Introduction

1. Matching theory, a name referring to several loosely related research areas concerning
matching, allocation, and exchange of indivisible resources, such as jobs, school seats,
houses, efc., lies at the intersection of game theory, social choice theory, and mechanism

design.
2. Labor markets: the case of American hospital-intern markets:

« Medical students in many countries work as residents (interns) at hospitals.

« Inthe US. more than 20,000 medical students and 4,000 hospitals are matched through
a clearinghouse, called NRMP (National Resident Matching Program).

« Doctors and hospitals submit preference rankings to the clearinghouse, and the clear-

inghouse uses a specified rule (computer program) to decide who works where.

- Some markets succeeded while others failed. What is a “good way” to match doctors

and hospitals?

3. Kidney exchange:



« Kidney Exchange is a preferred method to save kidney-disease patients.

« There are lots of kidney shortages, and willing donor may be incompatible with the

donor.
« Kidney Exchange tries to solve this by matching donor-patient pairs.

« What is a “good way” to match donor-patient pairs?
4. School choice:

- In many countries, especially in the past, children were automatically sent to a school

in their neighborhoods.

« Recently, more and more cities in the United States and in other countries employ
school choice programs: school authorities take into account preferences of children

and their parents.

5. Targets: Efhiciency, fairness, incentives.



Marriage and college admission

6. A marriage problem is a triple I' = (M, W, 7=}, where

« M is a finite set of men,
« V¥ is a finite set of women,
« —=(Zi)iemuw isalist of preferences. Here

— 7 denotes the preference of man m over W U {m},
~ 7~ denotes the preference of woman w over M U {w},

— >; denotes the strict preference derived from 7, foreach: € M U W.
7. For man m:

e W >, w means that man m prefers woman w to woman w’.
« W >, M means that man m prefers woman w to remaining single.

« M >, W means that woman w is unacceptable to man m.



We use similar notation for women.

8. It an individual is not indifferent between any two distinct acceptable alternatives, he has

strict preferences. Unless otherwise mentioned all preferences are strict.

9. A matching ina marriage problem I' = (M, W, =) isafunction yi: MUW — MUW
such that

. forallm € M, if u(m) # mthen u(m) € W,
. forallw € W, if p(w) # w then pu(w) € M,
o forallm € M andw € W, yu(m) = wifand only if u(w) = m.

We refer to (4(7) as the mate of 7, and (i) = 7 means that agent 7 remains single under

the matching .

10. A matching will sometimes be represented as a set of matched pairs. Thus, for example,

the matching

= wy wy wy wz (Mms)
my1 m2 M3 my4 1M;



has m married to w4 and m; remaining single.

11. For two matchings 2 and v, an individual ¢ prefers p to v if and only if ¢ prefers 1(%) to
V().

Let o >=pr vifpu(m) =, v(im) forallm € M, and p(m) >, v(m) for at least one

man 7.

Let 11 7~ as v denote that either 14 =37 v or that all men are indifferent between p and v.
' Iz I

12. A matching p is Pareto efhcient if there is no other matching v such that
e v(i) Z; (i) foralli € M U W,
. (1) >, p(ip) forsomeiy € M U W.

13. A matching (1 is blocked by an individual ¢ € M U W ifi >=; u(1).

A matching is individually rational if it is not blocked by any individual.

14. A matching p is blocked by a pair (m,w) € M U W if they both prefer each other to



their partners under i, i.e.,

W =, p(m)andm =, p(w).

15. A matching p is stable if it is not blocked by any individual or any pair.
16. Example: There are three men and three women, with the following preferences:

mip Mo M3 Wy Wz W3
Wy wWi; Wi My m3z My
wp w3z wz |mz M1 M3
w3 W w3 |MmM2 Mo M2

Table 1

All possible matchings are individually rational, since all pairs (m, w) are mutually ac-

ceptable.



The matching p given below is unstable, since (1m, ws) is a blocking pair.

w1 w2 wWs3
= .
my1 Mo M3

The matching z' is stable.

