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Chapter 1
Introduction

Contents
1.1 Timeline of the main evolution of game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Nobel prize laureates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Potential Nobel prize winners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Rational behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Common knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Game theory is a bag of analytical tools designed to help us understand the phenomena that we observewhen decision-
makers interact. It is concerned with general analysis of strategic interaction among individuals.

1.1 Timeline of the main evolution of game theory

1.1 Reference: A Chronology of Game Theory by Paul Walker.

1.2 In 1838, the book Researches into the Mathematical Principles of theTheory of Wealth by Antoine Augustin Cournot
(安托万·奥古斯丁·库尔诺).

In Chapter 7 of the book, “On the competition of producers”, Cournot discussed the special case of duopoly and
utilises a solution concept that is a restricted version of the Nash equilibrium.

1.3 In 1913, Zermelo’s theorem by Ernst Zermelo (恩斯特·策梅洛).
� Ernst Zermelo, Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in Proceedings of the Fifth

International Congress of Mathematicians, volume II (E. W. Hobson and A. E. H. Love, eds.), 501–504, Cambridge,
Cambridge University Press, 1913.

1

http://www.econ.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm
http://en.wikipedia.org/wiki/Augustin_Cournot
http://en.wikipedia.org/wiki/Zermelo%27s_theorem_%28game_theory%29
http://en.wikipedia.org/wiki/Ernst_Zermelo
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Figure 1.1: Ernst Zermelo.

This theorem is the first theorem of game theory asserts that in any finite two-person game of perfect information
in which the players move alternatingly and in which chance does not affect the decision making process, if the
game can not end in a draw, then one of the two players must have a winning strategy. More formally, every finite
extensive-form game exhibiting full information has aNash equilibrium that is discoverable by backward induction.
If every payoff is unique, for every player, this backward induction solution is unique.

When applied to chess, Zermelo’s theorem states “either white can force a win, or black can force a win, or both
sides can force at least a draw.”

For more details of Zermelo’s theorem, see Zermelo and the early history of game theory by Ulrich Schwalbe and
Paul Walker.

1.4 In 1928, Zur Theorie der Gesellschaftsspiele (团队游戏之理论) by John von Neumann (约翰·冯·诺伊曼).
� John von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100 (1928), 295–320.

Figure 1.2: John von Neumann.

John vonNeumann proved theminimax theorem in this paper. It states that every two-person zero-sum game with
finitely many pure strategies for each player is determined, i.e. when mixed strategies are admitted, this variety of
game has precisely one individually rational payoff vector. This paper also introduced the extensive form of a game.

1.5 In 1944, the book Theory of Games and Economic Behavior (博弈论与经济行为) by John von Neumann (约翰·

http://www.math.harvard.edu/~elkies/FS23j.03/zermelo.pdf
http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/John_von_Neumann
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冯·诺伊曼) and Oskar Morgenstern.

Figure 1.3: 60th anniversary edition (2004) of the book Theory of Games and Economic Behavior.

This book is considered the groundbreaking text that created the interdisciplinary research field of game theory.
As well as expounding two-person zero sum theory this book is the seminal work in areas of game theory such as
the notion of a cooperative game, with transferable utility, its coalitional form and its von Neumann-Morgenstern
stable sets. It was also the account of axiomatic utility theory given here that led to its wide spread adoption within
economics.

1.6 In 1950, Melvin Dresher and Merrill Flood carry out, at the Rand Corporation, the experiment which intro-
duced the game now known as the prisoner’s dilemma. The famous story associated with this game is due to
Albert W. Tucker (阿尔伯特·塔克). Howard Raiffa independently conducted, unpublished, experiments with
the prisoner’s dilemma.

1.7 In 1950, Nash’s equilibrium points by John Forbes Nash, Jr. (约翰·福布斯·纳什).
� John Nash, Equilibrium points in N -person games, Proceedings of the National Academy of Sciences of the United

States of America 36 (1950), 48-–49.� John Nash, Non-cooperative games, Annals of Mathematics 54 (1951), 286–295.

Figure 1.4: John Forbes Nash, Jr.

Nash earned a doctorate in 1950 with a 28-page dissertation on non-cooperative games. The thesis, which was

http://en.wikipedia.org/wiki/Oskar_Morgenstern
http://en.wikipedia.org/wiki/RAND_Corporation
http://en.wikipedia.org/wiki/Albert_W._Tucker
http://en.wikipedia.org/wiki/John_Forbes_Nash,_Jr.
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written under the supervision of doctoral advisor Albert W. Tucker, contained the definition and properties of
what would later be called the “Nash equilibrium”. It’s a crucial concept in non-cooperative games, and won Nash
the Nobel prize in economics in 1994.

In an equilibrium no player can profitably deviate, given the other players’ equilibrium behavior.

Example: Prisoner’s dilemma. There is unique Nash equilibrium: (Confess, Confess).

Don’t confess Confess
Don’t confess 3, 3 0, 4

Confess 4, 0 1, 1

Figure 1.5: Prisoner’s dilemma.

Figure 1.6: Theatrical release poster of the movie “A beautiful mind (美丽心灵)”.

1.8 In 1950, Nash bargaining solution by John Forbes Nash, Jr. (约翰·福布斯·纳什).
� John Nash, The bargaining problem, Econometrica 18 (1950), 155–-162.� John Nash, Two person cooperative games, Econometrica 21 (1953), 128–140.

TheNash bargaining game is a simple two-player game used tomodel bargaining interactions. JohnNash proposed
that a solution should satisfy certain axioms (Invariant to affine transformations, Pareto optimality, Independence
of irrelevant alternatives, Symmetry).

John Nash also gave a equivalent characterization for this solution. Let u and v be the utility functions of players 1
and 2, respectively. In theNash bargaining solution, the players will seek tomaximize

(
u(x)−u(d)

)
·
(
v(y)−v(d)

)
,

where u(d) and v(d), are the status quo utilities (i.e. the utility obtained if one decides not to bargain with the other
player).

Further reading:

• John Nash’s Contribution to Economics, Roger B. Myerson, Games and Economic Behavior 14 (1996), 287–
295.

1.9 1950–1953, Harold W. Kuhn provided the formulation of extensive games which is currently used, and also some
basic theorems pertaining to this class of games.

� Harold W. Kuhn, Extensive Games, Proceedings of the National Academy of Sciences of the United States of America
36 (1950), 570–576.

http://en.wikipedia.org/wiki/Albert_W._Tucker
http://www.imdb.com/title/tt0268978/
http://en.wikipedia.org/wiki/Bargaining_problem#Nash_bargaining_solution
http://en.wikipedia.org/wiki/John_Forbes_Nash,_Jr.
http://www.sciencedirect.com/science/article/pii/S0899825696900536
http://en.wikipedia.org/wiki/Harold_W._Kuhn
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� Harold W. Kuhn, Extensive Games and the Problem of Information, in Contributions to the Theory of Games, vol-
ume II (Annals of Mathematics Studies, 28) (H. W. Kuhn and A. W. Tucker, eds.), 193–216, Princeton: Princeton
University Press, 1953.

Extensive games allow the modeler to specify the exact order in which players have to make their decisions and to
formulate the assumptions about the information possessed by the players in all stages of the game.

1.10 In 1953, Shapley value by Lloyd Stowell Shapley (劳埃德·斯托韦尔·沙普利).
� Lloyd Shapley, A value for n-person games, in Contributions to the Theory of Games, volume II (Annals of Mathe-

matics Studies, 28) (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematical Studies 28, 307–317, Princeton
University Press, 1953.

Figure 1.7: Lloyd Stowell Shapley.

Shapley value is a solution concept in cooperative game theory. To each cooperative game Shapley value assigns a
unique distribution (among the players) of a total surplus generated by the coalition of all players.

Shapley also showed that the Shapley value is uniquely determined by a collection of desirable properties or axioms.

Further reading:

• 罗斯是沙普利的果实，巫和懋，《南方周末》，2012年 10月 19日。

• 我的导师获诺贝尔奖，姚顺添。

1.11 In 1953, stochastic game by Lloyd Stowell Shapley (劳埃德·斯托韦尔·沙普利).
� Lloyd Shapley, Stochastic games, Proceedings of the National Academy of Sciences of the United States of America 39

(1953), 1095–1100.

Stochastic game is a dynamic game with probabilistic transitions played by one or more players. The game is played
in a sequence of stages. At the beginning of each stage the game is in some state. The players select actions and
each player receives a payoff that depends on the current state and the chosen actions. The game then moves to
a new random state whose distribution depends on the previous state and the actions chosen by the players. The
procedure is repeated at the new state and play continues for a finite or infinite number of stages. The total payoff
to a player is often taken to be the discounted sum of the stage payoffs or the limit inferior of the averages of the
stage payoffs.

Shapley showed that for the strictly competitive case, with future payoff discounted at a fixed rate, such games are
determined and that they have optimal strategies that depend only on the game being played, not on the history or
even on the date, i.e., the strategies are stationary.

http://en.wikipedia.org/wiki/Shapley_value
http://en.wikipedia.org/wiki/Lloyd_Shapley
http://www.infzm.com/content/82035
http://en.wikipedia.org/wiki/Stochastic_game
http://en.wikipedia.org/wiki/Lloyd_Shapley
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1.12 In 1960, mechanism design by Leonid Hurwicz (里奥尼德·赫维茨).
� LeonidHurwicz, Optimality and informational efficiency in resource allocation processes, inMathematicalMethods

in the Social Sciences (Arrow, Karlin and Suppes eds.), Stanford University Press, 1960.

Figure 1.8: Leonid Hurwicz.

Θ X

M, g

θ f(θ)

ξ(M, g, θ)

Figure 1.9: The Stanley Reiter diagram.

The Stanley Reiter diagram above illustrates a game of mechanism design. The upper-left space Θ depicts the type
space and the upper-right space X the space of outcomes. The social choice function f(θ) maps a type profile to
an outcome. In games of mechanism design, agents send messagesM in a game environment g. The equilibrium
in the game ξ(M, g, θ) can be designed to implement some social choice function f(θ).

A communication system in which participants send messages to each other and/or to a “message center”, and
where a pre-specified rule assigns an outcome (such as an allocation of goods and services) for every collection of
received messages.

Several Chinese articles about Leonid Hurwicz by Quoqiang Tian:

• 田国强谈导师 2007年诺贝尔经济学奖获得者赫维茨教授，2007年 10月 16日。

• 田国强眼中的赫维茨教授：关心中国、关注游戏规则，《金融界网》，2007年 10月 16日。

• 田国强评论赫维茨教授研究成果和学术地位，《金融界网》，2007年 10月 16日。

• 田国强：回忆恩师赫维茨，《南方周末》，2007年 10月 18日。

• 媒体聚焦诺奖之赫维茨，《第一财经日报》，《上海证券报》，2007年 10月 17日。

• 田国强：赫维茨走了，但是他所开创的时代远未逝去，《财经网》，2008年 7月 4日。

http://en.wikipedia.org/wiki/Mechanism_design
http://en.wikipedia.org/wiki/Leonid_Hurwicz
http://en.wikipedia.org/wiki/Stanley_Reiter
http://econweb.tamu.edu/tian/hurwicz1.doc
http://econweb.tamu.edu/tian/hurwicz2.doc
http://econweb.tamu.edu/tian/hurwicz3.doc
http://econweb.tamu.edu/tian/hurwicz5.doc
http://econweb.tamu.edu/tian/hurwicz6.doc
http://econweb.tamu.edu/tian/hurwicz-caijing.mht
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1.13 In 1961, Vickrey auction by William Vickrey（威廉·维克里）.
� William Vickrey, Counterspeculation, auctions, and competitive sealed tenders, The Journal of Finance 16 (1961),

8–37.

Figure 1.10: William Vickrey.

A Vickrey auction is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other
people in the auction. The highest bidder wins but the price paid is the second-highest bid. The auction was first
described academically by William Vickrey in 1961 though it had been used by stamp collectors since 1893. This
type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value.

AVickrey–Clarke–Groves (VCG) auction is a generalization of aVickrey auction formultiple items, which is named
after William Vickrey, Edward H. Clarke, and Theodore Groves for their papers that successively generalized the
idea.

1.14 In 1962, deferred-acceptance algorithm by David Gale and Lloyd Stowell Shapley (劳埃德·斯托韦尔·沙普利).
� David Gale and Lloyd Shapley, College admissions and the stability of marriage, The American Mathematical

Monthly 69 (1962), 9–15.

Figure 1.11: David Gale.

Gale and Shapley asked whether it is possible to match m women with m men so that there is no pair consisting
of a woman and a man who prefer each other to the partners with whom they are currently matched. They proved
not only non-emptiness but also provided an algorithm for finding a point in it.

http://en.wikipedia.org/wiki/William_Vickrey
http://en.wikipedia.org/wiki/David_Gale
http://en.wikipedia.org/wiki/Lloyd_Shapley
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Example: 3 students S = {1, 2, 3}, 2 colleges C = {a, b}. Students’ preferences: P1 : b, a, ∅; P2 : a, ∅; P3 : a, b, ∅.
Colleges’ preferences and quotas Pa : 1, 2, 3, qa = 1; Pb : 3, 1, 2, qb = 1. Outcome:

day 1 day 2 day 3
a 2, �A3 2 1, �A2

b 1 �A1, 3 3

∅ 3 1 2

1.15 In 1965, subgame perfect equilibrium by Reinhard Selten (赖因哈德·泽尔腾).
� Reinhard Selten, Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit, Zeitschrift für die

Gesamte Staatswissenschaft 121 (1965), 301–24 and 667–89.

Figure 1.12: Reinhard Selten.

Nash equilibria that rely on non-credible threats or promises can be eliminated by the requirement of subgame
perfection.

Example:

RL

1

R′

1, 2

L′

3, 1

2

R′

0, 0

L′

2, 1

2

L′L′ L′R′ R′L′ R′R′

L 3, 1 3, 1 1, 2 1, 2
R 2, 1 0, 0 2, 1 0, 0

Figure 1.13

(L,RR′) is a Nash equilibrium but not a subgame perfect equilibrium.

1.16 In 1967, Bayesian games (games with incomplete information) by John Charles Harsanyi (约翰·查理斯·海萨
尼).

http://en.wikipedia.org/wiki/Subgame_perfect_equilibrium
http://en.wikipedia.org/wiki/Reinhard_Selten
http://en.wikipedia.org/wiki/Bayesian_game
http://en.wikipedia.org/wiki/John_Harsanyi
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� John Charles Harsanyi, Games with incomplete information played by “Bayesian” players, Management Science 14
(1967–68) 159–182, 320–334, and 486–502, Parts I–III.

Figure 1.14: John Charles Harsanyi.

In game theory, a Bayesian game is one in which information about characteristics of the other players (i.e. payoffs)
is incomplete. Following John C. Harsanyi’s framework, a Bayesian game can be modelled by introducing Nature
as a player in a game. Nature assigns a random variable to each player which could take values of types for each
player and associating probabilities or a probability density function with those types (in the course of the game,
nature randomly chooses a type for each player according to the probability distribution across each player’s type
space).

Harsanyi’s approach tomodelling a Bayesian game in such away allows games of incomplete information to become
games of imperfect information (in which the history of the game is not available to all players). The type of a player
determines that player’s payoff function and the probability associated with the type is the probability that the player
for whom the type is specified is that type. In a Bayesian game, the incompleteness of information means that at
least one player is unsure of the type (and so the payoff function) of another player.

Such games are called Bayesian because of the probabilistic analysis inherent in the game. Players have initial beliefs
about the type of each player (where a belief is a probability distribution over the possible types for a player) and
can update their beliefs according to Bayes’ rule as play takes place in the game, i.e. the belief a player holds about
another player’s type might change on the basis of the actions they have played.

1.17 In 1967, rent-seeking by Gordon Tullock (戈登·图洛克).
� Gordon Tullock, The welfare costs of tariffs, monopolies, and theft, Western Economic Journal 5:3 (1967) 224–232.

http://en.wikipedia.org/wiki/Bayes%27_Rule
http://en.wikipedia.org/wiki/Rent-seeking
http://en.wikipedia.org/wiki/Gordon_Tullock
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Figure 1.15: Gordon Tullock.

Rent-seeking is spending wealth on political lobbying to increase one’s share of existing wealth without creating
wealth. The effects of rent-seeking are reduced economic efficiency through poor allocation of resources, reduced
wealth creation, lost government revenue, increased income inequality, and national decline.

1.18 In 1972, incentive compatibility by Leonid Hurwicz (里奥尼德·赫维茨).
� Leonid Hurwicz, On informationally decentralized systems, in Decision and Organization (Radner and McGuire

eds.), North-Holland, Amsterdam, 1972.

Inmechanism design, a process is incentive compatible if all of the participants fare best when they truthfully reveal
any private information asked for by the mechanism.

1.19 In 1972, the journal International Journal of GameTheory was founded by Oskar Morgenstern.

1.20 In 1970s, revelation principle by ParthaDasgupta, AllanGibbard, PeterHammond,M.Harris, Bengt R.Holmström,
Eric Stark Maskin (埃里克·马斯金), Roger Bruce Myerson (罗杰·梅尔森), Robert W. Rosenthal, R. Townsend,
etc.

� Allan Gibbard, Manipulation of voting schemes: a general result, Econometrica 41 (1973), 587–602.� Partha Dasgupta, Peter Hammond and Eric Maskin, The implementation of social choice rules: some general re-
sults on incentive compatibility, Review of Economic Studies 46 (1979), 181–216.� M. Harris and R. Townsend, Resource allocation under asymmetric information, Econometrica 49 (1981), 33–64.� Bengt R. Holmström, On incentives and control in organizations, Ph.D. dissertation, Stanford University, 1977.� Roger Myerson, Incentive compatibility and the bargaining problem, Econometrica 47 (1979), 61–73.� Roger Myerson, Optimal coordination mechanisms in generalized principal agent problems, Journal of Mathemat-
ical Economics 11 (1982), 67–81.� Roger Myerson, Multistage games with communication, Econometrica 54 (1986), 323–358.� Robert W. Rosenthal, Arbitration of two-party disputes under uncertainty, Review of Economic Studies 45 (1978),
595–604.

http://en.wikipedia.org/wiki/Incentive_compatibility
http://en.wikipedia.org/wiki/Leonid_Hurwicz
http://www.springer.com/economics/economic+theory/journal/182
http://en.wikipedia.org/wiki/Revelation_principle
http://en.wikipedia.org/wiki/Partha_Dasgupta
http://en.wikipedia.org/wiki/Allan_Gibbard
http://www2.warwick.ac.uk/fac/soc/economics/staff/academic/hammond
http://en.wikipedia.org/wiki/Bengt_R._Holmstr%C3%B6m
http://en.wikipedia.org/wiki/Eric_Maskin
http://en.wikipedia.org/wiki/Roger_Myerson
http://en.wikipedia.org/wiki/Robert_W._Rosenthal
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(a) Eric S. Maskin. (b) Roger B. Myerson. (c) Bengt Holmström.

Figure 1.16

The revelation principle is an insight that greatly simplifies the analysis of mechanism design problems. In force of
this principle, the researcher, when searching for the best possible mechanism to solve a given allocation problem,
can restrict attention to a small subclass of mechanisms, so-called direct mechanisms. While direct mechanisms
are not intended as descriptions of real-world institutions, their mathematical structure makes them relatively easy
to analyze. Optimization over the set of all direct mechanisms for a given allocation problem is a well-defined
mathematical task, and once an optimal direct mechanism has been found, the researcher can “translate back” that
mechanism to a more realistic mechanism. By this seemingly roundabout method, researchers have been able to
solve problems of institutional design that would otherwise have been effectively intractable. The first version of
the revelation principle was formulated by Gibbard (1973). Several researchers independently extended it to the
general notion of BayesianNash equilibrium (Dasgupta, Hammond andMaskin, 1979, Harris and Townsend, 1981,
Holmstrom, 1977, Myerson, 1979, Rosenthal, 1978). Roger Myerson (1979, 1982, 1986) developed the principle in
its greatest generality and pioneered its application to important areas such as regulation and auction theory.

1.21 In 1970s, implementation theory by Eric Stark Maskin (埃里克·马斯金), etc.
� Eric Maskin, Nash equilibrium and welfare optimality. Paper presented at the summer workshop of the Economet-

ric Society in Paris, June 1977. Published 1999 in the Review of Economic Studies 66, 23–38.

The revelation principle is extremely useful. However, it does not address the issue of multiple equilibria. That
is, although an optimal outcome may be achieved in one equilibrium, other, sub-optimal, equilibria may also ex-
ist. There is, then, the danger that the participants might end up playing such a sub-optimal equilibrium. Can a
mechanism be designed so that all its equilibria are optimal? The first general solution to this problem was given
by Eric Maskin (1977). The resulting theory, known as implementation theory, is a key part of modern mechanism
design.

1.22 In 1974, correlated equilibrium by Robert John Aumann (罗伯特·约翰·奥曼).
� Robert John Aumann, Subjectivity and correlation in randomized strategies, Journal of Mathematical Economics 1

(1974), 67–96.

http://en.wikipedia.org/wiki/Implementation_theory
http://en.wikipedia.org/wiki/Eric_Maskin
http://en.wikipedia.org/wiki/Correlated_equilibrium
http://en.wikipedia.org/wiki/Robert_Aumann
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Figure 1.17: Robert John Aumann.

Correlated equilibrium generalizes the notion of mixed-strategy Nash equilibrium to allow correlated information.

Example: In the following game, there are three Nash equilibria. The two pure-strategy Nash equilibria are (T,R)
and (B,L). There is also a mixed-strategy equilibrium ( 23 ◦ T + 1

3 ◦B, 23 ◦ L+ 1
3 ◦R).

Player 1

Player 2
L R

T 6, 6 2, 7
B 7, 2 0, 0

L R
T p(y) = 1

3 p(z) = 1
3

B p(x) = 1
3 0

Figure 1.18

Now consider a third party (or some natural event) that draws one of three cards labeled: (T,L), (B,L) and (T,R),
with the same probability, i.e. probability 1

3 for each card. After drawing the card the third party informs the players
of the strategy assigned to them on the card (but not the strategy assigned to their opponent).

Suppose player 1 is assigned B, he would not want to deviate supposing the other player played their assigned
strategy since he will get 7 (the highest payoff possible).

Suppose player 1 is assigned T . Then player 2 will playLwith probability 1
2 andRwith probability 1

2 . The expected
utility ofB is 0 · 1

2 + 7 · 1
2 = 3.5 and the expected utility of T is 2 · 1

2 + 6 · 1
2 = 4. So, player 1 would prefer to T .

Since neither player has an incentive to deviate, this is a correlated equilibrium. Interestingly, the expected payoff
for this equilibrium is 7 · 1

3 +2 · 1
3 +6 · 1

3 = 5 which is higher than the expected payoff of the mixed-strategy Nash
equilibrium.

1.23 In 1975, trembling hand perfect equilibrium by Reinhard Selten (赖因哈德·泽尔腾).
� Reinhard Selten, A reexamination of the perfectness concept for equilibrium points in extensive games, Interna-

tional Journal of GameTheory 4 (1975), 25–55.

1.24 In 1976, common knowledge and “agreeing to disagree is impossible” by Robert John Aumann (罗伯特·约翰·
奥曼).

� Robert John Aumann, Agreeing to disagree, Annals of Statistics 4 (1976), 1236–1239.

Within the framework of partitional information structures, Aumann demonstrates the impossibility of agreeing
to disagree: For any posteriors with a common prior, if the agents’ posteriors for an event E are different (= they
disagree), then the agents can not have common knowledge (= agreeing), of these posteriors.

http://en.wikipedia.org/wiki/Trembling_hand_perfect_equilibrium
http://en.wikipedia.org/wiki/Reinhard_Selten
http://en.wikipedia.org/wiki/Robert_Aumann
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An event is common knowledge among a set of agents if all know it and all know that they all know it and so
on ad infinitum. Although the idea first appeared in the work of the philosopher D. K. Lewis in the late 1960s it
was not until its formalisation in Aumann’s paper that game theorists and economists came to fully appreciate its
importance.

1.25 In 1982, Rubinstein bargaining game by Ariel Rubinstein (阿里埃勒·鲁宾斯坦).
� Ariel Rubinstein, Perfect equilibrium in a bargaining model, Econometrica 50 (1982), 97–110.

Figure 1.19: Ariel Rubinstein.

A Rubinstein bargaining game refers to a class of bargaining games that feature alternating offers through an infinite
time horizon. Rubinstein considered a non-cooperative approach to bargaining. He considered an alternating-offer
game were offers are made sequentially until one is accepted. There is no bound on the number of offers that can be
made but there is a cost to delay for each player. Rubinstein showed that the subgame perfect equilibrium is unique
when each player’s cost of time is given by some discount factor.

x1

1

RA

x1
1, x

1
2

2

x2

2

RA

x2
1, x

2
2

1

Figure 1.20: A Rubinstein bargaining game.

One story for Ariel Rubinstein:

• Sorin, Rapped, economicprincipals.com, March 9, 2003.

http://en.wikipedia.org/wiki/Ariel_Rubinstein
http://www.economicprincipals.com/issues/2003.03.09/55.html
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• A letter to the officers of the Game Theory Society, Ariel Rubinstein, December 5, 2002.

1.26 In 1982, sequential equilibrium by David M. Kreps and Robert B. Wilson.
� David M. Kreps and Robert B. Wilson, Sequential equilibria, Econometrica 50 (1982), 863–894.

(a) David M. Kreps. (b) Robert B. Wilson.

Figure 1.21

1.27 In 1984, rationalizability by B. Douglas Bernheim and D. G. Pearce.
� B. Douglas Bernheim, Rationalizable strategic behavior, Econometrica 52 (1984), 1007–1028.� D. G. Pearce, Rationalizable strategic behavior and the problem of perfection, Econometrica 52 (1984), 1029–1050.

1.28 In 1985, construction of universal type spaces by Jean-François Mertens and Shmuel Zamir.
� Jean-François Mertens and Shmuel Zamir, Formulation of Bayesian analysis for games with incomplete informa-

tion, International Journal of Games Theory 14 (1985), 1–29.

Figure 1.22: Jean-François Mertens.

For a Bayesian game the question arises as to whether or not it is possible to construct a situation for which there is
no sets of types large enough to contain all the private information that players are supposed to have. J.-F. Mertens
and S. Zamir show that it is not possible to do so.

1.29 In 1989, the journal Games and Economic Behavior was founded.

http://arielrubinstein.tau.ac.il/GTS.html
http://en.wikipedia.org/wiki/Sequential_equilibrium
http://en.wikipedia.org/wiki/David_M._Kreps
http://en.wikipedia.org/wiki/Robert_B._Wilson
http://www.stanford.edu/~bernheim/
http://en.wikipedia.org/wiki/Jean-Fran%C3%A7ois_Mertens
http://www.ma.huji.ac.il/~zamir/
http://www.journals.elsevier.com/games-and-economic-behavior/
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1.30 In 1989, electronic mail game by Ariel Rubinstein (阿里埃勒·鲁宾斯坦).
� Ariel Rubinstein, The electronic mail game: a game with almost common knowledge, American Economic Review

79 (1989), 385–391.

A B
A M,M 1,−L
B −L, 1 0, 0

Ga (probability 1− p)

A B
A 0, 0 1,−L
B −L, 1 M,M

Gb (probability p)

Figure 1.23: The parameters satisfy L > M > 1 and p < 1
2 .

If they choose the same action but it is the “wrong” one they get 0. If they fail to coordinate, then the player who
played B gets −L, where L > M . Thus, it is dangerous for a player to play B unless he is confident enough that
his partner is going to playB as well.

Case 1: The true game is known initially only to player 1, but not to player 2. we can model this situation as a
Bayesian game that has a unique Bayesian Nash equilibrium, in which both players always choose A.

Case 2: The game is common knowledge between two players, then it has a Nash equilibrium in which each player
chooses A in state a andB in state b.

Case 3:

• The true game is known initially only to player 1, but not to player 2.

• Player 1 can communicate with player 2 via computers if the game isGb. There is a small probability ϵ > 0 that
any givenmessage does not arrive at its intended destination, however. (If a computer receives a message then
it automatically sends a confirmation; this is so not only for the original message but also for the confirmation,
the confirmation of the confirmation, and so on)

• If a message does not arrive then the communication stops.

• At the end of communication, each player’s screen displays the number of messages that his machine has sent.

• This game has a unique Bayesian Nash equilibrium in which both players choose A.

Rubinstein’s electronic mail game tells that players’ strategic behavior under “almost common knowledge” may be
very different from that under common knowledge. Even if both players know that the game isGb and the noise ϵ is
arbitrarily small, the players act as if they had no information and playA, as they do in the absence of an electronic
mail system.

1.31 In 1991, perfect Bayesian equilibrium by Drew Fudenberg (朱·弗登博格) and Jean Tirole (让·梯若尔).
� Drew Fudenberg and Jean Tirole, Perfect Bayesian equilibrium and sequential equilibrium, Journal of Economic

Theory 53 (1991), 236–260.

http://en.wikipedia.org/wiki/Ariel_Rubinstein
http://en.wikipedia.org/wiki/Bayesian_game#Perfect_Bayesian_equilibrium
http://fudenberg.fas.harvard.edu/
http://en.wikipedia.org/wiki/Jean_Tirole
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Figure 1.24: Jean Tirole.

Further reading:

• 梯若尔：中国不应重演别国失误，人民网，2005年。

• 专访诺奖得主梯若尔，财新《新世纪》，2014年。

1.32 In 1999, Game Theory Society was founded.

1.2 Nobel prize laureates

1.33 In 1994, John C. Harsanyi (University of California at Berkeley), John F. Nash Jr. (Princeton University) and Rein-
hard Selten (University of Bonn) were awarded the Nobel Prize, “for their pioneering analysis of equilibria in the
theory of non-cooperative games.”

(a) John C. Harsanyi (b) John F. Nash Jr. (c) Reinhard Selten

Figure 1.25

1.34 In 1996, James Alexander Mirrlees (University of Cambridge) and William Spencer Vickrey (Columbia University)
were awarded the Nobel Prize, “for their fundamental contributions to the economic theory of incentives under
asymmetric information.”

http://www.dapenti.com/blog/readforwx.asp?name=xilei&id=94087
http://weekly.caixin.com/2014-12-12/100762308.html
http://www.gametheorysociety.org/
http://en.wikipedia.org/wiki/John_Harsanyi
http://en.wikipedia.org/wiki/John_Forbes_Nash,_Jr.
http://en.wikipedia.org/wiki/Reinhard_Selten
http://en.wikipedia.org/wiki/Reinhard_Selten
http://en.wikipedia.org/wiki/James_Mirrlees
http://en.wikipedia.org/wiki/William_Vickrey
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(a) James Alexander Mirrlees (b) William Spencer Vickrey

Figure 1.26

1.35 In 2005, Robert J. Aumann (Hebrew University of Jerusalem, Stony Brook University) and Thomas C. Schelling
(University of Maryland) were awarded the Nobel Prize, “for having enhanced our understanding of conflict and
cooperation through game-theory analysis.”

(a) Robert J. Aumann (b) Thomas C. Schelling

Figure 1.27

1.36 In 2007, Leonid Hurwicz (Minnesota University), Eric S. Maskin (Harvard University, Princeton University) and
Roger B. Myerson (Northwestern University, Chicago University) were awarded the Nobel Prize, “for having laid
the foundations of mechanism design theory.”

http://en.wikipedia.org/wiki/Robert_Aumann
http://en.wikipedia.org/wiki/Thomas_Schelling
http://en.wikipedia.org/wiki/Leonid_Hurwicz
http://en.wikipedia.org/wiki/Eric_Maskin
http://en.wikipedia.org/wiki/Roger_Myerson
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(a) Leonid Hurwicz (b) Eric S. Maskin (c) Roger B. Myerson

Figure 1.28

1.37 In 2012, Alvin E. Roth (Harvard University, Stanford University) and Lloyd S. Shapley (University of California at
Los Angeles) were awarded the Nobel Prize, “for the theory of stable allocations and the practice of market design.”

(a) Alvin E. Roth (b) Lloyd S. Shapley

Figure 1.29

1.38 In 2014, Jean Tirole (Toulouse 1 Capitole University) was awarded theNobel Prize, “for his analysis ofmarket power
and regulation.”

http://en.wikipedia.org/wiki/Alvin_E._Roth
http://en.wikipedia.org/wiki/Lloyd_Shapley
http://en.wikipedia.org/wiki/Jean_Tirole
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Figure 1.30: Jean Tirole.

1.3 Potential Nobel prize winners

(a) Oliver Hart (Harvard) (b) Bengt Holmström (MIT) (c) David Kreps (Stanford)

Figure 1.31
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(a) Paul Milgrom (Stanford) (b) Ariel Rubinstein (Tel Aviv, NYU) (c) Robert Wilson (Stanford)

Figure 1.32

1.4 Rational behavior

1.39 The basic assumptions that underlie game theory are that decision-makers pursue well-defined exogenous objec-
tives (they are rational) and take into account their knowledge or expectations of other decision-makers’ behavior
(they are reason strategically).

1.40 A model of rational choice:

• A: set of actions, with typical element a;

• Ω: set of states, with typical element ω;

• C : set of outcomes;

• g: outcome function g : A× Ω → C ;

• u: utility function u : C → R.

1.41 A decision-maker is rational if the decision-maker chooses an action a∗ ∈ A that maximizes the expected value of
u(g(a, ω)), with respect to some probability distribution µ, i.e., a∗ solves

max
a∈A

Eµ[u(g(a, ·))].

1.5 Common knowledge

1.42 E is common knowledge to players 1 and 2 if

• 1 knows E and 2 knows E;

• 1 knows that 2 knows E and 2 knows that 1 knows E;

• 1 knows that 2 knows that 1 knows E and 2 knows that 1 knows that 2 knows E;

• 1 knows that 2 knows that 1 knows that 2 knows E and 2 knows that 1 knows that 2 knows that 1 knows E;

• and so on, and so on.
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1.43 For example, a handshake is common knowledge between the two persons involved. When I shake hand with you,
I know you know I know you know … that we shake hand. Neither person can convince the other that she does
not know that they shake hand. So, perhaps it is not entirely random that we sometimes use a handshake to signal
an agreement or a deal.

1.44 莊子與惠子游於濠梁之上。

莊子曰： 鯈魚出游從容，是魚之樂也。

惠子曰： 子非魚，安知魚之樂？

莊子曰： 子非我，安知我不知魚之樂？

惠子曰： 我非子，固不知子矣；子固非魚也，子之不知魚之樂，全矣！

莊子·外篇·秋水

1.45 There are four kinds of men:

(1) He who knows not and knows not he knows not: he is a fool—shun him;

(2) He who knows not and knows he knows not: he is simple—teach him;

(3) He who knows and knows not he knows: he is asleep—wake him;

(4) He who knows and knows he knows: he is wise—follow him.

Arabian Proverb
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Chapter 2
Strategic games with complete information
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2.6 Existence of a Nash equilibrium: games with discontinuous payoff functions . . . . . . . . . . . . . 44

2.1 Strategic games

2.1 A strategic game is a model of interactive decision-making in which each decision-maker chooses his plan of action
once and for all, and these choices are made simultaneously.

