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1 Divisibility
Definition 1.1. Let m,n be integers, we say m divides n if there exists an integer q, such that n = mgq.
Notation: m | n. If m | n, then we say that m is divisor.
Proposition 1.2 (Theorem 11.2). Let a,b, ¢ be integers with a # 0
1. If a | b, then a | (be);
2. Ifa| b and b | c, where b# 0, then a | c.
3. Ifa|bandb|c, then a| (bx + cy) for all integers x,y.
Proof. Please refer to Theorem 11.2 in the textbook. O

Proposition 1.3 (Theorem 11.3). Let a,b be nonzero integers.
1. Ifa|b and b | a, then a=0b or a = —b.
2. If a | b, then |a| < |b|.
Proof. Please refer to Theorem 11.3 in the textbook. O

Theorem 1.4 (The Division Algorithm). o (Theorem 11.4) Original case: For all positive integers a
and b, there exist unique integers q and r, such that

b=aq+r, where()<r <a.

o (Corollary 11.5) Generalization: For all integers a and b, there exist unique integers q and r, such that
b=aq+r, where0<r <lal.
Here allow a and b to be negative.

Proof. Please refer to Theorem 11.4 and Corollary 11.5 in the textbook. O

2 Greatest Common Divisor

Definition 2.1. Let a,b be integers, and d a nonzero integer. We say d is a common divisor of a and b
ifd|a and d|b. We use cd(a,b) to denote the set of all common divisors of a and b.

Remark 1. e For any integers a and b, 0 can not be a common divisor of a and b.

o The notation cd(a, b) is not defined in the textbook, if you want to use it, you had better give the precise
definition.

Definition 2.2. Let a,b be integers, not both zero. The largest integer that divides both a and b is called the
greatest common divisor of ¢ and b. Notation: ged(a,b).

Remark 2. e gcd(a,b) = maxcd(a,b). (very useful)

e gcd(0,0) is not defined.
Definition 2.3 (Working definition). Let a,b be integers, not both zero, and d € N.
d|a and d|b;

d = ged(a, b) & .
forallk €N, if k| a,k|b, then k <d.
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3 Theorems and Propositions

Proposition 3.1. Let a be a nonzero integer. Then
1. ged(a,0) = |al;
2. ged(a,a) = |al;
3. ged(a,an) = |a| for alln € Z.
Proof. 1. If a is positive, then a is a common divisor of a and 0. For any other common divisor k, we

have k | a, and hence k < a by Proposition 1.3. Thus, by working definition (Definition 2.3), a is the
greatest common divisor of a and 0.

If a is negative, then —a > 0 is a common divisor of ¢ and 0. For any other common divisor k, we
have k | a, and hence k | (—a) by Proposition 1.3. Thus k < —a. Therefore, by working definition
(Definition 2.3), —a is the greatest common divisor of a and 0.

Combining the two cases above, we have ged(a,0) = |al.

2. If a is positive, then a is a common divisor of @ and a. For any other common divisor k, we have k | a,
and hence k < a by Proposition 1.3. Thus, by working definition (Definition 2.3), a is the greatest
common divisor of a and a.

If a is negative, then —a > 0 is a common divisor of a and a. For any other common divisor k, we
have k | a, and hence k | (—a). Thus k < —a by Proposition 1.3. Therefore, by working definition
(Definition 2.3), —a is the greatest common divisor of ¢ and a.

Combining the two cases above, we have ged(a, a) = |al.

3. For any divisor d of a, d is also a divisor of an for all n € Z. Hence cd(a,an) is the set of all divisors
of a, in which |a| is the largest element. Therefore ged(a,an) = |al.
O

Proposition 3.2. Let a,b be integers, not both zero. Then ged(a,b) > 0.
Proof. We apply proof by cases:

e If a =0, then b # 0, and hence ged(a,b) = |b| > 0 by Proposition 3.1.

e If b =0, then a # 0, and hence ged(a,b) = |a| > 0 by Proposition 3.1.

e If a £ 0 and b # 0, then it is trivial that 1 is a common divisor of a and b. Hence ged(a,b) > 1 > 0.
Combining the three cases above, we have ged(a,b) > 0. O
Proposition 3.3. Let a,b be integers, not both zero. Then

1. ged(a, b) = ged(b, a).

2. ged(a,b) = ged(—a, b) = ged(a, —b) = ged(—a, —b).

3. ged(a,b) = ged(a, b+ an) for alln € Z.

Proof. 1. Tt is trivial that cd(a,b) = cd(b,a). Hence, ged(a,b) = maxcd(a,b) = maxcd(b, a) = ged(b, a).

2. Tt is trivial that c¢d(a,b) = cd(a,—b) = cd(—a,b) = cd(—a,—b). Hence ged(a,b) = ged(—a,b) =
ged(a, —b) = ged(—a, —b).

3. Tt suffices to show cd(a,b) = cd(a, b+ an) for all n € N:

For any d € cd(a,b), then d | a and d | b. By Definition 1.1, we have a = dp and b = dg for some
integers p and ¢g. Then b + an = d(¢ + pn), and hence d | (b + an). Therefore d € cd(a, b+ an).