;)| W1 W2 w3
w = )
™y Mm3 Mo

17. Men-proposing deferred acceptance algorithm.

Step 1: Each man m proposes to his first choice (if he has any acceptable choices). Each
woman rejects any offer except the best acceptable proposal and “holds” the most-preferred
acceptable proposal (if any). Note that she does not accept him yet, but keeps him on a

string to allow for the possibility that someone better may come along later.

Step k: Any man who was rejected at Step £ — 1 makes a new proposal to his most-

preferred acceptable potential mate who has not yet rejected him (If no acceptable choices
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remain, he makes no proposal). Each woman receiving proposals chooses her most-
preferred acceptable proposal from the group consisting of the new proposers and the
man on her string, if any. She rejects all the rest and again keeps the best-preferred in

Suspense.

End: Thealgorithm terminates when there are no more rejections. Each woman is matched
with the man she has been holding in the last step. Any woman who has not been hold-

ing an offer or any man who was rejected by all acceptable women remains single.

18. Theorem on stability (Theorem 1 in Gale and Shapley (1962)): The men-proposing de-

ferred acceptance algorithm gives a stable matching for each marriage problem.

19. Theorem on optimality (Theorem 2 in Gale and Shapley (1962)): The matching deter-
mined by men-proposing deferred acceptance algorithm is atleast good as any other stable

matching for all men.

20. Rural hospital theorem (Theorem in McVitie and Wilson (1970), Theorem 1 in Gale and
Sotomayor (1985)): The set of individuals who are matched is the same for all stable match-

ings.



21. A (direct) mechanism ¢ is a systematic procedure that determines a matching for each
marriage problem (M, W, 7-). Note that M, W and 7 are all allowed to vary.

22. A mechanism ¢ is stable if it is always selects a stable matching.
A mechanism ¢ is Pareto ethcient if it is always selects a Pareto ethcient matching.
A mechanism @ is individually rational if it is always selects an individually rational match-

ing.

23. A mechanism ¢ is strategy-proof if for any M and W, for eachi € M U W, for each
=i, € Piforeach=_; € P_,,

Sﬁ[i—z‘, ii]@ Zi 90[?/—2', d](@)

24. Impossibility theorem (Theorem 3 in Roth (1982b)): There exists no mechanism that is
both stable and strategy-proof.

25. Theorem (Theorem 9 in Dubins and Freedman (1981), Theorem 5 in Roth (1982b)): Truth-
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telling is a weakly dominant strategy for any man under the man-optimal stable mech-
anism. Similarly truth-telling is a weakly dominant strategy for any woman under the

woman-optimal stable mechanism.
26. Definition: A college admissions problem I' = (S C', ¢, ) consists of:

. a finite set of students S,
« a finite set of colleges C),
» a quota vector ¢ = (q.)ccc such that g. € Z, is the quota of college c,

« a preference profile for students > g= (>)secg such that > is a strict preference over

colleges and remaining unmatched, denoting the strict preference of student s,

- a preference profile for colleges >c= (>.).cc such that > is a strict preference over

students and remaining unmatched, denoting the strict preference of college c.
In this chapter, we will use () to denote “unmatched”

27. Definition: A matching is the outcome of a problem, and is defined by a function pi: C'U
S — 2% U 2 such that
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« for each student s € S, u(s) € 2¢ with |u(s)] < 1,
« for each college ¢ € C, u(c) € 2° with |u(c)| < g,
. i1(s) = cifand onlyif s € u(c).
28. Definition: A matching 14 is blocked by a college ¢ € C'if there exists s € pu(c) such that
) ¢ S.
A matching y is blocked by a student s € S'if () = 1u(s).

A matching is individually rational if it is not blocked by any college or student.
29. Definition: A matching 1 is blocked by a pair (¢, s) € C' x S'if

. ¢ > pu(s),and
. — either there exists s € p(c) such that s >, s, or

~ |u(c)] < geand s = 0.
30. Definition: A matching is stable if it is not blocked by any agent or pair.
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31. Given a college admissions problem (S, C, ¢, ), the related marriage problem is con-

structed as follows:

<« . . » . . qC .
. “Divide” each college ¢y into g, separate pieces ¢;, c%, ..., ¢, ', where each piece has

a capacity of one; and let each piece have the same preferences over .S as college ¢ has.
(Since college preferences are responsive, > is consistent with a unique ranking of stu-
dents.)