2.2 Definition: A strategic game, denoted by ⟨N, (Ai), (≿i)⟩, consists of�

• a finite setN of players

• for each player i ∈ N a non-empty set Ai of strategies

• for each player i ∈ N a preference relation≿i on A = ×j∈NAj .

2.3 If the set Ai of every player i is finite, then the game is finite.

2.4 Definition: A strategy for a player is a complete plan of actions. It specifies a feasible action for the player in every�

contingency in which the player might be called on to act.

2.5 In a simultaneous-move game, the set of strategies is the same as the set of feasible actions.

2.6 In a dynamic game, the set of strategies may be different from the set of feasible actions.

23
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RL

1

R′

1, 2

L′

3, 1

2

R′

0, 0

L′

2, 1

2

Figure 2.1: Strategies and actions.

In this game, player 2 has 2 actions, L′ andR′, but 4 strategies, L′L′, L′R′,R′L′ andR′R′.

2.7 The model places no restrictions on the set of strategies available to a player, which may be a huge set containing
complicated plans that cover a variety of contingencies. The preference relation or utility function may not be
continuous.

2.8 We often assume that ≿i can be represented by a payoff function ui : A → R. In such a case we denote the game
by ⟨N, (Ai), (ui)⟩.

2.9 We may model a game in which the consequence of a profile is affected by an exogenous random variable; a profile
a ∈ A induces a lottery g(a, ·) on outcomes. In this case, a preference relation≿i over A can defined as: a ≿i b if
and only if g(b, ·) is at least as good as g(a, ·), e.g., E[ui(g(a, ·))] ≥ E[ui(g(b, ·))].

2.10 A finite strategic game in which there are two players can be described conveniently in a payoff table.

2.11 When referring to the strategies/actions of the players in a strategic game as “simultaneous” we do not necessarily
mean that these strategies/actions are taken at the same point in time.

2.12 A common interpretation of a strategic game is that it is amodel of an event that occurs only once; each player knows
the details of the game and the fact that all the players are “rational”, and the players choose their strategies/actions
simultaneously and independently.

2.2 Nash equilibrium

2.13 Definition: A Nash equilibrium of a strategic game ⟨N, (Ai), (≿i)⟩ is a profile a∗ ∈ A with the property that for�

every player i ∈ N we have
(a∗−i, a

∗
i ) ≿i (a

∗
−i, ai) for all ai ∈ Ai.

2.14 Interpretation: In an equilibrium no player can profitably deviate, given the other players’ equilibrium behavior.

2.15 Once a player deviates, other playersmaywant to deviate as well. But the definition does not require that a deviation
be free from subsequent deviations.

2.16 A Nash equilibrium needs not to be Pareto optimal, for example, prisoners’ dilemma. More generally, Nash equi-
librium does not rule out the possibility that a subset of players can deviate jointly in a way that makes every player
in the subset better off.

2.17 The Nash equilibrium implicitly assumes that players know that each player is to play the equilibrium strategy.
Given this knowledge, no player wants to deviate. So, there is a sort of circularity in this concept—the players
behave in the way because they are supposed to behave in this way.
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2.18 The Nash equilibrium can be justified in several ways:

• The players reach a self-enforcing agreement to play this way through pregame communication. Example:
you may agree with a friend to meet at a particular restaurant for dinner.

• A steady-state convention evolved from some dynamic learning/evolutionary process. Example: we usually
takes nodding your head to mean yes and shaking your head means no.

• In coordination games, certain equilibrium just “stands out” as a focal point.

Player 1

Player 2
Mozart Mahler

Mozart 2, 2 0, 0
Mahler 0, 0 1, 1

Figure 2.2

2.19 Define the correspondenceBi : A−i ↠ Ai as follows:

Bi(a−i) = {ai ∈ Ai | (a−i, ai) ≿i (a−i, a
′
i) for all a′i ∈ Ai}.

The set-valued functionBi is called the best-response correspondence of player i.

Define the correspondenceB : A↠ A as follows:

B(a) = ×i∈NBi(a−i).

2.20 Proposition: a∗ is a Nash equilibrium if and only if a∗ ∈ B(a∗).

2.21 This alternative formulation of the definition points us to a method of finding Nash equilibria: first calculate the
best-response correspondence of each player, then find a profile a∗ for which a∗i ∈ Bi(a

∗
−i) for all i ∈ N .

2.3 Examples

2.22 Example [OR Example 15.3]: Battle of the sexes.

Mary and Peter are deciding on an evening’s entertainment, attending either the opera or a prize fight. Both of them
would rather spend the evening together than apart, but Peter would rather they be together at the prize fight while
Mary would rather they be together at the opera.

Mary

Peter
Opera Fight

Opera 2, 1 0, 0
Fight 0, 0 1, 2

Figure 2.3: Battle of the sexes.

Answer. Two Nash equilibria: (Opera, Opera) and (Fight, Fight).

2.23 Example [OR Example 16.1]: A two-person coordination game.

A coordination game has the property that players have a common interest in coordinating their actions. That is,
two people wish to go out together, but in this case they agree on the more desirable concert.
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Player 1

Player 2
Mozart Mahler

Mozart 2, 2 0, 0
Mahler 0, 0 1, 1

Figure 2.4: A coordination game.

Answer. Two Nash equilibria: (Mozart, Mozart) and (Mahler, Mahler).

2.24 Example [OR Example 16.2]: Prisoner’s dilemma.

Two suspects in a crime are put into separate cells. If they both confess, each will be sentenced to three years in
prison. If only one of them confesses, he will be freed and used as a witness against the other, who will receive a
sentence of four years. If neither confesses, they will both be convicted of a minor offense and spend one year in
prison.

Don’t Confess Confess
Don’t Confess 3, 3 0, 4

Confess 4, 0 1, 1

Figure 2.5: Prisoner’s dilemma.

Answer. This is a game in which there are gains from cooperation—the best outcome for the players is that neither
confesses—but each player has an incentive to be a “free rider”. Whatever one player does, the other prefers Confess
to Don’t Confess, so that the game has a unique Nash equilibrium (Confess, Confess).

2.25 Example [OR Example 16.3]: Hawk-Dove.

Two animals are fighting over some prey. Each can behave like a dove or like a hawk. The best outcome for each
animal is that in which it acts like a hawk while the other acts like a dove; the worst outcome is that in which both
animals act like hawks. Each animal prefers to be hawkish if its opponent is dovish and dovish if its opponent is
hawkish.

Dove Hawk
Dove 3, 3 1, 4
Hawk 4, 1 0, 0

Figure 2.6: Hawk-Dove.

Answer. Two Nash equilibria: (Dove, Hawk) and (Hawk, Dove).

2.26 Example [OR Example 17.1]: Matching pennies.

Each of two people chooses either Head or Tail. If the choices differ, person 1 pays person 2 a dollar; if they are the
same, person 2 pays person 1 a dollar. Each person cares only about the amount of money that he receives.
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Head Tail
Head 1,−1 −1, 1
Tail −1, 1 1,−1

Figure 2.7: Matching pennies.

Answer. No Nash equilibrium.

2.27 Example: An old lady is looking for help crossing the street. Only one person is needed to help her; more are okay
but no better than one. You and I are the two people in the vicinity who can help, each has to choose simultaneously
whether to do so. Each of us will get pleasure worth of 3 from her success (no matter who helps her). But each one
who goes to help will bear a cost of 1, this being the value of our time taken up in helping. Set this up as a game.
Write the payoff table, and find all Nash equilibria.

Answer. We can formulate this game as follows:

• Two players: You (Player 1) and I (Player 2);

• Each player has 2 strategies: “Help” and “Not Help”.

• Payoffs:

Player 1

Player 2
Help Not help

Help 2, 2 2, 3
Not help 3, 2 0, 0

Figure 2.8

There are two Nash equilibria: (Help, Not help) and (Not help, Help).

2.28 Example: A game with three players.

There are three computer companies, each of which can choose to make large (L) or small (S) computers. The
choice of company 1 is denoted by S1 or L1, and similarly, the choices of companies 2 and 3 are denoted Si or Li

of i = 2 or 3. The following table shows the profit each company would receive according to the choices which the
three companies could make. Find all the Nash equilibria of the game.

S2S3 S2L3 L2S3 L2L3

S1 −10,−15, 20 0,−10, 60 0, 10, 10 20, 5, 15
L1 5,−5, 0 −5, 35, 15 −5, 0, 15 −20, 10, 10

Figure 2.9: A game with three players.

Answer. Unique Nash equilibrium: (S1, L2, L3).

2.29 Example: Two firms may compete for a given market of total value, V , by investing a certain amount of effort into
the project through advertising, securing outlets, etc. Each firm may allocate a certain amount for this purpose. If
firm 1 allocates x ≥ 0 and firm 2 allocates y ≥ 0, then the proportion of the market that firm 1 corners is x

x+y . The
firms have different difficulties in allocating these resources. The cost per unit allocation to firm i is ci, i = 1, 2.
Thus the profits to the two firms are

π1(x, y) = V · x

x+ y
− c1x,
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π2(x, y) = V · y

x+ y
− c2y.

If both x and y are zero, the payoffs to both are V
2 .

Find the equilibrium allocations, and the equilibrium profits to the two firms, as functions of V , c1 and c2.

Answer. It is natural to assume V , c1 and c2 are positive.

(1) Given player 2’s strategy y = 0, there is no best response for player 1: The payoff of player 1 is as follows

π1(x, 0) =

V − c1x, if x > 0;

V
2 , if x = 0.

Player 1 will try to choose x ̸= 0 as close as possible to 0:

• We may choose x small enough, such that V
2 < V − c1x, so x = 0 can not be a best response;

• For any x > 0, we will have V − c1x < V − c1
x
2 , so x can not be a best response.

Hence, the strategy profiles (x, 0) and (0, y) are not Nash equilibria. Therefore, we will assume that x, y > 0.

(2) Given player 2’s strategy y > 0, player 1’s best response x∗(y) should satisfy ∂π1

∂x (x) = 0 and ∂2π1

∂x2 (x) ≤ 0,
which implies

V y

(x∗(y) + y)2
− c1 = 0.

That is
y

c1
=

(x∗(y) + y)2

V
. (2.1)

Similarly, given player 1’s strategy x > 0, we will get that player 2’s best response y∗(x) satisfies

x

c2
=

(x+ y∗(x))2

V
. (2.2)

(3) Let (x∗, y∗) be a Nash equilibrium, that is, x∗ and y∗ are best responses of each other, and hence (x∗, y∗)
should satisfy Equations (2.1) and (2.2). From Equations (2.1) and (2.2), we will have

y∗

c1
=

(x∗ + y∗)2

V
=
x∗

c2
.

Substitute this equation into Equations (2.1) and (2.2), we will obtain that

x∗ =
V c2

(c1 + c2)2
, y∗ =

V c1
(c1 + c2)2

.

Notice that x∗, y∗ are both positive, so they could be the solution of this problem. Hence (x∗, y∗) is the only
Nash equilibrium.
Meanwhile, the equilibrium profits to the two firms are

π1(x
∗, y∗) =

V c22
(c1 + c2)2

, π2(x
∗, y∗) =

V c21
(c1 + c2)2

.

2.30 Example [G Exercise 1.3]: Splitting a dollar.
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Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would
like to have, s1 and s2, where 0 ≤ s1, s2 ≤ 1. If s1 + s2 ≤ 1, then the players receive the shares they named; if
s1 + s2 > 1, then both players receive zero. What are Nash equilibria of this game?

Answer. Given any s2 ∈ [0, 1), the best response for player 1 is 1− s2, i.e.,B1(s2) = {1−s2}.

To s2 = 1, the player 1’s best response is the set [0, 1], because player 1’s payoff is 0 no matter what she chooses.

The best-response correspondence for player 1:

B1(s2) =

{1− s2}, if 0 ≤ s2 < 1,

[0, 1], if s2 = 1.

Similarly, we have the best response correspondence for player 2:

B2(s1) =

{1− s1}, if 0 ≤ s1 < 1,

[0, 1], if s1 = 1.

B1(s2)

B2(s1)

O 1

1
(1,1)

s1

s2

Figure 2.10: Best-response correspondences.

From Figure 2.10, we know
{(s1, s2) | s1 + s2 = 1, s1, s2 ≥ 0} ∪ {(1, 1)}

is the set of all Nash equilibria.

2.31 Example: Modified splitting a dollar.

Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would
like to have, s1 and s2, where 0 ≤ s1, s2 ≤ 1. If s21 + s22 ≤ 1/2, then the players receive the shares they named; if
s21 + s22 > 1/2, then both players receive zero. What are the Nash equilibria of this game?

Answer (1st method). Let s = (s1, s2) ∈ [0, 1]× [0, 1]. We distinguish the following three cases:

• if s21 + s22 < 1/2, each player i can do better by choosing si + ϵ. Thus, s is not a Nash equilibrium.

• if s21 + s22 = 1/2, no player can do better by unilaterally changing his/her strategy (because i’s payoff is 0 by
choosing si + ϵ). Thus, s is a Nash equilibrium.
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• if s21 + s22 > 1/2, then we further distinguish two subcases:

– if s2i < 1/2, then j can do better by choosing si + ϵ. Thus, s in this subcase is not a Nash equilibrium.

– if s21 ≥ 1/2 and s22 ≥ 1/2, then no player can do better by unilaterally changing his/her strategy (because
i’s payoff is always 0 if s2j ≥ 1/2). Thus, s in this subcase is a Nash equilibrium.

Answer (2nd method). Given player 2’s strategy s2, the best response of player 1 is:

B1(s2) =


{√

1
2 − s22

}
, if s2 < 1√

2
;

[0, 1], if s2 ≥ 1√
2
.

Note that if s2 < 1√
2
, then player 1 should choose s1 as much as possible, so that s21+s22 ≤ 1

2 . Hence,
{√

1
2 − s22

}
is player 1’s best response to s2. If s2 ≥ 1√

2
, no matter what player 1 chooses, his payoff is always 0. Thus player 1

can choose any value between 0 and 1.

The graph ofB1 is showed in Figure 2.11a, and by symmetry, we can also get the best response of player 2, showed
in Figure 2.11b.

x2 + y2 = 1/2

O 1

1
(1,1)

1√
2

1√
2

s1

s2

(a) Graph of B1

x2 + y2 = 1/2

O 1

1
(1,1)

1√
2

1√
2

s1

s2

(b) Graph of B2

Figure 2.11: Best-response correspondences.

Then the intersection ofB1 andB2 is shown in Figure 2.12.

So the Nash equilibria are{
(s1, s2) | s1 ≥ 0, s2 ≥ 0, s21 + s22 =

1

2

}
∪
([

1√
2
, 1

]
×
[

1√
2
, 1

])
.

Now we change the payoff rule as follows: If s21 + s22 < 1/2, then the players receive the shares they named; if
s21 + s22 ≥ 1/2, then both players receive zero. What are the Nash equilibria of this game?
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x2 + y2 = 1/2

O 1

1
(1,1)

1√
2

1√
2

s1

s2

Figure 2.12: Intersection ofB1 andB2.

Answer. Under the new payoff rules, the best response becomes:

Bi(sj) =

∅, if sj < 1√
2
;

[0, 1], if sj ≥ 1√
2
,

where (i, j) = (1, 2) or (2, 1). Note that when sj < 1√
2
, player i does not have the best response, because he will

try to choose si as close as possible to
√
1/2− s2j , but can not achieve

√
1/2− s2j . The detailed discussion is as

follows:

• For any 1 ≥ si ≥
√
1/2− s2j , player i’s payoff is 0, which is less than the payoff when player i chooses

1
2

√
1/2− s2j ; Hence such a si can not be a best response.

• For any 0 ≤ si <
√
1/2− s2j , player i’s payoff is si, which is less than the payoff when player i chooses

si+
√

1/2−s2j
2 ; Hence such a si can not be a best response.

Therefore, the Nash equilibria are [
1√
2
, 1

]
×
[

1√
2
, 1

]
.

2.32 Example [G Section 1.2.A]: Cournot model of duopoly.

Suppose firms 1 and 2 produce the same product.

Let qi be the quantity of the product produced by firm i, i = 1, 2. Let Q = q1 + q2, the aggregate quantity of the
product.

Let the market clearing price be

P (Q) =

a−Q, ifQ < a,

0, ifQ ≥ a.

Let the cost of producing a unit of the product be c, where we assume 0 < c < a.

How much shall each firm produce?

Answer. We need to translate the problem into a strategic game.
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• The players of the game are the two firms.

• Each firm’s strategy space is Si = [0,∞), i = 1, 2. (Any value of qi is a strategy.)

• The payoff to firm i as a function of the strategies chosen by it and by the other firm, is simply its profit
function:

πi(qi, qj) = P (qi + qj) · qi − c · qi =

qi[a− (qi + qj)− c], if qi + qj < a,

−cqi, if qi + qj ≥ a.

We consider the following two cases:

• When qj ≥ a, πi(qi, qj) = −cqi, and henceBi(qj) = {0}.

• When a > qj > a− c,

– if qi ≥ a− qj(> 0), then πi(qi, qj) = −cqi < 0.

– if a− qj > qi > 0, then πi(qi, qj) = qi[a− (qi + qj)− c] < 0.

– if qi = 0, then πi(qi, qj) = qi[a− (qi + qj)− c] = 0.

Therefore,Bi(qj) = {0}.

In the following we only need to consider the case when a− c ≥ qi, qj ≥ 0:

• if qi + qj ≥ a, then πi(qi, qj) = −cqi < 0.

• if a > qi + qj ≥ a− c, then πi(qi, qj) = qi[a− (qi + qj)− c] ≤ 0.

• ifa−c > qi+qj ≥ 0, thenπi(qi, qj) ≥ 0, and in this caseπi(qi, qj) achieves themaximumwhen qi = a−qj−c
2

which yields a positive payoff for i.

Therefore the best-response correspondence for i is

Bi(qj) =

{a−qj−c
2 }, if qj < a− c,

{0}, if a− c ≤ qj .

B2(q1)

B1(q2)

a

a− c

a−c

2

O a−c

2
a− c a

NE=(a−c

3
, a−c

3
)

q1

q2

Figure 2.13: Best-response correspondences.

From Figure 2.13, there is unique Nash equilibrium (a−c
3 , a−c

3 ).
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2.33 Example [G Exercise 1.6]: Modified Cournot duopoly model.

Consider the Cournot duopolymodel where inverse demand isP (Q) = a−Q but firms have asymmetricmarginal
costs: c1 for firm 1 and c2 for firm 2. What is the Nash equilibrium if 0 < ci < a/2 for each firm? What if
c1 < c2 < a but 2c2 > a+ c1?

Answer. • Set of players: {1, 2};

• For each i, player i’s strategy set: Si = [0,+∞);

• For each i, player i’s payoff function:

πi(qi, qj) = qi(max{a− qi − qj , 0} − ci),

where i ̸= j.

By similar method used in the previous examples, we will obtain player i’s best response:

B∗
i (qj) =

{a−ci−qj
2 }, if qj ≤ a− ci;

{0}, if qj > a− ci.

B∗

2(q1)

B∗

1(q2)

a

a− c1

a−c2

2

O a−c1

2
a− c2 a

NE=(a−2c1+c2

3
, a−2c2+c1

3
)

q1

q2

(a)

B∗

2
(q1)

B∗

1
(q2)

a

a− c1

a−c2

2

O a−c1

2
a− c2 a

NE=(a−c1

2
, 0)

q1

q2

(b)

Figure 2.14: Intersection of best-response correspondences.

(i) If 0 < c1, c2 <
a
2 , then

a−ci
2 < a

2 < a − cj , where i ̸= j. Hence we have the Figure 2.14a, and from it we
will obtain the Nash equilibrium: (a−2c1+c2

3 , a−2c2+c1
3 ).

(ii) If 0 < c1 < c2 < a and 2c2 > a+ c1, then a− c1 > a− c2 >
a−c2

2 > 0 and a−c1
2 > a− c2 > 0. Hence we

have the Figure 2.14b, and from it we will obtain the Nash equilibrium: (a−c1
2 , 0).

2.34 Example [G Exercise 1.4]: Cournot model with many firms.

Suppose there are n firms in the Cournot oligopoly model. Let qi denote the quantity produced by firm i, and let
Q = q1+ · · ·+qn denote the aggregate quantity on themarket. LetP denote themarket-clearing price and assume
that inverse demand is given by P (Q) = a−Q (assumingQ < a, else P = 0). Assume that the total cost of firm i

from producing quantity qi is Ci(qi) = cqi. That is, there are no fixed costs and the marginal cost is constant at c,
where we assume c < a. Following Cournot, suppose that the firms choose their quantities simultaneously. What
is the Nash equilibrium? What happens as n approaches infinity?
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Answer. We assume c > 0.

• Set of players: {1, 2, . . . , n};

• For each i, player i’s strategy set: Si = [0,+∞);

• For each i, player i’s payoff function:

πi(qi, q−i) = qi(max{a− qi − q−i, 0} − c)

=

(a− qi − q−i − c)qi, if qi + q−i < a;

−cqi, if qi + q−i ≥ a,

where q−i =
∑

j ̸=i qj .

In the following, given q−i, we try to find player i’s best response:

(1) When a ≤ q−i, then we have qi + q−i ≥ a, and hence

πi(qi, q−i) = −cqi

< 0, if qi > 0;

= 0, if qi = 0.

Therefore, in this case, the best response for player i is qi = 0.

(2) When a− c ≤ q−i < a, then we have

πi(qi, q−i) =


0, if qi = 0;

(a− qi − q−i − c)qi < 0, if 0 < qi < a− q−i;

−cqi < 0, if qi ≥ a− q−i.

Therefore, in this case, the best response for player i is qi = 0.

(3) When 0 ≤ q−i < a− c, then we have

πi(qi, q−i) =


0, if qi = 0;

(a− qi − q−i − c)qi, if 0 < qi < a− q−i;

−cqi < 0, if qi ≥ a− q−i.

The function (a− qi− q−i− c)qi is concave for qi, because its 2nd derivative is−2 < 0. The local maximum
can be determined by the first order condition (the 1st derivative equals zero) a − q−i − c − 2qi = 0, thus
the best response for player i is a−c−q−i

2 . Note that when player i chooses a−c−q−i

2 , his payoff is positive.

Therefore player i’s best response is

B∗
i (q−i) =

{0}, if a− c ≤ q−i;

{a−c−q−i

2 }, if 0 ≤ q−i < a− c.

Remark: We can not draw graphs to find Nash equilibria, since there are more than 2 players.

Claim: There does not exist a Nash equilibrium in which some players choose 0. We will prove this claim by
contradiction:
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(1) Assume there is a Nash equilibrium (q∗1 , q
∗
2 , . . . , q

∗
n), where

J ≡ {i : q∗i = 0} ≠ ∅.

Let Jc = {1, 2, . . . , n} − J , then for any j ∈ Jc, q∗j =
a−c−q∗−j

2 .

(2) Since for any i ∈ J , q∗i = 0, we will have q∗−i ≥ a− c, which implies
∑

j∈Jc q∗j ≥ a− c.

(3) Since for any i ∈ J , q∗i = 0, we will have

q∗−j =
∑

k∈Jc,k ̸=j

q∗k,

for each j ∈ Jc, and hence

q∗j =
a− c−

∑
k∈Jc,k ̸=j q

∗
k

2
, ∀j ∈ Jc.

Summing this |Jc| equations, we will have

∑
j∈Jc

q∗j =
a− c

2
|Jc| − 1

2
(|Jc| − 1)

∑
j∈Jc

q∗j ,

which implies ∑
j∈Jc

q∗j =
|Jc|

|Jc|+ 1
(a− c) < a− c.

Contradiction.

Assume that (q∗1 , q∗2 , . . . , q∗n) is a Nash equilibrium, then based on the claim above, we will have q∗i =
a−c−q∗−i

2 , for
all i = 1, 2, . . . , n. Hence

q∗i = a− c−Q∗, ∀i = 1, 2, . . . , n,

whereQ∗ =
∑n

i=1 q
∗
i . Summing the n equations above, we obtain

Q∗ =
n

n+ 1
(a− c).

Substituting this into each of the above n equations, we obtain

q∗1 = q∗2 = · · · = q∗n =
a− c

n+ 1
.

As n approaches infinity, the total output Q∗ = n
n+1 (a − c) approaches a − c (perfect-competition output) and

the price a−Q∗ = a+nc
n+1 approaches c (the perfect-competition price).

2.35 Example [G Section 1.2.B]: Bertrand model of duopoly.

Suppose now the two firms produce different products. In this case, we can not use the aggregate quantity to
determine market prices as in Cournot’s model. Thus, instead of using quantities as variables, here we use prices as
variables.

If firms 1 and 2 choose prices p1 and p2, respectively, the quantity that consumers demand from firm i is

qi(pi, pj) = a− pi + bpj
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where b > 0 reflects the extent to which firm i’s product is a substitute for firm j’s product. Here we assume c < a.
How to find the Nash equilibrium?

Answer. The strategy space of firm i consists of all possible prices, thus Si = [0,∞), i = 1, 2.

The profit of firm i is

πi(pi, pj) = qi(pi, pj) · pi − c · qi(pi, pj) = [a− pi + bpj ] · (pi − c).

For given pj , πi(pi, pj) is a concave function in terms of pi, and hence it achieves its maximum at pi = a+bpj+c
2 .

Suppose (p∗1, p∗2) is a Nash equilibrium, then we have

p∗1 =
a+ bp∗2 + c

2
, and p∗2 =

a+ bp∗1 + c

2
.

Thus, p∗1 = p∗2 = a+c
2−b . Note that this problem make sense only if b < 2.

2.36 Example [G Exercise 1.7]: Suppose that the quantity that consumers demand from firm i is

qi(pi, pj) =


a− pi, if pi < pj ,

a−pi

2 , if pi = pj ,

0, if pi > pj ,

that is, all customers buy the product from the firm who offers a lower price. Suppose also that there are no fixed
costs and that marginal costs are constant at c, where c < a and c ≤ q1, q2 ≤ a.

Answer. Given firm j’s price pj , firm i’s payoff function is

πi(pi, pj) =


(a− pi)(pi − c), if pi < pj ,

1
2 (a− pi)(pi − c), if pi = pj ,

0, if pi > pj .

The strategy space is Si = [c, a].

We find three cases from the observation of the payoff curves.

• Case 1: Given pj ≥ a+c
2 . The maximum payoff is reached at pi = a+c

2 . Thus, the best response Bi(pj) =

{a+c
2 }.

• Case 2: Given c < pj ≤ a+c
2 . It is easy to see that

supπpi(pi, pj) = (a− pj)(pj − c).

However, no pi ∈ [c, a] can make πi(pi, pj) = (a−pj)(pj−c). For pi ∈ (c, pj), the function πi(pi, pj) =

(a−pi)(pi−c) is strictly increasing. For pi > pj , πi(pi, pj) = 0. For pi = pj , πi(pi, pj) = 1
2 (a−pi)(pi−c).

Thus, there is no maximizer. This means thatBi(pj) = ∅.

• Case 3: Given pj = c. πi(pi, c) = 0 for any pi. Thus any pi is a maximizer, andBi(c) = [c, a].

The best-response correspondences are sketched below.
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B1(p2)

B2(p1)

a

a+c

2

c

O c a+c

2

a

NE=(c, c)

q1

q2

Figure 2.15

The only intersection of the two correspondences is (c, c). This shows that if the firms choose prices simultaneously,
then the unique Nash equilibrium is that both firms charge the price pi = c.

2.37 Example [OR Exercise 18.2]: First-price auction.

An object is to be assigned to a player in the set {1, . . . , n} in exchange for a payment. Player i’s valuation of the
object is vi, and v1 > v2 > · · · > vn > 0. The mechanism used to assign the object is a (sealed-bid) auction: the
players simultaneously submit bids (non-negative numbers), and the object is given to the player with the lowest
index among those who submit the highest bid, in exchange for a payment.

Formulate a first-price auction as a strategic game and analyze its Nash equilibria. In particular, show that in all
equilibria player 1 obtains the object.

Answer. The strategic game ⟨N, (Ai), (ui)⟩ is: N = {1, . . . , n}, player i’s action set isAi = [0,∞), and his payoff
is

ui(a) =

vi − ai, if ai > aj(when j < i), and ai ≥ aj(when j > i),

0, otherwise.

Let a∗ = (a∗1, a
∗
2, . . . , a

∗
n) be a Nash equilibrium.

(1) Claim: a∗1 ≥ a∗i for i ̸= 1. Suppose that player i ( ̸= 1) submits the highest bid a∗i and a∗i > a∗1. If a∗i > v2,
then player i’s payoff is negative, so he can increase his payoff by bidding 0; if a∗i ≤ v2, then player 1 can
deviate to the bid a∗i and increases his payoff. Hence, we have that a∗1 ≥ a∗i for all i ̸= 1.

(2) Claim: a∗1 ≤ v1. Suppose a∗1 > v1. By claim (1), we have that a∗1 ≥ a∗i for all i ̸= 1, then player 1 will win
and his payoff is negative, while he can increase his payoff by bidding 0.

(3) Claim: a∗1 ≥ v2. Suppose a∗1 < v2. By claim (1), we have that a∗2 < v2, then player 2 can increase his payoff
by bidding 1

2 (a
∗
1 + v2).

(4) Claim: there exists j ∈ {2, 3, . . . , n}, such that a∗j = a∗1. Suppose that for any j ∈ {2, 3, . . . , n}, a∗1 > a∗j ,
then player 1 can choose max2≤j≤n a

∗
j .

Hence, the Nash equilibrium is (a∗1, . . . , a∗n), where a∗1 ∈ [v2, v1], a∗j ≤ a∗1 for all j ̸= 1, and a∗j = a∗1 for some
j ̸= 1.

Moreover, we can have that in all equilibria, player 1 will obtain the object.



2.3. Examples 38

2.38 Example [OR Exercise 18.5]: A war of attrition.

Two players are involved in a dispute over an object. The value of the object to player i is vi > 0. Time is modeled
as a continuous variable that starts at 0 and runs indefinitely. Each player chooses when to concede the object to
the other player; if the first player to concede does so at time t, the other player obtains the object at that time. If
both players concede simultaneously, the object is split equally between them, player i receiving a payoff of vi/2.
Time is valuable: until the first concession each player loses one unit of payoff per unit of time.

Formulate this situation as a strategic game and show that in all Nash equilibria one of the players concedes imme-
diately.

Answer. The strategic game ⟨N, (Ai), (ui)⟩ is: N = {1, 2}, player i’s action set is Ai = [0,∞), and his payoff is

ui(t1, t2) =


−ti, if ti < tj ,

vi/2− ti, if ti = tj ,

vi − tj , if ti > tj ,

where j ∈ {1, 2} \ {i}.

Let t∗ = (t∗1, t
∗
2) be a Nash equilibrium.

(1) Claim: t∗1 ̸= t∗2. Suppose t∗1 = t∗2, then player 1 can obtain the object in its entirely value instead of getting
just half of it by conceding slightly later than t∗1, so it is not a Nash equilibrium.

(2) Claim: If t∗1 < t∗2, then t∗1 = 0 and t∗2 ≥ v1. Suppose 0 < t∗1, then player 1 can increase his payoff to 0 by
deviating to t1 = 0. Suppose 0 = t∗1 < t∗2 < v1, then player 1 can increase his payoff by deviating to a time
slightly after t2.

(3) Claim: If t∗2 < t∗1, then t∗2 = 0 and t∗1 ≥ v2. It is similar with the claim 2.

Hence, (t∗1, t∗2) is a Nash equilibrium if and only if 0 = t∗1 < t∗2 and v1 ≤ t∗2, or 0 = t∗2 < t∗1 and v2 ≤ t∗1.

2.39 Example [G Exercise 1.8]: Hotelling model.

Consider a population of voters uniformly distributed along the ideological spectrum from left (x = 0) to right
(x = 1). Each of the candidates for a single office simultaneously chooses a campaign platform (i.e., a point on
the line between x = 0 and x = 1). The voters observe the candidates’ choices, and then each voter votes for the
candidate whose platform is closest to the voter’s position on the spectrum. If there are two candidates and they
choose platforms x1 = 0.3 and x2 = 0.6, for example, then all voters to the left of x = 0.45 vote for candidate 1,
all those to the right vote for candidate 2, and candidate 2 wins the election with 55 percent of the vote. Suppose
that the candidates care only about being elected—they do not really care about their platforms at all!

Question 1: If there are two candidates, what is the Nash equilibrium.

(Assume that any candidates who choose the same platform equally split the votes cast for that platform, and that
ties among the leading vote-getters are resolved by coin flips.)

Answer (1st method). For player i, the strategy set is Si = [0, 1]. Player i’s payoff function:

πi(si, sj) =


1, if sj < si < 1− sj , or 1− sj < si < sj ;

1
2 , if si = sj , or si = 1− sj ;

0, otherwise.
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Given player j’s strategy sj ̸= 1
2 , from Figures 2.16a and 2.16b, we will see that player i wins only when si is in the

red regions.

0 sj si 1− sj 1 0 1− sj si sj 1

Figure 2.16: Players’ best response.

Therefore, we have player i’s best response:

B∗
i (sj) =


(sj , 1− sj), if sj < 1

2 ;

{ 1
2}, if sj = 1

2 ;

(1− sj , sj), if sj > 1
2 .

From Figure 2.17, there is only one Nash equilibrium ( 12 ,
1
2 ).

O 1

1
(1, 1)

B∗

2
(s1) B∗

2
(s1)

B∗

1
(s2)

B∗

1
(s2)

s1

s2

Figure 2.17: Intersection of the best-response correspondence.

Answer (2nd method). • Claim: Both candidates choose the same platform: if they choose different platforms,
without loss of generality, we may assume s1 < 1

2 < s2, then 1 can do better by choosing 1
2 . (For any other

possible case, it is similar.)

• Claim: Both candidates choose the same platform at 0.5: If both candidates choose the same platform at
x ̸= 0.5, say x > 0.5, then each candidate can do better by choosing x+0.5

2 .

Question 2: If there are three candidates, exhibit a Nash equilibrium.

Answer. ( 13 ,
1
3 ,

2
3 ) is a Nash equilibrium. To see this is a Nash equilibrium,

• Player 3 has no incentive to deviate because he is the winner and obtains the maximal payoff;

• Players 1 and 2 can not do better given the other two players choose 1
3 and 2

3 , respectively.

There are other equilibria.
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Remark: suppose that the candidates care only about the percentage they have, in three-person game, there is no
Nash equilibrium:

• If all candidates choose different platforms, say s1 < s2 < s3, then 1 can do better by choosing s1 + s2−s1
2 .

• If 1 and 2 choose same, but different with 3, say s1 = s2 < s3, then 3 can do better by choosing s3 − s3−s1
2 .

• If all of them choose same, say s1 = s2 = s3 > 0.5, then 1 can do better by choosing s1 − s1−0.5
2 .

2.40 Example [OR Exercise 19.1]: A location game.

Each of n people chooses whether or not to become a political candidate, and if so which position to take. There
is a continuum of citizens, each of whom has a favorite position; the distribution of favorite positions is given by a
density function f on [0, 1] with f(x) > 0 for all x ∈ [0, 1]. A candidate attracts the votes of those citizens whose
favorite positions are closer to his position than to the position of any other candidate; if k candidates choose
the same position then each receives the fraction 1/k of the votes that the position attracts. The winner of the
competition is the candidate who receives the most votes. Each person prefers to be the unique winning candidate
than to tie for first place, prefers to tie for first place than to stay out of the competition, and prefers to stay out of
the competition than to enter and lose.

