
Introduction

1. Matching theory, a name referring to several loosely related research areas concerning
matching, allocation, and exchange of indivisible resources, such as jobs, school seats,
houses, etc., lies at the intersection of game theory, social choice theory, and mechanism
design.

2. Labor markets: the case of American hospital-intern markets:

• Medical students in many countries work as residents (interns) at hospitals.

• In theU.S.more than20,000medical students and4,000hospitals arematched through
a clearinghouse, called NRMP (National Resident Matching Program).

• Doctors and hospitals submit preference rankings to the clearinghouse, and the clear-
inghouse uses a specified rule (computer program) to decide who works where.

• Some markets succeeded while others failed. What is a “good way” to match doctors
and hospitals?

3. Kidney exchange:
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• Kidney Exchange is a preferred method to save kidney-disease patients.

• There are lots of kidney shortages, and willing donor may be incompatible with the
donor.

• Kidney Exchange tries to solve this by matching donor-patient pairs.

• What is a “good way” to match donor-patient pairs?

4. School choice:

• In many countries, especially in the past, children were automatically sent to a school
in their neighborhoods.

• Recently, more and more cities in the United States and in other countries employ
school choice programs: school authorities take into account preferences of children
and their parents.

5. Targets: Efficiency, fairness, incentives.
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Marriage and college admission

6. A marriage problem is a triple Γ = ⟨M,W,≿⟩, where

• M is a finite set of men,

• W is a finite set of women,

• ≿= (≿i)i∈M∪W is a list of preferences. Here

– ≿m denotes the preference of manm overW ∪ {m},
– ≿w denotes the preference of womanw overM ∪ {w},
– ≻i denotes the strict preference derived from≿i for each i ∈M ∪W .

7. For manm:

• w ≻m w
′ means that manm prefers womanw to womanw′.

• w ≻m mmeans that manm prefers womanw to remaining single.

• m ≻m wmeans that womanw is unacceptable to manm.
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We use similar notation for women.

8. If an individual is not indifferent between any two distinct acceptable alternatives, he has
strict preferences. Unless otherwise mentioned all preferences are strict.

9. Amatching in amarriageproblemΓ = ⟨M,W,≿⟩ is a functionµ : M∪W →M∪W
such that

• for allm ∈M , ifµ(m) ̸= m thenµ(m) ∈ W ,

• for allw ∈ W , ifµ(w) ̸= w thenµ(w) ∈M ,

• for allm ∈M andw ∈ W ,µ(m) = w if and only ifµ(w) = m.

We refer to µ(i) as the mate of i, and µ(i) = imeans that agent i remains single under
the matchingµ.

10. A matching will sometimes be represented as a set of matched pairs. Thus, for example,
the matching

µ =

[
w4 w1 w2 w3 (m5)

m1 m2 m3 m4 m5

]
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hasm1 married tow4 andm5 remaining single.

11. For two matchings µ and ν , an individual i prefers µ to ν if and only if i prefers µ(i) to
ν(i).

Let µ ≻M ν if µ(m) ≿m ν(m) for allm ∈ M , and µ(m) ≻m ν(m) for at least one
manm.

Letµ ≿M ν denote that eitherµ ≻M ν or that all men are indifferent betweenµ and ν .

12. A matchingµ is Pareto efficient if there is no other matching ν such that

• ν(i) ≿i µ(i) for all i ∈M ∪W ,

• ν(i0) ≻i0 µ(i0) for some i0 ∈M ∪W .

13. A matchingµ is blocked by an individual i ∈M ∪W if i ≻i µ(i).

A matching is individually rational if it is not blocked by any individual.

14. A matching µ is blocked by a pair (m,w) ∈ M ∪W if they both prefer each other to
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their partners underµ, i.e.,

w ≻m µ(m) andm ≻w µ(w).

15. A matchingµ is stable if it is not blocked by any individual or any pair.

16. Example: There are three men and three women, with the following preferences:

m1 m2 m3 w1 w2 w3

w2 w1 w1 m1 m3 m1

w1 w3 w2 m3 m1 m3

w3 w2 w3 m2 m2 m2

Table 1

All possible matchings are individually rational, since all pairs (m,w) are mutually ac-
ceptable.
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The matchingµ given below is unstable, since (m1, w2) is a blocking pair.

µ =

[
w1 w2 w3

m1 m2 m3

]
.

The matchingµ′ is stable.

