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1 Divisibility

Definition 1.1. Let m,n be integers, we say m divides n if there exists an integer q, such that n = mq.
Notation: m | n. If m | n, then we say that m is divisor.

Proposition 1.2 (Theorem 11.2). Let a, b, c be integers with a 6= 0

1. If a | b, then a | (bc);

2. If a | b and b | c, where b 6= 0, then a | c.

3. If a | b and b | c, then a | (bx + cy) for all integers x, y.

Proof. Please refer to Theorem 11.2 in the textbook.

Proposition 1.3 (Theorem 11.3). Let a, b be nonzero integers.

1. If a | b and b | a, then a = b or a = −b.

2. If a | b, then |a| ≤ |b|.
Proof. Please refer to Theorem 11.3 in the textbook.

Theorem 1.4 (The Division Algorithm). • (Theorem 11.4) Original case: For all positive integers a
and b, there exist unique integers q and r, such that

b = aq + r, where 0 ≤ r < a.

• (Corollary 11.5) Generalization: For all integers a and b, there exist unique integers q and r, such that

b = aq + r, where 0 ≤ r < |a|.

Here allow a and b to be negative.

Proof. Please refer to Theorem 11.4 and Corollary 11.5 in the textbook.

2 Greatest Common Divisor

Definition 2.1. Let a, b be integers, and d a nonzero integer. We say d is a common divisor of a and b
if d | a and d | b. We use cd(a, b) to denote the set of all common divisors of a and b.

Remark 1. • For any integers a and b, 0 can not be a common divisor of a and b.

• The notation cd(a, b) is not defined in the textbook, if you want to use it, you had better give the precise
definition.

Definition 2.2. Let a, b be integers, not both zero. The largest integer that divides both a and b is called the
greatest common divisor of a and b. Notation: gcd(a, b).

Remark 2. • gcd(a, b) = max cd(a, b). (very useful)

• gcd(0, 0) is not defined.

Definition 2.3 (Working definition). Let a, b be integers, not both zero, and d ∈ N.

d = gcd(a, b)⇔

{
d | a and d | b;
for all k ∈ N, if k | a, k | b, then k ≤ d.
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3 Theorems and Propositions

Proposition 3.1. Let a be a nonzero integer. Then

1. gcd(a, 0) = |a|;

2. gcd(a, a) = |a|;

3. gcd(a, an) = |a| for all n ∈ Z.

Proof. 1. If a is positive, then a is a common divisor of a and 0. For any other common divisor k, we
have k | a, and hence k ≤ a by Proposition 1.3. Thus, by working definition (Definition 2.3), a is the
greatest common divisor of a and 0.

If a is negative, then −a > 0 is a common divisor of a and 0. For any other common divisor k, we
have k | a, and hence k | (−a) by Proposition 1.3. Thus k ≤ −a. Therefore, by working definition
(Definition 2.3), −a is the greatest common divisor of a and 0.

Combining the two cases above, we have gcd(a, 0) = |a|.

2. If a is positive, then a is a common divisor of a and a. For any other common divisor k, we have k | a,
and hence k ≤ a by Proposition 1.3. Thus, by working definition (Definition 2.3), a is the greatest
common divisor of a and a.

If a is negative, then −a > 0 is a common divisor of a and a. For any other common divisor k, we
have k | a, and hence k | (−a). Thus k ≤ −a by Proposition 1.3. Therefore, by working definition
(Definition 2.3), −a is the greatest common divisor of a and a.

Combining the two cases above, we have gcd(a, a) = |a|.

3. For any divisor d of a, d is also a divisor of an for all n ∈ Z. Hence cd(a, an) is the set of all divisors
of a, in which |a| is the largest element. Therefore gcd(a, an) = |a|.

Proposition 3.2. Let a, b be integers, not both zero. Then gcd(a, b) > 0.

Proof. We apply proof by cases:

• If a = 0, then b 6= 0, and hence gcd(a, b) = |b| > 0 by Proposition 3.1.

• If b = 0, then a 6= 0, and hence gcd(a, b) = |a| > 0 by Proposition 3.1.

• If a 6= 0 and b 6= 0, then it is trivial that 1 is a common divisor of a and b. Hence gcd(a, b) ≥ 1 > 0.

Combining the three cases above, we have gcd(a, b) > 0.

Proposition 3.3. Let a, b be integers, not both zero. Then

1. gcd(a, b) = gcd(b, a).

2. gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

3. gcd(a, b) = gcd(a, b + an) for all n ∈ Z.

Proof. 1. It is trivial that cd(a, b) = cd(b, a). Hence, gcd(a, b) = max cd(a, b) = max cd(b, a) = gcd(b, a).

2. It is trivial that cd(a, b) = cd(a,−b) = cd(−a, b) = cd(−a,−b). Hence gcd(a, b) = gcd(−a, b) =
gcd(a,−b) = gcd(−a,−b).

3. It suffices to show cd(a, b) = cd(a, b + an) for all n ∈ N:

For any d ∈ cd(a, b), then d | a and d | b. By Definition 1.1, we have a = dp and b = dq for some
integers p and q. Then b + an = d(q + pn), and hence d | (b + an). Therefore d ∈ cd(a, b + an).