Formulate this situation as a strategic game, find the set of Nash equilibria when n = 2, and show that there is no
Nash equilibrium when n = 3.

Answer.

2.41 Example [OR Exercise 35.1]: Guessing the average.

Let n(n ≥ 2) people play the following game. Simultaneously, each player i announces a number xi in the set
{1, 2, . . . ,K}. A prize of $1 is split equally between all the people whose number is closest to 2

3 · x1+···+xn

n . Find
all the Nash equilibria.

Incomplete answer. Assume (x1, x2, . . . , xn) is a Nash equilibrium, and x1 is the largest number among them. We
now argue as follows.

• In the equilibrium (x1, x2, . . . , xn), Player 1’s payoff should be positive. Otherwise, he could be better off by
choosing a number which is the closest number to 2

3 of average.

• In the equilibrium (x1, x2, . . . , xn), there is some other, say Player j(j ̸= 1), where xj = x1. Otherwise,
Player 1’s payoff is 0: if xj < x1 for all j ̸= 1, then by computation Player 1 will not win.

• In the equilibrium (x1, x2, . . . , xn), if x1 > 1, then he can increase his payoff by choosing x1 − 1, since by
making this change he becomes the outright winner rather than tying with at least one other player.

The remaining possibility is that x1 = 1: every player uses the strategy in which he announces the number 1.

2.42 Example: Consider the following two-person game.

Player 1

Player 2
L R

U a1, b1 a2, b2
D a3, b3 a4, b4

Figure 2.18

We have the following assumptions.
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(i) Neither strategy weakly dominates the other for any player.

(ii) a1 ̸= a3 and b1 ̸= b2.

(iii) It is known that this game has at least one Nash equilibrium

Prove that the game has two Nash equilibria.

Proof. Without loss of generality, we assume that a1 > a3. Then a2 < a4.

If b1 < b2, then b3 > b4, and hence there is no Nash equilibrium, contradiction. Therefore, b1 > b2 and b3 < b4.
So (U,L) and (D,R) are two Nash equilibria.

2.43 Example: There are 100 people in a society, and two different types of mobile phones available: typeA and typeB.

Each of the 100 people (players in our context) chooses either A or B simultaneously. Let nA denote the number
of people who chooseA and nB denote the number of people who chooseB. Note that nA +nB = 100. For each
player i, his payoff is 6nA if he chooses A, or 4nB if he chooses B. For example, if player i chooses A and total
number of people who chooseB is 50, player i obtains the payoff of 300 (since nA = 50, 6nA = 300). In this case,
each of those who choose A obtains the payoff of 300 and each of those who chooseB obtains the payoff of 200.

Find all the Nash equilibria. If you believe there is no Nash equilibrium, please explain.

Answer. There are two Nash equilibria:

• All players choose A (nA = 100 and nB = 0).

• All players chooseB (nA = 0 and nB = 100).

It is clear that the two strategy profiles above are Nash equilibria. The following shows that there is no other Nash
equilibrium:

• Any strategy profile with 0 < nA < 40 and nB = 100 − nA can not be a Nash equilibrium because any
player who chooses A can deviate and obtain a better payoff since 4(nB + 1) > 6nA.

• Any strategy profile with 40 < nA < 100 and nB = 100 − nA can not be a Nash equilibrium because any
player who choosesB can deviate and obtain a better payoff since 6(nA + 1) > 4nB .

• Any strategy profile with nA = 40 and nB = 60 can not be a Nash because any player can deviate profitably.
If any player who chooses A deviates, he would obtain a better payoff since 4(nB + 1) > 6nA. If any player
who choosesB deviates, he would obtain a better payoff since 6(nA + 1) > 4nB .

2.44 Example: Each individual i = 1, 2, . . . , 100 must choose a number ri ∈ [0, 1]. If an individual chooses a number
that is the most closed to the value θ

∑100
i=1 ri (where θ ∈ [0, 1] is a parameter), then the individual gets payoff 1;

otherwise, the individual gets payoff 0. Formulate this problem as a strategic game, and find all Nash equilibria for
each θ ∈ [0, 1].

2.4 Existence of a Nash equilibrium

2.45 To show that a game has a Nash equilibrium it suffices to show that there is a profile a∗ such that a∗ ∈ B(a∗).
Fixed-point theorems give conditions onB under which there indeed exists a value of a∗ for which a∗ ∈ B(a∗).
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2.46 Kakutani’s fixed-point theorem: Let X be a compact convex subset of Rn and let f : X ↠ X be a set-valued
function for which

• for all x ∈ X the set f(x) is non-empty and convex,

• the graph of f is closed, i.e. f is upper-hemicontinuous.

Then there exists x∗ ∈ X such that x∗ ∈ f(x∗).

f has a closed graph if
Graph(f) = {(x, y) | x ∈ X, y ∈ f(x)}

is closed, i.e., for all sequences {xn} and {yn} such that yn ∈ f(xn) for all n, xn → x, and yn → y, we have
y ∈ f(x).

2.47 Theorem: A strategic game ⟨N, (Ai), (≿i)⟩ has a Nash equilibrium if for all i ∈ N ,�

• Ai is non-empty compact convex subset of Rn,

• ≿i is continuous and quasi-concave on Ai.

≿i is continuous if the graph of≿i, {(a, a′) | a ≿i a
′}, is a closed set with respect to the product topology.

≿i is quasi-concave on Ai if for any a′ ∈ A, the upper level set for a′ {ai ∈ Ai | (a′−i, ai) ≿i a
′} is convex.

upper level set for a′

a′
i

i’s preference

Figure 2.19: A quasi-concave preference.

2.48 Proof. (1) For each i ∈ N and a ∈ A,Bi(a−i) is non-empty, since≿i is continuous and Ai is compact.

(2) For each i ∈ N and a ∈ A,Bi(a−i) is convex, since≿i is quasi-concave on Ai.

Bi(a−i) = ∩a′
i∈Ai

{ai ∈ Ai | (a−i, ai) ≿i (a−i, a
′
i)}.

(3) The graph ofB is closed, since each≿i is continuous.

(4) By Kakutani’s fixed-point theorem,B has a fixed point which is a Nash equilibrium of the strategic game.

2.49 The existence theorem remains valid when Rn is replaced by “a metric space” or “a locally convex Hausdorff topo-
logical vector space”.

2.50 Example [OR Exercise 20.4]: Symmetric games.

Consider a two-person strategic game that satisfies the conditions of Theorem 2.47. Let N = {1, 2} and assume
that the game is symmetric: A1 = A2 and (a1, a2) ≿1 (b1, b2) if and only if (a2, a1) ≿2 (b2, b1) for all a ∈ A

and b ∈ A. Use Kakutani’s fixed-point theorem to prove that there is an action a∗1 ∈ A1 such that (a∗1, a∗1) is a
Nash equilibrium of the game. (Such an equilibrium is called a symmetric equilibrium.) Give an example of a finite
symmetric game that has only asymmetric equilibria.
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Answer. Define the function F : A1 → A1 by F (a1) = B2(a1) (the best response of player 2 to a1). The function
F satisfies the conditions of Theorem 2.46, and hence has a fixed point, say a∗1. The pair of actions (a∗1, a∗1) is a
Nash equilibrium of the game since, given the symmetry, if a∗1 is a best response of player 2 to a∗1 then it is also a
best response of player 1 to a∗1.

It is a symmetric finite game that has no symmetric equilibrium:

Player 1

Player 2
L R

L 3, 3 1, 4
R 4, 1 0, 0

Figure 2.20

Remark: Consider an n-player symmetric game, and suppose we find an asymmetric Nash equilibrium, which
means that not all players use the same strategy. If we find one asymmetric Nash equilibrium, then there are another
n− 1 asymmetric Nash equilibria to be found.

2.5 Strictly competitive games (zero-sum games)

2.51 For an arbitrary strategic game, we can say little about the set of Nash equilibria. However, for strictly competitive
games, we can say something about the qualitative character of the equilibria.

2.52 Definition: A two-person game ⟨{1, 2}, (Ai), (≿i)⟩ is strictly competitive if for any a ∈ A and b ∈ A we have�

a ≿1 b if and only if b ≿2 a.

2.53 Without loss of generality, we may assume that a strictly competitive game can be represented as a two-person
zero-sum game ⟨{1, 2}, (Ai), (ui)⟩ in which payoff functions satisfy u1 + u2 = 0.

2.54 Definition: a∗i ∈ Ai is a maxminimizer for player i if�

min
aj∈Aj

ui(a
∗
i , aj) ≥ min

aj∈Aj

ui(ai, aj) for all ai ∈ Ai.

Player imaxminimizes if he chooses an action that is best for him on the assumption that whatever he does, player
j will choose her action to hurt him as much as possible.

2.55 Lemma: max
aj∈Aj

min
ai∈Ai

uj(ai, aj) = − min
aj∈Aj

max
ai∈Ai

ui(ai, aj).

Proof. max
aj∈Aj

min
ai∈Ai

uj(ai, aj) = − min
aj∈Aj

max
ai∈Ai

−uj(ai, aj) = − min
aj∈Aj

max
ai∈Ai

ui(ai, aj).

2.56 Proposition: a∗ is a Nash equilibrium if and only if for i = 1, 2, a∗i is i’s maxminimizer and�

max
ai∈Ai

min
aj∈Aj

ui(ai, aj) = ui(a
∗) = min

aj∈Aj

max
ai∈Ai

ui(ai, aj).

2.57 Interpretation: a profile is a Nash equilibrium if and only if the action of each player is maxminimizer. This result
provides a link between individual decision-making and the reasoning behind the notion of Nash equilibrium.
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2.58 Proof. “⇒”:

(1) Since a∗ is a Nash equilibrium, ui(a∗) ≥ ui(ai, a
∗
j ) for all ai ∈ Ai. Then ui(a∗) ≥ min

aj

ui(ai, aj) for all

ai ∈ Ai. Hence we have ui(a∗) ≥ max
ai

min
aj

ui(ai, aj).

(2) Since ui + uj = 0, ui(a∗) = −uj(a∗) ≤ −uj(a∗i , aj) = ui(a
∗
i , aj) for all aj ∈ Aj . Then ui(a∗) =

min
aj

ui(a
∗
i , aj). Hence ui(a∗) ≤ max

ai

min
aj

ui(ai, aj).

(3) Thus min
aj

ui(a
∗
i , aj) = ui(a

∗) = max
ai

min
aj

ui(ai, aj) and a∗i is i’s maxminimizer.

(4) By Lemma,
ui(a

∗) = −uj(a∗) = −max
aj

min
ai

uj(ai, aj) = min
aj

max
ai

ui(ai, aj).

“⇐”: Since a∗i is i’s maxminimizer, we have ui(a∗) = minaj
ui(a

∗
i , aj) ≤ ui(a

∗
i , aj) for all aj ∈ Aj . By ui+uj =

0, we have uj(a∗) ≥ uj(a
∗
i , aj) for all aj ∈ Aj . Thus, a∗ is a Nash equilibrium.

2.59 Proposition: The Nash equilibria of a strictly competitive game are interchangeable: if (x, y) and (x′, y′) are equi-
libria then so are (x, y′) and (x′, y).

2.6 Existence of a Nash equilibrium: games with discontinuous payoff functions

2.60 Reference: Philip J. Reny, On the existence of pure and mixed strategy Nash equilibria in discontinuous games,
Econometrica 67 (1999), 1029–1056.

2.61 Consider a strategic gameG = ⟨N, (Ai), (ui)⟩. Say “player i can secure a payoff ūi at a ∈ A” if there exists āi ∈ Ai

such that ui(āi, a′−i) ≥ ūi for all a′−i close enough to a−i.

2.62 The game G is better-reply secure if whenever (a∗, u∗) is in the closure of the graph of its payoff profile function�

and a∗ is not a Nash equilibrium, some player i can secure a payoff strictly above u∗i at a∗.

That is, for every payoff profile limit u∗ resulting from strategies approaching non-equilibrium a∗, some player i
has a strategy yielding a payoff strictly above u∗i even if the others deviate slightly from a∗.

All games with continuous payoff functions are better-reply secure.

2.63 Theorem (Theorem3.1 in Reny (1999)): If eachAi is non-empty, compact, convex subset of ametric space, and each�

ui is quasi-concave onAi, then the gameG possesses at least one Nash equilibrium if in additionG is better-reply
secure.

2.64 Example: Consider a two-person symmetric game: G = ⟨N, (Ai), (ui)⟩, where N = {1, 2}, A1 = A2 = [0, 1],
and for all ai, aj ∈ [0, 1], i, j = 1, 2, and i ̸= j,

ui(ai, aj) =


1, if ai ∈ [ 12 , 1] and aj ∈ [ 12 , 1],

1 + ai, if ai ∈ [0, 12 ) and aj ∈ ( 23 ,
5
6 ),

ai, otherwise.

LetD = [ 12 , 1]× [ 12 , 1]. By definition, it is easy to see that the set of Nash equilibria is
{
x ∈ D | a1, a2 ̸∈ ( 23 ,

5
6 )
}
.

To check the better-reply secure property: let ϵ > 0 be sufficiently small.

If a∗ ̸∈ D, then some a∗i < 1
2 . Thus, i can secure payoff a∗i + ϵ > u∗i = a∗i (if a∗j ̸∈ ( 23 ,

5
6 )) or a∗i + 1 + ϵ > u∗i =

a∗i + 1 (if a∗j ∈ ( 23 ,
5
6 )) by choosing a strategy a∗i + ϵ.
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0 1

2
1

1

2

2

3

5

6

1
(1, 1)

ai

1 + ai

ai

1

ai

aj

Figure 2.21: Payoff function ui(ai, aj).

If a∗ ∈ D, then some a∗i ∈ ( 23 ,
5
6 ) and a∗j ≥ 1

2 . We distinguish two subcases:

• a∗j > 1
2 . As a∗i lies in an open interval ( 23 ,

5
6 ), j can secure payoff 1+aj > 1 by choosing a strategy aj ∈ (0, 12 ).

• a∗j = 1
2 . In this subcase, the limiting vector u∗ depends on how a approaches a∗. We must distinguish two

subsubcases:

– u∗ = (1, 1), j can secure payoff 1 + aj > 1 by choosing a strategy aj ∈ (0, 12 ).

– The limiting payoff vector is u∗ = (a∗i ,
3
2 ) even though the actual payoff vector at a∗ ∈ D is (1, 1). Thus

i can secure payoff a∗i + ϵ > u∗i = a∗i by choosing a strategy a∗i + ϵ, since for any aj that deviates slightly
from 1

2 ,

ui(a
∗
i + ϵ, aj) =

a∗i + ϵ, if aj < 1
2 ,

1, if aj ≥ 1
2 .
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Chapter 4
Bayesian games (strategic games with incomplete
information)
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4.1 Bayes’ rule (Bayes’ theorem)

4.1 Bayes’ rule gives the relationship between the probabilities ofA andB, P (A) and P (B), and the conditional prob-
abilities of A givenB andB given A, P (A | B) and P (B | A). In its most common form, it is:

P (A | B) =
P (A)

P (B)
P (B | A).

4.2 Interpretation:

• P (A), the prior, is the initial degree of belief in A.

• P (A | B), the posterior, is the degree of belief having accounted forB.

4.3 Example: A HIV test usually return a positive or a negative result (or sometimes inconclusive). Among the positive
results, there are true positives and false positives. Among the negative results, there are true negatives and false
negatives.

• True positive: positive test result and have the disease.

• False positive: positive test result and do not have the disease

• True negative: negative test result and do not have the disease.

• False negative: negative test result and have the disease.

49
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Theprobability of havingHIV is usually taken to be the prevalence (population base rate). Currently this prevalence
is around 1/1000.

We also know that the probability of obtaining a positive result given that the person does not have HIV is 0.01,
and the probability of obtaining a negative result given that the person has HIV is 0.05.

Question: A person obtains a positive result, then what is the probability that he has HIV?

Answer. For the purpose of this discussion, + will indicate a positive test, − will indicate a negative test, HIV will
indicate having HIV and ¬HIV will indicate not having HIV.

Prob(+ | HIV) is the probability of obtaining a positive result, given that the person has HIV. This is known as the
sensitivity. It is a measure of how good the test is at identifying individuals with HIV.

Prob(− | ¬HIV) is the probability of obtaining a negative test result if you do not have HIV. It is know as the
specificity. It is a measure of how the test is at identifying people who do not have HIV.

Prob(HIV | +) is the posteriori probability, that is, how likely is it that a given person has HIV after we have taken
into account the base rate and updated it with the available evidence (i.e., result of HIV test).

We have

Prob(HIV | +) =
Prob(+ | HIV)× Prob(HIV)

Prob(+ | HIV)× Prob(HIV) + Prob(+ | ¬HIV)× Prob(¬HIV)

=
0.95× 0.001

0.95× 0.001 + 0.01× 0.999
= 8.68%

4.2 Bayesian games

4.4 We frequently wish to model situations in which some of the parties are not certain of the characteristics of some of
the other parties. The model of a Bayesian game (also called strategic game with incomplete information), which
is closely related to that of a strategic game, is designed for this purpose.

4.5 Example [G Section 3.1.A]: Cournot competition under asymmetric information.

Consider the Cournot duopoly model, except:

• Firm 1’s cost function is c1(q1) = cq1.

• Firm 2’s cost function is

c2(q2) =

cHq2, with probability θ,

cLq2, with probability 1− θ,

where cL < cH are low cost and high cost respectively.

The information is asymmetric: firm 1’s cost function is known by both; however, firm 2’s cost function is only
completely known by itself. Firm 1 knows only the marginal cost of firm 2 to be cH with probability θ and cL with
probability 1− θ.

All of the above is common knowledge. How much shall each firm produce?

Answer. Firm 2 has two payoff functions:

π2(q1, q2; cL) = [a− q1 − q2 − cL]q2,
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π2(q1, q2; cH) = [a− q1 − q2 − cH ]q2.

Firm 1 has only one (expected) payoff function

π1(q1, q2; c) = Eq2 [a− q1 − q2 − c]q1.

The two firms simultaneously choose (q∗1 , q∗2(cH), q∗2(cL)), where

• q∗2(cH) solves max
q2

[a− q∗1 − q2 − cH ]q2,

• q∗2(cL) solves max
q2

[a− q∗1 − q2 − cL]q2,

• Firm 1 should maximize its expected payoff, i.e., q∗1 maximizes

θ[a− q1 − q∗2(cH)− c]q1 + (1− θ)[a− q1 − q∗2(cL)− c]q1.

By first order condition, it is easy to obtain

q∗2(cH) =
a− q∗1 − cH

2
, q∗2(cL) =

a− q∗1 − cL
2

,

q∗1 =
θ[a− q∗2(cH)− c] + (1− θ)[a− q∗2(cL)− c]

2
.

By solving them, we have

q∗1 =
a− 2c+ θcH + (1− θ)cL

3

q∗2(cH) =
a− 2cH + c

3
+

1− θ

6
(cH − cL)

q∗2(cL) =
a− 2cL + c

3
− θ

6
(cH − cL)

4.6 Definition: A Bayesian game, denoted by ⟨N,Ω, (Ai), (Ti), (τi), (pi), (ui)⟩, consists of�

• a finite setN of players

• a set Ω of states

• a set Ai of actions available to player i

• a set Ti of signals (or types)

• a signal function τi : Ω → Ti that specifies the signal τi(ω) observed by i at state ω

• a probability measure pi on Ω (the prior belief of i) for which pi
(
τ−1
i (ti)

)
> 0 for all ti ∈ Ti

• a payoff function ui : A× Ω → R of player i.

A state ω ∈ Ω contains a “complete” description of the payoff function and the beliefs of every player.

If player i receives the signal ti ∈ Ti, then he deduces that the state is in the set τ−1
i (ti); his posterior belief about

the state, denoted by pi(ω | ti) or pi
(
ω | τ−1

i (ti)
)
, is the probability conditional on τ−1

i (ti), i.e.,

pi(ω | ti) = pi
(
ω | τ−1

i (ti)
)
=


pi(ω)

pi(τ−1
i (ti))

, if ω ∈ τ−1
i (ti),

0, otherwise.
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In a Bayesian game, player i’s strategy si is a function from Ti to Ai. A strategy profile can be denoted by

s = (sj)j∈N , or a =
( (
a(j,tj)

)
tj∈Tj

)
j∈N

=
(
a(j,tj)

)
j∈N,tj∈Tj

.

4.7 Belief updating: From prior belief to posterior belief:

True state ω

Prior belief pi
τi−→ signal/type τi(ω)

Updating−−−−−→
τ−1
i

(
τi(ω)

)
Posterior belief pi

(
ω′ | τi(ω)

)
4.8 We can model Cournot competition under asymmetric information as the Bayesian game in which

• N = {1, 2}.

• Ω = T1 × T2 = {(c, cH), (c, cL)}.

• A1 = A2 = [0,∞).

• T1 = {c}, T2 = {cL, cH}.

• τ1(c, ·) = c, τ2(c, cH) = cH , τ2(c, cL) = cL

• i’s prior belief on Ω is: (c, cH) with probability θ, and (c, cL) with probability 1− θ.

• Profit functions.

4.9 Definition: s∗ = (s∗j ) is a Bayesian Nash equilibrium of ⟨N,Ω, (Ai), (Ti), (τi), (pi), (ui)⟩ if for each i ∈ N and�

each ω ∈ Ω,
ũi(s

∗;ω) ≥ ũi
(
si, s

∗
−i;ω

)
for all si : Ti → Ai,

where
ũi(s;ω) =

∑
ω′∈Ω

pi
(
ω′ | τi(ω)

)
· ui
(
s
(
τ(ω′)

)
;ω′).

4.10 Alternative definition: A BayesianNash equilibriumof a Bayesian game ⟨N,Ω, (Ai), (Ti), (τi), (pi), (ui)⟩ is a Nash�

equilibrium of its agent strategic game, denoted by ⟨N̄ , (Ā(i,ti)), (ū(i,ti))⟩, which is defined as follows:

• N̄ = {(i, ti) | i ∈ N, ti ∈ Ti}.

• Ā(i,ti) = Ai, and Ā = ×j∈N,tj∈Tj Ā(j,tj).

• ū(i,ti) : Ā→ R is defined as follows:

ū(i,ti)(ā) =
∑
ω∈Ω

pi(ω | ti) · ui
(
(a(j,τj(ω)));ω

)
,

where ā =
(
a(j,tj)

)
j∈N,tj∈Tj

∈ Ā.

That is, ā∗ ∈ Ā is a Bayesian Nash equilibrium if and only if for each i ∈ N and for each ti ∈ Ti,

ū(i,ti)(ā
∗) ≥ ū(i,ti)

(
a(i,ti), a

∗
−(i,ti)

)
for all a(i,ti) ∈ Ā(i,ti) = Ai.

4.11 Proof of the equivalence. “⇐”: Suppose that s∗ = (s∗j ) is a Bayesian Nash equilibrium. For each j ∈ N and each
tj ∈ Tj , let a∗(j,tj) = s∗j (tj) ∈ Aj . So ā∗ =

(
a∗(j,tj)

)
j∈N,tj∈Tj

∈ Ā is a Bayesian Nash equilibrium. For any

si : Ti → Ai, let a(i,ti) = si(ti) for each ti. Therefore

ũi(s
∗;ω) =

∑
ω′∈Ω

pi(ω
′ | τi(ω)) · ui(s∗(τ(ω′));ω′)
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=
∑
ω′∈Ω

pi(ω
′ | τi(ω)) · ui

(
s∗1(τ1(ω

′)), . . . , s∗i (τi(ω
′)), . . . , s∗n(τn(ω

′));ω′
)

=
∑
ω′∈Ω

pi(ω
′ | τi(ω)) · ui

(
a∗(1,τ1(ω′)), . . . , a

∗
(i,τi(ω′)), . . . , a

∗
(n,τn(ω′));ω

′
)

= ū(i,τi(ω))(ā
∗)

≥ ū(i,τi(ω))

(
a(i,ti), a

∗
−(i,ti)

)
=
∑
ω′∈Ω

pi(ω
′ | τi(ω)) · ui

(
a∗(1,τ1(ω′)), . . . , a(i,τi(ω′)), . . . , a

∗
(n,τn(ω′));ω

′
)

=
∑
ω′∈Ω

pi(ω
′ | τi(ω)) · ui

(
s∗1(τ1(ω

′)), . . . , si(τi(ω
′)), . . . , s∗n(τn(ω

′));ω′
)

= ũi(si, s
∗
−i;ω)

“⇒”: Here we require τi is onto for each i ∈ N in addition. Suppose that ā∗ =
(
a∗(j,tj)

)
is a Bayesian Nash

equilibrium. For each j ∈ N , let s∗j : Tj → Aj be as follows, s∗j (tj) = a∗(j,tj). For any a(i,ti) ∈ Ā(i,ti), let
si : Ti → Ai be as follows, si(ti) = a(i,ti). For any ti, since τi : Ω → Ti is onto, there exists ω, such that
τi(ω) = ti.

ū(i,ti)(ā
∗) =

∑
ω′∈Ω

pi(ω
′ | ti) · ui

(
a∗(1,τ1(ω′)), . . . , a

∗
(i,τi(ω′)), . . . , a

∗
(n,τn(ω′));ω

′
)

=
∑
ω′∈Ω

pi(ω
′ | τi(ω)) · ui

(
s∗1(τ1(ω

′)), . . . , s∗i (τi(ω
′)), . . . , s∗n(τn(ω

′));ω′
)

= ũi(s
∗;ω)

≥ ũi(si, s
∗
−i;ω)

=
∑
ω′∈Ω

pi(ω
′ | τi(ω)) · ui

(
s∗1(τ1(ω

′)), . . . , si(τi(ω
′)), . . . , s∗n(τn(ω

′));ω′
)

=
∑
ω′∈Ω

pi(ω
′ | τi(ω)) · ui

(
a∗(1,τ1(ω′)), . . . , a(i,τi(ω′)), . . . , a

∗
(n,τn(ω′));ω

′
)

= ū(i,ti)

(
a(i,ti), a

∗
−(i,ti)

)

4.12 For applications we often use the following simple version of Bayesian game, denoted by ⟨N, (Ai), (Ti), (ui), (pi)⟩:�

• a setN of players.

• a set Ai of actions available to player i.

• a set Ti of signals/types.

• ui(a1, a2, . . . , an; t1, t2, . . . , tn) is i’s payoff function.

• each player i has a belief pi(· | ti) on T−i conditional on the signal ti he receives.

4.13 A strategy of i is a function si : Ti → Ai.�

s∗ is a Bayesian Nash equilibrium of the Bayesian game if and only if for each i ∈ N , and for each ti ∈ Ti,

ũi(s
∗; ti) ≥ ũi(ai, s

∗
−i; ti) for all ai ∈ Ai,
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where

ũi(s; ti) = Et−i ui(si(ti), s−i(t−i); ti, t−i)

=
∑

t−i∈T−i

pi(t−i | ti) · ui(s1(t1), s2(t2), . . . , sn(tn); ti, t−i).

Moreover, if the players have a common prior p on T , then

pi(t−i | ti) =
p(t−i, ti)

p(ti)
=

p(t−i, ti)∑
t′−i∈T ′

−i
p(t′−i, ti)

.

That is, no player wants to change his strategy, even if the change involves only one action by one type.

4.14 A Bayesian game ⟨N,Ω, (Ai), (Ti), (τi), (pi), (ui)⟩ has a common prior if pi = pj for all i, j ∈ N .�

Alternatively, a posterior belief system
(
p1(· | ·), p2(· | ·), . . . , pn(· | ·)

)
is generated by a common prior if there

exists a probability measure p such that for any i ∈ N , any E ⊆ Ω and any ω ∈ Ω,

p(E) =
∑
ω∈Ω

pi(E | τi(ω)) · p(ω).

Note that there may be multiple common priors.

4.15 Example [JR Exercise 7.20].

(i) Suppose that p is a common prior in a game of incomplete information assigning positive probability to every
joint type vector. Show that if some type of some player assigns positive probability to some type, ti, of another
player i, then all players, regardless of their types, also assign positive probability to type ti of player i.

(ii) Provide a three-player game of incomplete information in which the players’ beliefs can not be generated by
a common prior that assigns positive probability to every joint vector of types.

(iii) Provide a two-player game of incomplete information in which the players’ beliefs can not be generated by
a common prior that assigns positive probability to every joint vector of types and in which each player,
regardless of his type, assigns positive probability to each type of the other player.

4.3 Examples

4.16 Example [G Exercise 3.2]: Cournot competition under asymmetric information.

Consider a Cournot duopoly operating in a market with inverse demand P (q1, q2) = a− q1 − q2, where qi is the
quantity chosen by firm i. Both firms have total costs ci(qi) = cqi, but demand is uncertain: it is high (a = aH)
with probability θ and low (a = aL) with probability 1−θ. (Assume aH > aL > c > 0.) Furthermore, information
is asymmetric: firm 1 knows whether the demand is high or low, but firm 2 does not (however, firm 2 knows the
probability θ). All of this is common knowledge. The two firms simultaneously choose quantities. Let q1H denote
the quantity chosen by firm 1 if it is type H (in other words, if firm 1 knows a = aH ), q1L denote the quantity
chosen by firm 1 if it is type L (in other words, if firm 1 knows a = aL).

The strategy spaces are {q1H | 0 ≤ q1H ≤ aH}, {q1L | 0 ≤ q1L ≤ aL}, and {q2 | 0 ≤ q2 ≤ θaH + (1 − θ)aL}.
Assume 3(aL − c) > (θaH + (1− θ)aL − c) (roughly speaking, aH and aL are not too far from each other).

Find all the Bayesian Nash equilibria of this game.
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Answer. (i) Firm i’s action space is {q | q ≥ 0}.

(ii) Firm 1’s type space T1 = {H,L}; Firm 2 has only one type.

(iii) Strategy space: S1 = {(q1H , q1L) | q1H , q1L ≥ 0}, and S2 = {q2 | q2 ≥ 0}.

(iv) Suppose that ((q∗1H , q∗1L), q∗2) is a Bayesian Nash equilibrium, then by definition we will have:

• If the demand is high, firm 1 will choose q∗1H to maximize its payoff

q1H [aH − c− q∗2 − q1H ],

which is a concave function, and hence

q∗1H =
aH − c− q∗2

2
. (4.1)

• If the demand is low, firm 1 will choose q∗1L to maximize its payoff

q1L[aL − c− q∗2 − q1L],

which is a concave function, and hence

q∗1L =
aL − c− q∗2

2
. (4.2)

• Firm 2 does not know the exact type of the demand, so it will choose q∗2 to maximize its expected payoff

θq2[aH − c− q∗1H − q2] + (1− θ)q2[aL − c− q∗1L − q2],

and hence
q∗2 =

θ(aH − q∗1H) + (1− θ)(aL − q∗1L)− c

2
. (4.3)

Combining Equations (4.1), (4.2) and (4.3), we get

q∗1H =
aH − c

2
− θaH + (1− θ)aL − c

6
,

q∗1L =
aL − c

2
− θaH + (1− θ)aL − c

6
,

q∗2 =
θaH + (1− θ)aL − c

3
.

4.17 Example [G Exercise 3.3]: Consider the following asymmetric-information model of Bertrand duopoly with differ-
entiated products. Demand for firm i is qi(pi, pj) = a− pi + bi · pj . Costs are zero for both firms. The sensitivity
of firm i’s demand to firm j’s price is either high or low. That is, bi is either bH or bL, where bH > bL > 0. For each
firm, bi = bH with probability θ and bi = bL with probability 1 − θ, independent of the realization of bj . Each
firm knows its own bi but not its competitor’s. All of this is common knowledge. What are the action spaces, type
spaces, beliefs, and utility functions in this game? What are the strategy spaces? Assume that θbH +(1−θ)bL < 2.
Find the pure-strategy Bayesian Nash equilibria of this game.

Answer. (i) Firm i’s action space: Ai = [0,∞).

(ii) Firm i’s type space: Ti = {H,L}.
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(iii) Firm i’s beliefs: θH + (1− θ)L.

(iv) Firm i’s strategy space: Si = {(piH , piL) | piH , piL ∈ Ai}.

(v) Firm i’s utility function (for type t):
(
a− pit + bt(θpjH + (1− θ)pjL)

)
pit.

(vi) For type t = H,L, firm i’s maximization problem is

max
pit

πit =
(
a− pit + bt(θpjH + (1− θ)pjL)

)
pit.

By first order condition, a− 2pit + bt(θpjH + (1− θ)pjL) = 0. That is, for i = 1, 2,

piH =
1

2
a+

1

2
bH(θpjH + (1− θ)pjL),

piL =
1

2
a+

1

2
bL(θpjH + (1− θ)pjL).

Let b = θbH + (1− θ)bL. Then, we have

piH =
1

2
a+

1

4
abH +

1

4
bbH(θpiH + (1− θ)piL),

piL =
1

2
a+

1

4
abL +

1

4
bbL(θpiH + (1− θ)piL).

Therefore, for i = 1, 2,

piH =
1
2a(1 +

1
2bH) + 1−θ

8 ab(bH − bL)

1− 1
4b

2
,

piL =
1
2a(1 +

1
2bL)−

θ
8ab(bH − bL)

1− 1
4b

2

4.18 Example [G Exercise 3.4]: Find all the Bayesian Nash equilibria in the following Bayesian game:

• Nature determines whether the payoffs are as in Game 1 or as in Game 2, each game being equally likely.

L R
T 1, 1 0, 0
B 0, 0 0, 0

Game 1

L R
T 0, 0 0, 0
B 0, 0 2, 2

Game 2

• Player 1 learns whether nature has drawn Game 1 or Game 2, but player 2 does not.

• Player 1 chooses either T orB; player 2 simultaneously chooses either L orR.

• Payoffs are given by the game drawn by nature.

Answer. • There are two players: player 1 and player 2;

• Type spaces: T1 = {1, 2}, and T2 = {{1, 2}};

• Believes: player 1’s belief on player 2’s type is 1 on {T,B}, and player 2’s belief on player 1’s types is 1/2 on 1

and 1/2 on 2;

• Action spaces: A1 = {T,B}, and A2 = {L,R};
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• Strategy spaces: S1 = {TT, TB,BT,BB}, and S2 = {L,R}.

Now we will find the best-response correspondence for each player and each associated type: let a1, a2 be player
1’s actions in Game 1 and Game 2, respectively, b player 2’s action.

• If Game 1 is drawn by Nature, then player 1’s best-response correspondence is

a∗1(b) =

{T}, if b = L;

{T,B}, if b = R.

• If Game 2 is drawn by Nature, then player 1’s best-response correspondence is

a∗2(b) =

{T,B}, if b = L;

{B}, if b = R.

• Since player 2 does not know which game is being drawn, he will choose b to maximize his expected payoff.
The following table is player 2’s expected payoff table:

L R
TT 1/2 0
TB 1/2 1
BT 0 0
BB 0 1

Thus we get player 2’s best-response correspondence:

b∗(a1, a2) =



{L}, if a1a2 = TT ;

{R}, if a1a2 = TB;

{L,R}, if a1a2 = BT ;

{R}, if a1a2 = BB.