µ′ =

[
w1 w2 w3

m1 m3 m2

]
.

17. Men-proposing deferred acceptance algorithm.

Step 1: Each manm proposes to his first choice (if he has any acceptable choices). Each
womanrejects anyoffer except thebest acceptableproposal and“holds” themost-preferred
acceptable proposal (if any). Note that she does not accept him yet, but keeps him on a
string to allow for the possibility that someone better may come along later.

Step k: Any man who was rejected at Step k − 1 makes a new proposal to his most-
preferredacceptablepotentialmatewhohasnotyet rejectedhim(Ifnoacceptable choices
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remain, he makes no proposal). Each woman receiving proposals chooses her most-
preferred acceptable proposal from the group consisting of the new proposers and the
man on her string, if any. She rejects all the rest and again keeps the best-preferred in
suspense.

End: Thealgorithmterminateswhen therearenomore rejections. Eachwoman ismatched
with theman she has been holding in the last step. Anywomanwhohas not been hold-
ing an offer or any man who was rejected by all acceptable women remains single.

18. Theorem on stability (Theorem 1 in Gale and Shapley (1962)): The men-proposing de-
ferred acceptance algorithm gives a stable matching for each marriage problem.

19. Theorem on optimality (Theorem 2 in Gale and Shapley (1962)): The matching deter-
minedbymen-proposingdeferredacceptancealgorithmis at least goodas anyother stable
matching for all men.

20. Rural hospital theorem (Theorem in McVitie and Wilson (1970), Theorem 1 in Gale and
Sotomayor (1985)): Thesetof individualswhoarematched is the same forall stablematch-
ings.
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21. A (direct) mechanism φ is a systematic procedure that determines a matching for each
marriage problem ⟨M,W,≿⟩. Note thatM ,W and≿ are all allowed to vary.

22. A mechanismφ is stable if it is always selects a stable matching.

A mechanismφ is Pareto efficient if it is always selects a Pareto efficient matching.

Amechanismφ is individually rational if it is always selects an individually rationalmatch-
ing.

23. A mechanism φ is strategy-proof if for anyM andW , for each i ∈ M ∪W , for each
≿i,≿′

i∈ Pi, for each≿−i∈ P−i,

φ[≿−i,≿i](i) ≿i φ[≿−i,≿′
i](i).

24. Impossibility theorem (Theorem 3 in Roth (1982b)): There exists no mechanism that is
both stable and strategy-proof.

25. Theorem(Theorem9 inDubinsandFreedman(1981),Theorem5 inRoth (1982b)): Truth-

9



telling is a weakly dominant strategy for any man under the man-optimal stable mech-
anism. Similarly truth-telling is a weakly dominant strategy for any woman under the
woman-optimal stable mechanism.

26. Definition: A college admissions problem Γ = ⟨S,C, q,≻⟩ consists of:

• a finite set of studentsS ,

• a finite set of collegesC ,

• a quota vector q = (qc)c∈C such that qc ∈ Z+ is the quota of college c,

• a preference profile for students≻S= (≻s)s∈S such that≻s is a strict preference over
colleges and remaining unmatched, denoting the strict preference of student s,

• a preference profile for colleges≻C= (≻c)c∈C such that≻c is a strict preference over
students and remaining unmatched, denoting the strict preference of college c.

In this chapter, we will use ∅ to denote “unmatched.”

27. Definition: Amatching is the outcome of a problem, and is defined by a functionµ : C ∪
S → 2S ∪ 2C such that
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• for each student s ∈ S ,µ(s) ∈ 2C with |µ(s)| ≤ 1,

• for each college c ∈ C ,µ(c) ∈ 2S with |µ(c)| ≤ qc,

• µ(s) = c if and only if s ∈ µ(c).

28. Definition: A matchingµ is blocked by a college c ∈ C if there exists s ∈ µ(c) such that
∅ ≻c s.

A matchingµ is blocked by a student s ∈ S if ∅ ≻s µ(s).

A matching is individually rational if it is not blocked by any college or student.

29. Definition: A matchingµ is blocked by a pair (c, s) ∈ C × S if

• c ≻s µ(s), and

• – either there exists s′ ∈ µ(c) such that s ≻c s
′, or

– |µ(c)| < qc and s ≻c ∅.