For any k ∈ cd(a, b+an), then d | a and d | (b+an). By Definition 1.1, we have a = dp and b+an = dq
for some integers p and q. Then b = (b + an)− an = dq − dpn = d(q − pn), where q − pn is an integer.
Also by Definition 1.1, we have d | b. Therefore, d ∈ cd(a, b).
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Proposition 3.4. Let a be an integer, and p a prime number. Then

gcd(p, a) =

{
p, if p | a;

1, if p - a.

Proof. If p | a, then a = pn for some integer n. By Proposition 3.1, we have gcd(p, a) = gcd(p, pn) = |p| = p
since p > 0.

If p - a. Since p is a prime number, p has only 4 divisors: 1, -1, p and −p. Since p - a, the common
divisors of p and a are 1 and -1, and hence gcd(p, a) = max{1,−1} = 1.

Proposition 3.5. Let a, b be integers, not both zero, c a positive integer. If c | gcd(a, b), then

gcd

(
a

c
,
b

c

)
=

gcd(a, b)

c
.

Specially, we have

gcd

(
a

gcd(a, b)
,

b

gcd(a, b)

)
= 1.

Proof. Let D = gcd(a, b).
Since c | D, we have c | a and c | b. Then a

c , b
c and D

c are integers. Since D | a and D | b, we have D
c |

a
c

and D
c |

b
c . Hence D

c > 0 is a common divisor of a
c and b

c .

Let d be a common divisor of a
c and b

c , then we have (cd) | a and (cd) | b, and hence cd is a common

divisor of a and b. Hence cd ≤ gcd(a, b) = D, and d ≤ D
c .

By working definition (Definition 2.3), D
c = gcd(a

c ,
b
c ), i.e.

gcd

(
a

c
,
b

c

)
=

gcd(a, b)

c
.

Let c = gcd(a, b), then we have

gcd

(
a

gcd(a, b)
,

b

gcd(a, b)

)
= 1.

Corollary 3.6. Let a, b be integers, c a positive integer. Then gcd(ca, cb) = c gcd(a, b).

Proof.
gcd(ca, cb)

c
= gcd

(
ca

c
,
cb

c

)
= gcd(a, b).

Theorem 3.7 (Theorem 11.7). Let a, b be integers, not both 0, then gcd(a, b) is the smallest positive linear
combination of a and b. That is,

gcd(a, b) = ax + by

for some integers x and y.

Proof. Please refer to Theorem 11.7 in the textbook.

Corollary 3.8. If c | a and c | b, then c | gcd(a, b).

Proof. By Theorem 3.7, we have
gcd(a, b) = ax + by

for some integers x, y. Since c | a and c | b, by Proposition 1.2, we have c | (ax + by). Therefore, c |
gcd(a, b).

Theorem 3.9 (Theorem 11.8). Let a, b be integers, not both 0, and d ∈ N.

d = gcd(a, b)⇔

{
d | a and d | b;
for all k ∈ N, if k | a, k | b, then k | d.

Proof. Please refer to Theorem 11.8 in the textbook.
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Theorem 3.10. 1. If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).

2. If gcd(a, b) = 1 and a | (bc), then a | c. (Theorem 11.13)

3. Euclid’s Lemma:

• Let a, b be integers and p a prime number. If p | (ab), then p | a or p | b. (Corollary 11.14)

• Let a1, a2, . . . , an an be integers and p be a prime number. If p | a1a2 · · · an, then p | ak for some
k (1 ≤ k ≤ n). (Corollary 11.15)

Proof. Please refer to Theorem 11.13, Corollary 11.14, and Corollary 11.15 in the textbook. Here I will give
an alternative proof:

1. Let m = gcd(ac, b) and n = gcd(c, b). We shall show m ≤ n and n ≤ m.

Now n = gcd(c, b) implies n | c and n | b. So n | ac. Hence n is a common divisor of ac and b. So
n ≤ m, which is the greatest common divisor of ac and b.

On the other hand, m = gcd(ac, b). So m | ac and m | b. That is,

ac = mp, b = mq (1)

for some integers p, q. Since gcd(a, b) = 1, we have

ax + by = 1 (2)

for some integers x, y.

Multiplying c to the Equation (2), we have acx+bcy = c. By the Equation (1), we have (mp)x+(mq)cy =
c which gives m(px + qcy) = c. Hence m | c, and m is a common divisor of c and b. So m ≤ n, which
is the greatest common divisor of c and b.

2. By Part 1, we have a = gcd(bc, a) = gcd(c, a). Hence a | c.

3. Given p | (ab).

• If p | a, we have done.

• If p - a. Then gcd(p, a) = 1. By Part 2, we have p | b.

Proposition 3.11. 1. If gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

2. If gcd(a, b) = 1, a | c, b | c, then (ab) | c. (Theorem 11.16)

Proof. 1. If gcd(a, b) = 1 and gcd(a, c) = 1, there exist integers p, q, x, y such that

ap + bq = 1, ax + cy = 1.

From this, we see that

1 = (ap + bq)(ax + cy)

= apax + apcy + bqax + bqcy

= a(pax + pcy + bqx) + bc(qy)

We see that 1 is a linear combination of a and bc and hence gcd(a, bc) = 1.

2. Since gcd(a, b) = 1, we have
ax + by = 1

for some integers x, y. Multiplying c to the Equation, we will obtain

axc + byc = c.

Since a | c and b | c, we have c = ap and c = bq for some integers p, q. Hence, the Equation becomes

ab(xq + yp) = axbq + byap = c.

Therefore (ab) | c.
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