For any k € cd(a,b+an), then d | a and d | (b+an). By Definition 1.1, we have a = dp and b+an = dq
for some integers p and ¢. Then b = (b+ an) — an = dg — dpn = d(q — pn), where ¢ — pn is an integer.
Also by Definition 1.1, we have d | b. Therefore, d € cd(a,b).

O



Proposition 3.4. Let a be an integer, and p a prime number. Then

st = {7 01"

Proof. If p | a, then a = pn for some integer n. By Proposition 3.1, we have ged(p, a) = ged(p,pn) = |p| =p
since p > 0.

If p ¥ a. Since p is a prime number, p has only 4 divisors: 1, -1, p and —p. Since p { a, the common
divisors of p and a are 1 and -1, and hence ged(p, a) = max{1l, -1} = 1. O

Proposition 3.5. Let a,b be integers, not both zero, ¢ a positive integer. If ¢ | ged(a, b), then

Specially, we have
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Proof. Let D = ged(a,b).
Since ¢ | D, we have ¢ | a and ¢ | b. Then 2, 2 and £ are integers. Since D | a and D | b, we have
and 2 | g Hence £ > 0 is a common divisor of ¢ and %
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Let d be a common divisor of ¢ and %, then we have (¢d) | a and (ed) | b, and hence ¢d is a common
divisor of a and b. Hence cd < ged(a,b) = D, and d < %.

Let ¢ = ged(a, b), then we have
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O
Corollary 3.6. Let a,b be integers, ¢ a positive integer. Then ged(ca, cb) = cged(a, b).
Proof.
d b b
c ¢’ c
O

Theorem 3.7 (Theorem 11.7). Let a,b be integers, not both 0, then ged(a,b) is the smallest positive linear
combination of a and b. That is,
ged(a, b) = ax + by

for some integers x and y.
Proof. Please refer to Theorem 11.7 in the textbook. 0
Corollary 3.8. Ifc|a and c|b, then c| ged(a,b).

Proof. By Theorem 3.7, we have
ged(a, b) = ax + by

for some integers z,y. Since ¢ | a and ¢ | b, by Proposition 1.2, we have ¢ | (ax + by). Therefore, ¢ |
ged(a, b). O

Theorem 3.9 (Theorem 11.8). Let a,b be integers, not both 0, and d € N.

d|aandd]|b;

d = ged(a, b) & _
forallk e N, ifk|a,k|b, then k| d.

Proof. Please refer to Theorem 11.8 in the textbook. O



Theorem 3.10. 1. If ged(a,b) =1, then ged(ac,b) = ged(c, b).
2. If ged(a,b) =1 and a | (be), then a | c. (Theorem 11.18)
3. Fuclid’s Lemma:

o Let a,b be integers and p a prime number. If p | (ab), then p|a orp|b. (Corollary 11.14)

e Let ay,asg,...,a, an be integers and p be a prime number. If p | ajas - - - ap, then p | ap for some
kE (1 <k<mn). (Corollary 11.15)

Proof. Please refer to Theorem 11.13, Corollary 11.14, and Corollary 11.15 in the textbook. Here I will give
an alternative proof:

1. Let m = ged(ac, b) and n = ged(c, b). We shall show m < n and n < m.

Now n = ged(c,b) implies n | ¢ and n | b. So n | ac. Hence n is a common divisor of ac and b. So
n < m, which is the greatest common divisor of ac and b.

On the other hand, m = ged(ac,b). So m | ac and m | b. That is,
ac=mp, b=mgq (1)
for some integers p, q. Since ged(a,b) = 1, we have
ax +by =1 (2)

for some integers x,y.

Multiplying ¢ to the Equation (2), we have acz+bcy = ¢. By the Equation (1), we have (mp)z+(mgq)cy =
¢ which gives m(px + gcy) = ¢. Hence m | ¢, and m is a common divisor of ¢ and b. So m < n, which
is the greatest common divisor of ¢ and b.

2. By Part 1, we have a = ged(be, a) = ged(e,a). Hence a | c.
3. Given p | (ab).

e If p | a, we have done.
e If pta. Then ged(p,a) = 1. By Part 2, we have p | b.

Proposition 3.11. 1. If ged(a,b) = 1 and ged(a,c) =1, then ged(a, be) = 1.
2. If ged(a,b) =1, alc, b|c, then (ab) | ¢. (Theorem 11.16)
Proof. 1. If ged(a,b) =1 and ged(a, ¢) = 1, there exist integers p, ¢, 2,y such that
ap+bg=1, axr+cy=1.
From this, we see that

1 = (ap + bg)(az + cy)
= apazx + apcy + bgax + bgcy
= a(paz + pey + bgz) + be(qy)

We see that 1 is a linear combination of a and be and hence ged(a, be) = 1.

2. Since ged(a,b) = 1, we have
ar+by=1

for some integers x,y. Multiplying c to the Equation, we will obtain
axc+ byc = c.
Since a | ¢ and b | ¢, we have ¢ = ap and ¢ = bq for some integers p, q. Hence, the Equation becomes
ab(xq + yp) = axbg + byap = c.
Therefore (ab) | c.
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