Therefore, by definition, we will get all the Bayesian Nash equilibria: (TT, L), (TB,R) and (BB,R). The reason
is as follows:

• If player 2 playsL, then player 1 must play T in Game 1 (and player 1 is indifferent between T andB in Game
2). Note that, if player 1 playsB in Game 2, then player 2 must playR.
So, given that player 2 plays L, the only possible Bayesian Nash equilibrium is (TT,L) in this case.

• If player 2 playsR, then player 1must playB in Game 2 (and player 1 is indifferent between T andB in Game
1). Note that,R is player 2’s best response for TB andBB.
So, given that player 2 playsR, there are two Bayesian Nash equilibria: (TB,R) and (BB,R).

4.19 Example: Theworker has an outside opportunity v known by himself. The firm believes that v = 6 and v = 10with
probabilities 2/3 and 1/3 respectively. Awagew = 8 is preset by the union. Thefirmand theworker simultaneously
announce whether to accept or reject the wage. The worker will be employed by the firm if and only if both of them
accept the wage. If the firm accepts the wage, its payoff is 3 if the worker is employed and−1 otherwise. If the firm
rejects the wage, then its payoff is 0 regardless the worker’s action. The worker’s payoff is w if he is employed and v
otherwise. Find all the Bayesian Nash equilibria.
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Answer. Let Game 1 and Game 2 be as follows:

Worker

Firm
A R

A 8, 3 6, 0
R 6,−1 6, 0

Game 1, v = 6

Worker

Firm
A R

A 8, 3 10, 0
R 10,−1 10, 0

Game 2, v = 10

• There are two players: firm and worker;

• Type spaces: Tf = {{1, 2}}, and Tw = {1, 2};

• Believes: work’s belief on firm’s type is 1 on {1, 2}, and firm’s belief on work’s types is 2/3 on 1 and 1/3 on 2;

• Action spaces: Aw = Af = {A,R};

• Strategy spaces: Sf = {A,R} and Sw = {AA,AR,RA,RR}.

Now we will find the best-response correspondence for each player and each associated type: let a1 and a2 be
worker’s actions in Game 1 and Game 2, respectively, b firm’s action.

• If Game 1 is drawn by Nature, then worker’s best-response correspondence is

a∗1(b) =

{A}, if b = A;

{A,R}, if b = R.

• If Game 2 is drawn by Nature, then worker’s best-response correspondence is

a∗2(b) =

{R}, if b = A;

{A,R}, if b = R.

• Since firm does not know which game is being drawn, it will choose b to maximize its expected payoff. The
following table is firm’s expected payoff table:

Worker

Firm
A R

AA 3 0
AR 5/3 0
RA 1/3 0
RR −1 0

Thus we get firm’s best-response correspondence is

b∗(a1, a2) =



{A}, if a1a2 = AA;

{A}, if a1a2 = AR;

{A}, if a1a2 = RA;

{R}, if a1a2 = RR.

Therefore, by definition, wewill get all the BayesianNash equilibria: (AR,A) and (RR,R). The reason is as follows:
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• If firm chooses A, then worker should choose A and R in Game 1 and Game 2, respectively. Note that, if
worker chooses AR, then firm should choose A.
So, given that firm chooses A, the only possible Bayesian Nash equilibrium is (AR,A).

• If firm chooses R, then worker can choose any strategy in each game. Note that, only when worker chooses
RR, R is firm’s best response. So, given that firm chooses R, the only possible Bayesian Nash equilibrium is
(RR,R).

4.20 Example: Consider the following Bayesian game.

• Nature selects Game 1 with probability 1/3, Game 2 with probability 1/3 and Game 3 with probability 1/3.

• Player I learns whether Nature has selected Game 1 or not; player II learns whether Nature has selected Game
2 or not.

• Players I and II simultaneously choose their actions: player I either T orB, and player II either L orR.

• Payoffs are given by the game selected by Nature.

L R
T 0, 0 6,−1
B −1, 6 4, 4

Game 1

L R
T 1, 3 0, 0
B 0, 0 3, 1

Game 2

L R
T 2,−2 −2, 2
B −2, 2 2,−2

Game 3

All of this is common knowledge. Find all the Bayesian Nash equilibria.

Answer. • There are 2 players: player I and player II;

• Type spaces: T1 = {{1}, {2, 3}}, and T2 = {{1, 3}, {2}};

• Believes: player I’s belief on player II’s types: 2/3 on {1, 3} and 1/3 on {2}; player II’s belief on player I’s types:
1/3 on {1} and 2/3 on {2, 3};

• Action spaces: A1 = {T,B}, and A2 = {L,R};

• Strategy spaces: S1 = {TT, TB,BT,BB}, and S2 = {LL,LR,RL,RR}.

Nowwewill find the best-response correspondence for each player and each associated type: let a1 and a2 be player
I’s actions in Game 1, and Games 2 and 3, respectively, b1 and b2 player II’s actions in Games 1 and 3, and Game 2,
respectively.

• If Game 1 is drawn, then player I’s best-response correspondence is

a∗1(b1) =

T, if b1 = L;

T, if b1 = R.

• If Game 1 is not drawn, then by considering the expected payoff, player I’s best-response correspondence is

a∗2(b1b2) =



T, if b1b2 = LL;

T, if b1b2 = LR;

B, if b1b2 = RL;

B, if b1b2 = RR.
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• If Game 2 is drawn, then player II’s best-response correspondence is

b∗2(a2) =

L, if a2 = T ;

R, if a2 = B.

• If Game 2 is not drawn, then by considering the expected payoff, player II’s best-response correspondence is

b∗1(a1a2) =



R, if a1a2 = TT ;

L, if a1a2 = TB;

R, if a1a2 = BT ;

L, if a1a2 = BB.

Therefore, by definition, we will get all the Bayesian Nash equilibria: (TT,RL) and (TB,LR). The reason is as
follows:

• If player I chooses TT , then player II should chooseRL; on the other hand, TT is a not best response forRL.
So there is no Bayesian Nash equilibrium when player I chooses TT .

• If player I chooses TB, then player II should choose LR; on the other hand, TB is a not best response for
LR. So there is no Bayesian Nash equilibrium when player I chooses TB.

• If player I chooses BT , then player II should choose RL; on the other hand, BT is not a best response for
RL. So there is no Bayesian Nash equilibrium when player I choosesBT .

• If player I chooses BB, then player II should choose LR; on the other hand, BB is not a best response for
LR. So there is no Bayesian Nash equilibrium when player I choosesBB.

4.21 Example: Two individuals are involved in a synergistic relationship. If both individuals devote more effort to the
relationship, they are both better off. Specifically, an effort level is a non-negative number, and player 1’s payoff
function is e1(1+ e2 − e1), where ei is player i’s effort level. For player 2 the cost of effort is either the same as that
of player 1, and hence her payoff function is given by e2(1 + e1 − e2), or effort is very costly for her in which case
her payoff function is given by e2(1 + e1 − 2e2). Player 2 knows player 1’s payoff function and whether the cost of
effort is high for herself or not. Player 1, however, is uncertain about player 2’s cost of effort. He believes that the
cost of effort is low with probability p, and high with probability 1− p, where 0 < p < 1. Find the Bayesian Nash
equilibrium of this game as a function of p.

Answer. (i) There are two players;

(ii) Action spaces: A1 = A2 = [0,∞);

(iii) Type spaces: T1 = {{H,L}}, and T2 = {H,L};

(iv) Strategy spaces: S1 = {e1 | e1 ≥ 0}, and S2 = {(e2H , e2L) | e2H , e2L ≥ 0}.

(v) Let (e∗1, e∗2H , e∗2L) be a Bayesian Nash equilibrium, then we will have:

• Player 1 does not know the exact type of the cost of effort, so he will choose e∗1 to maximize his expected
payoff

p× e1(1 + e∗2L − e1) + (1− p)× e1(1 + e∗2H − e1),

and hence
e∗1 =

1 + pe∗2L + (1− p)e∗2H
2

. (4.4)
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• For player 2, if the cost of effort is high, then player 2 will choose e∗2H to maximize his payoff

e2H(1 + e∗1 − 2e2H),

and hence
e∗2H =

1 + e∗1
4

. (4.5)

• For player 2, if the cost of effort is low, then player 2 will choose e∗2L to maximize his payoff

e2L(1 + e∗1 − e2L),

and hence
e∗2L =

1 + e∗1
2

. (4.6)

Solving Equations (4.4), (4.5) and (4.6), we will have

e∗1 =
5 + p

7− p
, e∗2H =

3

7− p
, e∗2L =

6

7− p
.

4.22 Example: There are 2 playerswhowere at the scenewhere a crimewas committed. But neither player knowswhether
she has been the only witness to the crime, or whether there was another witness as well. Let π be the probability
with which each player believes the other player is a witness. Each player, if she is a witness, can call the police or
not. The payoff to Player i is 2/3 if she calls the police, 1 if someone else calls the police, and 0 if nobody calls.

Question 1: Write down each player’s types and strategies.

Answer. Since each player knows that he is in the crime scene, each one has only one type: player 1’s type is “Player
1 is a witness”, and player 2’s type is “player 2’s type is a witness”. There is no possibility that they are not in the crime
scene.1

However, they don’t knowwhether the other person is also in the crime scene or not. Hence, what they are uncertain
about is the other player’s type.

Each player i has one types: ti = “on the scene”. For π ∈ [0, 1], each player i has two strategiesC (call) andN (not
call).

Question 2: For each value of π ∈ [0, 1], find the Bayesian Nash equilibria.

Answer (1st method). The story can be formulated as the following Bayesian game:

• N = {1, 2}.

• Ω = {ω1 = (Y, Y ), ω2 = (Y,N), ω3 = (N,Y ), ω4 = (N,N)}, where, for example, ω3 = (N,Y ) means
player 1 is not a witness and player 2 is a witness.

• Ai = {C,NC}, where C andNC mean “call the police” and “not call” respectively.

• T1 = {Y } and T2 = {Y }, where Y means “player 1/2 is a witness”.

• τ1 ≡ Y and τ2 ≡ Y .
1Another acceptable solution is: player i’s type space is {player i is a witness, Player i is not a witness}. While there is no available action when

the type is “player i is not a witness”.
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• p(ω1) = π2, p(ω2) = p(ω3) = π(1− π), p(ω4) = (1− π)2.

•

u1(a1, a2, ω) =


2
3 , if a1 = C,

1, if a1 = NC, a2 = C,ω = ω1, ω3,

0, otherwise,

and

u2(a1, a2, ω) =


2
3 , if a2 = C,

1, if a1 = C, a2 = NC,ω = ω1, ω2,

0, otherwise.

Player i’s strategy set is identical with his action set Ai.

Player i’s payoff when he chooses C is always 2
3 .

Player 1’s expected payoff when action profile is (NC,C) is π, and payoff when action profile is (NC,NC) is 0.

Player 2’s expected payoff when action profile is (C,NC) is π, and payoff when action profile is (NC,NC) is 0.

So we have the following payoff table

Player i

Player j
C NC

C 2/3, 2/3 2/3, π
NC π, 2/3 0, 0

Thus the Bayesian Nash equilibria are as follows:

• If 2/3 > π ≥ 0, then there is only one Bayesian Nash equilibrium (C,C);

• If π = 2/3, then there are three Bayesian Nash equilibria (C,C), (C,NC) and (NC,C);

• If 1 ≥ π > 2/3, then there are two Bayesian Nash equilibria (C,NC) and (NC,C).

Answer (2nd method). Each player i thinks that he is playing the following games:

• Game 1: if player i thinks that player j is also on the spot (probability π). Then player i’s payoff table is as
follows:

Player i

Player j
C N

C 2/3 2/3
N 1 0

Game 1: player j is on the scene

• Game 2: if player i thinks that player j is not on the spot (probability 1− π). Then player i think that he will
get 2/3 if he chooses C , and 0 otherwise, no matter what player j chooses.
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Player i

Player j
C N

C 2/3 2/3
N 0 0

Game 2: player j is not on the scene

Therefore, player i’s expected payoff is in the payoff tableG1, and the game in fact can be represented by the payoff
tableG2.

Player i

Player j
C N

C 2/3 2/3
N π 0

G1

Player i

Player j
C N

C 2/3, 2/3 2/3, π
N π, 2/3 0, 0

G2

Thus the Bayesian Nash equilibria are as follows:

• If 2/3 > π ≥ 0, then there is only one Bayesian Nash equilibrium (C,C);

• If π = 2/3, then there are three Bayesian Nash equilibria (C,C), (C,N) and (N,C);

• If 1 ≥ π > 2/3, then there are two Bayesian Nash equilibria (C,N) and (N,C).

4.23 Example: There are n ≥ 2 players. Each player i must simultaneously decide whether to join a team (xi = 1) or
not (xi = 0); hence z =

∑n
i=1 xi is the size of the team. If player i does not join (so that xi = 0) then i receives a

payoff of zero. If player i joins the team (so that xi = 1) then i pays a cost of ci. If all n players join the team (so that
z = n) then each player enjoys a benefit of v. Hence player i’s payoff is ui = v − ci when z = n, and ui = −xici
when z < n. Suppose that v > ci > 0.

Question 1: Suppose that the costs c1, . . . , cn are common knowledge. Find all Nash equilibria.

Answer. For player i, given other players’ strategies, his best-response correspondence is

x∗i (x−i) =

0, if x−i ̸= n− 1

1, if x−i = n− 1
, where x−i =

∑
j ̸=i

xj .

It is easy to see that there are two Nash equilibria (0, 0, . . . , 0) and (1, 1, . . . , 1). The reason is as follows:

• If player 1 chooses 0, then each of other player should choose 0. Note that 0 is player 1’s best response when
each of other players chooses 0;
So, given that player 1 chooses 0, the only possible Nash equilibrium is (0, 0, . . . , 0) in this case.

• If player 1 chooses 1. Note that 1 is player 1’s best response only when each of other players chooses 1;
So, given that player 1 chooses 1, the only possible Nash equilibrium is (1, 1, . . . , 1) in this case.

Question 2: Now, suppose that information is incomplete. Player i’s cost realization ci is known only to i; players’
costs are drawn independently from the same uniform distribution: ci ∼ U [0, c̄]. Find the symmetric Bayesian
Nash equilibrium.
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Answer. • There are n ≥ 2 players;

• Type spaces: Ti = {ci | ci ∈ [0, c̄]};

• Action spaces: Ai = {0, 1};

• Strategy spaces: Si = {functions from Ti to Ai}.

Suppose x(ci) : Ti → Ai for each player i constitutes a symmetric Bayesian Nash equilibrium. Since we know that
when the cost becomes larger, the more possibility player will choose 0. So x can be characterized by y ∈ [0, c̄],
that is,

x(ci) =

1, if ci ∈ [0, y];

0, otherwise.

For player i, when ci is drawn, given other players’ strategies x(cj), player i’s expected payoff is(y/c̄)n−1(v − ci) + [1− (y/c̄)n−1](−ci), if x(ci) = 1;

0, if x(ci) = 0.

Thus player i chooses 1 if and only if (y/c̄)n−1(v − ci) + [1− (y/c̄)n−1](−ci) ≥ 0, that is

(y/c̄)n−1v ≥ ci.

• If (y/c̄)n−1v ≥ c̄, then y = c̄.

• If (y/c̄)n−1v < c̄, then (y/c̄)n−1v = y. We consider the following two cases.

– If n = 2, then y
c̄ · v = y. Since v > c̄, this equation has only one solution y = 0.

– Ifn > 2, then this equationhas two solutions: y = 0or y = ( 1v )
1

n−2 c̄
n−1
n−2 . Moreover, y = ( 1v )

1
n−2 c̄

n−1
n−2 <

c̄ if and only if c̄ < v. Thus, for both solutions the condition (y/c̄)n−1v = y < c̄ is satisfied.

To summarize,

• if n = 2, then y = 0 or y = c̄;

• if n > 2, then y = 0, or y = ( 1v )
1

n−2 c̄
n−1
n−2 or y = c̄.

Then
(
x(ci)

)
i
is a symmetric Bayesian Nash equilibrium for

x(ci) =

1, if ci ∈ [0, y],

0, otherwise,

where y is stated above.

4.24 Example: Exchange game.

A rich, honest, but mischievous father told his two sons that he had placed 10n dollars and 10n−1 dollars in two
envelops respectively, wheren ∈ {1, 2, . . . , 10}. The father then randomly handed each son one of the two envelops
with a probability 0.5.

After both sons opened their envelop, his father privately asked each son whether he wanted to switch his envelop
with the one his brother had. If both sons agreed, then the envelops were switched. Otherwise, each son kept the
original envelop he received.

Represent the sons’ problem as a Bayesian game, and find all the Bayesian Nash equilibria.
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Answer. We can formulate this game as follows:

• Two players: son 1 and son 2.

• T1 = T2 = {0, 1, 2, . . . , 10}.

• Ai = {Y,N}, where Y means that son i wants to switch.

• Payoff:

ui(a1, a2; ti, t−i) =

10t−i , if a1 = a2 = Y,

10ti , otherwise.

• Beliefs:

p(t−i | ti) =


1 ◦ (ti + 1), if ti = 0,

1
2 ◦ (ti − 1) + 1

2 ◦ (ti + 1), if ti = 1, 2, . . . , 9,

1 ◦ (ti − 1), if ti = 10.

• si : Ti → Ai.

There are two kinds of Bayesian Nash equilibrium strategies:

• s∗i (ti) ≡ N .

• s∗i (ti) =

Y, if ti = 0

N, otherwise
.

Hence, the switch of envelope would never take place.

The reason is as follows:

(1) If a son received the envelope of $1010, the son would definitely say “no” (since he knew the othermust receive
the envelope of $1010−1. Therefore, at an equilibrium, $1010-type player must say “no”.

(2) Given that $1010-type player says “no”, $1010−1-type player would realize that he is now in the position of
$1010-type player and, thus, should say “no”.

(3) Repeat the argument. For any integer n > 0, $10n-type player should say “no” at an equilibrium

(4) If n = 0, $100-type player would be indifferent between saying “no” or saying “yes”.

4.25 Example [OR Exercise 28.2]: Exchange game.

Each of two players receives a ticket on which there is a number in some finite subset S of the interval [0, 1]. The
number on a player’s ticket is the size of a prize that hemay receive. The two prizes are identically and independently
distributed, with distribution functionF . Each player is asked independently and simultaneously whether he wants
to exchange his prize for the other player’s prize. If both players agree then the prizes are exchanged; otherwise each
player receives his own prize. Each player’s objective is to maximize his expected payoff. Model this situation as a
Bayesian game and show that in any Nash equilibrium the highest prize that either player is willing to exchange is
the smallest possible prize.

Answer. In the Bayesian game there are two players, sayN = {1, 2}, the set of states isΩ = S×S, the set of actions
of each player is {Exchange,Don′texchange}, the signal function of each player i is defined by τi(s1, s2) = si,
and each player’s belief onΩ is that generated by two independent copies of F . Each player’s preferences are repre-
sented by the payoff function ui((X,Y ), ω) = ωj ifX = Y = Exchange and ui((X,Y ), ω) = ωi otherwise.
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Let x be the smallest possible prize and letMi be the highest type of player i that chooses Exchange. IfMi > x

then it is optimal for type x of player j to choose Exchange. Thus ifMi ≥ Mj andMi > x then it is optimal for
typeMi of player i to choose Don′texchange, since the expected value of the prizes of the types of player j that
choose Exchange is less thanMi. Thus in any possible Nash equilibriumMi = Mj = x: the only prizes that may
be exchanged are the smallest.

4.26 Example [G Section 3.2.C]: Double auction.

There are two players: a buyer and a seller.

The buyer’s valuation for the seller’s good is vb, the seller’s is vs. The valuations are private information and are
drawn from certain independent distribution on [0, 1].

The seller names an asking price ps, and the buyer simultaneously names an offer price pb. If pb ≥ ps, then trade
occurs at price p = pb+ps

2 ; if pb < ps, then no trade occurs.

Buyer’s payoff is

πb[pb, ps | vb] =

vb −
pb+ps

2 , if pb ≥ ps,

0, if pb < ps.

Seller’s payoff is

πs[pb, ps | vs] =


pb+ps

2 − vs, if pb ≥ ps,

0, if pb < ps.

Question 1: Find all the linear Bayesian Nash equilibria.

Answer. Let pi(vi) = ai + civi, i = s, b be players’ linear strategies, where ai ≥ 0 and ci > 0.

Given seller’s strategy ps(vs), buyer’s expected payoff is

Evs πb[pb, ps(vs) | vb] =
∫
as≤ps(vs)≤pb

vb −
pb + ps(vs)

2
dvs +

∫
pb<ps(vs)≤as+cs

0 dvs

=

∫
as≤u≤pb

vb −
pb + u

2
d
u

cs
=
pb − as
cs

(
vb −

3

4
pb −

1

4
as

)
.

Maximizing Evs πb[pb, ps(vs) | vb] yields buyer’s best response

pb(vb) =
2

3
vb +

as
3
,

which implies cb = 2
3 and ab = as

3 .

Analogously, given buyer’s linear strategy pb(vb), seller’s expected payoff is

Evb
πs[ps, pb(vb) | vs] =

ab + cb − ps
cb

(
3

4
ps +

ab + cb
4

− vs

)
.

Maximizing Evb
πs[ps, pb(vb) | vs] yields seller’s best response

ps(vs) =
2

3
vs +

ab + cb
3

,

which implies cs = 2
3 and as = ab+cb

3 .
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Therefore, the linear equilibrium strategies are

pb(vb) =
2

3
vb +

1

12
, ps(vs) =

2

3
vs +

1

4
.

The trade occurs if and only if pb ≥ ps, i.e., if and only if

vb ≥ vs +
1

4
.

Remark: Myerson and Satterthwaite (Journal of EconomicTheory, 1983) show that, for the uniform valuation distri-
butions, the linear equilibrium yields higher expected gains for the players than any other Bayesian Nash equilibria
of the double auction. This implies that there is no Bayesian Nash equilibrium of the double auction in which trade
occurs if and only if it is efficient (i.e., if and only if vb ≥ vs).

Question 2: The double auction above has the linear equilibrium strategies:

pb(vb) =
2

3
vb +

1

12
, ps(vs) =

2

3
vs +

1

4
.

Note that pb(vb) > vb if vb < 1
4 . This means that some types (vb < 1

4 ) of the buyer offer such prices which may
probably lead to negative payoffs. Does this equilibrium look reasonable? Can you prove that actually no trade
occurs with negative payoffs to any player? (You can find the similar situation for the seller.)

Answer. When they choose the following strategies

pb(vb) =
2

3
vb +

1

12
, ps(vs) =

2

3
vs +

1

4
,

then payoffs are

πb =

 2
3vb −

1
3vs −

1
6 , if trade occurs;

0, otherwise.
and πs =

 1
3vb −

2
3vs +

1
6 , if trade occurs;

0, otherwise.

It suffices to show 2
3vb −

1
3vs −

1
6 and 1

3vb −
2
3vs +

1
6 can not be negative, when trade occurs.

If 2
3vb −

1
3vs −

1
6 < 0, since trade occurs when vb ≥ vs +

1
4 , we have vs < 0, which is a contradiction.

If 1
3vb −

2
3vs +

1
6 < 0, since trade occurs when vb ≥ vs +

1
4 , we have vb > 1, which is a contradiction.

4.27 Example: Double auction.

Consider the double auction where the seller’s and buyer’s valuations, vs and vb, are uniformly distributed on
[αs, βs] and [αb, βb], respectively. Find the linear Bayesian Nash equilibrium of the game.

Answer. • There are two players: seller (s) and buyer (b);

• Type spaces: Ts = [αs, βs] and Tb = [αb, βb];

• Action spaces: As = Ab = [0,∞);

• Strategy spaces: Sb = {function from Tb to Ab}, and Ss = {function from Ts to As};
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• Payoff:

us(ps, pb; vs, vb) =


ps+pb

2 − vs, pb ≥ ps

0, pb < ps
, ub(ps, pb; vs, vb) =

vb −
ps+pb

2 , pb ≥ ps

0, pb < ps
.

Suppose (p∗s, p∗b) is a linear Bayesian Nash equilibrium, where

p∗s(vs) = as + csvs, p∗b(vb) = ab + cbvb.

Note that as, cs, ab, cb are to be determined. Here we should assume cs, cb > 0.

• For seller, when vs is drawn, given buyer’s strategy p∗b , p∗s(vs) will maximize his expected payoff

E[us(ps, p∗b ; vs, vb)]

=
1

βb − αb

∫
ps≤p∗

b (vb)≤p∗
b (βb)

ps + p∗b(vb)

2
− vs dvb +

1

βb − αb

∫
p∗
b (αb)≤p∗

b (vb)<ps

0 dvb

=
1

βb − αb

∫ βb

ps−ab
cb

ps + ab + cbvb
2

− vs dvb

=
1

βb − αb

[(
ps + ab

2
− vs

)(
βb −

ps − ab
cb

)
+
cb
2

∫ βb

ps−ab
cb

vb dvb

]

=
1

βb − αb

[(
ps + ab

2
− vs

)(
βb −

ps − ab
cb

)
+
cb
4

(
βb −

ps − ab
cb

)(
βb +

ps − ab
cb

)]
=

1

βb − αb

(
βb −

ps − ab
cb

)[(
ps + ab

2
− vs

)
+
cb
4

(
βb +

ps − ab
cb

)]
=

cb
βb − αb

(cbβb − ps + ab)

[
−vs +

3

4
ps +

1

4
(ab + cbβb)

]
Therefore, by the first order condition,

p∗s(vs) =
2

3
vs +

1

3
ab +

1

3
cbβb,

and hence
cs =

2

3
, as =

1

3
(ab + cbβb). (4.7)

• For buyer, when vb is drawn, given seller’s strategy p∗s , p∗b(vb) will maximize his expected payoff

E[ub(p∗s, pb; vs, vb)]

=
1

βs − αs

∫
p∗
s(αs)≤p∗

s(vs)≤pb

vb −
p∗s(vs) + pb

2
dvs +

1

βs − αs

∫
pb<p∗

s(vs)≤p∗
s(βs)

0 dvs

=
1

βs − αs

∫ pb−as
cs

αs

vb −
as + csvs + pb

2
dvs

=
1

βs − αs

[(
vb −

as + pb
2

)(
pb − as
cs

− αs

)
− cs

2

∫ pb−as
cs

αs

vs dvs

]

=
1

βs − αs

[(
vb −

as + pb
2

)(
pb − as
cs

− αs

)
− cs

4

(
pb − as
cs

− αs

)(
pb − as
cs

+ αs

)]
=

1

βs − αs

(
pb − as
cs

− αs

)[(
vb −

as + pb
2

)
− cs

4

(
pb − as
cs

+ αs

)]
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=
cs

βs − αs
(pb − as − csαs)

[
vb −

3

4
pb −

1

4
(as + csαs)

]
Therefore, by the first order condition,

p∗b(vb) =
2

3
vb +

1

3
as +

1

3
csαs,

and hence
cb =

2

3
, ab =

1

3
(as + csαs). (4.8)

Solving Equations (4.7) and (4.8), we will have

as =
αs

12
+
βb
4
, ab =

βb
12

+
αs

4
.

4.28 Example [G Exercise 3.8]: Double auction.

A firm and a worker play a double auction. The firm knows the worker’s marginal product (m) and the worker
knows his or her outside opportunity (v), respectively. In this context, trade means that the worker is employed
by the firm. A wage w is preset by the union. If there is trade, then the firm’s payoff ism − w and the worker’s is
w; if there is no trade then the firm’s payoff is zero and the worker’s is v. Suppose that m and v are independent
draws from a uniform distribution on [0, 1]. The both players simultaneously announce either that they Accept the
wage w or that they Reject that wage. The worker will be employed by the firm if and only if both of them accept
the wage. Given an arbitrary value of w from [0, 1], what is the Bayesian Nash equilibrium of this game? Draw a
diagram showing the type-pairs that trade. Find the value of w that maximizes the sum of the players’ expected
payoff and compute this maximized sum.

Answer. • There are two players: firmer and worker;

• Type spaces: Tf = {m | m ∈ [0, 1]}, and Tw = {v | v ∈ [0, 1]};

• Action spaces: Af = Aw = {A,R};

• Strategy spaces: Sf = Sw = {functions from [0, 1] to {A,R}};

• Payoff functions:

uf (sf (w), sw(v);m, v) =

m− w, if sf (w) = sw(v) = A;

0, otherwise.

uw(sf (w), sw(v);m, v) =

w, if sf (w) = sw(v) = A;

v, otherwise.

(i) For any w ∈ [0, 1], it is easy to see (s∗f (m), s∗w(v)) is a Bayesian Nash equilibrium, where

s∗f (m) =

A, ifm ≥ w

R, otherwise
, s∗w(v) =

A, if w ≥ v

R, otherwise
.

(ii) There is trade when (m, v) is drawn if and only if s∗f (m) = s∗w(v) = A, and thus T is the trading area in
Figure 4.1.
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O w 1

w

1
(1,1)

Trading area T

v

m

Figure 4.1: Trading area T

(iii) In the Bayesian Nash equilibrium, the payoff are as follows:

uf (m, v) =

m− w, if (m, v) ∈ T

0, otherwise
, uw(m, v) =

w, if (m, v) ∈ T

v, otherwise
.

Sincem and v are uniformly distributed on [0, 1], we have:

E[uf ] =
∫ 1

0

∫ 1

0

uf (m, v) dv dm =

∫∫
T

(m− w) dv dm

E[uw] =
∫ 1

0

∫ 1

0

uw(m, v) dv dm =

∫∫
T

w dv dm+

∫∫
T c

v dv dm

=

∫∫
T

(w − v) dv dm+

∫ 1

0

∫ 1

0

v dv dm

and thus

E[uf ] + E[uw] =
∫∫

T

(m− v) dv dm+

∫ 1

0

∫ 1

0

v dv dm

=

∫ 1

w

∫ w

0

(m− v) dv dm+

∫ 1

0

∫ 1

0

v dv dm =
w − w2

2
+

1

2

Therefore, w∗ = 1
2 is the maximizer of the sum of the expected payoff.

4.4 Comments on Bayesian games

4.29 Harsanyi (1967–68) argued that a situation in which the players are unsure about each other’s characteristics can
be modeled as a Bayesian game. Accordingly, games of incomplete information are transformed into ones with
imperfect information. Harsanyi also assumed that the prior belief of every player is the same (this assumption is
referred to as Harsanyi’s doctrine).

By “complete information”, we mean that the payoff functions are common knowledge. (applicable for strategic
games and extensive games)

By “perfect information”, we mean that at each move in the game, the player with the move knows the full history
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of the play of the game thus far. (applicable for extensive games)

4.30 A Bayesian game can be used to model not only situations in which each player is uncertain about the others’
payoffs, but also situations in which each player is uncertain about the others’ knowledge.

Consider a Bayesian game in which

• N = {1, 2}.

• Ω = {ω1, ω2, ω3}.

• the signal functions of two players i = 1, 2 are given by τ1(ω1) = τ1(ω2) = t1, τ1(ω3) = t′1, and τ2(ω1) = t2,
τ2(ω2) = τ2(ω3) = t′2.

• player 1’s preference satisfy (b, ωj) ≿1 (c, ωj) for j = 1, 2 and (c, ω3) ≿1 (b, ω3) for some action profiles b
and c.

Suppose that the true state is ω1. Player 2 knows that the true state is ω1, so he knows player 1 prefers b to c in
such a game. Since in state ω1, player 1 does not know whether the state is ω1 or ω2, and hence he does not know
whether or not player 2 knows that 1 prefers b to c.

4.31 Can every situation in which the players are uncertain about each other’s knowledge be modeled as a Bayesian
game?

4.32 Assume that the players’ payoffs depend only on a parameter θ ∈ Θ. Denote the set of possible beliefs of each
player i by Ti. Then a belief of any player j is a probability distribution overΘ×T−j . The question above is to find
a collection {Tj}j∈N of sets such that for all i ∈ N ,

Ti ∼homeomorphism ∆(Θ× T−i),

where ∆(Θ× T−i) is the set of probability distributions over Θ× T−i.

A function f : X → Y between two topological spaces (X,TX) and (Y, TY ) is called a homeomorphism (同胚)
if it has the following properties:

• f is a bijection;

• f is continuous;

• f−1 is continuous.

4.33 If so, we can let
Ω = Θ× (T1 × T2 × · · · × Tn)

be the state space and use the model of a Bayesian game to capture any situation in which players are uncertain not
only about each other’s payoffs but also about each other’s beliefs.

In addition, we call ti ∈ Ti is a Harsanyi’s type.

4.34 Consider a two-player game, where a space Θ of states of nature is primitive uncertainty faced by each player.

S[0] = Θ

S[1] = S[0] ×∆(S[0])

S[2] = S[1] ×∆(S[1]) = S[0] ×∆(S[0])×∆(S[1])
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S[3] = S[2] ×∆(S[2]) = S[0] ×∆(S[0])×∆(S[1])×∆(S[2])

· · · · · ·

S[ℓ] = S[ℓ−1] ×∆(S[ℓ−1]) = S[0] ×∆(S[0])×∆(S[1])× · · · ×∆(S[ℓ−1])

· · · · · ·

Each player has 1st-beliefs, namely a distribution, about the uncertainty.

As the decisions of other players are relevant, so are their 1st-beliefs, since they affect their decisions. Thus a player
must have 2nd-order beliefs about the 1st-beliefs of other players.

For the same reason, a player needs to consider 3rd-order beliefs about the 2nd-beliefs of other players about the
1st-beliefs and so on.

Let T = ×∞
ℓ=0∆(S[ℓ]). We have

T ∼homeomorphism ∆(Θ× T ),

given any one of the following conditions:

• Θ is a compact Hausdorff space (by Mertens and Zamir, International Journal of GameTheory, 1985);

• Θ is a Polish space (by Brandenburger and Dekel, Journal of Economic Theory, 1993).

These results are valid when there are finite players as well.
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5.1 Preliminary

5.1 An auction is a process of buying and selling goods or services by offering them up for bid, taking bids, and then
selling the item to the highest bidder.

In economic theory, an auction may refer to any mechanism or set of trading rules for exchange. A common aspect
of auction-like institutions is that they elicit information, in the form of bids, from potential buyers regarding their
willingness to pay, and the outcome—that is, who wins what and pays howmuch—is determined solely on the basis
of the received information.

5.2 The uncertainty regarding values facing both sellers and buyers is an inherent feature of auctions.

• The seller is unsure about the values that bidders attach to the object being sold—the maximum amount each
bidder is willing to pay.

• Private value: each bidder knows the value of the object to herself at the time of bidding. Implicit in this
situation is that no bidder knows with certainty the values attached by other bidder and knowledge of other
bidders’ value would not affect how much the object is worth to a particular bidder.

• Interdependent value: values are unknown at the time of the auction and may be affected by information
available to other bidders.

73
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• Common value: the value is unknown at the time of the auction but is the same for all bidders.