C™: The resulting set of college “pieces” (or seats).

« For any student s, extend her preference to C* by replacing each college ¢/ in her orig-

inal preference >4 with the block ¢/, ¢, . . . | CZ% in that order.

32. Student-proposing deferred acceptance algorithm.

Step 1: Each student proposes to her top-choice individually rational college (if she has
one). Each college c rejects any individually irrational proposal and, if more than g
individually rational proposals are received, “holds” the most preferred g. of them and

rejects the rest.
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Step k: Any student who was rejected at the previous step makes a new proposal to her
most preferred individually rational college that hasn't yet rejected her (if there is one).

Each college ¢ “holds” at most g, best student proposals to date, and rejects the rest.

End: Thealgorithm terminates after a step where no rejections are made by matching each

college to the students (if any) whose proposals it is “holding”

33. Theorem on stability (Theorem 1 in Gale and Shapley (1962)): The student- and college-
proposing deferred acceptance algorithm give stable matchings for each college admis-

sions model.

34. Theorem: The college-proposing deferred acceptance algorithm produces a matching that

gives each college cy its k, highest ranked achievable students.
35. Theorem: The student-optimal stable matching is weakly Pareto efhicient for the students.

36. Example: The college-optimal stable matching need not be even weakly Pareto optimal

for the colleges.
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37. Example: The college-optimal stable matching need not be even weakly Pareto optimal

for the colleges.
38. Theorem: The set of students admitted and seats filled is the same at every stable matching.

39. Theorem (Theorem 1 in Roth (1986)): Any college that does not fill its quota at some stable

matching is assigned precisely the same set of students at every stable matching.

40. A mechanism ¢ is strategy-proof if for each ¢ € S U C, for each 77;, 7! € P, for each
~_i€P_i
Pl Zir (1) Zi el i al9)-

41. Theorem (Theorem 3 in Roth (1982b)): There exists no mechanism that is stable and
strategy-proof.

42. Theorem (Theorem 5 in Roth (1982b)): Truth-telling is a weakly dominant strategy for all

students under the student-optimal stable mechanism.
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43. Theorem (Proposition 2 in Roth (1985a)): There exists no stable mechanism where truth-

telling is a weakly dominant strategy for all colleges.

Housing market and house allocation

44. Housing market model is introduced by Shapley and Scarf (1974). Each agent owns a
house, and a housing market is an exchange (with indivisible objects) where agents have

the opinion to trade their house in order to get a better one.
45. Definition: Formally, a housing market is a triple (A, H, >, e) such that

- A={ay,a,...,a,}isasetof agents,

. H isasetofhouses such that |A| = |H

>

o == (>4 )aca isastrict preference profile such that for each agenta € A, >, isastrict
preference over houses. Let P, be the set of preferences of agent a. The induced weak
preference of agent a is denoted by 7=, and forany h,g € H, h 7, gifandonlyif
h>,gorh=g.
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. ¢: A — H isan initial endowment matching, that is, h; = h,, = e(a;) is the initial

endowment of agent .

46. Definition: Inahousing market (A, H, >, e),amatching (allocation) isabijection pt: A —
H. Here pi(a) is the assigned house of agent a under matching yi. Let M be the set of

matchings.

47. Definition: A (deterministic direct) mechanism is a procedure that assigns a matching for

each housing market (A, H, >, e).

For the fixed sets of agents A and houses /1, a mechanism becomes a function

SO: XCLEAPCL — M

48. Definition: A matching p is individually rational if for each agenta € A,
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that is, each agent is assigned a house at least as good as her own occupied house.

A mechanism is individually rational if it always selects an individually rational matching

for each housing market.
49. Definition: A matching 4 is Pareto efficient if there is no other matching v such that

- v(a) =, p(a)foralla € A, and

. v(ag) »q, p(ag) forsome ay € A.