30. Definition: A matching is stable if it is not blocked by any agent or pair.
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31. Given a college admissions problem ⟨S,C, q,≻⟩, the related marriage problem is con-
structed as follows:

• “Divide” each college cℓ into qcℓ separate pieces c1ℓ, c
2
ℓ, . . . , c

qcℓ
ℓ , where each piece has

a capacity of one; and let each piece have the same preferences over S as college c has.
(Since college preferences are responsive,≻c is consistentwith a unique ranking of stu-
dents.)

C∗: The resulting set of college “pieces” (or seats).

• For any student s, extend her preference toC∗ by replacing each college cℓ in her orig-
inal preference≻s with the block c1ℓ, c

2
ℓ, . . . , c

qcℓ
ℓ in that order.

32. Student-proposing deferred acceptance algorithm.

Step 1: Each student proposes to her top-choice individually rational college (if she has
one). Each college c rejects any individually irrational proposal and, if more than qc
individually rational proposals are received, “holds” the most preferred qc of them and
rejects the rest.
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Step k: Any student who was rejected at the previous step makes a new proposal to her
most preferred individually rational college that hasn’t yet rejected her (if there is one).
Each college c “holds” at most qc best student proposals to date, and rejects the rest.

End: Thealgorithm terminates after a stepwhere no rejections aremadebymatching each
college to the students (if any) whose proposals it is “holding.”

33. Theorem on stability (Theorem 1 in Gale and Shapley (1962)): The student- and college-
proposing deferred acceptance algorithm give stable matchings for each college admis-
sions model.

34. Theorem: Thecollege-proposingdeferred acceptance algorithmproduces amatching that
gives each college cℓ its kℓ highest ranked achievable students.

35. Theorem: The student-optimal stable matching is weakly Pareto efficient for the students.

36. Example: The college-optimal stable matching need not be even weakly Pareto optimal
for the colleges.
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37. Example: The college-optimal stable matching need not be even weakly Pareto optimal
for the colleges.

38. Theorem: The set of students admitted and seats filled is the same at every stablematching.

39. Theorem(Theorem1 inRoth (1986)): Any college that doesnot fill its quota at some stable
matching is assigned precisely the same set of students at every stable matching.

40. A mechanism φ is strategy-proof if for each i ∈ S ∪ C , for each≿i,≿′
i ∈ Pi, for each

≿−i∈ P−i,
φ[≿−i,≿i, q](i) ≿i φ[≿−i,≿′

i, q](i).

41. Theorem (Theorem 3 in Roth (1982b)): There exists no mechanism that is stable and
strategy-proof.

42. Theorem (Theorem 5 in Roth (1982b)): Truth-telling is a weakly dominant strategy for all
students under the student-optimal stable mechanism.
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43. Theorem (Proposition 2 in Roth (1985a)): There exists no stablemechanismwhere truth-
telling is a weakly dominant strategy for all colleges.

Housingmarket and house allocation

44. Housing market model is introduced by Shapley and Scarf (1974). Each agent owns a
house, and a housing market is an exchange (with indivisible objects) where agents have
the opinion to trade their house in order to get a better one.

45. Definition: Formally, a housing market is a triple ⟨A,H,≻, e⟩ such that

• A = {a1, a2, . . . , an} is a set of agents,

• H is a set of houses such that |A| = |H|,

• ≻= (≻a)a∈A is a strict preference profile such that for each agenta ∈ A,≻a is a strict
preference over houses. LetPa be the set of preferences of agent a. The induced weak
preference of agent a is denoted by ≿a and for any h, g ∈ H , h ≿a g if and only if
h ≻a g or h = g.
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• e : A → H is an initial endowment matching, that is, hi ≜ hai ≜ e(ai) is the initial
endowment of agent i.

46. Definition: Inahousingmarket⟨A,H,≻, e⟩, amatching (allocation) is abijectionµ : A→
H . Here µ(a) is the assigned house of agent a under matching µ. Let M be the set of
matchings.

47. Definition: A (deterministic direct)mechanism is a procedure that assigns amatching for
each housing market ⟨A,H,≻, e⟩.

For the fixed sets of agentsA and housesH , a mechanism becomes a function

φ : ×a∈A Pa → M.

48. Definition: A matchingµ is individually rational if for each agent a ∈ A,

µ(a) ≿a ha = e(a),
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that is, each agent is assigned a house at least as good as her own occupied house.

A mechanism is individually rational if it always selects an individually rational matching
for each housing market.

