Summary for "Greatest Common Divisor"

Xiang Sun^{*†}

October 31, 2010

1 Divisibility

Definition 1.1. Let m, n be integers, we say m divides n if there exists an integer q, such that n = mq. Notation: $m \mid n$. If $m \mid n$, then we say that m is divisor.

Proposition 1.2 (Theorem 11.2). Let a, b, c be integers with $a \neq 0$

1. If $a \mid b$, then $a \mid (bc)$;

2. If $a \mid b$ and $b \mid c$, where $b \neq 0$, then $a \mid c$.

3. If $a \mid b \text{ and } b \mid c$, then $a \mid (bx + cy)$ for all integers x, y.

 $\it Proof.$ Please refer to Theorem 11.2 in the textbook.

Proposition 1.3 (Theorem 11.3). Let *a*, *b* be nonzero integers.

1. If $a \mid b$ and $b \mid a$, then a = b or a = -b.

2. If a | b, then $|a| \le |b|$.

Proof. Please refer to Theorem 11.3 in the textbook.

Theorem 1.4 (The Division Algorithm). • (Theorem 11.4) Original case: For all positive integers a and b, there exist unique integers q and r, such that

b = aq + r, where $0 \le r < a$.

• (Corollary 11.5) Generalization: For all integers a and b, there exist unique integers q and r, such that

b = aq + r, where $0 \le r < |a|$.

Here allow a and b to be negative.

Proof. Please refer to Theorem 11.4 and Corollary 11.5 in the textbook.

2 Greatest Common Divisor

Definition 2.1. Let a, b be integers, and d a nonzero integer. We say d is a common divisor of a and b if $d \mid a$ and $d \mid b$. We use cd(a, b) to denote the set of all common divisors of a and b.

Remark 1. • For any integers a and b, 0 can not be a common divisor of a and b.

• The notation cd(a, b) is not defined in the textbook, if you want to use it, you had better give the precise definition.

Definition 2.2. Let a, b be integers, not both zero. The largest integer that divides both a and b is called the greatest common divisor of a and b. Notation: gcd(a, b).

- **Remark 2.** gcd(a, b) = max cd(a, b). (very useful)
 - gcd(0,0) is not defined.

Definition 2.3 (Working definition). Let a, b be integers, not both zero, and $d \in \mathbb{N}$.

$$d = \gcd(a, b) \Leftrightarrow \begin{cases} d \mid a \text{ and } d \mid b; \\ \text{for all } k \in \mathbb{N}, \text{ if } k \mid a, k \mid b, \text{ then } k \leq d. \end{cases}$$

^{*}Email: xiangsun@nus.edu.sg

[†]Corrections are always welcome.

3 Theorems and Propositions

Proposition 3.1. Let a be a nonzero integer. Then

- 1. gcd(a, 0) = |a|;
- 2. gcd(a, a) = |a|;
- 3. gcd(a, an) = |a| for all $n \in \mathbb{Z}$.
- *Proof.* 1. If a is positive, then a is a common divisor of a and 0. For any other common divisor k, we have $k \mid a$, and hence $k \leq a$ by Proposition 1.3. Thus, by working definition (Definition 2.3), a is the greatest common divisor of a and 0.

If a is negative, then -a > 0 is a common divisor of a and 0. For any other common divisor k, we have $k \mid a$, and hence $k \mid (-a)$ by Proposition 1.3. Thus $k \leq -a$. Therefore, by working definition (Definition 2.3), -a is the greatest common divisor of a and 0.

Combining the two cases above, we have gcd(a, 0) = |a|.

2. If a is positive, then a is a common divisor of a and a. For any other common divisor k, we have $k \mid a$, and hence $k \leq a$ by Proposition 1.3. Thus, by working definition (Definition 2.3), a is the greatest common divisor of a and a.

If a is negative, then -a > 0 is a common divisor of a and a. For any other common divisor k, we have $k \mid a$, and hence $k \mid (-a)$. Thus $k \leq -a$ by Proposition 1.3. Therefore, by working definition (Definition 2.3), -a is the greatest common divisor of a and a.

Combining the two cases above, we have gcd(a, a) = |a|.

3. For any divisor d of a, d is also a divisor of an for all $n \in \mathbb{Z}$. Hence cd(a, an) is the set of all divisors of a, in which |a| is the largest element. Therefore gcd(a, an) = |a|.

Proposition 3.2. Let a, b be integers, not both zero. Then gcd(a, b) > 0.