A mechanism is Pareto efhicient if it always selects a Pareto efhcient matching for each

housing market.

50. Definition: Given a market (A, H, >, ¢) and a coalition B C A, a matching p is a B-
matchingifforalla € B, u(a) = hy forsomeb € B.

51. Definition: A matching p is in the core if there exists no coalition of agents B C A such

that some B-matching v € M weakly dominates p, that is,

- v(a) =z, p(a)foralla € B,and
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. v(ag) =g, pt(ap) forsome ay € B.

52. Theorem (Theorem in Shapley and Scarf (1974)): The core of a housing market is non-
empty.

53. Top trading cycles algorithm.

Step 1: Each agent points to the owner of his favorite house.

Due to the finiteness of agents, there exists at least one cycle (including self-cycles).

Moreover, cycles do not intersect.

Each agent in a cycle is assigned the house of the agent he points to and removed from
the market.

[f there is at least one remaining agent, proceed with the next step.
Step k: Each remaining agent points to the owner of his favorite house among the remain-
ing houses.

Each agent in a cycle is assigned the house of the agent he points to and removed from
the market.
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If there is at least one remaining agent, proceed with the next step.

End: No agents remain. It is clear that the algorithm will terminate within finite steps. Let

Step ¢ denote the last step.

The mechanism determined by top trading cycles algorithm is denoted by (1€,

54. Theorem (Theorem 2 in Roth and Postlewaite (1977)): If the preference of each agent is

strict, the core of a housing market has exactly one matching,

55. Definition: A mechanism ¢ is strategy-proof if for each housing market (A, H, >, e),

foreacha € A, and for each -/, we have
pl=1(a) Za l=—a, =al(a).

56. Theorem (Theorem in Roth (1982a)): The core mechanism ¢ is strategy-proof.

57. Theorem (Theorem 1 in Ma (1994)): The core mechanism ¢!'¢ is the only mechanism

that is individually rational, Pareto efficient, and strategy-prootf.
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58. The house allocation problem is introduced by Hylland and Zeckhauser (1979). In this
problem, there is a group of agents and houses. Each agent shall be allocated a house by a

central planner using her preferences over the houses.
59. Formally, a house allocation problem is a triple (A, H, ) such that

- A={ay,a9,...,a,}isasetof agents,
« H ={hy,ho, ..., h,}isasetofhouses,

o == (4 )aca isastrict preference profile such that for each agenta € A, >, isastrict
preference over houses. Let P, be the set of preferences of agent a. The induced weak
preference of agent a is denoted by 7, and forany h, g € H, h 7, gifandonlyif
h>,gorh=g.

60. Definition: In a house allocation problem (A, H, ), a matching (allocation) is a bijec-
tion pi: A — H. Here () is the assigned house of agent a under matching 1. Let M
be the set of matchings.
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61. Definition: A (deterministic direct) mechanism is a procedure that assigns a matching for

each house allocation problem (A, H, ).

For the fixed sets of agents A and houses /7, a mechanism becomes a function

90: xaeAPa — M

62. Definition: A matching p is Pareto efhicient if there is no other matching v such that

- v(a) 7, p(a)foralla € A, and

« v(ag) =, p(ap) forsomeag € A.

Let & denote the set of all Pareto efficient matchings.

A mechanism is Pareto efhicient if it always selects a Pareto efhcient matching for each

house allocation.

63. Anordering f: {1,2,...,n} — Aisaone-to-one and onto function. Each ordering

induces the following simple mechanism, which is especially plausible if there is a natural
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hierarchy of agents. Let F be the set of all orderings.

Simple serial dictatorship induced by an ordering f, denoted by ¢/

Step 1: The highest priority agent f (1) is assigned her top choice house under > ¢(y).
Step k: The k-th highest priority agent f (k) is assigned her top choice house under > ¢,

among the remaining houses.