49. Definition: A matchingµ is Pareto efficient if there is no other matching ν such that

• ν(a) ≿a µ(a) for all a ∈ A, and

• ν(a0) ≻a0 µ(a0) for some a0 ∈ A.

A mechanism is Pareto efficient if it always selects a Pareto efficient matching for each
housing market.

50. Definition: Given a market ⟨A,H,≻, e⟩ and a coalitionB ⊆ A, a matching µ is aB-
matching if for all a ∈ B,µ(a) = hb for some b ∈ B.

51. Definition: A matching µ is in the core if there exists no coalition of agentsB ⊆ A such
that someB-matching ν ∈ Mweakly dominatesµ, that is,

• ν(a) ≿a µ(a) for all a ∈ B, and
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• ν(a0) ≻a0 µ(a0) for some a0 ∈ B.

52. Theorem (Theorem in Shapley and Scarf (1974)): The core of a housing market is non-
empty.

53. Top trading cycles algorithm.

Step 1: Each agent points to the owner of his favorite house.

Due to the finiteness of agents, there exists at least one cycle (including self-cycles).
Moreover, cycles do not intersect.

Each agent in a cycle is assigned the house of the agent he points to and removed from
the market.

If there is at least one remaining agent, proceed with the next step.

Step k: Each remaining agent points to the owner of his favorite house among the remain-
ing houses.

Each agent in a cycle is assigned the house of the agent he points to and removed from
the market.
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If there is at least one remaining agent, proceed with the next step.

End: No agents remain. It is clear that the algorithmwill terminate within finite steps. Let
Step t denote the last step.

The mechanism determined by top trading cycles algorithm is denoted byφTTC.

54. Theorem (Theorem 2 in Roth and Postlewaite (1977)): If the preference of each agent is
strict, the core of a housing market has exactly one matching.

55. Definition: A mechanism φ is strategy-proof if for each housing market ⟨A,H,≻, e⟩,
for each a ∈ A, and for each≻′

a, we have

φ[≻](a) ≿a φ[≻−a,≻′
a](a).

56. Theorem (Theorem in Roth (1982a)): The core mechanismφTTC is strategy-proof.

57. Theorem (Theorem 1 in Ma (1994)): The core mechanism φTTC is the only mechanism
that is individually rational, Pareto efficient, and strategy-proof.
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58. The house allocation problem is introduced by Hylland and Zeckhauser (1979). In this
problem, there is a group of agents and houses. Each agent shall be allocated a house by a
central planner using her preferences over the houses.

59. Formally, a house allocation problem is a triple ⟨A,H,≻⟩ such that

• A = {a1, a2, . . . , an} is a set of agents,

• H = {h1, h2, . . . , hn} is a set of houses,

• ≻= (≻a)a∈A is a strict preference profile such that for each agenta ∈ A,≻a is a strict
preference over houses. LetPa be the set of preferences of agent a. The induced weak
preference of agent a is denoted by ≿a and for any h, g ∈ H , h ≿a g if and only if
h ≻a g or h = g.

60. Definition: In a house allocation problem ⟨A,H,≻⟩, a matching (allocation) is a bijec-
tion µ : A → H . Here µ(a) is the assigned house of agent a under matching µ. LetM
be the set of matchings.
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61. Definition: A (deterministic direct)mechanism is a procedure that assigns amatching for
each house allocation problem ⟨A,H,≻⟩.

For the fixed sets of agentsA and housesH , a mechanism becomes a function

φ : ×a∈A Pa → M.

62. Definition: A matchingµ is Pareto efficient if there is no other matching ν such that

• ν(a) ≿a µ(a) for all a ∈ A, and

• ν(a0) ≻a0 µ(a0) for some a0 ∈ A.

Let E denote the set of all Pareto efficient matchings.

A mechanism is Pareto efficient if it always selects a Pareto efficient matching for each
house allocation.

63. An ordering f : {1, 2, . . . , n} → A is a one-to-one and onto function. Each ordering
induces the following simple mechanism, which is especially plausible if there is a natural
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hierarchy of agents. LetF be the set of all orderings.

Simple serial dictatorship induced by an ordering f , denoted byφf .

Step 1: The highest priority agent f (1) is assigned her top choice house under≻f(1).

Step k: Thek-th highest priority agentf (k) is assigned her top choice house under≻f(k)

among the remaining houses.