5.3 Auctions should be defined by three kinds of rules:

• rules for bidding

– who can bid, when

– what is the form of a bid

– restrictions on offers, as a function of:

* bidder’s own previous bid

* auction state (others’ bids)

* eligibility (i.e., budget constraints)
* expiration, withdrawal, replacement

• rules for what information is revealed

– when to reveal what information to whom

• rules for clearing

– when to clear

* at intervals

* on each bid

* after a period of inactivity

– allocation (who gets what)

– payment (who gets what)

5.4 The open ascending price or English auction is the oldest and perhaps most prevalent auction form. The word
auction itself is derived from the Latin augere, which means “to increase” (or “augment”), via the participle auctus
(“increasing”).

In one variant of the English auction, so-called Japanese auction, the sale is conducted by an auctioneer who begins
by calling out a low price and raises it, typically in small increments, as long as there are at least two interested
bidders. The auction stops when there is only one interested bidder.

One way to formally model the underlying game is to postulate that the price rises continuously and each bidder
indicates an interest in purchasing at the current price in a manner apparent to all by, say, raising a hand. Once a
bidder finds the price to be too high, she signals that she is no longer interested by lowering her hand. The auction
ends when only a single bidder is still interested. This bidder wins the object and pays the auctioneer an amount
equal to the price at which the second-last bidder dropped out.

5.5 The Dutch auction is the open descending price counterpart of the English auction. It is not commonly used in
practice but is of some conceptual interest. Here, the auctioneer begins by calling out a price high enough so that
presumably no bidder is interested in buying the object at that price. This price is gradually lowered until some
bidder indicates her interest. The object is then sold to this bidder at the given price.

5.6 The sealed-bid first-price auction: Bidders submit bids in sealed envelopes; the person submitting the highest bid
wins the object and pays what she bid.

5.7 The sealed-bid second-price auction. As its name suggests, once again bidders submit bids in sealed envelopes; the
person submitting the highest bid wins the object but pays not what she bid but the second-highest bid.
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5.8 The Dutch open descending price auction is strategically equivalent to the first-price sealed-bid auction. When
values are private, the English open ascending auction is equivalent to the second-price sealed-bid auction in a
weaker sense. (Exercise)

5.2 The symmetric model

5.9 There is a single object for sale, andN potential buyers are bidding for the object.

5.10 Bidder i assigns a value ofXi to the object—the maximum amount a bidder is willing to pay for the object.

EachXi is independently and identically distributed on some interval [0, ω] according to the increasing cumulative
distribution function F . It is assumed that F admits a continuous density f ≡ F ′, F (x) =

∫ x

0
f(t) dt, and has full

support. It is assumed that E[Xi] =
∫ ω

0
x dF (x) =

∫ ω

0
xf(x) dx <∞.

5.11 Bidder i knows the realization xi ofXi and only that other bidders’ values are independently distributed according
to F .

5.12 Bidders are risk neutral; they seek to maximize their expected profits.

5.13 All components of the model other than the realized values are assumed to be commonly known to all bidders. In
particular, the distribution F is common knowledge, as is the number of bidders.

5.14 It is also assumed that bidders are not subject to any liquidity or budget constraints. Each bidder i has sufficient
resources so if necessary, she can pay the seller up to her value xi.

5.15 A strategy for a bidder is a function βi : [0, ω] → R+, which determines her bid for any value.

We will typically be interested in comparing the outcomes of a symmetric equilibrium—an equilibrium in which
all bidders follow the same strategy—of one auction with a symmetric equilibrium of the other.

5.3 Second-price sealed-bid auction

5.16 In a second-price auction, each bidder submits a sealed bid of bi, and given these bids, the payoffs are:

Πi(bi, b−i, xi) =

xi − maxj ̸=i bj , if bi > maxj ̸=i bj ,

0, if bi < maxj ̸=i bj .

Wealso assume that if there is a tie, so bi = maxj ̸=i bj , the object goes to eachwinning bidderwith equal probability.

5.17 Proposition: In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to βII(x) = x.

Proof. (1) Consider bidder 1, say, and suppose that p1 = maxj ̸=i bj is the highest competing bid.

(2) By bidding x1 , bidder 1 will win if x1 > p1 and not if x1 < p1 (if x1 = p1 , bidder 1 is indifferent between
winning and losing).

(3) Suppose, however, that she bids an amount z1 < x1.

• If p1 > x1 > z1, she still loses.

• If x1 > z1 ≥ p1, then she still wins, and her profit is still x1 − p1.
• If x1 > p1 > z1, then she loses, whereas if she had bid x1, she would have made a positive profit.
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Thus, bidding less than x1 can never increase her profit but in some circumstances may actually decrease it.

(4) A similar argument shows that it is not profitable to bid more than x1.

5.18 Remark: It should be noted that the argument in Proposition 5.17 relied neither on the assumption that bidders’
values were independently distributed nor the assumption that they were identically so. Only the assumption of
private values is important, and Proposition 5.17 holds as long as this is the case.

5.19 Variation: The bidders i = 1, 2, . . . , N simultaneously submit bids inR+, and the object is given to the bidder with
the lowest index among those who submit the highest bid, in exchange for a payment. Each player i knows her own
valuation xi ∈ [0, ω] but is uncertain of the other bidders’ valuations. Assume that each bidder believes that every
other bidder’s valuation is drawn independently from the same distribution F over [0, ω].

The set of actions of each player i is [0,∞) (the set of possible bids) and the payoff of player i isxi − max
j ̸=i

bj , if bi > b1, . . . , bi−1, and bi ≥ bi+1, . . . , bn,

0, otherwise.

Then for any player i the bid bi = xi is a dominant action.

Proof. To see this, let pi be another action of player i.

• If maxj ̸=i bj ≥ xi, then by bidding pi player i either does not obtain the object or receives a non-positive
payoff, while by bidding xi she guarantees herself a payoff of 0.

• If maxj ̸=i bj < xi, then by bidding xi player i obtains the good at the price maxj ̸=i bj , while by bidding pi
either she wins and pays the same price or loses.

5.4 First-price sealed-bid auction

5.20 In a first-price auction, each bidder submits a sealed bid of bi, and given these bids, the payoffs are

Πi(bi, b−i, xi) =

xi − bi, if bi > maxj ̸=i bj

0, if bi < maxj ̸=i bj

As before, if there is more than one bidder with the highest bid, the object goes to each such bidder with equal
probability.

5.21 In a first-price auction, equilibrium behavior is more complicated than in a second-price auction.

• No bidder would bid an amount equal to her value, since this would only guarantee a payoff of 0.

• Fixing the bidding behavior of others, at any bid that will neither win for sure nor lose for sure, the bidder
faces a simple trade-off: an increase in the bid will increase the probability of winning while, at the same time
reducing the gains from winning.

5.22 Assumption: It is expected that a bidder bids higher if she has higher private value, that is, the bidding strategy is
assumed to be an increasing function.
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5.23 Example [G Exercise 3.6]: N -player first-price sealed-bid auction (risk-neutral, uniform distribution, symmetric
Bayesian Nash equilibrium).

Consider an N -player first-price sealed-bid auction in which the bidders’ valuations are independently and uni-
formly distributed on [0, 1]. Find a symmetric Bayesian Nash equilibrium.

Part 1: Formulation.

• There areN players;

• Type spaces: Ti = [0, 1], that is, each xi ∈ Ti is a valuation;

• Action spaces: Ai = [0, 1], that is, each bi ∈ Ai is a bid;

• Strategy spaces: Si = {βI
i : Ti → Ai};

• Payoff:

Πi(bi, b−i, xi) =


xi − bi, if bi > bj , ∀j ̸= i;

xi−bi
k , if bi is one of the k largest bids;

0, otherwise.

• Aim: find a symmetric Bayesian Nash equilibrium (βI
1, β

I
2, . . . , β

I
n), where βI

1 = βI
2 = · · · = βI

n = β.

Part 2: Heuristic derivation of symmetric equilibrium strategy.

(1) Suppose that bidder j ̸= 1 follow the symmetric, increasing, and differentiable equilibrium strategy β. Sup-
pose bidder 1 receives a signal,X1 = x, and bids b. We wish to determine the optimal b.

(2) Notice that it can never be optimal to choose a bid b > β(1), since in that case, bidder 1 would win for sure
and could do better by reducing her bid slightly, so she still wins for sure but pays less.

(3) A bidder with value 0 would never submit a positive bid, since she would make a loss if she were to win the
auction. Thus, we must have β(0) = 0.

(4) Bidder 1 wins the auction whenever she submits the highest bid—that is, whenever maxi ̸=1 β(Xi) < b. Her
expected payoff is therefore (

β−1(b)
)N−1 × (x− b).

(5) Maximizing this with respect to b yields the first-order condition:

(N − 1)
(
β−1(b)

)N−2 1

β′
(
β−1(b)

) (x− b)−
(
β−1(b)

)N−1
= 0.

After rearrangements, we have
(N − 1)(x− b)

β′
(
β−1(b)

) − β−1(b) = 0.

(6) At a symmetric equilibrium, b = β(x), and thus we have the following differential equation

(N − 1)xN−1 − (N − 1)β(x)xN−2 = xN−1β′(x),

or equivalently,
d
dx
(
xN−1β(x)

)
= (N − 1)xN−1.
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(7) Since β(0) = 0, we have

β(x) =
N − 1

N
x.

Remark: The derivation of β is only heuristic: We have not formally established that if the other N − 1 bidders
follow β, then it is indeed optimal for a bidder with value x to bid β(x).

Part 3: Prove β to be a symmetric equilibrium strategy.

(1) Suppose that all but bidder 1 follow the strategy β. We will argue that in that case it is optimal for bidder 1 to
follow β also.

(2) Since β is an increasing and continuous function, in equilibrium the bidder with the highest value submits
the highest bid and wins the auction.

(3) It is not optimal for bidder 1 to bid a b > β(1) = N−1
N .

(4) Suppose bidder 1 bids an amount b ≤ β(1) = N−1
N . Denote by z = β−1(b). Then bidder 1’s expected payoff

from bidding β(z) = b when her value is x is as follows:

Π(b, x) =
(
β−1(b)

)N−1 × (x− b) = zN−1x− N − 1

N
zN .

(5) We thus obtain that

Π
(
β(x), x

)
−Π(β(z), x) = (z − x)zN−1 −

∫ z

x

yN−1 dy ≥ 0

regardless of whenever z ≥ x or z ≤ x.

Remark: The phenomenon that βI(x) = N−1
N x < x is called bid shading. As the number of bidders increases, each

bidder shades less. For each bidder, there is both an incentive to bid higher, so that she wins with higher probability
(s−1(x) increases), and an incentive to bid lower, so that when she wins, she pays less and benefits more (x − b

increases). Bid shading is exactly the result of such a trade-off.

5.24 Heuristic derivation of symmetric equilibrium strategy for general model

(1) Suppose that bidder j ̸= 1 follow the symmetric, increasing, and differentiable equilibrium strategy βI ≡ β.
Suppose bidder 1 receives a signal,X1 = x, and bids b. We wish to determine the optimal b.

(2) Notice that it can never be optimal to choose a bid b > β(ω), since in that case, bidder 1 would win for sure
and could do better by reducing her bid slightly, so she still wins for sure but pays less.

(3) A bidder with value 0 would never submit a positive bid, since she would make a loss if she were to win the
auction. Thus, we must have β(0) = 0.

(4) Bidder 1 wins the auction whenever she submits the highest bid—that is, whenever maxi̸=1 β(Xi) < b. Since
β is increasing, maxi ̸=1 β(Xi) = β(maxi ̸=1Xi) = β(Y1), where Y1 ≡ Y

(N−1)
1 , the highest ofN − 1 values.

Her expected payoff is therefore
G
(
β−1(b)

)
× (x− b),

whereG is the distribution of Y1.

(5) Maximizing this with respect to b yields the first-order condition:

g
(
β−1(b)

)
β′
(
β−1(b)

) (x− b)−G
(
β−1(b)

)
= 0, (5.1)
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where g = G′ is the density of Y1.

(6) At s symmetric equilibrium, b = β(x), and thus Equation (5.1) yields the differential equation

G(x)β′(x) + g(x)β(x) = xg(x), (5.2)

or equivalently,
d
dx
(
G(x)β(x)

)
= xg(x).

(7) Since β(0) = 0, we have

β(x) =
1

G(x)

∫ x

0

yg(y) dy = E[Y1 | Y1 < x]. (5.3)

The last equality holds due to the conditional probability.

Remark: The derivation of β is only heuristic because Equation (5.2) is merely a necessary condition: We have not
formally established that if the otherN − 1 bidders follow β, then it is indeed optimal for a bidder with value x to
bid β(x).

5.25 Proposition: Symmetric equilibrium strategies in a first-price auction are given by

βI(x) = E[Y1 | Y1 < x], (5.4)

where Y1 is the highest ofN − 1 independently drawn values.

Proof. (1) Suppose that all but bidder 1 follow the strategy βI ≡ β given in Equation (5.4). We will argue that in
that case it is optimal for bidder 1 to follow β also.

(2) Since β is an increasing and continuous function, in equilibrium the bidder with the highest value submits
the highest bid and wins the auction.

(3) It is not optimal for bidder 1 to bid a b > β(ω).

(4) Suppose bidder 1 bids an amount b ≤ β(ω). Denote by z = β−1(b). Then bidder 1’s expected payoff from
bidding β(z) = b when her value is x as follows:

Π(b, x) = G
(
β−1(b)

)
× (x− b)

= G(z)x−G(z)E[Y1 | Y1 < z]

= G(z)x−
∫ z

0
yg(y) dy By Equation (5.3)

= G(z)x−G(z)z +
∫ z

0
G(y) dy Integration by parts

= G(z)(x− z) +
∫ z

0
G(y) dy

(5) We thus obtain that

Π
(
β(x), x

)
−Π(β(z), x) = G(z)(z − x)−

∫ z

x

G(y) dy ≥ 0

regardless of whenever z ≥ x or z ≤ x.

To be more precise, bidding an amount β(z′) > β(x) rather than β(x) results in a loss equal to the gray area
in Figure 5.1: G(z′)(z′ − x) is the area of the right rectangle, and

∫ z′

x
G(y) dy is the area of the graph of G

from x to z′.
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0

G(x)

1

ω

G

z
′′ x z

′

Overbidding

Underbidding

X

Figure 5.1: Losses from over- and underbidding in a first-price auction.

Similarly, bidding an amount β(z′′) < β(x) results in a loss equal to the blue area.

5.26 Remark: From Equation (5.3), we have

βI(x)G(x) =

∫ x

0

yg(y) =

∫ x

0

y dG(y) = xG(x)−
∫ x

0

G(y) dy,

and hence the equilibrium bid can be rewritten as

βI(x) = x−
∫ x

0

G(y)

G(x)
dy.

This shows that the bid is, naturally, less than the value x.

5.27 Since the degree of “shading” (the amount by which the bid is less than the value)

G(y)

G(x)
=

[
F (y)

F (x)

]N−1

depends on the number of competing bidders and asN increases, approaches 0.

Thus, for fixed F , as the number of bidders increases, the equilibrium bid βI(x) approaches x.

5.28 Example 5.23 can be derived by letting ω = 1 and F (x) = x.

5.29 Example: Values are exponentially distributed (the rate parameter λ is 2) on [0,∞), and there are only two bidders.

F (x) = 1− e−λx = 1− e−2x, andN = 2, then

β(x) = βI(x) = x−
∫ x

0

F (y)

F (x)
dy =

1

2
− xe−2x

1− e−2x
.

The equilibrium bidding strategy is depicted in Figure 5.2. The figure highlights the fact that with the exponentially
distributed values, even a bidder with a very high value—say, $1 million—will not bid more than 50 cents.

• The bidder is facing the risk of a big loss by not bidding higher.

• The probability that the bidder with a high value will lose in equilibrium is infinitesimal. Hence bidders with
high values are willing to bid very small amounts.
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Figure 5.2: Equilibrium strategy.

5.30 Variation: Two-player first-price sealed-bid auction (risk-neutral, uniform distribution, linear Bayesian Nash equi-
librium).

Suppose there are two bidders, i = 1, 2.

The bidders’ valuations x1 and x2 for a good are independently and uniformly distributed on [0, 1].

Bidders submit their bids b1 and b2 simultaneously. The higher bidder wins the good and pays her bidding price;
the other bidder gets and pays nothing. In the case that b1 = b2, the winner is determined by a flip of a coin.

Formulate it as a Bayesian game, and find all the linear Bayesian Nash equilibria.

Answer. The formulation is as follows:

• A1 = A2 = [0,∞), bids bi ∈ Ai;

• T1 = T2 = [0, 1], valuations xi ∈ Ti;

• Pi(xj) is the uniform distribution on [0, 1];

• For any xi ∈ Ti, player i’s payoff is

Πi(b1, b2;x1, x2) =


xi − bi, if bi > bj ,

xi−bi
2 , if bi = bj ,

0, if bi < bj .

Player i’s linear strategy is a function βI
i(xi) = ai + cixi from [0, 1] to [0,∞), where 1 > ai ≥ 0 and ci > 0.

(βI
1(x1), β

I
2(x2)) is a Bayesian Nash equilibrium if for each xi ∈ [0, 1], βI

i(xi) maximizes

Exj ui(bi, β
I
j(xj);xi, xj) = Prob(bi > βI

j(xj)) · (xi − bi) + Prob(bi = βI
j(xj))

xi − bi
2

=
bi − aj
cj

(xi − bi).

Therefore, player i’s best response solves

max
aj≤bi≤aj+cj

bi − aj
cj

(xi − bi).

The unconstrained maximum is
b̄i =

xi + aj
2

.

If b̄i ∈ [aj , aj + cj ], then the best response bi(xi) = b̄i. If b̄i < aj , then bi(xi) = aj . If b̄i > aj + cj , then
bi(xi) = aj + cj .
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Thus, player i’s best response is

βI
i(xi) =


aj , if xi ≤ aj ,

xi+aj

2 , if aj < xi ≤ aj + 2cj ,

aj + cj , if xi > aj + 2cj .

Since we want the strategy βI
i to be a linear function on [0, 1], there are only three cases:

[0, 1] ⊆


(−∞, aj ],

[aj , aj + 2cj ],

[aj + 2cj ,∞).

Case 1 violates the assumption aj < 1. Case 3 violates the assumptions aj ≥ 0 and cj > 0which imply aj +2cj >

0.

Therefore, [0, 1] ⊆ [aj , aj + 2cj ], i.e., βI
i(xi) =

xi+aj

2 for xi ∈ [0, 1]. Hence for i = 1, 2 and j ̸= i,

ai = aj/2, ci = 1/2.

This yields
a1 = a2 = 0, c1 = c2 = 1/2.

Therefore, the unique linear Bayesian Nash equilibrium is

βI
1(x1) = x1/2, βI

2(x2) = x2/2.

Remark:

• ai ≥ 0 reflects the fact that bids can not be negative.

• ci > 0 implies high bids for high valuation.

• If ai ≥ 1, then, together with ci > 0, it follows that βI
i(xi) > xi for each xi ∈ [0, 1]. With such a bid, player

i would always end up with negative payoffs. This bid function is certainly non-optimal. Thus we assume
ai < 1.

• The linear Bayesian Nash equilibrium is a symmetric equilibrium.

5.31 Variation: Two-player first-price sealed-bid auction (risk-averse, uniform distribution, linear Bayesian Nash equi-
librium).

Consider the following first-price sealed-bid auction. Suppose there are two bidders, i = 1, 2. The bidders’ valu-
ations x1 and x2 for a good are independently and uniformly distributed on [0, 1]. The bidders have preferences
represented by the utility functions ui(x) = xαi where 0 < αi ≤ 1, i = 1, 2. Bidders submit their bids b1 and b2
simultaneously. The higher bidder wins the good and pays her bidding price, so that x = xi − bi; the other bidder
gets and pays nothing, so that x = 0. In the case that b1 = b2, the winner is determined by a flip of a coin. Find a
Bayesian Nash equilibrium (b1, b2) in which bi is a linear function of vi, i = 1, 2.

Answer. • There are two players;
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• Type spaces: T1 = {x1 | x1 ∈ [0, 1]}, and T2 = {x2 | x2 ∈ [0, 1]};

• Action spaces: A1 = A2 = [0, 1];

• Strategy spaces: S1 = {functions from T1 to A1} and S2 = {functions from T2 to A2};

• Payoff:

πi(bi, bj ;xi, xj) =

(xi − bi)
αi , if bi > bj ;

0, if bi < bj .

Suppose (βI
1, β

I
2) is a linear Bayesian Nash equilibrium, where

βI
i(xi) = ai + cixi, i = 1, 2,

where ai, ci are to be determined. Here we should assume ci > 0.

• For bidder 1, when x1 is drawn, given bidder 2’s strategy βI
2, βI

1(x1) will maximize her expected payoff

E[Π1(b1, b
I
2(x2);x1, x2)] = (x1 − b1)

α1 Prob(βI
2(x2) < b1)

= (x1 − b1)
α1 Prob

(
x2 <

b1 − a2
c2

)
= (x1 − b1)

α1
b1 − a2
c2

.

Note that when bidder 1 chooses b1, the probability that b1 = βI
2(x2) is 0, and thus we do not need to consider

that.

Therefore first order condition implies

β1(x1) =
α1

1 + α1
a2 +

1

1 + α1
x1,

and hence
a1 =

α1

1 + α1
a2, c1 =

1

1 + α1
. (5.5)

• For bidder 2, when x2 is drawn, given bidder 1’s strategy βI
1, βI

2(x2) will maximize her expected payoff

E[Π2(β
I
1(x1), b2;x1, x2)] = (x2 − b2)

α2 Prob(βI
1(x1) < b2)

= (x2 − b2)
α2 Prob

(
x1 <

b2 − a1
c1

)
= (x2 − b2)

α2
b2 − a1
c1

.

Note that when bidder 2 chooses b2, the probability that b2 = βI
1(x1) is 0, and thus we do not need to consider

that.

Therefore first order condition implies

βI
2(x2) =

α2

1 + α2
a1 +

1

1 + α2
x2,

and hence
a2 =

α2

1 + α2
a1, c2 =

1

1 + α2
. (5.6)

Solving Equations (5.5) and (5.6), we will have a1 = a2 = 0.
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5.5 Revenue comparison

5.32 With Proposition 5.17 in hand, we can compute how much each bidder expects to pay in equilibrium in a second-
price auction.

Fix a bidder—say, 1—and let the randomvariableY1 ≡ Y
(N−1)
1 denote the highest value among theN−1 remaining

bidders. In other words, Y1 is the highest-order statistic ofX2, X3, . . . , XN . LetG denote the distribution function
of Y1. Clearly, for all y,G(y) = F (y)N−1. In a second-price auction, the expected payment by a bidder with value
x can be written as

mII(x) = Prob[Win]× E[second highest bid | x is the highest bid]

= Prob[Win]× E[second highest value | x is the highest value]

= G(x)× E[Y1 | Y1 < x]

5.33 In a first-price auction, the winner pays what she bids, and thus the expected payment by a bidder with value x is

mI(x) = Prob[Win]× Amount bid = G(x)× E[Y1 | Y1 < x],

which is the same as in a second-price auction.

5.34 Figure 2.3 ?????

5.35 Proposition: With independently and identically distributed private values, the expected revenue in a first-price
auction is the same as the expected revenue in a second-price auction.

Proof. (1) The ex ante expected payment of a particular bidder in either auction is

Ex[m
A(x)] =

∫ ω

0

mA(x)f(x) dx =

∫ ω

0

(∫ x

0

yg(y) dy
)
f(x) dx,

where A is I or II.

(2) The expected revenue accruing to the seller E[RA] is just N times the ex ante expected payment of an indi-
vidual bidder, so

E[RA] = N × E[mA(X)] = N

∫ ω

0

y
(
1− F (y)

)
g(y) dy.

Furthermore, note that the density of Y (N)
2 , the second highest ofN values, f (N)

2 (y) = N
(
1− F (y)

)
f
(N−1)
1 (y),

and since f (N−1)
1 (y) = g(y), we can write

E[RA] =

∫ ω

0

yf
(N)
2 (y) dy = E[Y (N)

2 ].

In either case, the expected revenue is just the expectation of the second-highest value.

5.36 Remark: In specific realizations of the values the price at which the object is sold may be greater in one auction or
the other.

Example: There are two bidders and values are uniformly distributed. The equilibrium strategy in a first-price
auction is βI(x) = 1

2x.
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• If the realized value are such that 1
2x1 > x2, then the revenue in a first-price auction, 1

2x1, is greater than that
in a second-price auction, x2.

• If 1
2x1 < x2 < x1, the opposite is true.

5.37 Definition: Suppose X is a random variable with distribution function F . Let Z be a random variable whose
distribution conditional onX = x,H(· | X = x) is such that for all x, E[Z | X = x] = 0. Suppose Y = X + Z

is the random variable obtained from the first drawingX from F and then for each realizationX = x, drawing a
Z from the conditional distributionH(· | X = x) and adding it toX . LetG be the distribution of Y . We will say
thatG is a mean-preserving spread of F .

As the name suggests, while the random variables X and Y have the same mean—that is, E[X] = E[Y ]—the
variable Y is “more spread out” thanX since it is obtained by adding a “noise” variable Z toX .

5.38 Given two distributions F and G with the same mean, we say that F second-order stochastically dominates G if
for all concave functions U : [0, ω] → R,∫ ω

0

U(x)f(x) dx ≥
∫ ω

0

U(y)g(y) dy,

where f and g are density functions of F andG respectively.

5.39 Lemma: G is a mean-preserving spread of F if and only if F second-order stochastically dominatesG. (Exercise)

5.40 Proposition: With independently and identically distributed private values, the distribution of equilibrium prices
in a second-price auction LII is a mean-preserving spread of the distribution of equilibrium prices in a first-price
auction LI.

Proof. (1) The revenue in a second-price auction is RII = Y
(N)
2 ; the revenue in a first-price auction is RI =

β(Y
(N)
1 ), where β ≡ βI is the symmetric equilibrium strategy.

(2) We have

E
[
RII | RI = p

]
= E

[
Y

(N)
2 | Y (N)

1 = β−1(p)
]
= E

[
Y

(N−1)
1 | Y (N−1)

1 < β−1(p)
]
.

(3) By Equation (5.4), we have
E
[
RII | RI = p

]
= β

(
β−1(p)

)
= p.

(4) Therefore, there exists a random variable Z such that the distribution ofRII is the same as that ofRI +Z and
E[Z | RI = p] = 0. Thus, LII is a mean-preserving spread of LI.

5.41 Remark: It is clear that the revenues in a second-price auction are more variable than in its first-price counterpart.
In the former, the prices can range between 0 and ω; in the latter, they can only range between 0 and E[Y1].

From the perspective of the seller, a second-price auction is risker than a first-price auction. Every risk-averse seller
prefers the latter to the former, assuming that bidders are risk-neutral.

Figure?????
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5.6 Reserve prices

5.42 In the analysis so far, the seller has played a passive role. Indeed, we have implicitly assumed that the seller parts
with the object at whatever price it will fetch. In many instances, sellers reserve the right to not sell the object if
the price determined in the auction is lower than some threshold amount—say, r > 0. Such a price is called the
reserve price. We now examine what effect such a reserve price has on the expected revenue accruing to the seller.

5.43 Reserve prices in second-price auctions: Suppose that the seller sets a “small” reserve price of r > 0.

A reserve price makes no difference to the behavior of the bidders; it is still a weakly dominant strategy to bid one’s
value.

(1) Since the price at which the object is sold can never be lower than r, no bidder with a value x < r can make
a positive profit.

(2) Consider bidder 1 with value x1 ≥ r, and suppose that p1 = maxj ̸=i bj is the highest competing bid.

(3) By bidding x1 , bidder 1 will win if x1 > p1 and not if x1 < p1 (if x1 = p1 , bidder 1 is indifferent between
winning and losing).

(4) Suppose, however, that she bids an amount z1 < x1.

• If p1 > x1 > z1, she still loses no matter what r is.
• If x1 > z1 ≥ p1 and z1 ≥ r, then she still wins, and her profit is still x1 − max{p1, r}.
• If x1 > p1 > z1, then she loses no matter what r is, whereas if she had bid x1, she would have made a

positive profit.

Thus, bidding less than x1 can never increase her profit but in some circumstances may actually decrease it.

(5) A similar argument shows that it is not profitable to bid more than x1.

The expected payment of a bidder with value r is now just rG(r), and the expected payment of a bidder with value
x ≥ r is

mII(x, r) = rG(r) + [G(x)−G(r)] · E[Y1 | Y1 < x] = rG(r) +

∫ x

r

yg(y) dy,

since the winner pays the reserve price r whenever the second-highest bid is below r.

5.44 Reserve prices in first-price auctions: Suppose that the seller sets a “small” reserve price of r > 0.

(1) Since the price at which the object is sold can never be lower than r, no bidder with a value x < r can make
a positive profit.

(2) if βI is a symmetric equilibrium of the first-price auction with reserve price r, it must be that βI(r) = r. This
is because a bidder with value r wins only if all other bidders have values less than r and, in that case, can win
with a bid of r itself.

(3) In all other respects, the analysis of a first-price auction is unaffected, and in a manner analogous to Proposi-
tion 5.25, we obtain

d
dx
(
G(x)βI(x)

)
= xg(x),

and hence
G(x)βI(x)−G(r)βI(r) =

∫ x

r

yg(y) dy.

(4) Therefore,

βI(x) = r
G(r)

G(x)
+

1

G(x)

∫ x

r

yg(y) dy = E
[
max{Y (N−1)

1 , r} | Y (N−1)
1 < x

]
.
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The expected payment of a bidder with value x ≥ r is

mI(x, r) = G(x)× βI(x) = rG(r) +

∫ x

r

yg(y) dy,

which is the same as the expected payment in a second-price auction. Proposition 5.35 generalizes so as to accom-
modate reserve prices.

5.45 The ex ante expected payment of a bidder is

Ex[m
A(X, r)] =

∫ ω

r

mA(x, r)f(x) dx = r
(
1− F (r)

)
G(r) +

∫ ω

r

y
(
1− F (y)

)
g(y) dy.

5.46 Suppose that the seller attaches a value x0 ∈ [0, ω). This means that if the object is left unsold, the seller would
derive a value x0 from its use.

(1) The seller would not set a reserve price r that is lower than x0.

(2) The expected payoff of the seller from setting a reserve price r ≥ x0 is

Π0 = N × E[mA(X, r)] + F (r)Nx0.

(3) Differentiating this with respect to r, we obtain,

dΠ0

dr
= N [1− F (r)− rf(r)]G(r) +NG(r)f(r)x0.

Recall that the hazard rate function associated with the distribution F is defined as λ(x) = f(x)/[1−F (x)].
Thus, we have

dΠ0

dr
= N [1− (r − x0)λ(r)](1− F (r))G(r).

5.47 A revenue maximizing seller should always set a reserve price that exceeds her value:

• If x0 > 0, then the derivative of Π0 at r = x0 is positive, implying that the seller should set a reserve price
r > x0.

• If x0 = 0, then the derivative ofΠ0 at r = 0 is 0, but as long as λ(r) is bounded, the expected payment attains
a local minimum at 0, so a small reserve price leads to an increase in revenue.

5.48 Example: A reserve price that exceeds x0 leads to an increase in revenue.

Consider a second-price auction with two bidders and suppose x0 = 0.

• By setting a positive reserve price r, the seller runs the risk that if the highest value among the bidders, Y (N)
1 ,

is smaller than r, the object will remain unsold. The probability of this event is F (r)2, and the loss is at most
r, so for small r, the expected loss is at most rF (r)2.

• This potential loss is offset by the possibility that while the highest value Y (N)
1 exceeds r, the second highest

value Y (N)
2 is smaller than r. The application of the reserve pricemeans that the object will be sold for r rather

than Y (N)
2 . The probability of this event is 2F (r)(1− F (r)), and the gain is of order r, so the expected gain

is of order 2rF (r)(1− F (r)).

• The expected gain from setting a small reserve price exceeds the expected loss. This fact is sometimes referred
to as the exclusion principle, since it implies, in effect, that it is optimal for the seller to exclude some bidders—
those with value below the reserve price—from the auction even though their values exceed x0.
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5.49 The first-order condition implies that the optimal reserve price r∗ must satisfy

(r∗ − x0)λ(r
∗) = 1.

If λ(·) is increasing, this condition is also sufficient:

• If r < r∗, then dΠ0

dr (r) > 0;

• If r > r∗, then dΠ0

dr (r) < 0;

• Hence r∗ is global optimal.

5.50 Note that the optimal reserve price does not depend on the number of bidders. The reason is that a reserve price
comes into play only in instances when there is a single bidder with a value that exceeds the reserve price.

5.51 A positive reserve price r results in bidders with low values, lying below r, being excluded from the auction. Since
their equilibrium payoffs are zero, such bidders are indifferent between participating in the auction or not. An
alternative instrument that the seller can also use to exclude buyers with low values is an entry fee—a fixed and
non-refundable amount that bidders must pay the seller prior to the auction in order to be able to submit bids.

A reserve price of r excludes all bidders with value x < r. The same set of bidders can be excluded by asking each
bidder to pay an entry fee e = G(r)×r. Notice that after paying e, the expected payoff of a bidder with value x < r

would not find it worthwhile to pay e in order to participate in the auction.

5.52 A reserve price raises the revenue to the seller but may have a detrimental effect on efficiency.

Suppose that the value that the seller attaches to the object is 0.

• In the absence of a reserve price, the object will always be sold to the highest bidder and in the symmetric
model studied here, that is also the bidder with the highest value. Thus, both the first- and second-price
auctions allocate efficiently in the sense that the object ends up in the hands of the person who values it the
most.

• If the seller sets a reserve price r > 0, there is a positive probability that the object will remain in the hands
of the seller and this is inefficient.

This simple observation implies that there may be a trade-off between efficiency and revenue.

5.53 Remark: We have implicitly assumed that the seller can credibly commit to not sell the object if it cannot be sold at
or above the reserve price. This commitment is particularly important because by setting a reserve price the seller
is giving up some gains from trade. Without such a commitment, buyers may anticipate that the object, if durable,
will be offered for sale again in a later auction and perhaps with a lower reserve price. These expectations may affect
their bidding behavior in the first auction. Indeed, in the absence of a credible “no sale” commitment, the problem
confronting a seller is analogous to that of a durable goods monopoly. In both, a potential future sale may cause
buyers to wait for lower prices, and this may reduce demand today. In effect, potential future sales may compete
with current sales. In response, the seller may have to set lower reserve prices today than would be optimal in a
one-time sale or if the good were perishable.

5.54 Remark: We have assumed that the reserve price is publicly announced prior to the auction. In many situations,
especially in art auctions, it is announced that there is a reserve price, but the level of the reserve price is not
disclosed. In effect, the seller can opt to not sell the object after learning all the bids and thus the price. But this is
rational only if the seller anticipates that in a future sale the price will be higher. Once again, buyers’ expectations
regarding future sales may affect the bidding in the current auction.
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5.7 The revenue equivalence principle

5.55 The auction forms we consider all have the feature that buyers are asked to submit bids—amounts of money they
are willing to pay. These bids alone determine who wins the object and how much the winner pays.

5.56 Wewill say that an auction is standard if the rules of the auction dictate that the personwho bids the highest amount
is awarded the object.