64. Proposition: Simple serial dictatorship induced by an ordering f, o/, is Pareto efficient.

65. Core from assigned endowments g, denoted by ¢*: For any house allocation problem
(A, H, >), select the unique element of the core of the housing market (A, H, >, 1)

where each agent a’s initial house is j1(a). That is,

Tl

=
66. Theorem (Lemma 1 in Abdulkadiroglu and Sonmez (1998)): For any ordering f and any

matching p, the simple serial dictatorship induced by f and the core from assigned en-

22



67.

68.

dowments p both yield Pareto efficient matchings. Moreover, for any Pareto efhcient
matching v, there is a simple serial dictatorship and a core from assigned endowments
that yield it.

Theorem (Theorem 1 in Abdulkadiroglu and Sénmez (1998)): For any house allocation
problem, the number of simple serial dictatorships selecting a Pareto efficient matching p

is the same as the number of cores from assigned endowments selecting 1. That is, for all
v € &, wehave | M"| = |F"|,where M" ={upe M| p!=viand F" = {f €
Flel=v

Let o bea permutation (relabeling) of houses. Let = be the preference profile where each

house A is renamed to (k). Thatis, g =2 hifand onlyifo~!(g) =, o~ *(h).

Definition: A mechanism ¢ is neutral if, for any permutation o and >,

o[=](a) = a(gp[>](a)) foralla € A.
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69. Definition: A mechanism ¢ is non-bossy if forany >, a € Aand >/,
p[-(a) = @l =—al(a) implies p[-] = @[>, =],

70. Theorem (Theorem 1 in Svensson (1999)): A mechanism ¢ is strategy-proof, non-bossy

and neutral mechanism if and only if it is a simple serial dictatorship.

71. Definition: A house allocation problem with existing tenants, denoted by (Ap, Ay, Ho, Hy, >
), consists of
« a finite set of existing tenants Ap,
« a finite set of new applicants Ay,
- a finite set of occupied houses Hp = {h;: a; € Ag},
. a finite set of vacant houses Hy/, and

. a strict preference profile == (>=;)icA,UA-

24



72.

73.

74.

Let A = Ap U Ay denote the set of all agentsand H = Hp U Hy U {hg} denote the

set of all houses plus the null house.

Agent s strict preference >; ison f. Let P be the set of all strict preferenceson H. Let 7Z;
be agent ¢’s induced weak preference. We assume that the null house Ay is the last choice

for each agent.
Definition: A matching 1: A — H is an assignment of houses to agents such that

. every agent is assigned one house, and

« only the null house /¢ can be assigned to more than one agent.

For any agenta € A, we refer to (@) as the assignment of agent ¢ under . Let M be
the set of all matchings.

Definition: A direct mechanism is a procedure that assigns a matching for each house

allocation problem with existing tenants (Ag, Ay, Ho, Hy, ).

Definition: A matchingis Pareto ethcient if there is no other matching that makes all agents

weakly better off and at least one agent strictly better off.
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A mechanism is individually rational if it always selects a Pareto efficient matching for each

house allocation problem with existing tenants.

75. Definition: A matching is individually rational if no existing tenant strictly prefers his en-
dowment to his assignment.
A mechanism is individually rational if it always selects an individually rational matching

for each house allocation problem with existing tenants.

76. Definition: A mechanism ¢ is strategy-prootf if for each house allocation problem with

existing tenants (Ap, Ay, Ho, Hy, ), foreacha € A, for each >/, we have
ol-](a) Za pl=a: =—dl(a).
77. You request my house—I get your turn (YRMH-IGYT) algorithm, induced by a given or-

dering f:

Phase 1: Assign the first agent her top choice, the second agent her top choice among the

remaining houses, and so on, until someone demands the house of an existing tenant.
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Phase 2: If at that point the existing tenant whose house is requested is already assigned

another house, then do not disturb the procedure.

Otherwise, modify the remainder of the ordering by inserting this existing tenant be-
fore the requestor at the priority order and proceed with the Phase 1 through this ex-

isting tenant.

Similarly, insert any existing tenant who is not already served just before the requestor

in the priority order once her house is requested by an agent.

