|a|$ is the largest element. Therefore $\operatorname{gcd}(a, a n)=|a|$.

Proposition 3.2. Let a, b be integers, not both zero. Then $\operatorname{gcd}(a, b)>0$.
Proof. We apply proof by cases:

- If $a=0$, then $b \neq 0$, and hence $\operatorname{gcd}(a, b)=|b|>0$ by Proposition 3.1.
- If $b=0$, then $a \neq 0$, and hence $\operatorname{gcd}(a, b)=|a|>0$ by Proposition 3.1.
- If $a \neq 0$ and $b \neq 0$, then it is trivial that 1 is a common divisor of a and b. Hence $\operatorname{gcd}(a, b) \geq 1>0$.

Combining the three cases above, we have $\operatorname{gcd}(a, b)>0$.
Proposition 3.3. Let a, b be integers, not both zero. Then

1. $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
2. $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a,-b)$.
3. $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b+a n)$ for all $n \in \mathbb{Z}$.

Proof. 1. It is trivial that $\operatorname{cd}(a, b)=\operatorname{cd}(b, a)$. Hence, $\operatorname{gcd}(a, b)=\max \operatorname{cd}(a, b)=\max \operatorname{cd}(b, a)=\operatorname{gcd}(b, a)$.
2. It is trivial that $\operatorname{cd}(a, b)=\operatorname{cd}(a,-b)=\operatorname{cd}(-a, b)=\operatorname{cd}(-a,-b)$. Hence $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)=$ $\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a,-b)$.
3. It suffices to show $\operatorname{cd}(a, b)=\operatorname{cd}(a, b+a n)$ for all $n \in \mathbb{N}$:

For any $d \in \operatorname{cd}(a, b)$, then $d \mid a$ and $d \mid b$. By Definition 1.1, we have $a=d p$ and $b=d q$ for some integers p and q. Then $b+a n=d(q+p n)$, and hence $d \mid(b+a n)$. Therefore $d \in \operatorname{cd}(a, b+a n)$.
For any $k \in \operatorname{cd}(a, b+a n)$, then $d \mid a$ and $d \mid(b+a n)$. By Definition 1.1, we have $a=d p$ and $b+a n=d q$ for some integers p and q. Then $b=(b+a n)-a n=d q-d p n=d(q-p n)$, where $q-p n$ is an integer. Also by Definition 1.1, we have $d \mid b$. Therefore, $d \in \operatorname{cd}(a, b)$.

Proposition 3.4. Let a be an integer, and p a prime number. Then

$$
\operatorname{gcd}(p, a)= \begin{cases}p, & \text { if } p \mid a \\ 1, & \text { if } p \nmid a\end{cases}
$$

Proof. If $p \mid a$, then $a=p n$ for some integer n. By Proposition 3.1, we have $\operatorname{gcd}(p, a)=\operatorname{gcd}(p, p n)=|p|=p$ since $p>0$.

If $p \nmid a$. Since p is a prime number, p has only 4 divisors: $1,-1, p$ and $-p$. Since $p \nmid a$, the common divisors of p and a are 1 and -1 , and hence $\operatorname{gcd}(p, a)=\max \{1,-1\}=1$.

Proposition 3.5. Let a, b be integers, not both zero, c a positive integer. If $c \mid \operatorname{gcd}(a, b)$, then

$$
\operatorname{gcd}\left(\frac{a}{c}, \frac{b}{c}\right)=\frac{\operatorname{gcd}(a, b)}{c}
$$

Specially, we have

$$
\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a, b)}, \frac{b}{\operatorname{gcd}(a, b)}\right)=1
$$

Proof. Let $D=\operatorname{gcd}(a, b)$.
Since $c \mid D$, we have $c \mid a$ and $c \mid b$. Then $\frac{a}{c}, \frac{b}{c}$ and $\frac{D}{c}$ are integers. Since $D \mid a$ and $D \mid b$, we have $\left.\frac{D}{c} \right\rvert\, \frac{a}{c}$ and $\left.\frac{D}{c} \right\rvert\, \frac{b}{c}$. Hence $\frac{D}{c}>0$ is a common divisor of $\frac{a}{c}$ and $\frac{b}{c}$.

Let d be a common divisor of $\frac{a}{c}$ and $\frac{b}{c}$, then we have $(c d) \mid a$ and $(c d) \mid b$, and hence $c d$ is a common divisor of a and b. Hence $c d \leq \operatorname{gcd}(a, b)=D$, and $d \leq \frac{D}{c}$.