• Both first- and second-price auctions are standard.

• A third-price auction, discussed later, in which the winner is the person bidding the highest amount but pays
the third-highest bid is standard.

• An example of a nonstandard method is a lottery in which the chances that a particular bidder wins is the
ratio of her bid to the total amount bid by all. Such a lottery is nonstandard, since the person who bids the
most is not necessarily the one who is awarded the object.

5.57 Given a standard auction form, A, and a symmetric equilibrium βA of the auction, letmA(x) be the equilibrium
expected payment by a bidder with value x.

5.58 Theorem (Revenue equivalence principle): Suppose that values are independently and identically distributed and
all bidders are risk neutral. Then any symmetric and increasing equilibrium of any standard auction, such that the
expected payment of a bidder with value zero is zero, yields the same expected revenue to the seller.

Proof. (1) Consider a standard auction form, A, and fix a symmetric equilibrium β of A. Let mA(x) be the
equilibrium expected payment in auctionA by a bidder with value x. Suppose that β is such thatmA(0) = 0.

(2) Consider a particular bidder—say, 1—and suppose other bidders are following the equilibrium strategy β.
Consider the expected payoff of bidder 1 with value x and when she bids β(z) instead of the equilibrium bid
β(x).

(3) Bidder 1 wins when her bid β(z) exceeds the highest competing bid β(Y (N−1)
1 ), or equivalently, when z >

Y
(N−1)
1 .

(4) Her expected payoff is
ΠA(z, x) = G(z)x−mA(z),

whereG(z) ≡ F (z)N−1 is the distribution of Y (N−1)
1 .

(5) Maximization results in the first-order condition,

∂

∂z
ΠA(z, x) = g(z)x− d

dz
mA(z) = 0.

(6) At an equilibrium it is optimal to bid z = x, so we obtain that for all y,

d
dy
mA(y) = g(y)y.

(7) Thus,

mA(x) = mA(0) +

∫ x

0

yg(y) dy =

∫ x

0

yg(y) dy = G(x)× E
[
Y

(N−1)
1 | Y (N−1)

1 < x
]
. (5.7)

Since the right-hand side does not depend on the particular auction formA, the expected revenue of the seller
is constant.
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5.59 Example: Values are uniformly distributed on [0, 1].

F (x) = x, thenG(x) = xN−1 and for any standard auction satisfyingmA(0) = 0, we have

mA(x) =
N − 1

N
xN ,

and
E
[
mA(X)

]
=

N − 1

N(N + 1)
,

while the expected revenue is

E[RA] = N × E
[
mA(X)

]
=
N − 1

N + 1
.

5.8 All-pay auction

5.60 Consider an all-pay auction with the following rules. Each bidder submits a bid, and the highest bidder wins the
object. The unusual aspect of an all-pay auction is that all bidders pay what they bid.

The all-pay auction is a useful model of lobbying activity. In such models, different interest groups spend money—
their “bids”—in order to influence government policy and the group spending the most—the highest “bidder”—is
able to tilt policy in its favored direction, thereby “winning the auction.” Since money spent on lobbying is a sunk
cost borne by all groups regardless of which group is successful in obtaining its preferred policy, such situations
have a natural all-pay aspect.

5.61 Suppose for the moment that there is a symmetric, increasing equilibrium of the all-pay auction such that the
expected payment of a bidder with value 0 is 0. Then we know that the expected payment in such an equilibrium
must be the same as in Equation (5.7).

Now in an all-pay auction, the expected payment of a bidder with value x is the same as her bid—she forfeits her bid
regardless of whether she wins or not—and so if there is a symmetric, increasing equilibrium of the all-pay auction
βAP, it must be that

βAP(x) = mA(x) =

∫ x

0

yg(y) dy

5.62 Proposition: βAP(x) = mA(x) =
∫ x

0
yg(y) dy is a symmetric equilibrium strategy in an all-pay auction.

Proof. (1) Suppose that all bidders except 1 are following the strategy β ≡ βAP.

(2) If she bids an amount β(z), the expected payoff of a bidder with value x is

G(z)x− β(z) = G(z)x−
∫ z

0

yg(y) dy.

(3) By integrating by parts, we have

G(z)(x− z) +

∫ z

0

G(y) dy,

which is the same as the payoff obtained in a first-price auction by bidding βI(z) against other bidders who
are following βI.
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(4) For the same reasons as in Proposition 5.25, this is maximized by choosing z = x. Thus, βAP is a symmetric
equilibrium.

5.9 Third-price auction

5.63 Suppose that there are at least three bidders. Consider a sealed-bid auction in which the highest bidder wins the
object but pays a price equal to the third-highest bid. A third-price auction, as it is called, is a purely theoretical
construct: There is no known instance of such a mechanism actually being used. It is an interesting construct
nevertheless; equilibria of such an auction display some unusual properties, and it leads to a better understanding
of the workings of the standard auction forms.

5.64 Suppose that there are three bidders, and for the moment that there is a symmetric, increasing equilibrium of the
third-price auction—say, βIII—such that the expected payment of a bidder with value 0 is 0.

(1) Since the assumptions of Theorem 5.58 are satisfied, we must have that for all x, the expected payment of a
bidder with value x in a third-price auction is

mIII(x) =

∫ x

0

yg(y) dy. (5.8)

(2) On the other hand, consider bidder 1, and suppose that she wins in equilibrium when her value is x.

(3) Winning implies that her value x exceeds the highest of the other N−1 values—that is, Y (N−1)
1 < x. The

price bidder 1 pays is the random variable βIII(Y
(N−1)
2 ), where Y (N−1)

2 is the second highest of the N−1
other values.

(4) The density of Y (N−1)
2 , conditional on the event that Y (N−1)

1 < x, can be written as

f
(N−1)
2 (y | Y (N−1)

1 < x) =
1

F
(N−1)
1 (x)

× (N − 1)
(
F (x)− F (y)

)
× f

(N−2)
1 (y),

where (N − 1)
(
F (x) − F (y)

)
is the probability that Y (N−1)

1 exceeds Y (N−1)
2 = y but is less than x, and

f
(N−2)
1 (y) is the density of the highest ofN−2 values.

(5) Thus, the expected payment of a bidder with value x in a third-price auction can then be written as

mIII(x) = F
(N−1)
1 (x)× E

[
βIII(Y

(N−1)
2 ) | Y (N−1)

1 < x
]
. (5.9)

(6) Equating Equations (5.8) and (5.9), we obtain that∫ x

0

yg(y) dy = F
(N−1)
1 (x)× E

[
βIII(Y

(N−1)
2 ) | Y (N−1)

1 < x
]
.

(7) SinceG(x) = F (x)N−1, differentiating with respect to x, we have

(N − 1)f(x)

∫ x

0

βIII(y)f
(N−2)
1 (y) dy = xg(x) = x(N − 1)f(x)F (x)N−2.
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(8) This can be rewritten as ∫ x

0

βIII(y)f
(N−2)
1 (y) dy = xF (x)N−2 = xF

(N−2)
1 (x).

(9) Differentiating once more with respect to x,

βIII(x)f
(N−2)
1 (x) = xf

(N−2)
1 (x) + F

(N−2)
1 (x),

and rearranging this we get

βIII(x) = x+
F

(N−2)
1 (x)

f
(N−2)
1 (x)

= x+
F (x)

(N − 2)f(x)
.

This derivation, however, is valid only if βIII is increasing, and from the preceding equation it is clear that a sufficient
condition for this is that the ratio F/f is increasing. This condition is the same as requiring that lnF is a concave
function or equivalently that F is log-concave.

5.65 Proposition: Suppose that there are at least three bidders and F is log-concave. Symmetric equilibrium strategies
in a third-price auction are given by

βIII(x) = x+
F (x)

(N − 2)f(x)
.

5.66 Remark: An important feature of the equilibrium in a third-price auction is worth noting: The equilibrium bid
exceeds the value.

• Notice that for much the same reason as in a second-price auction, it is dominated for a bidder to bid below
her value in a third-price auction.

• Unlike in a second-price auction, however, it is not dominated for a bidder to bid above her value. Fix some
equilibrium bidding strategies of the third-price auction—say, β—and suppose that all bidders except 1 follow
β. Suppose bidder 1 with value x bids an amount b > x.

– If β(Y (N−1)
2 ) < x < β(Y

(N−1)
1 ) < b, this is better than bidding b, since it results in a profit, whereas

bidding x would not.

– If, however, x < β(Y
(N−1)
2 ) < β(Y

(N−1)
1 ) < b, then bidding b results in a loss.

When b−x ≡ ϵ is small, the gain in the first case is of order ϵ2, whereas the loss in the second case is of order
ϵ3. Thus, it is optimal to bid higher than one’s value in a third-price auction.

5.67 Remark: Comparing equilibrium bids in first-, second-, and third-price auctions in case of symmetric private val-
ues, we have seen that

βI(x) < βII(x) = x < βIII(x).

(assuming that the distribution of values is log-concave).

5.10 Uncertain number of bidders

5.68 In many auctions—particularly in those of the sealed-bid variety—a bidder may be uncertain about how many
other interested bidders there are. In this section we show how the standard model may be amended to include this
additional uncertainty.
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5.69 LetN = {1, 2, . . . , N} denote the set of potential bidders and letA ⊆ N be the set of actual bidders—that is, those
that participate in the auction. All potential bidders draw their values independently from the same distributionF .

5.70 Consider an actual bidder i ∈ A and let pn denote the probability that any participating bidder assigns to the event
that she is facingn other bidders. Thus, bidder i assigns the probability pn that the number of actual bidders isn+1.
The exact process by which the set of actual bidders is determined from the set of potential bidders is symmetric
so every actual bidder holds the same beliefs about how many other bidders she faces; the probabilities pn do not
depend on the identity of the bidder nor on her value. It is also important that the set of actual bidders does not
depend on the realized values.

5.71 (1) Consider a standard auctionA and a symmetric and increasing equilibrium β of the auction. Note that since
bidders are unsure about how many rivals they face, β does not depend on n.

(2) Consider the expected payoff of a bidder with value xwho bids β(z) instead of the equilibrium bid β(x). The
probability that she faces n other bidders is pn. In that case, she wins if Y (n)

1 , the highest of n values drawn
from F , is less than z and the probability of this event is G(n)(z) = F (z)n. The overall probability that she
will win when she bids β(z) is therefore

G(z) =
N−1∑
n=0

pnG
(n)(z).

(3) her expected payoff from bidding β(z) when her value is x is then

ΠA(z, x) = G(z)x−mA(z).

(4) Suppose that the object is sold using a second-price auction. Even though the number of rival buyers that
a particular bidder faces is uncertain, it is still a dominant strategy for her to bid her value. The expected
payment in a second-price auction of an actual bidder with value x is therefore

mII(x) =
N−1∑
n=0

pnG
(n)(z)E

[
Y

(n)
1 | Y (n)

1 < x
]
.

(5) Suppose that the object is sold using a first-price auction and that β is a symmetric and increasing equilibrium.
The expected payment of an actual bidder with value x is

mI(x) = G(x)β(x).

(6) The revenue equivalence principle implies that for all x,mI(x) = mII(x), so

β(x) =
N−1∑
n=0

pnG
(n)(x)

G(x)
E
[
Y

(n)
1 | Y (n)

1 < x
]
=

N−1∑
n=0

pnG
(n)(x)

G(x)
β(n)(x),

where β(n) is the equilibrium bidding strategy in a first-price auction in which there are exactly n+1 bidders
for sure.

5.72 The equilibrium bid for an actual bidder with value x when she is unsure about the number of rivals she faces is a
weighted average of the equilibrium bids in auctions when the number of bidders is known to all.
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Chapter 6
Mixed-strategy Nash equilibrium
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6.1 Mixed-strategy Nash equilibrium

6.1 The notion of mixed-strategy Nash equilibrium is designed to model a steady state of a game in which the partici-
pants’ choices are not deterministic but are regulated by probabilistic rules.

6.2 Consider a strategic gameG = ⟨N, (Ai), (ui)⟩. The mixed extension ofG is defined as the strategic game�

⟨N, (∆(Ai)), (Ui)⟩,

in which ∆(Ai) is the set of probability distributions over Ai, and Ui : ×j∈N ∆(Aj) → R that assigns to each
α = (αj) ∈ ×j∈N∆(Aj) the expected value under ui of the lottery induced by α.

If A is finite, then
Ui(α) =

∑
a∈A

(
α1(a1)α2(a2) · · ·αn(an)

)
· ui(a).

6.3 We refer to a member of ∆(Ai) as a mixed strategy of player i; we refer to a member of Ai as a pure strategy. In
strategic games, a pure strategy can be viewed as a degenerate mixed strategy that attaches probability one to the
pure strategy.

6.4 Definition: Amixed-strategyNash equilibriumof a strategic game is a (pure-strategy)Nash equilibriumof itsmixed�

extension.

6.5 Proposition: A profile a∗ is a pure-strategy Nash equilibrium if and only if 1 ◦ a∗ = (1 ◦ a∗i , 1 ◦ a∗−i) is a mixed-
strategy Nash equilibrium, where 1 ◦ a∗i is i’s degenerate mixed strategy that attaches probability one to a∗i .

95
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Proof. “⇒”: Since a∗ is a pure-strategy Nash equilibrium, for any αi ∈ ∆(Ai), we have

Ui(1 ◦ a∗) = ui(a
∗) ≥

∑
ai

αi(ai) · ui(ai, a∗−i) = Ui(αi, 1 ◦ a∗−i).

“⇐”: Since 1 ◦ a∗ is a mixed-strategy Nash equilibrium, for any ai ∈ Ai, we have

ui(a
∗) = Ui(1 ◦ a∗) ≥ Ui(1 ◦ ai, 1 ◦ a∗−i) = ui(ai, a

∗
−i).

6.6 Proposition: A profile α∗ is a mixed-strategy Nash equilibrium if and only if for each player i,

Ui(α
∗) ≥ Ui(1 ◦ ai, α∗

−i) for all ai ∈ Ai.

6.7 Some games, e.g., matching pennies, may possess no pure-strategyNash equilibrium. However, every finite strategic
game must have at least one mixed-strategy Nash equilibrium.

Nash’s theorem: Every finite strategic game ⟨N, (Ai), (ui)⟩ has a mixed-strategy Nash equilibrium.

Proof. Consider the mixed extension ⟨N, (∆(Ai)), (Ui)⟩ of the strategic game. Since expected payoff is linear in
probabilities, Ui is both continuous and quasi-concave on∆(Ai). Since∆(Ai) is a simplex in a finite-dimensional
Euclidean space, there is a mixed-strategy Nash equilibrium.

6.8 For the finite setX and δ ∈ ∆(X), we denote δ(x) the probability that δ assigns to x ∈ X . Define the support of
δ to be the set of elements x ∈ X for which δ(x) > 0, i.e.,

support(δ) = {x ∈ X | δ(x) > 0}.

6.9 Lemma: A profile α∗ is a mixed-strategy Nash equilibrium if and only if for each i and for each a∗i ∈ support(α∗
i ),

Ui(1 ◦ a∗i , α∗
−i) ≥ Ui(1 ◦ ai, α∗

−i) for all ai ∈ Ai.

Proof. “⇒”: If there is a∗i ∈ support(α∗
i ) which is not a best response to α∗

−i, then i can increase his payoff by
transferring probability from a∗i to a best-response action; hence α∗

i is not an equilibrium strategy.

“⇐”: If each a∗i ∈ support(α∗
i ) is a best response to α∗

−i, then i can not do better by choosing a different mixed
strategy αi; hence α∗

i is optimal against α∗
−i.

6.10 Corollary: Every action in the support of any player’s equilibrium strategy yields that player the same equilibrium
payoff, i.e.,

Ui(a
∗
i , α

∗
−i) = Ui(α

∗) for all a∗i ∈ support(α∗
i ).

6.11 A profile α∗ is a mixed-strategy Nash equilibrium if and only if

(1) for every player i, no action in Ai yields, given α∗
−i, a payoff to player i that exceeds his equilibrium payoff,

and

(2) the set of actions that yield, given α∗
−i, a payoff less than his equilibrium payoff has α∗

i -measure zero.



6.2. Examples 97

6.2 Examples

6.12 Example: Matching pennies.

Player 1

Player 2
Head Tail

Head 1,−1 −1, 1
Tail −1, 1 1,−1

Figure 6.1: Matching pennies

Answer. Let p1 = (r, 1−r) be amixed strategy in which player 1 plays Head with probability r. Let p2 = (q, 1−q)
be a mixed strategy for player 2. Then given p2, we have

U1(Head, p2) = q · 1 + (1− q) · (−1) = 2q − 1,

U1(Tail, p2) = q · (−1) + (1− q) · 1 = 1− 2q.

Player 1 chooses Head if and only if U1(Head, p2) ≥ U1(Tail, p2) if and only if q ≥ 1
2 . Hence

B1(q) =


{1}, if 1 ≥ q > 1

2 ,

{0}, if 1
2 > q ≥ 0,

[0, 1], if q = 1
2 .

Similarly, we have

U2(p1,Head) = r · (−1) + (1− r) · 1,

U2(p1,Tail) = r · 1 + (1− r) · (−1),

and

B2(r) =


{0}, if 1 ≥ r > 1

2 ,

{1}, if 1
2 > r ≥ 0,

[0, 1], if r = 1
2 .

We draw the graphs ofB1(q) andB2(r) together:

The graphs of the best-response correspondences intersect at only one point ( 12 ,
1
2 ), and in this case r = q = 1

2 .
Thus (p∗1, p∗2) is the unique mixed-strategy Nash equilibrium, where p∗1 = ( 12 ,

1
2 ) and p∗2 = ( 12 ,

1
2 ).

6.13 We may also use Corollary 6.10 to find mixed-strategy Nash equilibrium. Suppose that (p∗1, p∗2) is a mixed-strategy
Nash equilibrium, then{

p∗2(Head) · 1 + p∗2(Tail) · (−1) = p∗2(Head) · (−1) + p∗2(Tail) · 1

p∗1(Head) · (−1) + p∗1(Tail) · 1 = p∗1(Head) · 1 + p∗1(Tail) · (−1)

Thus, for i = 1, 2, p∗i (Head) = p∗i (Tail) = 1
2 .

6.14 Example [OR Example 34.1]: Battle of sexes.
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B∗

1
(q)

B∗

2
(r)

O 1

2
1

1

2

1

mixed NE

r

q

Figure 6.2: Matching pennies

Mary

Peter
Opera Fight

Opera 2, 1 0, 0
Fight 0, 0 1, 2

Figure 6.3: Battle of the sexes.

Answer. Suppose that (α1, α2) is a mixed-strategy Nash equilibrium.

If α1(O) is zero or one, we obtain the two pure-strategy Nash equilibria.

If 0 < α1(O) < 1 then, given α2, by Corollary 6.10 player 1’s actions “Opera” and “Fight” must yield the same
payoff, so that we must have 2α2(O) = α2(F ) and thus α2(O) = 1

3 .

Since 0 < α2(O) < 1 it follows from the same result that player 2’s actions “Opera” and “Fight” must yield the
same payoff, so that α1(O) = 2α1(F ), or α1(O) = 2

3 .

Thus the only non-degenerate mixed-strategy Nash equilibrium of the game is
(
( 23 ,

1
3 ), (

1
3 ,

2
3 )
)
.

6.15 Example [OR Exercise 35.1]: Guessing the average.

Let n(n ≥ 2) people play the following game. Simultaneously, each player i announces a number xi in the set
{1, 2, . . . ,K}. A prize of $1 is split equally between all the people whose number is closest to 2

3 · x1+···+xn

n . Show
that the game has a unique mixed-strategy Nash equilibrium, in which each player’s strategy is pure.

Answer.

6.16 Example [OR Exercise 35.2]: An investment race.

Two investors are involved in a competition with a prize of one dollar. Each investor can spend any amount in the
interval [0, 1]. Thewinner is the investor who spends themost; in the event of a tie each investor receives half dollar.
Formulate this situation as a strategic game and find its mixed-strategy Nash equilibria.

Answer.

6.17 Example [OR Exercise 36.1]: Guessing right.

Players 1 and 2 each choose a member of the set {1, 2, . . . ,K}. If the players choose the same number then player
2 pay one dollar to player 1; otherwise no payment is made. Each player maximizes his expected monetary payoff.
Find the mixed-strategy Nash equilibria of this game.
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Answer.

6.18 Example [OR Exercise 36.2]: Air strike.

Army A has a single plane with which it can strike one of three possible targets. ArmyB has one anti-aircraft gun
that can be assigned to one of the targets. The value of target k is vk, with v1 > v2 > v3 > 0. Army A can destroy
a target only if the target is undefended and A attacks it. Army A wishes to maximize the expected value of the
damage and army B wishes to minimize it. Formulate the situation as a (strictly competitive) strategic game and
find its mixed-strategy Nash equilibria.

Answer.

6.19 Example: Symmetric games.

A game is symmetric if each player has the same set of pure strategies and

uσ(i)
(
sσ(1), sσ(2), . . . , sσ(n)

)
= ui(s1, s2, . . . , sn)

for each player iwhenever the n-vector (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n). Prove that a finite
symmetric game possesses a symmetric (mixed-strategy) Nash equilibrium—a Nash equilibrium in which every
player chooses the same strategy.

Answer.

6.20 Example: Contest.

n agents contest for a prize. Let agent i outlay xi to influence the outcome of the political contest in his favor. The
probability that agent i will be the successful contender is

pi(x) =

0, if xi is not a maximal element of x1, x2, . . . , xn,
1
m , if xi is one ofmmaximal elements of x1, x2, . . . , xn.

For each i, assume agent i’s valuation is vi, which is publicly known.

Show that

(i) No agent will, in equilibrium, spend a positive amount β with a strictly positive probability.

(ii) If there are only two agents, they must have the same maximum spending level.

(iii) The minimum spending level is zero for each agent.

(iv) At most one agent spends zero with strictly positive probability.

Given these results, if we define 1 − Gi(xi) to be the probability that agent i spends more than xi, then Gi(xi) is
continuous over (0,∞).

Proof. (i) (1) Suppose that agent i does spend β with strictly positive probability.
(2) Then the probability that a rival agent j beats agent i rises discontinuously as a function of xj at xj = β.
(3) Therefore, there is some ϵ > 0, such that agent j will bid on the interval [β − ϵ, β] with zero probability,

for all j ̸= i.
(4) But then agent i is better off spending β − ϵ rather than β since his probability of winning is the same,

contradicting the hypothesis that xj = β is an equilibrium strategy.
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(ii) Routine.

(iii) (1) Suppose that agent i spends less than β with zero probability, where β > 0.

(2) Then for any j ̸= i, any spending level between zero and β yields a negative payoff since the probability
of winning is zero.

(3) Since other agents can always spend zero it follows that no agent will spend in the interval (0, β).

(4) But then agent i could reduce his spending level below β without altering the probability of winning,
contradicting the hypothesis that agent i could, in equilibrium, do no better than take β as his minimal
spending level.

(iv) Routine.

6.3 Interpretation of mixed-strategy Nash equilibrium

6.21 “Outside of Las Vegas we do not spin roulettes” by Ariel Rubinstein (Econometrica 1991).

6.22 A mixed strategy entails a deliberate decision by a player to introduce randomness into his behavior.

6.23 We can interpret amixed-strategyNash equilibrium as a stochastic steady state. The players have information about
the frequencies with which actions were taken in the past; each player uses these frequencies to form his belief about
the future behavior of the other players, and hence formulate his action.

6.24 Mixed strategies as pure strategies in an extended game.

Example:

Mary

Peter
Opera Fight

Opera 2, 1 0, 0
Fight 0, 0 1, 2

This game has two pure-strategy Nash equilibria (Opera, Opera) and (Fight, Fight), and one mixed-strategy Nash
equilibrium ( 23 ◦ Opera + 1

3 ◦ Fight, 13 ◦ Opera + 2
3 ◦ Fight).

Now suppose that each player has three possible “moods”, determined by factors he does not understand. Each
player is in each of these moods one-third of the time, independently of the other player’s mood; his mood has no
effect on his payoff.

Assume that Mary chooses Opera whenever she is in moods 1 or 2 and Fight when she is in mood 3, and Pater
chooses Opera when he is in mood 1 and Fight when he is in moods 2 or 3.

Viewing the situation as a Bayesian game in which the three types of each player correspond to his possible moods,
this behavior defines a pure-strategy Nash equilibrium corresponding exactly to the mixed-strategy Nash equilib-
rium of the original game.

Note that the mood (signal) is private and independent.

6.25 Mixed strategies as beliefs.
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6.3.1 Purification

6.26 Mixed strategies as pure strategies in a perturbed game, due to Harsanyi (International Journal of Game Theory,
1973).

A mixed-strategy Nash equilibrium in a game of complete information can almost always be interpreted as a pure-
strategy Bayesian Nash equilibrium in a closely related game with a little bit of incomplete information.

A game with complete informationG A sequence of games with incomplete informationGk

Mixed-strategy NE f Pure-strategy BNE fk

k → ∞

k → ∞

Figure 6.4

6.27 Example: Battle of sexes.

Mary

Peter
Opera Fight

Opera 2, 1 0, 0
Fight 0, 0 1, 2

This game has two pure-strategy Nash equilibria (Opera, Opera) and (Fight, Fight), and one mixed-strategy Nash
equilibrium ( 23 ◦ Opera + 1

3 ◦ Fight, 13 ◦ Opera + 2
3 ◦ Fight).

(1) Suppose Mary and Peter are not completely sure each other’s payoff: if both attend Opera, Mary’s payoff is
2 + tm; if both attend Fight, Peter’s payoff is 2 + tp, where tm is privately known by Mary and tp is privately
known by Peter, and tm and tp are independently drawn from a uniform distribution on [0, x].

This can be expressed as a Bayesian gameG = ⟨Am, Ap;Tm, Tp;Pm, Pp;um, up⟩, where

• Am = Ap = {Opera, Fight}
• Tm = Tp = [0, x]

• The payoffs are

Mary

Peter
Opera Fight

Opera 2 + tm, 1 0, 0
Fight 0, 0 1, 2 + tp

(2) In general, Mary’s and Peter’s strategies are sm : [0, x] → {Opera, Fight} and sp : [0, x] → {Opera, Fight},
which are defined by

sm(tm) =

Opera, if tm ≥ m,

Fight, if tm < m,
sp(tp) =

Fight, if tp ≥ p,

Opera, if tp < p.

Given sm(tm) and sp(tp), let

δm = Prob(Mary plays Opera) =
x−m

x
, δp = Prob(Peter plays Fight) =

x− p

x
.
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As x → 0, since tm and tp are in [0, x], the Bayesian game converges to the original game of complete infor-
mation.

(3) Given Peter’s strategy sp(tp) (or say p), Mary’s expected payoff, if she plays Opera, is

(2 + tm) · Prob(Peter chooses Opera) + 0 · Prob(Peter chooses Fight) = (2 + tm)(1− δp) + 0 · δp,

and, if she plays Fight, is
0 · (1− δp) + 1 · δp.

Thus Mary playing Opera is optimal if and only if

(2 + tm)(1− δp) ≥ δp ⇔ tm ≥ δp
1− δp

− 2 =
x

p
− 3.

Letm = x
p − 3. Then sm(tm) is the best response strategy to sp(tp).

(4) Similarly, given Mary’s strategy sm(tm) (or saym), Peter’s expected payoff is 0 · δm + (2 + tp)(1 − δm) for
Fight and 1 · δm + 0 · (1− δm) for Opera.

Thus playing Fight is optimal if and only if

(2 + tp)(1− δm) ≥ δm ⇔ tp ≥ δm
1− δm

− 2 =
x

m
− 3.

Let p = x
m − 3. Then, sp(tp) is the best response strategy to sm(tm).

(5) Hence, (s∗m, s∗p) is a Bayesian Nash equilibrium if and only if

x

p∗
− 3 = m∗,

x

m∗ − 3 = p∗.

Thus,

p∗ = m∗ =

√
9 + 4x− 3

2
.

As x→ 0, the Bayesian game converges to the original game of complete information, and

δ∗m = δ∗p =
x− p∗

x
= 1−

√
9 + 4x− 3

2x
→ 2

3
.

6.28 Example: Matching pennies.

It has no pure-strategy Nash equilibrium but has one mixed-strategy Nash equilibrium: each player playsH with
probability 1/2.

H T
H 1,−1 −1, 1
T −1, 1 1,−1

GameG

(1) Consider the following game with incomplete informationG(x): where

• Type spaces: T1 = T2 = [0, x], t1 and t2 are i.i.d. random variables and uniformly distributed on [0, x].

• Action spaces: A1 = A2 = {H,T}.
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H T
H 1 + t1,−1 −1, 1− t2
T −1, 1 1,−1

GameG(x)

• Strategy spaces: S1 = S2 = {si is a function from [0, x] to {H,T}}.

Note thatG(0) = G.

InG(x), suppose (s∗1, s∗2) is a BayesianNash equilibrium, p = Prob({t1 : s∗1(t1) = H}), and q = Prob({t2 : s∗2(t2) =
H}).

(2) For player 1, given his type t1 and player 2’s strategy s∗2, his expected payoff is

E[u1(a1, s∗2) | t1] =

(1 + t1) · q − 1 · (1− q), a1 = H;

−1 · q + 1 · (1− q), a1 = T.

ThusH is a best response if and only if (1 + t1) · q − 1 · (1− q) ≥ −1 · q + 1 · (1− q), that is, t1 ≥ 2
q − 4.

Hence, we have
p = Prob({t1 : s∗1(t1) = H}) = 1− 2/q − 4

x
(6.1)

(3) For player 2, given his type t2 and player 1’s strategy s∗1, his expected payoff is

E[u2(a2, s∗1) | t2] =

−1 · p+ 1 · (1− p), a2 = H;

(1− t2) · p+ (−1) · (1− p), a2 = T.

ThusH is a best response if and only if−1 · p+1 · (1− p) ≥ (1− t2) · p+(−1) · (1− p), that is, t2 ≥ 4− 2
p .

Hence, we have
q = Prob({t2 : s∗2(t2) = H}) = 1− 4− 2/p

x
(6.2)

(4) Rewriting Equations (6.1) and (6.2), we will have

p =
2

4 + (q − 1)x
, q =

2

4 + (1− p)x
.

As x → 0, p, q → 1
2 , that is, the Bayesian Nash equilibrium will converge to the mixed-strategy Nash equi-

librium inG.

6.29 Example: Matching pennies (cont.).

(1) Consider the following game with incomplete informationG(x): where

H T
H 1 + t1,−1 −1, 1 + t2
T −1, 1 1,−1

GameG(x)

• Type spaces: T1 = T2 = [0, x], t1 and t2 are i.i.d. random variables and uniformly distributed on [0, x].

• Action spaces: A1 = A2 = {H,T}.
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• Strategy spaces: S1 = S2 = {si is a function from [0, x] to {H,T}}.

Note thatG(0) = G.

InG(x), suppose (s∗1, s∗2) is a BayesianNash equilibrium, p = Prob({t1 : s∗1(t1) = H}), and q = Prob({t2 : s∗2(t2) =
H}).

(2) For player 1, given his type t1 and player 2’s strategy s∗2, his expected payoff is

E[u1(a1, s∗2) | t1] =

(1 + t1) · q − 1 · (1− q), a1 = H;

−1 · q + 1 · (1− q), a1 = T.

ThusH is a best response if and only if (1 + t1) · q − 1 · (1− q) ≥ −1 · q + 1 · (1− q), that is, t1 ≥ 2
q − 4.

Hence, we have
p = Prob({t1 : s∗1(t1) = H}) = 1− 2/q − 4

x
(6.3)

(3) For player 2, given his type t2 and player 1’s strategy s∗1, his expected payoff is

E[u2(a2, s∗1) | t2] =

−1 · p+ 1 · (1− p), a2 = H;

(1 + t2) · p+ (−1) · (1− p), a2 = T.

ThusH is a best response if and only if−1 · p+1 · (1− p) ≥ (1+ t2) · p+(−1) · (1− p), that is, t2 ≤ 2
p − 4.

Hence, we have
q = Prob({t2 : s∗2(t2) = H}) = 2/p− 4

x
(6.4)

(4) Rewriting Equations (6.3) and (6.4), we will have

p =
2

4 + qx
, q =

2

4 + (1− p)x
.

As x → 0, p, q → 1
2 , that is, the Bayesian Nash equilibrium will converge to the mixed-strategy Nash equi-

librium inG.

6.30 Harsanyi shows that any mixed strategy equilibrium can be “purified” in a similar way. For a complete proof, see
Govindan, Reny and Robson, A short proof of Harsanyi’s purification theorem, Games and Economics Behavior 45
(2003), 363–374.
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Correlated equilibrium
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7.1 Motivation

7.1 We discuss an interpretation of a mixed-strategy Nash equilibrium as a steady state in which each player’s action
depends on a signal that she receives from “nature”. In this interpretation the signals are private and independent.

7.2 What happens if the signals are not private and independent?

Example:

Mary

Peter
Opera Fight

Opera 2, 1 0, 0
Fight 0, 0 1, 2

Opera Fight
Opera p(x) = 1

2 0
Fight 0 p(y) = 1

2

Suppose that both players observe a random variable that takes each of the two values x and y with probability
1
2 . Then there is a new equilibrium, in which both players choose Opera if the realization is x and Fight if the
realization is y.

Given each player’s information, her action is optimal: if the realization is x then she knows that the other player
chooses Opera, so that it is optimal for him to choose Opera, and symmetrically if the realization is y.

One interpretation of this equilibrium is that the players observe the outcomeof a public coin toss, which determines
which of the two pure-strategy Nash equilibria they play.

7.3 In this example the players observe the same random variable. More generally, their information may be less than
perfectly correlated.

105
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Player 1

Player 2
L R

T 6, 6 2, 7
B 7, 2 0, 0

L R
T p(y) = 1

3 p(z) = 1
3

B p(x) = 1
3 0

Suppose that there is a random variable that takes the three values x, y, and z equally likely, and player 1 knows only
that the realization is either x or that it is a member of {y, z}, while player 2 knows only that it is either a member
of {x, y} or that it is z. That is, player 1’s information partition is {{x}, {y, z}} and player 2’s is {{x, y}, {z}}.

A strategy of player 1 consists of two actions: one that she uses when she knows that the realization is x and one
that she uses when she knows that the realization is a member of {y, z}. Similarly, a strategy of player 2 consists of
two actions, one for {x, y} and one for z.

A player’s strategy is optimal if, given the strategy of the other player, for any realization of her information she can
do no better by choosing an action different from that dictated by her strategy.

Then there is a new equilibrium, theywill choose (B,L), (T,L) and (T,R)whenx, y and z are realized respectively.
The equilibrium payoff profile are (5, 5).

Neither player has an incentive to deviate. Consider player 1. At state x, player 1 knows that player 2 plays L and
thus it is optimal for player 1 to play B; at states y and z, player 1 assigns equal probabilities to player 2 playing L
andR, so that it is optimal for player 1 to play T .

7.4 Another advantage: The game above has two pure-strategy Nash equilibria (T,R), (B,L) and one mixed-strategy
Nash equilibrium ( 23 ◦ T + 1

3 ◦B, 23 ◦ L+ 1
3 ◦R).