Phase 3: If at any point a cycle forms, it is formed by exclusively existing tenants and each
of them requests the house of the tenant who is next in the cycle. A cycle is an or-
dered list (hy, ay, . .., hy, ai) of occupied houses and existing tenants where agent
a1 demands the house as, ho, agent as demands the house of agent as, hs, ..., agent ay,

demands the house of a1, h.

In such case, remove all agents in the cycle by assigning them the house they demand

and proceed similarly.

School choice
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78. A school choice problem is a five-tuple (1, S, q, P, 7-), where

e [ = {iy,19,...,1,} isafinite set of students,
e S ={s1,59,..., Sy} isafinite set of schools,
« ¢ 2 (qs)ses is a quota profiles for schools where g, € Z, is the quota of school s,

. P £ (P,);c1 is a strong preference profile for students where P; is a strict preference

relation over S U {()}, denoting the strict preference relation of student ¢,

e =2 (74)ses is a weak priority profile for schools where = is a weak priority relation

~S

over [ U {(}, denoting the weak priority of school s.

Here () represents remaining unmatched. For each i € I, let R; be the symmetric exten-

sion of P}, thatis, sR;s" ifand only if s P;s" or s = &'

79. In school choice problem, the priorities of schools are exogenous, that is, students are
strategic agents but schools are simply objects to be consumed. So a school choice problem
is a one-sided matching problem. It is one difference between the school choice problem

and the college admission problem.
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80.

31.

82.

[t each school has a strong priority relation >, then itis clear that a school choice problem
naturally associates with an isomorphic college admission problem by letting each school

s's preference relation be its priority relation > .

In a school choice problem (I, S, ¢, P, ), a matching is a function - I — S U {0}
such that for each school s, |17 (s)] < gs.

Let M denote the set of all matchings.

In a school choice problem (I, S, q, P, ), let P denote the sets of all the possible pref-
erences for students. We allow only students to report preferences, and schools’ priorities

are exogenously given and publicly known.

Then a mechanism = or simply  selects a matching @[ P] for every P € P". Formally,

 is a function

w: P"— M.

A matching i’ (Pareto) dominates y if forall i € I, p/(¢) R;pu(2), and for some i’ € 1,
' (3) Pipa(7).
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A matching is Pareto efficient if it is not dominated.
A mechanism ¢ is Pareto efficient if ¢| P] is Pareto efficient for all P € P".

A mechanism ¢ dominates ) if

« forall P, p|P|(7) Rt | P|(7) forall ¢
- for some P, | P|(7) Pyt | P](7) for some i
83. A matching p is individually rational if no student prefers being unmatched to her assign-
ment.
A mechanism ¢ is individually rational if ¢| P] is individually rational for all P € P".

84. A matching p is non-wasteful if no student prefers a school with one or more empty seats

to her assignment. That is, i is non-wasteful if, whenever ¢ prefers s to her assignment
p(@) [~ (s)] = gs.
A mechanism ¢ is non-wasteful if | P] is non-wasteful for all P € P".

85. We say that student ¢ desires school s at g if s P;14(2).
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A matching . eliminates justified envy if no student ¢ prefers the assignment of another

student j while at the same time having higher priority at school (7).

A mechanism ¢ eliminates justified envy if | P| eliminates justified envy forall P € P™.

86. A mechanism ¢ is strategy-proof if no student can benefit from misreporting, i.e., truth-

telling is a weakly dominant strategy for all students under the mechanism ¢. Formally,

p[Pi, Pi|(i) Rip[ P/, P-i](i), foralli, P/, P.

87. A mechanism ¢ is non-bossy if forany P, 7 € I and P/,

p|P(1) = [P}, P-i](i) implies o[ P] = [P/, P_j].

Non-bossiness ensures that students can not be bossy, that is, change the matching for

others, by reporting different preferences, without changing their own.
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88. The Boston mechanism.!

1 For each school a priority ordering is exogenously determined. (In case of Boston, pri-
orities depend on home address, whether the student has a sibling already attending a

school, and a lottery number to break ties.)
2 Each student submits a preference ranking of the schools.
3 The final phase is the student assignment based on preferences and priorities:

Step 1: In Step 1 only the top choices of the students are considered. For each school,
consider the students who have listed it as their top choice and assign seats of the
school to these students one at a time following their priority order until either there

are no seats left or there is no student left who has listed it as her top choice.