Proof. We apply proof by cases:

- If a = 0, then $b \neq 0$, and hence gcd(a, b) = |b| > 0 by Proposition 3.1.
- If b = 0, then $a \neq 0$, and hence gcd(a, b) = |a| > 0 by Proposition 3.1.
- If $a \neq 0$ and $b \neq 0$, then it is trivial that 1 is a common divisor of a and b. Hence $gcd(a, b) \geq 1 > 0$.

Combining the three cases above, we have gcd(a, b) > 0.

Proposition 3.3. Let a, b be integers, not both zero. Then

- 1. gcd(a,b) = gcd(b,a).
- 2. gcd(a,b) = gcd(-a,b) = gcd(a,-b) = gcd(-a,-b).
- 3. gcd(a,b) = gcd(a,b+an) for all $n \in \mathbb{Z}$.

Proof. 1. It is trivial that cd(a,b) = cd(b,a). Hence, gcd(a,b) = max cd(a,b) = max cd(b,a) = gcd(b,a).

- 2. It is trivial that cd(a,b) = cd(a,-b) = cd(-a,b) = cd(-a,-b). Hence gcd(a,b) = gcd(-a,b) = gcd(-a,-b) = gcd(-a,-b).
- 3. It suffices to show cd(a, b) = cd(a, b + an) for all $n \in \mathbb{N}$:

For any $d \in cd(a, b)$, then $d \mid a$ and $d \mid b$. By Definition 1.1, we have a = dp and b = dq for some integers p and q. Then b + an = d(q + pn), and hence $d \mid (b + an)$. Therefore $d \in cd(a, b + an)$.

For any $k \in cd(a, b+an)$, then $d \mid a$ and $d \mid (b+an)$. By Definition 1.1, we have a = dp and b+an = dq for some integers p and q. Then b = (b+an) - an = dq - dpn = d(q-pn), where q - pn is an integer. Also by Definition 1.1, we have $d \mid b$. Therefore, $d \in cd(a, b)$.

 $gcd\left(\frac{a}{c}, \frac{b}{c}\right) = \frac{gcd(a, b)}{c}.$

Proposition 3.4. Let a be an integer, and p a prime number. Then

divisors of p and a are 1 and -1, and hence $gcd(p, a) = max\{1, -1\} = 1$.

Specially, we have

since p > 0.

$$\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a,b)},\frac{b}{\operatorname{gcd}(a,b)}\right) = 1.$$

 $gcd(p, a) = \begin{cases} p, & \text{if } p \mid a; \\ 1, & \text{if } p \nmid a. \end{cases}$

Proof. If $p \mid a$, then a = pn for some integer n. By Proposition 3.1, we have gcd(p, a) = gcd(p, pn) = |p| = p

Proposition 3.5. Let a, b be integers, not both zero, c a positive integer. If $c \mid gcd(a, b)$, then

If $p \nmid a$. Since p is a prime number, p has only 4 divisors: 1, -1, p and -p. Since $p \nmid a$, the common

Proof. Let $D = \gcd(a, b)$.

Since $c \mid D$, we have $c \mid a$ and $c \mid b$. Then $\frac{a}{c}$, $\frac{b}{c}$ and $\frac{D}{c}$ are integers. Since $D \mid a$ and $D \mid b$, we have $\frac{D}{c} \mid \frac{a}{c}$ and $\frac{D}{c} \mid \frac{b}{c}$. Hence $\frac{D}{c} > 0$ is a common divisor of $\frac{a}{c}$ and $\frac{b}{c}$. Let d be a common divisor of $\frac{a}{c}$ and $\frac{b}{c}$, then we have $(cd) \mid a$ and $(cd) \mid b$, and hence cd is a common divisor of $\frac{a}{c}$ and $\frac{b}{c}$.

divisor of a and b. Hence $cd \leq \gcd(a, b) = D$, and $d \leq \frac{D}{c}$.

By working definition (Definition 2.3), $\frac{D}{c} = \gcd(\frac{a}{c}, \frac{c}{b})$, i.e.

$$\operatorname{gcd}\left(\frac{a}{c}, \frac{b}{c}\right) = \frac{\operatorname{gcd}(a, b)}{c}.$$

Let $c = \gcd(a, b)$, then we have

$$\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a,b)}, \frac{b}{\operatorname{gcd}(a,b)}\right) = 1.$$

Corollary 3.6. Let a, b be integers, c a positive integer. Then gcd(ca, cb) = c gcd(a, b).

$$\frac{\gcd(ca,cb)}{c} = \gcd\left(\frac{ca}{c},\frac{cb}{c}\right) = \gcd(a,b).$$

Theorem 3.7 (Theorem 11.7). Let a, b be integers, not both 0, then gcd(a, b) is the smallest positive linear combination of a and b. That is,

$$gcd(a,b) = ax + by$$

for some integers x and y.