The expected payoff for the new equilibrium is 7 · 1
3 + 2 · 1

3 + 6 · 1
3 = 5 which is higher than the expected payoff

of the mixed-strategy Nash equilibrium.

x

y

2 714
3

2

7

14
3

0

(5,5)

Figure 7.1

7.2 Correlated equilibrium

7.5 Definition: A correlated equilibrium, denoted by ⟨(Ω, π), (Pi), (σi)⟩, of a strategic game ⟨N, (Ai), (ui)⟩ consists�

of

• a finite probability space (Ω, π) (Ω is a set of states and π is a probability measure on Ω)



7.2. Correlated equilibrium 107

• for each player i a partition Pi of Ω (player i’s information partition)

• for each player i a function σi : Ω → Ai with σi(ω) = σi(ω
′) whenever ω, ω′ ∈ Pi for some Pi ∈ Pi (σi is

player i’s strategy)

such that for every i and every function τi : Ω → Ai for which τi(ω) = τi(ω
′) whenever ω, ω′ ∈ Pi for some

Pi ∈ Pi (i.e. for every strategy of player i) we have∑
ω∈Ω

π(ω) · ui
(
σ−i(ω), σi(ω)

)
≥
∑
ω∈Ω

π(ω) · ui
(
σ−i(ω), τi(ω)

)
.

Intuitively, correlated equilibrium allows us to get at preplay communication without explicit modeling the com-
munication process.

7.6 The condition of correlated equilibrium can be written as: for every player i, every information cell Pi ∈ Pi with
π(Pi) > 0, every ai ∈ Ai,∑

ω∈Pi

π(ω | Pi) · ui
(
σ(ω)

)
≥
∑
ω∈Pi

π(ω | Pi) · ui
(
σ−i(ω), ai

)
.

7.7 Proposition: LetG = ⟨N, (Ai), (ui)⟩ be a finite strategic game. Every probability distribution over outcomes that
can be obtained in a correlated equilibrium of G can be obtained in a correlated equilibrium in which the set of
states isA and for each i player i’s information partition consists of all sets of the form {a ∈ A | ai = bi} for some
action bi ∈ Ai.

7.8 Proof. Let ⟨(Ω, π), (Pi), (σi)⟩ be a correlated equilibrium of G. Then ⟨(Ω′, π′), (P ′
i), (σ

′
i)⟩ is also a correlated

equilibrium, where Ω′ = A, π′(a) = π({ω ∈ Ω | σ(ω) = a}) for each a ∈ A, P ′
i consists of sets of the type

{a ∈ A | ai = bi} for some bi ∈ Ai, and σ′
i is defined by σ′

i(a) = ai.

For every i and every function τ ′i : A→ Ai for which τ ′i(a) = τ ′i(a
′) whenever ai = a′i, we have∑

a

π′(a) · ui
(
σ′
−i(a), σ

′
i(a)

)
=
∑
a

π({ω | σ(ω) = a}) · ui(a−i, ai) =
∑
a

∑
ω∈σ−1(a)

π(ω) · ui(a−i, ai)

=
∑
ω

π(ω) · ui
(
σ(ω)

)
≥
∑
ω

π(ω) · ui
(
σ−i(ω), τ

′
i(σ(ω))

)
=
∑
a

∑
ω∈σ−1(a)

π(ω) · ui
(
a−i, τ

′
i(a)

)
=
∑
a

π′(a) · ui
(
σ′
−i(a), τ

′
i(a)

)
.

7.9 Remark: This result allows us to confine attention, when calculating correlated equilibrium payoffs, to equilibria in
which the set of states is the set of outcomes. Note however that such equilibria may have no natural interpretation.

7.10 Corollary: A correlated equilibrium can be viewed simply as π ∈ ∆(A) such that, for every player i, and every
function γi : Ai → Ai, ∑

a∈A

π(a) · ui(a) ≥
∑
a∈A

π(a) · ui(a−i, γi(ai)).

Thus, a mixed-strategy Nash equilibrium is a special form of correlated equilibrium: π ∈ ×j∈N∆(Aj).

7.11 Proposition: Let G = ⟨N, (Ai), (ui)⟩ be a strategic game. Any convex combination of correlated equilibrium
payoff profiles ofG is a correlated equilibrium payoff profile ofG.
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7.12 Proof. Let u1, . . . , uK be correlated equilibrium payoff profiles and let (λ1, . . . , λK) ∈ RK with λk ≥ 0 for all
k and

∑
k λ

k = 1. For each value of k let ⟨(Ωk, πk), (Pk
i ), (σ

k
i )⟩ be a correlated equilibrium that generates the

payoff profile uk; without loss of generality assume that the sets Ωk are disjoint. The following defines a correlated
equilibrium for which the payoff profile is

∑
k λ

kuk. Let

• Ω = ∪kΩ
k, and for any ω ∈ Ω define π(ω) = λkπk(ω) where ω ∈ Ωk;

• For each i, let Pi = ∪kPk
i , where ω ∈ Ωk;

• Define σi by σi(ω) = σk
i (ω) where ω ∈ Ωk.

For every i and every function τi : Ω → Ai for which τi(ω) = τi(ω
′) whenever ω, ω′ ∈ Pi for some Pi ∈ Pi, let

τki (ω) = τi(ω) where ω ∈ Ωk. Then∑
ω∈Ω

π(ω) · ui
(
σ−i(ω), σ(ω)

)
=
∑
k

∑
ω∈Ωk

π(ω) · ui
(
σ−i(ω), σi(ω)

)
=
∑
k

∑
ω∈Ωk

λkπk(ω) · ui
(
σk
−i(ω), σ

k
i (ω)

)
≥
∑
k

∑
ω∈Ωk

λkπk(ω) · ui
(
σk
−i(ω), τ

k
i (ω)

)
=
∑
ω∈Ω

π(ω) · ui
(
σ−i(ω), τi(ω)

)
.

7.13 Remark: The set of Nash equilibrium outcomes is generally not convex.

7.14 One of the advantages of correlated equilibria is that they are computationally less expensive than are Nash equilib-
ria. This can be captured by the fact that computing a correlated equilibrium only requires solving a linear program
whereas solving a Nash equilibrium requires finding its fixed point completely. Another way of seeing this is that it
is possible for two players to respond to each other’s historical plays of a game and end up converging to a correlated
equilibrium. (See Foster and Vohra, GEB, 1996)

7.3 Examples

7.15 Example [OR Exercise 48.1]: Consider the following three-player game. Player 1 chooses one of the two rows,
player 2 chooses one of the two columns, and player 3 chooses one of the three tables.

L R
T 0, 0, 3 0, 0, 0
B 1, 0, 0 0, 0, 0

A

L R
T 2, 2, 2 0, 0, 0
B 0, 0, 0 2, 2, 2

B

L R
T 0, 0, 0 0, 0, 0
B 0, 1, 0 0, 0, 3

C

(i) Show that the pure-strategy equilibrium payoffs are (1, 0, 0), (0, 1, 0), and (0, 0, 0).

(ii) Show that there is a correlated equilibrium in which player 3 chooses B and players 1 and 2 play (T, L) and
(B,R) with equal probabilities.

(iii) Explain the sense in which player 3 prefers not to have the information that players 1 and 2 use to coordinate
their actions.

7.16 Example: Find the set of correlated equilibrium payoffs of battle of sexes.
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Mary

Peter
Opera Fight

Opera 2, 1 0, 0
Fight 0, 0 1, 2

Answer. We may assume

• Ω = {(O,O), (O,F ), (F,O), (FF )},

• P1 =
{
{(O,O), (O,F )}, {(F,O), (F, F )}

}
, and P2 =

{
{(O,O), (F,O)}, {(O,F ), (F, F )}

}
,

• σ1(a1, a2) = a1 and σ2(a1, a2) = a2.

Let the probability distribution π be as follows:

x = π
(
(O,O)

)
, y = π

(
(O,F )

)
, z = π

(
(F,O)

)
, w = π

(
(F, F )

)
.

The prior probabilities of the four outcomes are summarized by the following table:

O F
O x y
F z w

By Corollary 7.10, we have the following inequalities:

�����XXXXXxu1(O,O) +�����XXXXXyu1(O,F ) + zu1(F,O) + wu1(F, F ) ≥�����XXXXXxu1(O,O) +�����XXXXXyu1(O,F ) + zu1(O,O) + wu1(O,F ),

xu1(O,O) + yu1(O,F ) +�����XXXXXzu1(F,O) +�����XXXXXwu1(F, F ) ≥ xu1(F,O) + yu1(F, F ) +�����XXXXXzu1(F,O) +�����XXXXXwu1(F, F ),

�����XXXXXxu2(O,O) + yu2(O,F ) +�����XXXXXzu2(F,O) + wu2(F, F ) ≥�����XXXXXxu2(O,O) + yu2(O,O) +�����XXXXXzu2(F,O) + wu2(F,O),

xu2(O,O) +�����XXXXXyu2(O,F ) + zu2(F,O) +�����XXXXXwu2(F, F ) ≥ xu2(O,F ) +�����XXXXXyu2(O,F ) + zu2(F, F ) +�����XXXXXwu2(F, F ).

That is,
w ≥ 2z, 2x ≥ y, 2w ≥ y, x ≥ 2z.

In other words, both x and w must be greater then 2z and y
2 . The set of correlated equilibrium payoffs is equal to

u1 = 2x+ w, u2 = x+ 2w,

subject to min{x,w} ≥ max
{

y
2 , 2z

}
, x+ y + z + w = 1, and x, y, z, w ≥ 0.

Draw the feasible payoff set. Notice that the efficient frontier is obviously part of the correlated equilibriumpayoff set
because any point on the frontier can be achieved by a linear combination of the twopure-strategyNash equilibrium.
The question is how inefficient the payoff can be. To make the payoff small, we want to put as much weight on y
and z as possible without violating min{x,w} ≥ max{y

2 , 2z}. This means that we want to set x = w = y
2 = 2z.

Let z = ϵ. Then y = 4ϵ, x = w = 2ϵ. This means ϵ = 1
9 . The corresponding payoff is ( 23 ,

2
3 ) which is the payoff

for the mixed-strategy equilibrium. In this case, the set of correlated payoffs, as shown in Figure 7.2, is

the convex hull of
{(

2

3
,
2

3

)
, (2, 1), (1, 2)

}
.
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x

y

0 2
3

1 2

2
3

1

2

Figure 7.2

7.17 Example: Find the set of correlated equilibrium payoffs of the following game.

a b
a 2, 2 0, 3
b 3, 0 −1,−1

Answer. We may assume

• Ω = {(a, a), (a, b), (b, a), (b, b)}

• P1 =
{
{(a, a), (a, b)}, {(b, a), (b, b)}

}
and P2 =

{
{(a, a), (b, a)}, {(a, b), (b, b)}

}
• σi(ai, aj) = ai

Let x = π((a, a)), y = π((a, b)), z = π((b, a)), and w = π((b, b)). The prior probabilities of the four outcomes
are summarized by the following table:

a b
a x y
b z w

For the strategy to be a correlated equilibrium, x, y, z and w must satisfy the following conditions:

2x ≥ 3x− y ⇔ x ≤ y,

2z ≤ 3z − w ⇔ w ≤ z,

2x ≥ 3x− z ⇔ x ≤ z,

2y ≤ 3y − w ⇔ w ≤ y.

The set of correlated equilibrium payoffs is equal to

{(U1, U2) | U1 = 2x+ 3z − w,U2 = 2x+ 3y − w},
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where
max{x,w} ≤ min{y, z}, x, y, z, w ≥ 0 and x+ y + z + w = 1.

Result:
the convex hull of

{(
2

3
,
2

3

)
,

(
5

3
,
5

3

)
, (3, 0), (0, 3)

}
.

7.18 Question: How to compute the set of payoff vectors of correlated equilibria? (Hint: Fourier-Motzkin elimination)

http://en.wikipedia.org/wiki/Fourier%E2%80%93Motzkin_elimination
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Chapter 8
Rationalizability
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In equilibrium each player’s choice is optimal given his correct belief about opponents’ actions. However, it is not clear
how each player can know the other players’ equilibrium actions.

“Nash behavior is neither a necessary consequence of rationality, nor a reasonable empirical proposition.”

—Berheim (Econometrica, 1984, p. 1007)

For this reason, game theorists have developed solution concepts that do not entail this assumption.

We study some solution concepts, in which the players’ beliefs about each other’s actions are not assumed to be correct,
but are constrained by considerations of rationality: each player believes that the actions taken by every other player is
a best response to some belief, and, further, each player assumes that every other player reasons in this way and hence
thinks that every other player believes that every other player’s action is a best response to some belief, and so on.

8.1 Rationalizability

8.1 The basic idea behind the notion of rationalizability is that “rational” behavior must be justified by “rational” beliefs
and conversely, “rational” beliefs must be based on “rational” behavior.

8.2 The idea can be illustrated explicitly by a two-person game as follows:

• A strategy of i is called 1-justifiable if it is a best response to some beliefs of i about the strategic choice of j.

• A strategy of i is called t-justifiable (where t ≥ 2) if it is a best response to a belief of i that assigns positive
probabilities only to (t− 1)-justifiable strategies of j.

113
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• A strategy of i is rationalizable if it is a best response to a belief of i that assigns positive probabilities only to
t-justifiable strategies of j for all t ≥ 1.

8.3 Example:

Player 1

Player 2
L R

T 3, 0 0, 1
M 0, 0 3, 1
B 1, 1 1, 0

(1) For player 1, T andM are 1-justifiable; for player 2, L andR are 1-justifiable.

(2) For player 1, T andM are 2-justifiable; for player 2,R is 2-justifiable.

(3) For player 1,M is 3-justifiable; for player 2,R is 3-justifiable.

(4) It is clear thatM andR are t-justifiable for players 1 and 2 respectively for t > 3.

8.4 The notion aims to be weak; it determines not what actions should actually be taken, but what actions can be ruled
out with confidence.

8.5 Definition: For simplicity, we restrict attention to finite games unless otherwise stated explicitly.�

• A product subsetX = ×j∈NXj ⊆ A is rationalizable if there exists a collection
(
(Xt

j)j∈N

)∞
t=0

of sets with
X0

j = Xj andXt
j ⊆ Aj for all j and t ≥ 1 such that for each j ∈ N , each t ≥ 0, and each aj ∈ Xt

j , there is
a belief µt+1

j (aj) ∈ ∆(Xt+1
−j ) such that aj is a best response (in Aj) to the belief µt+1

j (aj) of player j.

• We call each ai ∈ Xi a rationalizable action for player i.

The interpretation of Xt+1
j is that it is the set of all actions aj of player j that may be used to justify some other

player i’s action ai ∈ Xt
i .

8.6 We take a belief of player i to be a probability distribution onXt
−i, i.e. µ ∈ ∆(Xt

−i), which allows each player to
believe opponents’ actions are correlated. In the original definition in Bernheim (Econometrica, 1984) and Pearce
(Econometrica, 1984), i’s belief is a product of independent probability distributions on Xt

−i, one for each of the
other players, i.e. µ ∈ ×j ̸=i∆(Xt

j). In general, ×j ̸=i∆(Xt
j) ⫋ ∆(×j ̸=iX

t
j).

8.7 Example: In the following game, there are three players; player 1 chooses one of the two rows, player 2 chooses one
of the two columns, and player 3 chooses one of the four tables. All three players obtain the same payoffs, given by
the numbers in the boxes.

L R
U 8 0
D 0 0

M1

L R
U 4 0
D 0 4

M2

L R
U 0 0
D 0 8

M3

L R
U 3 3
D 3 3

M4

We claim that M2 is rationalizable if player 3’s belief about his opponents’ actions are correlated, but is not ratio-
nalizable if he is restricted to beliefs that are products of independent probability distributions.

Let Z1 = {U,D}, Z2 = {L,R} and Z3 = {M2}.

• U of player 1 is a best response to a belief that assigns probability one to (L,M2) andD is a best response to
the belief that assigns probability one to (R,M2);
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• L of player 2 is a best response to a belief that assigns probability one to (U,M2) and R is a best response to
the belief that assigns probability one to (D,M2);

• M2 of player 3 is a best response to the belief in which players 1 and 2 play (U,L) and (D,R) with equal
probabilities.

However,M2 is not a best response to any pair of independent mixed strategies and is thus not rationalizable under
the modified definition in which each player’s belief is restricted to be a product of independent beliefs.

In order forM2 to be a best response, we need

4pq + 4(1− p)(1− q) ≥ max{8pq, 8(1− p)(1− q), 3},

where (p, 1 − p) and (q, 1 − q) are mixed strategies of players 1 and 2 respectively. This inequality is not satisfied
for any values of p and q.

8.8 Shown below are the payoffs of player 1 in a three-person game. In this game, player 1 has three pure strategies L,
M and R. Player 2 chooses rows and player 3 chooses either matrix A or matrix B. For players 2 and 3, neither
strategy weakly dominates the other for any player. Is L a rationalizable strategy?

L M R
U 6 10 0
D 6 10 10

A

L M R
U 6 10 10
D 6 0 10

B

Answer. L is a best response to the belief 1
2 ◦ (U,A) + 1

2 ◦ (D,B). Hence, L is rationalizable.

8.9 Alternative definition:�

• A product subset Z = ×j∈NZj ⊆ A is rationalizable if for each j ∈ N , each aj ∈ Zj , there exists µj(aj) ∈
∆(Z−j) such that aj is a best response (in Aj) to the belief µj(aj).

• We call each zi ∈ Zi a rationalizable action for player i.

8.10 Proof of the equivalence.

“⇒”: Suppose that ai ∈ Ai is rationalizable according to Definition 8.5. Then we have a product subsetX which
is rationalizable according to Definition 8.5 and ai ∈ Xi. Let

Z = ×j∈N (∪∞
t=0X

t
j).

For each j ∈ N , each aj ∈ Zj = ∪tX
t
j , there exists t, such that aj ∈ Xt

j , and hence there is a belief µt+1
j (aj) ∈

∆(Xt+1
−j ) to which aj is a best response of player j. Since ∆(Xt+1

−j ) ⊆ ∆(Z−j), we have µt+1
j (aj) ∈ ∆(Z−j),

and hence Z is rationalizable according to Definition 8.9. Therefore ai ∈ Xi ⊆ Zi is rationalizable according to
Definition 8.9.

“⇐”: If ai ∈ Ai is rationalizable according to Definition 8.9. Then we have a product subset Z which is rational-
izable according to Definition 8.9 and ai ∈ Zi. DefineXt

j = Zj for each j ∈ N and each t ≥ 0; henceX = Z is
rationalizable according to Definition 8.5, and ai ∈ Xi is rationalizable according to Definition 8.5.

8.11 Proposition:

• a∗ is a Nash equilibrium if and only if the singleton {a∗} is a rationalizable set.
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• Every action used with positive probability by some player in a correlated equilibrium is rationalizable.

Proof. Denote the strategic game by ⟨N, (Ai), (ui)⟩; choose a correlated equilibrium ⟨(Ω, π), (Pi), (σi)⟩. For each
j, each aj ∈ Aj , take Pj to be an information cell such that on it σj(ω) = aj . Then for every a′j ∈ Aj , we have∑

ω∈Pj

π(ω | Pj) · uj(σ−j(ω), aj) ≥
∑
ω∈Pj

π(ω | Pj) · uj(σ−j(ω), a
′
j).

For each player j ∈ N , letZj be the set of actions that player j uses with positive probability in the equilibrium, i.e.,
Zj = support(σj). For each k ̸= j, based on π(ω | Pj) and σk(ω), define a player j’s belief on player k’s actions∑

ω∈Pj
π(ω | Pj)σk(ω).

Then any aj ∈ Zj is a best response to the the belief
(∑

ω∈Pj
π(ω | Pj)σk(ω)

)
k ̸=j

. The support of this belief is a
subset of Z−j .

8.12 DefineB(R) = ×i∈NBi(R−i), where

Bi(R−i) = {ai | there exists µ ∈ ∆(R−i) such that ai is a best response to the belief µ}.

Then Z is rationalizable if and only if Z ⊆ B(Z), i.e., Z is a fixed point of the correspondenceB.

8.13 If two subsetsR = ×jRj andR′ = ×jR
′
j of A are rationalizable, then ×j(Rj ∪R′

j) is also rationalizable.

For a finite strategic game ⟨N, (Ai), (ui)⟩, define

R∗ =
∪

R is rationalizable

R.

ThenR∗ is the largest (with respect to the set inclusion) rationalizable set.

8.14 Example: find the largest rationalizable set of the following game.

Player 1

Player 2
b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 5, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 0 0,−2 0, 0 10,−1

Answer. R∗ = {a1, a2, a3} × {b1, b2, b3}:

• (a2, b2) is a Nash equilibrium;

• a1 is a best response to b3, b3 is a best response to a3, a3 is a best response to b1, and b1 is a best response to
a1.

• b4 is not rationalizable since if the probability that player 2’s belief assigns to a4 exceeds 1
2 , then b3 yields a

payoff higher than does b4, while if this probability is at most 1
2 then b2 yields a payoff higher than does b4.

• a4 is not rationalizable since without b4 in the support of player 1’s belief, a4 is dominated by a2.
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8.2 Iterated elimination of never-best response

8.15 The notion of rationalizability determines not what actions should actually be taken, i.e., the action which is a
never-best response will not be taken.

8.16 Definition (Never-best response): Given a product subsetX ⊆ A, an action ai of player i is a never-best response�

givenX if it is not a best response to any belief onX of player i, i.e., for each µ ∈ ∆(X−i), there is a∗i ∈ Ai such
that

Ui(ai, µ) < Ui(a
∗
i , µ).

8.17 Notation: For product subsetsX,X ′ ⊆ A whereX ′ ⊆ X , we use the notation

X ↣ X ′

to signify that for any aj ∈ Xj \X ′
j and for any µ ∈ ∆(X−j), there is a∗j ∈ Aj such that

Uj(aj , µ) < Uj(a
∗
j , µ).

The notationX ↣ X ′ does not require that all never-best responses be eliminated; in particular,X ↣ X .

8.18 IENBR: The product setX ⊆ A of outcomes of a finite strategic game is the result of iterated elimination of never-
best response (IENBR) if there is a collection (Xt)Tt=0, where X0 = A, Xt ↣ Xt+1, and X = ∩T

t=0X
t ↣ X ′

only forX ′ = X .

Sometimes, we use IENBR to denote the result of iterated elimination of never-best response.

For infinite games we may need to consider a countably/uncountably infinite number of rounds of elimination.

8.19 Claim: Let X be the result of iterated elimination of never-best response for a finite strategic game, thenX is the
largest rationalizable set.

Proof. SinceR∗ is rationalizable according to Definition 8.9, thenR∗ ⊆ Xt for all t ≥ 0, and henceR∗ ⊆ X .

SinceX ↣ X ′ only forX ′ = X , thenX is rationalizable according to Definition 8.9, and henceX ⊆ R∗.

8.20 This claim implies that the order and speed of iterated elimination of never-best response have no effect on the set
of outcomes that survive.

Every Nash equilibrium survives IENBR.

8.21 Example (Order dependence): Consider the following gameG = ⟨{1}, A1, u1⟩, whereA1 = (0, 1) and u1(x) = x

for all x ∈ A1.

Every strategy is a never-best response. For any x ∈ A1, eliminate in round one all strategies in the set A1 \ {x},
and only x survives IENBR.

8.22 Let NE denote the set of Nash equilibria, and NE |R∗ the set of Nash equilibria in the reduced game after the IENBR
procedure. We have the following NE = NE |R∗ .

Proof. Clearly, NE ⊆ NE |R∗ .

Assume, in negation, that there is a∗ ∈ NE |R∗ but a∗ ̸∈ NE. Then, for some player j, a∗j is not a best response to
a∗−j ∈ R−j inAj , although a∗j is a best response to a∗−j inRj . Suppose that aj is a best response to a∗−j for player
j. Then, aj is eliminated by the IENBR procedure, otherwise a∗j can not be an equilibrium action in the reduced
game. A contradiction.
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8.3 Iterated elimination of strictly dominated actions

8.23 Iterated strict dominance is one of themost basic principles in game theory. The concept of iterated strict dominance
rests on the simple idea: no player would play strategies for which some alternative strategy can yield him/her a
greater payoff regardless of what the other players play and this fact is common knowledge.

8.24 Definition (Strictly dominated action): The action ai ∈ Ai of player i is strictly dominated if there is a mixed�

strategy αi ∈ ∆(Ai) of player i such that

Ui(αi, a−i) > ui(ai, a−i) for all a−i ∈ A−i.

8.25 Lemma: An action is strictly dominated if and only if it is a never-best response.

8.26 Proof. “⇒”: Let ai be strictly dominated by αi. Then for any µ ∈ ∆(A−i), we have

Ui(ai, µ) =
∑

a−i∈A−i

µ(a−i) · ui(ai, a−i) <
∑

a−i∈A−i

µ(a−i) · Ui(αi, a−i) = Ui(αi, µ).

Thus, ai is not a best response to µ, and hence ai is never-best response.

“⇐”: Let ai be not a best response to any µ ∈ ∆(A−i). Consider a two-person zero-sum game

G = ⟨{i,−i}, (∆(Aj)), (Vj)⟩,

where Vi(αi, µ) = Ui(αi, µ)− Ui(ai, µ) for all αi ∈ ∆(Ai) and µ ∈ ∆(A−i).

Clearly, ∆(Aj) is non-empty, convex and compact, and the function Vi(αi, µ) is continuous and linear (hence
quasi-concave) in αi. So, there is a Nash equilibrium (α∗

i , µ
∗) in gameG. Since ai is a never-best response, for any

µ ∈ ∆(A−i),
Vi(α

∗
i , µ) ≥ Vi(α

∗
i , µ

∗) = max
αi∈∆(Ai)

Vi(αi, µ
∗) > 0.

Hence, Ui(α
∗
i , a−i) > ui(ai, a−i) for all a−i ∈ A−i, i.e., ai is strictly dominated by α∗

i .

8.27 Hyperplane separating theorem: Let A and B be convex sets in Rn such that A ∩ B = ∅. Then, there exists
p ∈ Rn \ {0}, such that sup

x∈A

p · x ≤ inf
y∈B

p · y.

Alternative proof for “⇐” (by hyperplane separating theorem). Assume that ai is not strictly dominated and enu-
merate A−i = {a1−i, a

2
−i, . . . , a

k
−i}. Define Vi = ∪βi∈∆(Ai)Vi(βi), where

Vi(βi) =
{
(ūm)km=1 ∈ Rk : Ui(βi, a

m
−i) > ūm, for allm = 1, 2, . . . , k

}
.

Note that Vi is a convex set, and since ai is not strictly dominated,

(
ui(ai, a

1
−i), ui(ai, a

2
−i), . . . , ui(ai, a

k
−i)
)
̸∈ Vi.

Therefore, by hyperplane separating theorem, there is some (pmi )km=1 ∈ Rk \ {0} such that

k∑
m=1

pmi ui(ai, a
m
−i) ≥

k∑
m=1

pmi ū
m for all (ūm)km=1 ∈ Vi. (8.1)
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Note first that pmi ≥ 0 because if pmi < 0, we can pick ūm < 0 so that Equation (8.1) violated. Moreover, since
(pmi )km=1 ̸= 0,

∑k
m=1 p

m
i > 0 and thus we can normalize (pmi )km=1 so that

∑k
m=1 p

m
i = 1. Thus, (pmi )km=1 is a

probability distribution on A−i where pmi is the probability that −i plays am−i. This normalization will not change
Equation (8.1). Note also that for every a′i ∈ Ai,(

ui(a
′
i, a

1
−i)− ϵ, ui(a

′
i, a

2
−i)− ϵ, . . . , ui(a

′
i, a

k
−i)− ϵ

)
∈ Vi(a

′
i)

for any ϵ > 0 and thus,

k∑
m=1

pmi ui(ai, a
m
−i) ≥

k∑
m=1

pmi [ui(a
′
i, a

m
−i)− ϵ] for all a′i ∈ Ai.

Since ϵ > 0 is arbitrary, we get

k∑
m=1

pmi ui(ai, a
m
−i) ≥

k∑
m=1

pmi ui(a
′
i, a

m
−i) for all a′i ∈ Ai.

Thus, ai is a best response. A contradiction.

8.28 Notation: For product subsetsX,X ′ ⊆ A whereX ′ ⊆ X , we use thte notation

X → X ′

to signify that for any aj ∈ Xj \X ′
j , there is α∗

j ∈ ∆(Aj) such that

Uj(α
∗
j , a−j) > uj(aj , a−j) for all a−j ∈ X−j .

8.29 IESDA: The product setX ⊆ A of outcomes of a finite strategic game is the result of iterated elimination of strictly
dominated actions (IESDA) if there is a collection (Xt)Tt=0, whereX0 = A,Xt → Xt+1, andX = ∩T

t=0X
t → X ′

only forX ′ = X .

Sometimes, we use IESDA to denote the result of iterated elimination of strictly dominated actions.

8.30 Claim: For a finite strategic game, the result of IENBR is the same as the result of IESDA. (By Lemma 8.25)

8.31 Example:

Player 1

Player 2
L R

T 3, 0 0, 1
M 0, 0 3, 1
B 1, 1 1, 0

G

Player 1

Player 2
L R

T 3, 0 0, 1
M 0, 0 3, 1

G′

Player 1

Player 2
R

T 0, 1
M 3, 1

G′′

• For player 1,B is strictly dominated by 1
2 ◦ T + 1

2 ◦M , which will be eliminated;

• In reduced gameG′, for player 2, L is strictly dominated byR, which will be eliminated;

• In reduced gameG′′, for player 1, T is strictly dominated byM , which will be eliminated;

• Thus, (M,R) is the only outcome that survives IESDA.
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8.32 Notation: For product subsetsX,X ′ ⊆ A whereX ′ ⊆ X , we use the notation

X ↬ X ′

to signify that for any aj ∈ Xj \X ′
j and for any µ ∈ ∆(X−j), there is a∗j ∈ Xj such that

Uj(a
∗
j , µ) > Uj(aj , µ).

We use the notation
X ↪→ X ′

to signify that for any aj ∈ Xj \X ′
j , there is α∗

j ∈ ∆(Xj) such that

Uj(α
∗
j , a−j) > uj(aj , a−j) for all a−j ∈ X−j .

8.33 The product setX ⊆ A of outcomes of a finite strategic game is the result of iterated elimination of strictly dom-
inated actions’ (IESDA′) if there is a collection (Xt)Tt=0, whereX0 = A,Xt ↪→ Xt+1, andX = ∩T

t=0X
t ↪→ X ′

only forX ′ = X .

The product set X ⊆ A of outcomes of a finite strategic game is the result of iterated elimination of never-best
response’ (IENBR′) if there is a collection (Xt)Tt=0, whereX0 = A, Xt ↬ Xt+1, andX = ∩T

t=0X
t ↬ X ′ only

forX ′ = X .

Similarly, the result of IESDA′ is the same as the result of IENBR′.

8.34 Claim: For a finite strategic game, the result of IESDA is the same as the result of IESDA′.

Proof. Suppose thatX is the result of IESDA′, then it is also the result of IENBR′. Since Z ↬ Z ′ implies Z ↣ Z ′,
IENBR has greater elimination power than IENBR′. Therefore,X ⊆ R∗.

Assume, in negation, that there is a ∈ X \R∗. Since a ∈ X is not rationalizable, for any µ ∈ ∆(X−j), there exists
a′j ∈ Aj such that Uj(a

′
j , µ) > Uj(aj , µ). Take a∗j so that Uj(a

∗
j , µ) = maxa′

j∈Aj
Uj(a

′
j , µ). Then Uj(a

∗
j , µ) >

Uj(aj , µ), and hence a∗j is a best response to µ. It is clear that a∗j is eliminated in the process of IENBR′, otherwise
aj can not survive. A contradiction.

8.35 Summary: R∗ = IENBR = IESDA = IENBR′ = IESDA′

8.4 Examples

8.36 Example: Find all pure-strategyNash equilibria and all pure rationalizable strategies in the following strategic game.

Player 1

Player 2
L C R

U 3, 0 0, 1 1, 0
M 0, 1 3, 0 0, 0
D 1, 0 1, 0 0, 1

Answer. No pure-strategy Nash equilibrium.
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U is a best response for L, L is a best response forM , M is a best response for C , and C is a best response. D is
strictly dominated by 1

2 ◦ U + 1
2 ◦M and eliminated, and consequentlyR is strictly dominated by 1

2 ◦ L+ 1
2 ◦C .

Therefore, U,L,M and C are all pure rationalizable strategies.

8.37 Example [OR Exercise 56.4]: Cournot duopoly.

Consider the strategic game ⟨{1, 2}, (Ai), (ui)⟩ in which Ai = [0, 1] and ui(a1, a2) = ai(1−a1−a2) for i = 1, 2.
Show that each player’s only rationalizable action is his unique Nash equilibrium action.

Answer. Player i’s best response function isBi(aj) = (1− aj)/2; hence the only Nash equilibrium is ( 13 ,
1
3 ).

Since the game is symmetric, the set of rationalizable actions is the same for both players; denote it by Z . Let
m = infZ and M = supZ . Any best response of player i to a belief of player j whose support is a subset of
Z maximizes E[ai(1 − ai − aj)] = ai(1 − ai − E[aj ]), and thus is equal to Bi(E[aj ]) ∈ [Bj(M), Bj(m)] =

[(1 −M)/2, (1 −m)/2]. Hence, we need (1 −M)/2 ≤ m andM ≤ (1 −m)/2, so thatM = m = 1
3 :

1
3 is the

only rationalizable action of each player.

8.38 Example [OR Exercise 56.5]: Guessing the average.

Let n(n ≥ 2) people play the following game. Simultaneously, each player i announces a number xi in the set
{1, 2, . . . ,K}. A prize of $1 is split equally between all the people whose number is closest to 2

3 · x1+···+xn

n . Show
that each player’s equilibrium action is his unique rationalizable action.

8.39 Example [OR Exercise 57.1].

8.40 Example [OR Exercise 63.1].

Consider a variant of the game in Example 2.40 in which there are two players, the distribution of the citizens’
favorite positions is uniform, and each player is restricted to choose a position of the form ℓ/m for some ℓ ∈
{0, . . . ,m}, wherem is even. Show that the only outcome that survives iterated elimination of weakly dominated
actions is that in which both players choose the position 1

2 .

Answer. Only one round of elimination is needed: every action other than 1
2 is weakly dominated by the action 1

2 .
(In fact 1

2 is the only action that survives iterated elimination of strictly dominated actions: on the first roundOut
is strictly dominated by 1

2 , and in every subsequent round each of the remaining most extreme actions is strictly
dominated by 1

2 .)

8.41 Example [OR Exercise 63.2]: Dominance solvability.

A strategic game is dominance solvable if all players are indifferent between all outcomes that survive the iterative
procedure in which all the weakly dominated actions of each player are eliminated at each stage. Give an example
of a strategic game that is dominance solvable but for which it is not the case that all players are indifferent between
all outcomes that survive iterated elimination of weakly dominated actions (a procedure in which not all weakly
dominated actions may be eliminated at each stage).