Step k: Consider the remaining students. In Step £ only the £th choices of these stu-
dents are considered. For each school still with available seats, consider the students

who have listed it as their kth choice and assign the remaining seats to these students

I'This name came from the fact that it was in use for school choice in Boston Public Schools before it
was replaced by the student-proposing DA.
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one at a time following their priority order until either there are no seats left or there

is no student left who has listed it as her kth choice.

End The algorithm terminates when no more students are assigned. At each step, every

assignment is final.

89. The Boston mechanism assigns as many students as possible to their first choices based on
their submitted preferences; next, as many students as possible to their second choices; and

so on. The major drawback of this widely used mechanism is its lack of strategy-proofness.

90. Theorem: For any given (P, > ), DA produces a matching that is stable at (P, > ), which

is also at least as good for every student as any other stable matching at (P, > ).
91. Theorem: Given fixed priorities >, DA is strategy-proof (for students).

92. Theorem (Theorem 3in Alcaldeand Barbera (1994)): DA is the unique stable and strategy-

proof mechanism in school choice problem.

93. The major drawback of DA is its lack of efficiency.
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94. Remark: DA is strategy-proof and stable, but not efficient. Are there mechanisms that
improve the efficiency of students without sacrificing the other two properties?
« Stability will be lost for sure, since DA produces the student-optimal stable matching.
« Strategy-proofness will also be lost, due to the following impossibility result.
95. Theorem (Proposition 1 in Kesten (2010), Theorem 1 in Abdulkadiroglu et al. (2009),

Proposition 1in Erdil (2014)): If ¢ is a strategy-proof and non-wasteful mechanism, then

there is no strategy-proof mechanism that Pareto dominates (.

96. Definition (Definition 1 in Ergin (2002)): Given a priority structure > and quota profile
g,acycdeisa,b € S,1, j, k € I such that the following are satisfied:

(C) Cycle condition: ¢ >, 7 >4 k > 4.

(S) Scarcity condition: There exist disjoint sets of students I, I, C I \ {1, 7, k} such
that |1,| = q, — 1,
i"el b.

Il = qy— 1,7 =, jforeveryi € I, andi"” > i for every
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A priority structure > (or (>, q)) is acyclic if there exists no cycle.

97. Consider the school choice problem (I, S, ¢, P, =) in Example 93, where I = {1, j, k},
S =1{a,b},q, = q = 1,and

Q .
S QI

QT =

The matching produced by DA is

ik
'u_a(Z)b'

A mutually beneficial agreement between ¢ and k& would be to get schools a and b respec-

tively by exercising their priority rights, and then to make an exchange so that finally ¢ gets
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band k gets a.

However the final matching would violate the priority of j for a, contradicting the alloca-

tion on the basis of specified priorities.

Here the priority structure is not acyclic, since 7 may block a potential matching between

¢ and k without affecting his own position, that is

V0] ok >yt

98. Theorem (Theorem I in Ergin (2002)): Given (I, J, >, q), the following are equivalent:

(i) > isacyclic.
(ii) DA™ is Pareto efficient.
(iii) DA™ is group strategy-proof.
99. Example: Consider the school choice problem (I, S, q, P, =),where I = {i, j, k},S =
{51,852}, 45, = ¢5, = 1,and

36



The matching produced by DA is

and the procedure is
Step| 1 2 3 |End
51 ] ) % ] Xa v v
59 1 X, k k k
Ok i g

Table 4
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100. In Example 99, when the DA algorithm is applied to this problem, student j causes student

101.

k to be rejected from school s1 and starts a chain of rejections that ends back at school s,
forming a full cycle and causing student 7 himself to be rejected. There such a cycle has

resulted in loss of efficiency

By applying to school s, student j “interrupts” a desirable settlement between students
¢ and k without affecting her own placement and artificially introduces inefhiciency into
the outcome. The key idea behind the mechanism produced by Kesten (2010) is based
on preventing students such as student j of this example from interrupting settlements

among other students.