64. Proposition: Simple serial dictatorship induced by an ordering f ,φf , is Pareto efficient.

65. Core from assigned endowments µ, denoted by φµ: For any house allocation problem
⟨A,H,≻⟩, select the unique element of the core of the housing market ⟨A,H,≻, µ⟩
where each agent a’s initial house isµ(a). That is,

φµ = φTTC[µ].

66. Theorem (Lemma 1 in Abdulkadiroğlu and Sönmez (1998)): For any ordering f and any
matching µ, the simple serial dictatorship induced by f and the core from assigned en-
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dowments µ both yield Pareto efficient matchings. Moreover, for any Pareto efficient
matching ν , there is a simple serial dictatorship and a core from assigned endowments
that yield it.

67. Theorem (Theorem 1 in Abdulkadiroğlu and Sönmez (1998)): For any house allocation
problem, the number of simple serial dictatorships selecting a Pareto efficientmatchingµ
is the same as the number of cores from assigned endowments selecting µ. That is, for all
ν ∈ E , we have |Mν| = |Fν|, whereMν = {µ ∈ M | φµ = ν} andFν = {f ∈
F | φf = ν}.

68. Letσ be a permutation (relabeling) of houses. Let≻σ be the preference profilewhere each
house h is renamed to σ(h). That is, g ≻σ

a h if and only if σ−1(g) ≻a σ
−1(h).

Definition: A mechanismφ is neutral if, for any permutation σ and≻,

φ[≻σ](a) = σ
(
φ[≻](a)

)
for all a ∈ A.
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69. Definition: A mechanismφ is non-bossy if for any≻, a ∈ A and≻′
a,

φ[≻](a) = φ[≻′
a,≻−a](a) impliesφ[≻] = φ[≻′

a,≻−a].

70. Theorem (Theorem 1 in Svensson (1999)): A mechanism φ is strategy-proof, non-bossy
and neutral mechanism if and only if it is a simple serial dictatorship.

71. Definition: Ahouseallocationproblemwithexisting tenants, denotedby⟨AE, AN , HO, HV ,≻
⟩, consists of

• a finite set of existing tenantsAE ,

• a finite set of new applicantsAN ,

• a finite set of occupied housesHO = {hi : ai ∈ AE},

• a finite set of vacant housesHV , and

• a strict preference profile≻= (≻i)i∈AE∪AN
.
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LetA = AE ∪ AN denote the set of all agents andH = HO ∪HV ∪ {h0} denote the
set of all houses plus the null house.

Agent i’s strict preference≻i is onH . LetP be the set of all strict preferences onH . Let≿i

be agent i’s induced weak preference. We assume that the null house h0 is the last choice
for each agent.

72. Definition: A matchingµ : A→ H is an assignment of houses to agents such that

• every agent is assigned one house, and

• only the null house h0 can be assigned to more than one agent.

For any agent a ∈ A, we refer to µ(a) as the assignment of agent i under µ. LetM be
the set of all matchings.

73. Definition: A direct mechanism is a procedure that assigns a matching for each house
allocation problem with existing tenants ⟨AE, AN , HO, HV ,≻⟩.

74. Definition: Amatching isParetoefficient if there isnoothermatching thatmakes all agents
weakly better off and at least one agent strictly better off.
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Amechanism is individually rational if it always selects aPareto efficientmatching for each
house allocation problem with existing tenants.

75. Definition: A matching is individually rational if no existing tenant strictly prefers his en-
dowment to his assignment.

A mechanism is individually rational if it always selects an individually rational matching
for each house allocation problem with existing tenants.

76. Definition: A mechanism φ is strategy-proof if for each house allocation problem with
existing tenants ⟨AE, AN , HO, HV ,≻⟩, for each a ∈ A, for each≻′

a, we have

φ[≻](a) ≿a φ[≻′
a,≻−a](a).

77. You request my house—I get your turn (YRMH-IGYT) algorithm, induced by a given or-
dering f :

Phase 1: Assign the first agent her top choice, the second agent her top choice among the
remaining houses, and so on, until someone demands the house of an existing tenant.
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Phase 2: If at that point the existing tenant whose house is requested is already assigned
another house, then do not disturb the procedure.

Otherwise, modify the remainder of the ordering by inserting this existing tenant be-
fore the requestor at the priority order and proceed with the Phase 1 through this ex-
isting tenant.

Similarly, insert any existing tenant who is not already served just before the requestor
in the priority order once her house is requested by an agent.