By working definition (Definition 2.3), $\frac{D}{c}=\operatorname{gcd}\left(\frac{a}{c}, \frac{b}{c}\right)$, i.e.

$$
\operatorname{gcd}\left(\frac{a}{c}, \frac{b}{c}\right)=\frac{\operatorname{gcd}(a, b)}{c}
$$

Let $c=\operatorname{gcd}(a, b)$, then we have

$$
\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a, b)}, \frac{b}{\operatorname{gcd}(a, b)}\right)=1
$$

Corollary 3.6. Let a, b be integers, c a positive integer. Then $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$.
Proof.

$$
\frac{\operatorname{gcd}(c a, c b)}{c}=\operatorname{gcd}\left(\frac{c a}{c}, \frac{c b}{c}\right)=\operatorname{gcd}(a, b)
$$

Theorem 3.7 (Theorem 11.7). Let a, b be integers, not both 0 , then $\operatorname{gcd}(a, b)$ is the smallest positive linear combination of a and b. That is,

$$
\operatorname{gcd}(a, b)=a x+b y
$$

for some integers x and y.
Proof. Please refer to Theorem 11.7 in the textbook.
Corollary 3.8. If $c \mid a$ and $c \mid b$, then $c \mid \operatorname{gcd}(a, b)$.
Proof. By Theorem 3.7, we have

$$
\operatorname{gcd}(a, b)=a x+b y
$$

for some integers x, y. Since $c \mid a$ and $c \mid b$, by Proposition 1.2, we have $c \mid(a x+b y)$. Therefore, $c \mid$ $\operatorname{gcd}(a, b)$.

Theorem 3.9 (Theorem 11.8). Let a, b be integers, not both 0 , and $d \in \mathbb{N}$.

$$
d=\operatorname{gcd}(a, b) \Leftrightarrow\left\{\begin{array}{l}
d \mid a \text { and } d \mid b \\
\text { for all } k \in \mathbb{N}, \text { if } k|a, k| b, \text { then } k \mid d
\end{array}\right.
$$

Proof. Please refer to Theorem 11.8 in the textbook.

Theorem 3.10. 1. If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a c, b)=\operatorname{gcd}(c, b)$.
2. If $\operatorname{gcd}(a, b)=1$ and $a \mid(b c)$, then $a \mid c$. (Theorem 11.13)
3. Euclid's Lemma:

- Let a, b be integers and p a prime number. If $p \mid(a b)$, then $p \mid a$ or $p \mid b$. (Corollary 11.14)
- Let $a_{1}, a_{2}, \ldots, a_{n}$ an be integers and p be a prime number. If $p \mid a_{1} a_{2} \cdots a_{n}$, then $p \mid a_{k}$ for some $k(1 \leq k \leq n)$. (Corollary 11.15)
Proof. Please refer to Theorem 11.13, Corollary 11.14, and Corollary 11.15 in the textbook. Here I will give an alternative proof:

1. Let $m=\operatorname{gcd}(a c, b)$ and $n=\operatorname{gcd}(c, b)$. We shall show $m \leq n$ and $n \leq m$.

Now $n=\operatorname{gcd}(c, b)$ implies $n \mid c$ and $n \mid b$. So $n \mid a c$. Hence n is a common divisor of $a c$ and b. So $n \leq m$, which is the greatest common divisor of $a c$ and b.
On the other hand, $m=\operatorname{gcd}(a c, b)$. So $m \mid a c$ and $m \mid b$. That is,

$$
\begin{equation*}
a c=m p, \quad b=m q \tag{1}
\end{equation*}
$$

for some integers p, q. Since $\operatorname{gcd}(a, b)=1$, we have

$$
\begin{equation*}
a x+b y=1 \tag{2}
\end{equation*}
$$

for some integers x, y.
Multiplying c to the Equation (2), we have $a c x+b c y=c$. By the Equation (1), we have $(m p) x+(m q) c y=$ c which gives $m(p x+q c y)=c$. Hence $m \mid c$, and m is a common divisor of c and b. So $m \leq n$, which is the greatest common divisor of c and b.
2. By Part 1, we have $a=\operatorname{gcd}(b c, a)=\operatorname{gcd}(c, a)$. Hence $a \mid c$.
3. Given $p \mid(a b)$.

- If $p \mid a$, we have done.
- If $p \nmid a$. Then $\operatorname{gcd}(p, a)=1$. By Part 2, we have $p \mid b$.

Proposition 3.11. 1. If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
2. If $\operatorname{gcd}(a, b)=1, a|c, b| c$, then $(a b) \mid c$. (Theorem 11.16)

Proof. 1. If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, there exist integers p, q, x, y such that

$$
a p+b q=1, \quad a x+c y=1 .
$$

From this, we see that

$$
\begin{aligned}
1 & =(a p+b q)(a x+c y) \\
& =a p a x+a p c y+b q a x+b q c y \\
& =a(p a x+p c y+b q x)+b c(q y)
\end{aligned}
$$

We see that 1 is a linear combination of a and $b c$ and hence $\operatorname{gcd}(a, b c)=1$.
2. Since $\operatorname{gcd}(a, b)=1$, we have

$$
a x+b y=1
$$

for some integers x, y. Multiplying c to the Equation, we will obtain

$$
a x c+b y c=c
$$

Since $a \mid c$ and $b \mid c$, we have $c=a p$ and $c=b q$ for some integers p, q. Hence, the Equation becomes

$$
a b(x q+y p)=a x b q+b y a p=c
$$

Therefore ($a b$) $\mid c$.

[^0]: *Email: xiangsun@nus.edu.sg
 ${ }^{\dagger}$ Corrections are always welcome.