Coming back to Example 99, suppose student j consents to give up her priority at school
s1, i.e., if she is okay with accepting the the unfairness caused by matching & to s1. Thus,
school s1 isto be removed from student j's preferences without affecting the relative rank-

ing of the other schools in her preferences.

Note that, when we rerun DA, replacing the preferences of student 7 with her new pref-

erences, there is no change in the placement of student j. But, because the previously
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mentioned cycle now disappears, students ¢ and k& each move one position up in their
preferences. Moreover, the new matching is now Pareto-efficient. To be more detailed,

the preference profiles become

1 ] k S1 59
S9 S1 1k
S1 S9 ] 1

k
Table 5

The matching produced by DA is

and the procedure is

102. Definition: Given a problem to which DA is applied, let 7 be a student who is tentatively
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Step | 1 | End
S1 k
S9 )
0 151 J

Table 6

LD R

placed at a school s at some Step ¢ and rejected from it at some later Step ¢'. If there is at
least one other student who is rejected from school s after Step ¢—1 and before Step ¢/, that
is, rejected ata Step [ € {t,t + 1,...,t'~1}, then we call student 7 an interrupter for

school s and the pair (¢, s) an interrupting pair of Step ¢’.

103. Lemma: If the outcome of DA is inefhicient for a problem, then there exists one interrupt-
ing pair in DA. However, the converse is not necessarily true, i.e., an interrupting pair does

not always result in efhiciency loss.

104. Efficiency-adjusted deferred acceptance mechanism (EADAM):

Round 0: Run DA for (P, > ).
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Round & > 1:
(1) Find the last step of DA in Round & — 1 in which a consenting interrupter is rejected
from the school for which she is an interrupter.

(2) Identify all interrupting pairs of that step each of which contains a consenting inter-

rupter.

(3) For each identified interrupting pair (%, s), remove school s from the preferences of
student ¢ without changing the relative order of the remaining schools. Do not make

any changes in the preferences of the remaining students.

(4) Rerun DA with the new preference profile.

End: If there are no interrupting pairs, then stop.

When we say student  is an interrupter of Round ¢, this means that student 7 is identified

as an interrupter during Round ¢ 4- 1 in DA that was run at the end of Round .

105. Theorem (Theorem 1 in Kesten (2010)): The EADAM Pareto dominates the DA as well

as any fair mechanism. If no student consents, the two mechanisms are equivalent. If all
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students consent, then the EADAM outcome is Pareto-efficient. In the EADAM outcome
all nonconsenting students’ priorities are respected; however, there may be consenting

students whose priorities for some schools are violated with their permission.

106. In a school choice problem (1, S, g, P, =) with a given matching p, for each school s,
let Dy be the highest > ;-priority students among those who desire s (i.e., who prefer s to

their assignments under ).

107. Definition: A stable improvement cycle consists of distinct students 21, %9, . . . , &, = g
(n > 2)suchthatforeach?/ =0,1,...,n — 1,
(1) 2, is matched to some school under ;
(2) i¢ desires ju(i¢11);and
3) i € Dy

Z'€+1)'
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108. Given a stable improvement cycle, define a new matching p’ by:

p(iesr), ity =ip.

Note that the matching p" continues to be stable and it Pareto dominates .

109. Theorem (Theorem 1 in Erdil and Ergin (2008)): Fix = and P2, and let 1+ be a stable match-
ing. If 14 is Pareto dominated by another stable matching v, then itadmits a stable improve-

ment cycle.
110. Stable improvement cycles algorithm:

Step 0: Run DA algorithm and obtain a temporary matching y.°.
Stepk > 1:

(1) Find a stable improvement cycle for 1*~1: for schools s and ¢, let s — ¢ if some

student7 € D is matched to s under p*~1.
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(2) If there are any cycles, select one. For each s — ¢ in this cycle, select a student

i € Dy with u*~1(i) = s. Carry out this stable improvement cycle to obtain z*.

End: The algorithm stops when there is no cycle.
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