Phase 3: If at any point a cycle forms, it is formed by exclusively existing tenants and each
of them requests the house of the tenant who is next in the cycle. A cycle is an or-
dered list (h1, a1, . . . , hk, ak) of occupied houses and existing tenants where agent
a1 demands the house a2, h2, agent a2 demands the house of agent a3, h3, ..., agent ak
demands the house of a1, h1.

In such case, remove all agents in the cycle by assigning them the house they demand
and proceed similarly.

School choice
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78. A school choice problem is a five-tuple ⟨I, S, q, P,≿⟩, where

• I = {i1, i2, . . . , in} is a finite set of students,

• S = {s1, s2, . . . , sm} is a finite set of schools,

• q ≜ (qs)s∈S is a quota profiles for schools where qs ∈ Z+ is the quota of school s,

• P ≜ (Pi)i∈I is a strong preference profile for students where Pi is a strict preference
relation overS ∪ {∅}, denoting the strict preference relation of student i,

• ≿≜ (≿s)s∈S is a weak priority profile for schools where≿s is a weak priority relation
over I ∪ {∅}, denoting the weak priority of school s.

Here ∅ represents remaining unmatched. For each i ∈ I , letRi be the symmetric exten-
sion ofPi, that is, sRis

′ if and only if sPis′ or s = s′.

79. In school choice problem, the priorities of schools are exogenous, that is, students are
strategic agents but schools are simplyobjects tobe consumed. So a school choiceproblem
is a one-sided matching problem. It is one difference between the school choice problem
and the college admission problem.
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If each school has a strongpriority relation≻s, then it is clear that a school choice problem
naturally associates with an isomorphic college admission problem by letting each school
s’s preference relation be its priority relation≻s.

80. In a school choice problem ⟨I, S, q, P,≿⟩, a matching is a function µ : I → S ∪ {∅}
such that for each school s, |µ−1(s)| ≤ qs.

LetM denote the set of all matchings.

81. In a school choice problem ⟨I, S, q, P,≿⟩, letP denote the sets of all the possible pref-
erences for students. We allow only students to report preferences, and schools’ priorities
are exogenously given and publicly known.

Then amechanismφ≿ or simplyφ selects amatchingφ[P ] for everyP ∈ Pn. Formally,
φ is a function

φ : Pn → M.

82. A matching µ′ (Pareto) dominates µ if for all i ∈ I , µ′(i)Riµ(i), and for some i′ ∈ I ,
µ′(i)Piµ(i).
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A matching is Pareto efficient if it is not dominated.

A mechanismφ is Pareto efficient ifφ[P ] is Pareto efficient for allP ∈ Pn.

A mechanismφ dominatesψ if

• for allP ,φ[P ](i)Riψ[P ](i) for all i

• for someP ,φ[P ](i)Piψ[P ](i) for some i

83. Amatchingµ is individually rational if no student prefers being unmatched to her assign-
ment.

A mechanismφ is individually rational ifφ[P ] is individually rational for allP ∈ Pn.

84. A matchingµ is non-wasteful if no student prefers a school with one or more empty seats
to her assignment. That is, µ is non-wasteful if, whenever i prefers s to her assignment
µ(i), |µ−1(s)| = qs.

A mechanismφ is non-wasteful ifφ[P ] is non-wasteful for allP ∈ Pn.

85. We say that student i desires school s atµ if sPiµ(i).
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A matching µ eliminates justified envy if no student i prefers the assignment of another
student j while at the same time having higher priority at schoolµ(j).

Amechanismφ eliminates justified envy ifφ[P ] eliminates justified envy for allP ∈ Pn.

86. A mechanismφ is strategy-proof if no student can benefit from misreporting, i.e., truth-
telling is a weakly dominant strategy for all students under the mechanismφ. Formally,

φ[Pi, P−i](i)Riφ[P
′
i , P−i](i), for all i, P ′

i , P.

87. A mechanismφ is non-bossy if for anyP , i ∈ I andP ′
i ,

φ[P ](i) = φ[P ′
i , P−i](i) impliesφ[P ] = φ[P ′

i , P−i].

Non-bossiness ensures that students can not be bossy, that is, change the matching for
others, by reporting different preferences, without changing their own.
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88. The Boston mechanism.1

1 For each school a priority ordering is exogenously determined. (In case of Boston, pri-
orities depend on home address, whether the student has a sibling already attending a
school, and a lottery number to break ties.)