Proof.

Proof. Please refer to Theorem 11.7 in the textbook.

Corollary 3.8. If $c \mid a$ and $c \mid b$, then $c \mid gcd(a, b)$.

Proof. By Theorem 3.7, we have

$$gcd(a,b) = ax + by$$

for some integers x, y. Since $c \mid a$ and $c \mid b$, by Proposition 1.2, we have $c \mid (ax + by)$. Therefore, $c \mid c \mid b$ gcd(a, b).

Theorem 3.9 (Theorem 11.8). Let a, b be integers, not both 0, and $d \in \mathbb{N}$.

$$d = \gcd(a, b) \Leftrightarrow \begin{cases} d \mid a \text{ and } d \mid b; \\ \text{for all } k \in \mathbb{N}, \text{ if } k \mid a, k \mid b, \text{ then } k \mid d. \end{cases}$$

Proof. Please refer to Theorem 11.8 in the textbook.

 \square

Theorem 3.10. 1. If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).

- 2. If gcd(a, b) = 1 and $a \mid (bc)$, then $a \mid c$. (Theorem 11.13)
- 3. Euclid's Lemma:
 - Let a, b be integers and p a prime number. If $p \mid (ab)$, then $p \mid a$ or $p \mid b$. (Corollary 11.14)
 - Let a_1, a_2, \ldots, a_n and be integers and p be a prime number. If $p \mid a_1 a_2 \cdots a_n$, then $p \mid a_k$ for some $k \ (1 \le k \le n)$. (Corollary 11.15)

Proof. Please refer to Theorem 11.13, Corollary 11.14, and Corollary 11.15 in the textbook. Here I will give an alternative proof:

1. Let $m = \gcd(ac, b)$ and $n = \gcd(c, b)$. We shall show $m \le n$ and $n \le m$.

Now n = gcd(c, b) implies $n \mid c$ and $n \mid b$. So $n \mid ac$. Hence n is a common divisor of ac and b. So $n \leq m$, which is the greatest common divisor of ac and b.

On the other hand, $m = \gcd(ac, b)$. So $m \mid ac$ and $m \mid b$. That is,

$$ac = mp, \quad b = mq$$
 (1)

for some integers p, q. Since gcd(a, b) = 1, we have

$$ax + by = 1 \tag{2}$$

for some integers x, y.

Multiplying c to the Equation (2), we have acx+bcy = c. By the Equation (1), we have (mp)x+(mq)cy = c which gives m(px + qcy) = c. Hence $m \mid c$, and m is a common divisor of c and b. So $m \leq n$, which is the greatest common divisor of c and b.

- 2. By Part 1, we have $a = \gcd(bc, a) = \gcd(c, a)$. Hence $a \mid c$.
- 3. Given $p \mid (ab)$.
 - If $p \mid a$, we have done.
 - If $p \nmid a$. Then gcd(p, a) = 1. By Part 2, we have $p \mid b$.

Proposition 3.11. 1. If gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

2. If gcd(a, b) = 1, $a \mid c, b \mid c$, then $(ab) \mid c$. (Theorem 11.16)

Proof. 1. If gcd(a, b) = 1 and gcd(a, c) = 1, there exist integers p, q, x, y such that

$$ap + bq = 1$$
, $ax + cy = 1$.

From this, we see that

$$\begin{split} 1 &= (ap+bq)(ax+cy) \\ &= apax+apcy+bqax+bqcy \\ &= a(pax+pcy+bqx)+bc(qy) \end{split}$$

We see that 1 is a linear combination of a and bc and hence gcd(a, bc) = 1.

2. Since gcd(a, b) = 1, we have

ax + by = 1

for some integers x, y. Multiplying c to the Equation, we will obtain

$$axc + byc = c.$$

Since $a \mid c$ and $b \mid c$, we have c = ap and c = bq for some integers p, q. Hence, the Equation becomes

$$ab(xq + yp) = axbq + byap = c.$$

Therefore $(ab) \mid c$.