2 Each student submits a preference ranking of the schools.

3 The final phase is the student assignment based on preferences and priorities:

Step 1: In Step 1 only the top choices of the students are considered. For each school,
consider the students who have listed it as their top choice and assign seats of the
school to these students one at a time following their priority order until either there
are no seats left or there is no student left who has listed it as her top choice.

Step k: Consider the remaining students. In Step k only the kth choices of these stu-
dents are considered. For each school still with available seats, consider the students
whohave listed it as theirkth choice and assign the remaining seats to these students

1This name came from the fact that it was in use for school choice in Boston Public Schools before it
was replaced by the student-proposing DA.
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one at a time following their priority order until either there are no seats left or there
is no student left who has listed it as her kth choice.

End Thealgorithm terminateswhennomore students are assigned. At each step, every
assignment is final.

89. TheBostonmechanism assigns asmany students as possible to their first choices based on
their submittedpreferences; next, asmany students aspossible to their secondchoices; and
soon. Themajor drawbackof thiswidely usedmechanism is its lackof strategy-proofness.

90. Theorem: For any given (P,≻), DA produces a matching that is stable at (P,≻), which
is also at least as good for every student as any other stable matching at (P,≻).

91. Theorem: Given fixed priorities≻, DA is strategy-proof (for students).

92. Theorem(Theorem3 inAlcaldeandBarberà (1994)): DAis theunique stable andstrategy-
proof mechanism in school choice problem.

93. The major drawback of DA is its lack of efficiency.
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94. Remark: DA is strategy-proof and stable, but not efficient. Are there mechanisms that
improve the efficiency of students without sacrificing the other two properties?

• Stability will be lost for sure, since DA produces the student-optimal stable matching.

• Strategy-proofness will also be lost, due to the following impossibility result.

95. Theorem (Proposition 1 in Kesten (2010), Theorem 1 in Abdulkadiroğlu et al. (2009),
Proposition 1 in Erdil (2014)): Ifφ is a strategy-proof and non-wastefulmechanism, then
there is no strategy-proof mechanism that Pareto dominatesφ.

96. Definition (Definition 1 in Ergin (2002)): Given a priority structure≻ and quota profile
q, a cycle is a, b ∈ S , i, j, k ∈ I such that the following are satisfied:

(C) Cycle condition: i ≻a j ≻a k ≻b i.

(S) Scarcity condition: There exist disjoint sets of students Ia, Ib ⊆ I \ {i, j, k} such
that |Ia| = qa − 1, |Ib| = qb − 1, i′ ≻a j for every i′ ∈ Ia, and i′′ ≻b i for every
i′′ ∈ Ib.
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A priority structure≻ (or (≻, q)) is acyclic if there exists no cycle.

97. Consider the school choice problem ⟨I, S, q, P,≻⟩ in Example 93, where I = {i, j, k},
S = {a, b}, qa = qb = 1, and

i j k a b
b a a i k
a b j i

k

Table 2

The matching produced by DA is

µ =

[
i j k

a ∅ b

]
.

A mutually beneficial agreement between i and k would be to get schools a and b respec-
tively by exercising their priority rights, and then tomake an exchange so that finally i gets
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b and k gets a.

However the finalmatching would violate the priority of j for a, contradicting the alloca-
tion on the basis of specified priorities.

Here the priority structure is not acyclic, since j may block a potential matching between
i and k without affecting his own position, that is

i ≻a j ≻a k ≻b i.

98. Theorem (Theorem 1 in Ergin (2002)): Given ⟨I, J,≻, q⟩, the following are equivalent:

(i) ≻ is acyclic.

(ii) DA≻ is Pareto efficient.

(iii) DA≻ is group strategy-proof.

99. Example: Consider the school choiceproblem ⟨I, S, q, P,≻⟩, whereI = {i, j, k},S =

{s1, s2}, qs1 = qs2 = 1, and
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i j k s1 s2
s2 s1 s1 i k
s1 s2 j i

k

Table 3

The matching produced by DA is [
i j k

s1 ∅ s2

]
,

and the procedure is

Step 1 2 3 End
s1 j, ��SSk j �

�A
Aj, i i

s2 i ��AAi, k k k
∅ k i j j

Table 4
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100. InExample 99,when theDAalgorithm is applied to this problem, student j causes student
k to be rejected from school s1 and starts a chain of rejections that ends back at school s1,
forming a full cycle and causing student j himself to be rejected. There such a cycle has
resulted in loss of efficiency

By applying to school s1, student j “interrupts” a desirable settlement between students
i and k without affecting her own placement and artificially introduces inefficiency into
the outcome. The key idea behind the mechanism produced by Kesten (2010) is based
on preventing students such as student j of this example from interrupting settlements
among other students.

101. Coming back to Example 99, suppose student j consents to give up her priority at school
s1, i.e., if she is okay with accepting the the unfairness caused by matching k to s1. Thus,
school s1 is to be removed from student j ’s preferenceswithout affecting the relative rank-
ing of the other schools in her preferences.

Note that, when we rerun DA, replacing the preferences of student j with her new pref-
erences, there is no change in the placement of student j. But, because the previously
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mentioned cycle now disappears, students i and k each move one position up in their
preferences. Moreover, the new matching is now Pareto-efficient. To be more detailed,
the preference profiles become

i j k s1 s2
s2 s1 i k
s1 s2 j i

k

Table 5

The matching produced by DA is [
i j k

s2 ∅ s1

]
,

and the procedure is

102. Definition: Given a problem to which DA is applied, let i be a student who is tentatively
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Step 1 End
s1 k k
s2 i i
∅ j j

Table 6

placed at a school s at some Step t and rejected from it at some later Step t′. If there is at
least one other student who is rejected from school s after Step t−1 and before Step t′, that
is, rejected at a Step l ∈ {t, t + 1, . . . , t′−1}, then we call student i an interrupter for
school s and the pair (i, s) an interrupting pair of Step t′.

103. Lemma: If the outcome of DA is inefficient for a problem, then there exists one interrupt-
ing pair inDA.However, the converse is not necessarily true, i.e., an interrupting pair does
not always result in efficiency loss.

104. Efficiency-adjusted deferred acceptance mechanism (EADAM):

Round 0: Run DA for (P,≻).
40



Round k ≥ 1:

(1) Find the last step ofDA inRoundk−1 inwhich a consenting interrupter is rejected
from the school for which she is an interrupter.

(2) Identify all interrupting pairs of that step each of which contains a consenting inter-
rupter.

(3) For each identified interrupting pair (i, s), remove school s from the preferences of
student iwithout changing the relative order of the remaining schools. Donotmake
any changes in the preferences of the remaining students.

(4) Rerun DA with the new preference profile.

End: If there are no interrupting pairs, then stop.

When we say student i is an interrupter of Round t, this means that student i is identified
as an interrupter during Round t + 1 in DA that was run at the end of Round t.

105. Theorem (Theorem 1 in Kesten (2010)): The EADAM Pareto dominates the DA as well
as any fair mechanism. If no student consents, the two mechanisms are equivalent. If all
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students consent, then the EADAMoutcome is Pareto-efficient. In the EADAMoutcome
all nonconsenting students’ priorities are respected; however, there may be consenting
students whose priorities for some schools are violated with their permission.

106. In a school choice problem ⟨I, S, q, P,≻⟩ with a given matching µ, for each school s,
letDs be the highest≻s-priority students among those who desire s (i.e., who prefer s to
their assignments underµ).

107. Definition: A stable improvement cycle consists of distinct students i1, i2, . . . , in = i0

(n ≥ 2) such that for each ℓ = 0, 1, . . . , n− 1,

(1) iℓ is matched to some school underµ;

(2) iℓ desiresµ(iℓ+1); and

(3) iℓ ∈ Dµ(iℓ+1).
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108. Given a stable improvement cycle, define a new matchingµ′ by:

µ′(j) =

µ(j), if j ̸∈ {i1, i2, . . . , in};

µ(iℓ+1), if j = iℓ.

Note that the matchingµ′ continues to be stable and it Pareto dominatesµ.

109. Theorem (Theorem1 inErdil andErgin (2008)): Fix≻ andP , and letµ be a stablematch-
ing. Ifµ is Paretodominatedbyanother stablematchingν , then it admits a stable improve-
ment cycle.

110. Stable improvement cycles algorithm:

Step 0: Run DA algorithm and obtain a temporary matchingµ0.

Step k ≥ 1:

(1) Find a stable improvement cycle for µk−1: for schools s and t, let s → t if some
student i ∈ Dt is matched to s underµk−1.
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(2) If there are any cycles, select one. For each s → t in this cycle, select a student
i ∈ Dt withµk−1(i) = s. Carry out this stable improvement cycle to obtainµk.

End: The algorithm stops when there is no cycle.
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