Answer. Consider the following game. This game is dominance solvable, the only surviving outcome being (T, L).
However, if B is deleted then neither of the remaining actions of player 2 is dominated, so that both (T, L) and
(T,R) survive iterated elimination of dominated actions.
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Player 1

Player 2
L R

T 1, 0 0, 0
B 0, 1 0, 0

Figure 8.1

8.42 Example [OR Exercise 64.1]: Announcing numbers.

Each of two players announces a non-negative integer equal to at most 100. If a1 + a2 ≤ 100, where ai is the
number announced by player i, then each player i receives payoff of ai. If a1 + a2 > 100 and ai < aj then player
i receives ai and player j receives 100− ai; if a1 + a2 > 100 and ai = aj then each player receives 50. Show that
the game is dominance solvable (see the previous exercise) and find the set of surviving outcomes.

Answer. At the first round every action ai ≤ 50 of each player i is weakly dominated by ai + 1. No other action
is weakly dominated, since 100 is a strict best response to 0 and every other action ai ≥ 51 is a best response to
ai+1. At every subsequent round up to 50 one action is eliminated for each player: at the second round this action
is 100, at the third round it is 99, and so on. After round 50 the single action pair (51, 51) remains, with payoffs of
(50, 50).

8.43 Consider the following game:

Player 1

Player 2
L M R

A 4, 3 2, 5 2, 0
B 6, 2 0, 3 1, 4
C 3, 1 1, 0 1, 2
D 3, 0 1, 1 3, 3

(i) Eliminate strictly dominated strategies.

(ii) Find all pure-strategy Nash equilibria and write down the corresponding payoffs.

(iii) Find all mixed-strategy Nash equilibria and write down the corresponding expected payoffs.

Answer. (i) (1) C is strictly dominated by A and will be eliminated;

(2) L is strictly dominated byM and will be eliminated;

(3) B is strictly dominated byD and will be eliminated.

Hence we will obtain the reduced gameG1.

Player 1

Player 2
M R

A 2, 5 2, 0
D 1, 1 3, 3

G1

Player 1

Player 2
M R

A 2, 5 2, 0
D 1, 1 3, 3

G2

(ii) From the payoff table G2, we obtain the pure-strategy Nash equilibria: (A,M) and (D,R) (red pairs) with
payoffs (2, 5) and (3, 3), respectively.
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(iii) Let p1 = (r, 1− r) be a mixed strategy in which player 1 playsA with probability r. Let p2 = (q, 1− q) be a
mixed strategy in which player 2 playsM with probability q. Then player 1’s expected payoff is:

U1(A, p2) = 2q + 2(1− q) = 2,

U1(D, p2) = q + 3(1− q) = 3− 2q.

Hence

r∗(q) ≡ argmax
0≤r≤1

U1(p1, p2) =


{1}, if q > 1

2 ;

{0}, if q < 1
2 ;

[0, 1], if q = 1
2 .

Similarly, player 2’s expected payoff is:

U2(p1,M) = 5r + (1− r) = 1 + 4r,

U2(p1, R) = 3(1− r).

Hence

q∗(r) ≡ argmax
0≤q≤1

U2(p1, p2) =


{1}, if r > 2

7 ;

{0}, if r < 2
7 ;

[0, 1], if r = 2
7 .

We draw the graphs of r∗(q) and q∗(r) together:

q∗(r)

r∗(q)

(0, 1)

(0, 12)

O (1, 0)(27 , 0)

mixed NE (27A+ 5
7D, 12M + 1

2R)

pure NE (D,R)

pure NE (A,M)

r

q

Figure 8.2: Intersection of best-response correspondences.

The graphs of the best response correspondences r∗(q) and q∗(r) intersect at 3 points (r = 2
7 , q =

1
2 ), (0, 0)

and (1, 1). Hence, there are 3 mixed-strategy Nash equilibria:

• (1 ◦A, 1 ◦M) with expected payoff (2, 5),
• (1 ◦D, 1 ◦R) with expected payoff (3, 3),
• ( 27 ◦A+ 5

7 ◦D, 12 ◦M + 1
2 ◦R) with expected payoff (2, 157 ).

8.44 Example: Each individual i = 1, 2, . . . , 100 must choose a number ri ∈ [0, 1]. If an individual chooses a number
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that is the most closed to the value θ
∑100

i=1 ri (where θ ∈ [0, 1] is a parameter), then the individual gets payoff
1; otherwise, the individual gets payoff 0. Formulate this problem as a strategic game, and find all rationalizable
strategies for each θ ∈ [0, 1].

8.5 Iterated elimination of weakly dominated actions

8.45 A player’s action is weakly dominated if the player has another action at least as good no matter what the other
players do and better for at least some vector of actions of the other players.

8.46 The action ai ∈ Ai of player i is weakly dominated if there is a mixed strategy αi ∈ ∆(Ai) of player i such that

Ui(αi, a−i) ≥ ui(ai, a−i) for all a−i ∈ A−i,

Ui(αi, a−i) > ui(ai, a−i) for some a−i ∈ A−i.

8.47 Since a weakly dominated action may be a best response to some belief, rationality does not exclude using such
an action. Yet since there is no advantage to using a weakly dominated act ion, it seems very natural to eliminate
such actions in the process of simplifying a complicated game. Indeed, a “cautious” player who holds full-support
probabilistic beliefs about the opponents’ behavior never uses a weakly dominated action.

8.48 Similarly to IESDA, we can define iterated elimination of weakly dominated actions (IEWDA). Unlike IESDA,
IEWDA might be an order dependent procedure.

8.49 Example:

Player 1

Player 2
L R

T 1, 1 0, 0
M 1, 1 2, 1
B 0, 0 2, 1

• Procedure 1: T is eliminated (it is weakly dominated byM ), then L is eliminated (it is weakly dominated by
R). Thus, the result is {(M,R), (B,R)}.

• Procedure 2: B is eliminated (it is weakly dominated byM ), thenR is eliminated (it is weakly dominated by
L). Thus, the result is {(T, L), (M,L)}.

8.50 Proposition [JR Exercise 7.16]: In a finite strategic game, the set of strategies surviving iterative weak dominance is
non-empty.
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In game theory and economics, it is important and fundamental to account for an agent’s knowledge/beliefs about
uncertainty, as well as the agent’s higher-order knowledge/beliefs about the other agents’ knowledge/beliefs. Interactive
epistemology studies the logic of knowledge and belief in the context of interactions.

We present amodel of knowledge and use it to formalize the idea that an event is “common knowledge”, and to express
formally the assumptions on players’ knowledge that lie behind various solution concepts such as Nash equilibrium and
rationalizability.

9.1 Amodel of knowledge

9.1 There are 3 players, each wearing a white hat. Each player knows that the hats are either white or black and sees the
color of the hats of the other two players. The game is to guess the color of their own hats (which they don’t see).

Obviously, the hat color of the other two players contain no information about one’s own hat. Hence, initially none
of the three players can tell his own hat color. Now, suppose a fourth player announces publicly to all three players
that at least one hat is white. Then the fourth person asks themwhether they now know the color of their hats. They
said no. The fourth player asks the question again. The answer is still no. The fourth player asks the question for
the third time. Now, they all answer correctly. Why?

First, do the three players learn anything that they do not know already from the fourth player? Everyone knows
that some hats are white. Furthermore, everyone knows everyone else knows some hats are white. For example,

125
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player 1 knows players 2 and 3’s hats are white. So, he knows player 2 knows someone’s hat (player 3’s) is white.
Similarly, player 1 also knows player 3 knows player 2’s hat is white. But, does player 1 knows player 2 knows player
3 knows someone’s hat is white? The answer is no. Because player 1 does not know his own hat’s color. If player
1’s hat is white, then player 2 will not know player 3 knows some hats are white. So, it is not common knowledge
before the fourth person’s remark that some hats are white.

Making this fact common knowledge makes a whole lot of difference. Thinking from the perspective of player 1.

(1) Player 1 knows that player 2 knows that player 3 would know immediately that his (person 3’s) hat is white
if both player 1’s and player 2’s hats were black. The fact that player 3 didn’t immediately know that his hat is
white should tell player 2 that either player 1’s or player 2’s hat must be white.

(2) Now if player 1’s hat were black, player 2 should conclude that his (person 2’s) hat must be white. The fact that
player 2 didn’t know tells player 1 that player 1’s hat must be white.

Same logic for the other two persons. The argument can extends to n persons withm white hats.

9.2 The standard semanticmodel of the knowledge of a single decision-maker is associatedwithHintikka (1962, Knowl-�

edge and Belief, Cornell University Press). The model is given by

⟨Ω, P ⟩,

• Ω is the set of states

• information function P : Ω↠ Ω such that for each ω ∈ Ω, ∅ ̸= P (ω) ⊆ Ω.

Interpretation of information function: when the state is ω the decision-maker knows only that the state is in the
set P (ω). That is, he considers it possible that the true state could be any state in P (ω) but not any state outside
P (ω).

9.3 Example: Ω = {ω1, ω2, ω3, ω4}, P (ω1) = P (ω2) = {ω1, ω2} and P (ω3) = P (ω4) = {ω3, ω4}.

In this case, the decision maker knows whether the true state lies in the set {ω1, ω2} or {ω3, ω4}, though he can
not perfectly identify the true state.

9.4 Example: Ω = {ω1, ω2}, P (ω1) = {ω1} and P (ω2) = {ω1, ω2}.

In this case, the decision maker knows the true state when she is at state ω1, but she is unsure of the true state when
ω2 occurs.

Notice that a rational decision maker (who also knows the mapping P ) could reason that when she does not know
the state, she must be in state ω2. One example of such a scenario is: decision maker is drunk in ω2, and not drunk
in ω1.

9.5 We usually assume that ⟨Ω, P ⟩ satisfies the following two conditions:

P1. ω ∈ P (ω) for every ω ∈ Ω.

P2. If ω′ ∈ P (ω) then P (ω′) = P (ω).

• P1 says that the decision-maker never excludes the true state from the set of states he regards as feasible.

• P2 says that the decision-maker uses the consistency or inconsistency with the information structure.

9.6 An information function P for the set Ω of states is partitional if there is a partition of Ω such that for any ω ∈ Ω�

the set P (ω) is the element of the partition that contains ω.
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9.7 Lemma: The information structure under P is partitional if and only if P satisfies P1 and P2.

Proof. “⇒”: If P is partitional then it clearly satisfies P1 and P2.

“⇐”: Suppose that P satisfies P1 and P2. If P (ω) and P (ω′) intersect and ω′′ ∈ P (ω)∩P (ω′) then by P2 we have
P (ω) = P (ω′) = P (ω′′); by P1 we have ∪ω∈ΩP (ω) = Ω. Thus P is partitional.

9.8 P2’: if ω′ ∈ P (ω), then P (ω) ⊆ P (ω′).

9.9 Claim: P1 and P2 are equivalent to P1 and P2’.

Proof. It suffices to show that P1 and P2’ imply P2. If ω′ ∈ P (ω), then by P2’ P (ω) ⊆ P (ω′). Thus, by P1
ω ∈ P (ω), ω ∈ P (ω′), which, again by P2’, implies that P (ω′) ⊆ P (ω).

9.10 We refer to a subset E ⊆ Ω as an event. We say the decision-maker knows/believes E at ω if P (ω) ⊆ E.

In Figure 9.1, the event E is known by player 1 at the state ω since P1(ω) = P 2
1 ⊆ E.

ω

P 1
1 P 2

1 P 3
1 P 4

1

E

1’s information
partition

Figure 9.1: Knowledge

9.11 Given P , define the decision-maker’s knowledge operatorK : 2Ω → 2Ω by

K(E) = {ω ∈ Ω: P (ω) ⊆ E}.

For any event E, the set K(E) is the set of all states in which the decision-maker knows E. The statement “the
decision-maker knows E” is identified with all states in which E is known. Moreover, the set K(K(E)) is inter-
preted as “the decision-maker knows that he knows E”.

In Figure 9.1,K1(E) = {ω : P1(ω) ⊆ E} = P 2
1 .

ω

E

P 1
1 P 2

1 P 3
1 P 4

1

1’s information
partition

ω

E

P 1
2 P 2

2 P 3
2 P 4

2 P 5
2

2’s information
partition

Figure 9.2: Knowledge

In Figure 9.2, player 2 knowsE at ω since P2(ω) = P 3
2 ⊆ E, andK2(E) = P 3

2 . However, player 1 does not know
that player 2 knows E at ω, since there is no player 1’s information cell in the subset P 3

2 .
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9.12 The knowledge operatorK satisfies the following properties:

K1. K(Ω) = Ω.

K2. If E ⊆ F thenK(E) ⊆ K(F ).

K3. K(E) ∩K(F ) = K(E ∩ F ). Moreover,K(∩λEλ) = ∩λK(Eλ).

• K1 says that in all states the decision-maker knows that some state in Ω has occurred.

• K2 says that if F occurs whenever E occurs and the decision-maker knows E then he knows F .

• K3 says that the decision-maker knows both E and F then he knows E ∩ F .

Proof. K1: Since P (ω) ⊆ Ω, Ω ⊆ K(Ω).

K2: If E ⊆ F and ω ∈ K(E), then P (ω) ⊆ E ⊆ F and hence ω ∈ K(F ).

K3: w ∈ K(E) ∩ K(F ) if and only if P (ω) ⊆ E and P (ω) ⊆ F if and only if P (ω) ⊆ E ∩ F if and only if
ω ∈ K(E ∩ F ).

BewareK(E) ∪K(F ) ̸= K(E ∪ F ).

9.13 If P satisfies P1, then the associated knowledge operatorK satisfies the following additional property.

K4. (Axiom of Knowledge)K(E) ⊆ E.

This says that whenever the decision-maker knows E then indeed some member of E is the true state (E must be
true): the decision-maker does not know anything that is false.

Replace E byK(E), we haveK(K(E)) ⊆ K(E). If decision-maker knows that he knows that E is true, then he
knows that E is true.

Proof. Let ω ∈ K(E). Then P (ω) ⊆ E, by P1 ω ∈ P (ω) and thus ω ∈ E.

9.14 If P is partitional, then K(E) is the union of all members of the partition that are subsets of E. In this case, the
knowledge operatorK satisfies the following two additional properties.

K5. (Axiom of Transparency)K(E) ⊆ K(K(E)).

K6. (Axiom of Wisdom) Ω \K(E) ⊆ K(Ω \K(E)).

• K5 says that if the decision-maker knows E then he knows that he knows E. (self awareness)

• K6 says that if the decision-maker does not know E then he knows that he does not know E.

Note that given thatK satisfies K4 the properties in K5 and K6 in fact hold with equality.

Proof. K5: Let ω ∈ K(E). Then P (ω) ⊆ E, by P2 P (ω′) ⊆ E for all ω′ ∈ P (ω) and thus P (ω) ⊆ K(E), i.e.,
ω ∈ K(K(E)).

K6: Let ω ̸∈ K(E). Then P (ω) ̸⊆ E, by P2 P (ω′) ̸⊆ E for all ω′ ∈ P (ω) and thus P (ω) ⊆ Ω \ K(E), i.e.,
ω ∈ K(Ω \K(E)).
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9.15 Alternatively we can start by defining a knowledge operator for the setΩ to be a functionK that associates a subset
of Ω with each event E ⊆ Ω.

We can then derive fromK an information function P as follows: for each state ω let

P (ω) = ∩{E ⊆ Ω: ω ∈ K(E)}.

Given an information function P , letK be the knowledge operator derived from P and let P ′ be the information
function derived fromK . Then P ′ = P .

9.16 Example: Puzzle of hats

Each of n “perfectly rational” individuals, seated around a table, is wearing a hat that is either white or black. Each
individual can see the hats of the other n − 1 individuals, but not his own. Assume that two are wearing a white
hat. An observer announces: “Each of you is wearing a hat that is either white or black; at least one of the hats is
white. I will start to count slowly. After each number you will have the opportunity to raise a hand. You may do so
only when you know the color of your hat.” When, for the first time, will any individual raise his hand?

Answer. The two wearing white hats will raise their hands when the observer counts the number “2”.

Intuitively,

• When the observer counts the number “1”, no one knows the color of his hat. The two wearing white hats see
“1 white and 98 black”, and the other see “2 white and 97 black”.

• When the observer counts the number “2”, the two wearing white hats now know the color of their hats. Each
of them who is wearing a white hat can reason as follows: Since the one wearing a white hat (saw in period 1)
did not raise his hand, there should be another white hat which much be on my head.

Formal reason:

Each state can be written as c = (c1, c2, . . . , cn), where each ci is eitherW orB and at least one ci isW . The state
space is

Ω =
{
c ∈ {W,B}n : |{i : ci =W}| ≥ 1

}
.

Player i’s initial information function P 1
i is as follows:

P 1
i (c) =

{(c−i,W ), (c−i, B)}, if c is the state in which a player different from i has a white hat,

{c}, if c is the state in which all the other hats are black.

The event “i knows the color of his hat” is

Ei =
{
c ∈ Ω: Pi(c) ⊆ {c : ci = B} or Pi(c) ⊆ {c : ci =W}

}
.

Let F 1 = {c : |{i : ci =W}| = 1}, the set of states for which someone raises a hand at the first stage.

Since there are two white hats, nobody raises a hand at the first stage, and then all players obtain the additional
information that the state is not in F 1. Therefore, they will update their information: for all i and for all c ̸∈ F 1,
we have P 2

i (c) = P 1
i (c) \F 1: P 2

i (c) is {(c−i,W ), (c−i, B)} unless cj =W for exactly one player j ̸= i, in which
case P 2

i (c−i,W ) = {(c−i,W )} and P 2
j (c−j ,W ) = {(c−j ,W )}. In other words, in any state c for which cj =W

and ch =W for precisely two players j and hwe have P 2
j (c) ⊆ Ej andP 2

h (c) ⊆ Eh, and hence j and h each raises
a hand at the second stage.
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It is easy to see that if k hats are white then no one raises a hand until the observer counts k, at which point the k
individuals with white hats do so.

9.17 孙膑，庞涓都是鬼谷子的徒弟。一天鬼谷子出了这道题目：他从 2到 99中选出两个不同的整数，把积告
诉孙，把和告诉庞；庞说：我虽然不能确定这两个数是什么，但是我肯定你也不知道这两个数是什么。
孙说：我本来的确不知道，但是听你这么一说，我现在能够确定这两个数字了。庞说：既然你这么说，
我现在也知道这两个数字是什么了。请问这两个数字是什么？为什么？

9.2 Common knowledge

9.18 LetKi be the knowledge operator of player i for each i ∈ N . For event E ⊆ Ω,�

• Ki(E) = {ω ∈ Ω: Pi(ω) ⊆ E} is the event that i knows E.

• K(E) = ∩i∈NKi(E) is the event that E is mutually known.

• CKE = K(E) ∩K(K(E)) ∩K(K(K(E))) ∩ · · · = ∩∞
k=1K

k(E) is the event that E is commonly known,
and for each ω ∈ CKE, E is said to be common knowledge in the state ω.

9.19 Example: The state space is Ω = {ω1, ω2, ω3}. The information functions are given as follows: P1(ω1) = {ω1},
P1(ω2) = P1(ω3) = {ω2, ω3}; P2(ω1) = P2(ω2) = {ω1, ω2}, P2(ω3) = {ω3}.

Consider E = {ω2, ω3}. We have

K1(E) = {ω2, ω3},K2(E) = {ω3},

and hence
K(E) = {ω3}.

ThenK1(K(E)) = ∅. Therefore, CKE = ∅.

9.20 An event F ⊆ Ω is self-evident ifK(F ) = F , i.e.,Ki(F ) = F for all i ∈ N . Whenever a self-evident event occurs�

everyone knows it occurs. The concept generalizes the condition K1.

9.21 Lemma: Under K4, An event E is common knowledge in the state ω if and only if it includes a self-evident event
F containing ω.

Proof. “⇒”: Let ω ∈ CKE. Define F = CKE, by K3, we have

K(F ) = K(CKE) = K(∩∞
k=1K

k(E)) = ∩∞
k=2K

k(E) ⊇ ∩∞
k=1K

k(E) = CKE = F.

By K4, F ⊆ K(F ), soK(F ) = F . By K4 again, we have F = CKE ⊆ E.

“⇐”: Letω ∈ F = K(F ) ⊆ E. By K2, F = K(F ) = K2(F ) = · · · = Kk(F ) ⊆ Kk(E) for all k ≥ 1. Therefore,
ω ∈ F ⊆ CKE.

9.22 Claim: Under P1 and P2, the following are equivalent:

(1) K(E) = E, i.e., for all ω ∈ E, Pi(ω) ⊆ E for all i.

(2) E is a union of members of the partition induced by Pi for all i.
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Proof. “(1) ⇒ (2)”: For every ω ∈ Ω, Pi(ω) ⊆ E for all i. Then E = ∪ω∈EPi(ω) for all i and thus E is a union
members of the partition induced by Pi.

“(2) ⇒ (1)”: Routine.

9.23 Example: Let Ω = {ω1, ω2, ω3, ω4, ω5, ω6}, let P1 and P2 be the partitional information functions of players 1
and 2, and let K1 and K2 be the associated knowledge operators. Let the partitions induced by the information
functions be

Π1 =
{
{ω1, ω2}, {ω3, ω4, ω5}, {ω6}

}
, Π2 =

{
{ω1}, {ω2, ω3, ω4}, {ω5}, {ω6}

}
.

The eventE = {ω1, ω2, ω3, ω4} does not contain any event that is self-evident and hence in no state isE common
knowledge.

The event F = {ω1, ω2, ω3, ω4, ω5} is self-evident and hence is common knowledge in any state in F .

9.24 Example [OR Exercise 71.1].

9.25 Example [OR Exercise 71.2].

9.3 Common prior

9.26 We can start adding beliefs to the knowledge model. In the knowledge model, for player i ∈ N , let Pi be her
information function, and pi her prior probability. We assume pi has full support and is positive at every state ω.

We call posterior belief the function pi
(
E | Pi(ω)

)
, calculated by Bayes’ rule. That is,

pi
(
E | Pi(ω)

)
=
pi
(
E ∩ Pi(ω)

)
pi
(
Pi(ω)

) .

9.27 Lemma: The posterior satisfies the following properties:

• pi
(
ω′ | Pi(ω)

)
= 0 if ω′ ̸∈ Pi(ω).

• pi
(
Pi(ω) | Pi(ω)

)
= 1.

9.28 A knowledge model has a common prior if pi = pj for all i, j ∈ N . This can occur when players are born equal,�

and are Bayesian updaters.

Alternatively, posterior beliefs p1(· | ·), p2(· | ·), . . . , pn(· | ·) is generated by a common prior, if there exists a
probability p such that for any i ∈ N , and E ⊂ Ω and any ω ∈ Ω, p(E) =

∑
ω∈Ω pi

(
E | Pi(ω)

)
· p(ω).

Note that there may be multiple common priors.

9.29 The common prior can be defined in an equivalent way:

Let Πi be player i’s information partition, and Pi player i’s information function. For each Qi ∈ Πi, we define a
probability µ(Qi) onQi, which can be generalized to a probability on Ω.

A prior for i is a probability pi is a probability distribution on Ω, such that for each information cell Qi ∈ Πi, if
pi(Qi) > 0, then

µi(Qi)(·) = pi(· | Qi).

Clearly, eachµi(Qi) is a prior for i. the set of all priors of i, denoted byXi, is the convex hull of {µi(Qi) | Qi ∈ Πi}.

A probability distribution µ on Ω is a common prior if µ ∈ ∩i∈NXi.
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9.30 Example: Suppose Ω = {1, 2, 3}. There are two players with information partitions Π1 =
{
{1, 2}, {3}

}
and

Π2 =
{
{1}, {2, 3}

}
. Let s = p1(1 | {1, 2}) and t = p2(2 | {2, 3}). Show any s, t ∈ (0, 1) can be generated by

some common prior.

Answer. Takem such that
m

(
1 +

1− s

s
+

1− s

s

1− t

t

)
= 1.

Set p1 = m, p2 = m 1−s
s , and p3 = m 1−s

s
1−t
t .

9.31 Let Ω = {ω1, ω2, ω3}, and the posterior probabilities are

p1(ω1 | {ω1, ω2}) =
2

3
, p1(ω3 | {ω3}) = 1.

Then we can have a continuum of priors associated with this posterior probability. Two examples are

p1 = (
2

3
,
1

3
, 0), p′1 = (

1

3
,
1

6
,
1

2
).

9.4 “Agree to disagree” is impossible

9.32 Reference: Robert Aumann, Agreeing to disagree, Annals of Statistics 4 (1976), 1236–1239.

9.33 Within the framework of partitional information structures, Aumann (1976) showed that, under the common prior
assumption, it can not be common knowledge (agree) that i and j respectively assign two different posterior prob-
abilities to the same event (disagree), even if they possess different information.

To be more clear, two individuals that have prior belief cannot have different posterior beliefs, after knowing each
other’s posterior beliefs (notice that it is essential that the posterior beliefs be common knowledge).

9.34 Theorem (Aumann’s agree to disagree): In a two-person game with finite states, assume that there is a common�

prior belief µ. For an event E, let

E[µi;µj ] =
{
ω ∈ Ω: µ

(
E | Pi(ω)

)
= µi and µ

(
E | Pj(ω)

)
= µj

}
.

Then CKE[µi;µj ] = ∅ if µi ̸= µj .

9.35 Proof. (1) Suppose that CKE[µi;µj ] ̸= ∅. Let ω0 ∈ CKE[µi;µj ]. Then, there is a self-evident event F ⊆ E[µi;µj ]

that contains ω0.

(2) Thus, F is a union of members of each player’s information partition, i.e., F = ∪kAk and F = ∪ℓBℓ.

(3) For any k, take an ω ∈ Ak, then we have Pi(ω) = Ak. Since F ⊆ E[µi;µj ], we have

µ(E | Ak) = µ(E | Pi

(
ω)
)
= µi.

(4) Therefore,

µ(E ∩ F ) = µ
(
E ∩ (∪kAk)

)
=
∑
k

µ(E ∩Ak) σ-additivity

=
∑
k

µ(E | Ak) · µ(Ak) Conditional probability
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= µi ·
∑
k

µ(Ak) µ(E | Ak) = µi

= µi · µ(F ) σ-additivity

Similarly, µ(E ∩ F ) = µj · µ(F ). Consequently, µi = µj (Here we assume that every state is of positive
probability, and hence µ(F ) > 0). A contradiction.

9.36 Remark: The intuition is that if a player knows that her opponents’ beliefs are different from her own, she should
revise her beliefs to take the opponents’ information into account. Of course, this intuition does not make sense if
the player thinks her opponents are simply crazy; it requires that she believes that her opponents process informa-
tion correctly and that the difference in the beliefs reflects some objective information. More formally, Aumann’s
result requires that the players’ beliefs be derived by Bayesian updating from a common prior.

9.37 Application: For a Bayesian game, an assumption often made is that the players have identical prior beliefs. This
result implies that under common prior assumption, it can not be common knowledge that the players assign
different posterior probabilities to the same event.

9.38 Corollary: In a two-player game with finite states, assume that there is a common prior belief. Let f : Ω → R be a
random variable. Then it can not be common knowledge that E1[f | ω] > E2[f | ω] at some state ω.

Proof. (1) Suppose that it is common knowledge that E1[f | ω] > E2[f | ω].

(2) Let
ω0 ∈ F ⊆

{
ω ∈ Ω | E[f | Pi(ω)] > E[f | Pj(ω)]

}
,

where F is a self-evident event.

(3) Then for all ω ∈ F , we have

P (ω)

P (F )
E[f | Pi(ω)] >

P (ω)

P (F )
E[f | Pj(ω)].

(4) Thus,

E[f | F ] =
∑
ω∈F

P (ω)

P (F )
E[f | Pi(ω)] >

∑
ω∈F

P (ω)

P (F )
E[f | Pj(ω)] = E[f | F ],

which is a contradiction.

9.39 Remark: It must be also true that, when two individuals have the same prior beliefs and common knowledge about
their posteriors, they must have the same posterior expectation over random variables.

9.40 Remark: This result fails if the players merely know each other’s posteriors, as opposed to the posteriors’ being
common knowledge.

Example: Ω has four equally likely elements, a, b, c, d, player 1’s partition is Π1 =
{
{a, b}, {c, d}

}
, player 2’s

partition is Π2 =
{
{a, b, c}, {d}

}
. Let E be the event {a, d}. That at a, player 1’s posterior of E is q1(E) =

p[{a, d} | {a, b}] = 1
2 , and player 2’s posterior of E is q2(E) = p[{a, d} | {a, b, c}] = 1

3 .

Moreover, player 1 knows that player 2’s information is the set {a, b, c}, so player 1 knows q2(E). Player 2 knows
that player 1’s information is either {a, b} or {c, d}, and either way player 1’s posterior ofE is 1

2 , so player 2 knows
q1(E). Thus, each player knows the other player’s posterior, yet the two players’ posteriors differ.
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However, the posteriors are not common knowledge. In particular, player 2 does not know what player 1 thinks
q2(E) is, as ω = c, is consistent with player 2’s information, and in this case player 1 believes there is probability 1

2

that q2(E) = 1
3 (if ω = c) and probability 1

2 that q2(E) = 1 (if ω = d).

9.41 Example [OR Exercise 76.1]: Common knowledge and different beliefs. Show that if two individuals with parti-
tional information functions have the same prior then it can be common knowledge between them that they assign
different probabilities to some event. Show, however, that it cannot be common knowledge that the probability
assigned by individual 1 exceeds that assigned by individual 2.

9.42 Example [OR Exercise 76.2]: Common knowledge and beliefs about lotteries. Show that if two individuals with
partitional information functions have the same prior then it cannot be common knowledge between them that
individual 1 believes the expectation of some lottery to exceed some number η while individual 2 believes this
expectation to be less than η. Show by an example that this result depends on the assumption that the individuals’
information functions are partitional.

9.5 No-trade theorem

9.43 Reference: Paul Milgrom and Nancy Stokey, Information, trade and common knowledge, Journal of Economic
Theory 26:1 (1982), 17–27.

9.44 When the players’ posteriors are consistent with a common prior, even though theymay have different expectations
over a randomvariable in some state, the knowledge that the both sides arewilling to trade reveals extra information.
Incorporating this extra information into the model destroys the incentive to bet.

Example: Ω = {1, 2, 3, 4}, p(i) = 1
4 . Player 1’s information partition Π1 =

{
{1, 4}, {2, 3}

}
, and player 2’s

information partition Π2 =
{
{1, 2}, {3, 4}

}
. When trade occurs, payoffs are as follows: π1 = ω − 1.9 and

π2 = 1.9− ω; otherwise, each player will receive 0.

Now the true state is ω = 2. Consider player 1 firstly:

(1) [Level 0] Player 1’s expectation on ω is 2.5, and player 2’s expectation on ω is 1.5. Hence, both players are
willing to trade: players 1 and 2’s expected payoffs are 0.6 and 0.4. But to actually to carry out this trade, the
players must know that each other is willing to do the trade.

(2) [Level 1 for player 2] Player 2 knows that player 1 is always willing to trade: in player 2’s opinion, ω could be
1 or 2, but player 1’s expected payoff is always 0.6 no matter ω is 1 or 2. Thus, the fact that player 1 indeed is
willing does not initially tell player 2 anything.

(3) [Level 1 for player 1] If player 1 knows that player 2 is willing to trade, then player 1 knows player 2 knows
ω ∈ {1, 2}; otherwise player 2 is not willing to trade.

Moreover, since player 1 knows ω ∈ {2, 3}, player 1 knows ω = 2. So player 1 still wants to do the deal.

(4) [Level 2 for player 2] Since player 2 knows player 1 knows player 2 initially wants to trade, player 2 knows
player 1 knows player 2 knows ω ∈ {1, 2}. Hence player 2 knows player 1 knows ω ∈ {1, 2}.
Player 2 also knows that player 1 can distinguish 1 and 2, so player 2 knows player 1 knows ω = 2, and player
2 knows ω = 2 at the same time.

So player 2 in the end refuse to trade.

As long as the fact that trade is acceptable is not common knowledge, revealing the fact changes the players’ beliefs
in a way that destroy the incentive to trade.



9.6. Speculation 135

9.45 We consider the case of players with a utility function defined by ui(a(ω), ω) where a : Ω → A is a contract that
associates each state with an action or transfer.

9.46 Definition: We say that b is ex ante efficient if there is no function a : Ω → A such that for all i

E
[
ui(a(ω), ω) | Pi(ω)

]
> E

[
ui(b(ω), ω) | Pi(ω)

]
,

or equivalently, that a ≻i b for all i.

9.47 Theorem: If b is ex ante efficient, then it can not be common knowledge that a ≻i b for all i.

Proof. (1) For sake of notational simplicity, write ui
(
a(ω), ω

)
= Ui(a, ω) and ui

(
b(ω), ω

)
= Ui(b, ω).

(2) Assume that
{ω ∈ Ω | E

[
Ui(a, ω)− Ui(b, ω) | Pi(ω)

]
> 0 for all i}

is common knowledge at ω0.

(3) Let F be a self-evident event containing ω0. Then

E
[
Ui(a, ω)− Ui(b, ω) | F

]
> 0 for all i.

(4) With this, we can create a contract c : Ω → A such that

c(ω) =

b(ω), if ω ̸∈ F,

a(ω), if ω ∈ F.

(5) We have therefore that b could not have been ex ante efficient since c ≻i b for all i:

E[Ui(c, ω)− Ui(b, ω)] = E[Ui(c, ω)− Ui(b, ω) | F ] + E[Ui(c, ω)− Ui(b, ω) | F c]

= E[Ui(a, ω)− Ui(b, ω) | F ] + 0 > 0,

which is a contradiction.

9.48 Remark: This theorem implies that, when the common prior assumption holds and a contract b is ex ante efficient,
there can be no trade, even after the agents receive (potentially different) new information.

Notice that the theorem can also be weakened, using a weaker concept to efficiency, in which b ≿i a for all i and
for all a, with ≻ holding for at least one i, for some a.

9.6 Speculation

9.49 Reference: Michael Harrison and David Kreps, Speculative investor behavior in a stock market with heterogeneous
expectations, Quarterly Journal of Economics (1978), 323–336.

9.50 Consider the following scenario:

• Time is discrete: t = 1, 2, . . ..

• A continuum of investors, with unlimit wealth.
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• A single asset in the economy, which pays dividend dt ∈ {0, 1} at the end of each period.

• Two types of investors i ∈ {1, 2}, with different beliefsQi over the distribution of the dividend. Both believe
that it follows a Markov process:

Q1 =

[
1
2

1
2

1
2

1
2

]
andQ2 =

[
1 0

0 1

]
.

• There is common knowledge overQi.

• Players have utility
∑∞

t=1 δ
tdt, where δ = 3

4 .

9.51 Consider the expected present value of holding an asset forever V i(d), when the most recent dividend is d:

V 1(0) =
δ

1− δ
· 1
2
=

3

2
, V 1(1) =

δ

1− δ
· 1
2
=

3

2
,

V 2(0) =
δ

1− δ
· 0 = 0, V 2(1) =

δ

1− δ
· 1 = 3.

9.52 Whenever there is disagreement over the value of the asset, there must be trade, as the investors that attribute to
it a lower value will wish to sell to those that attribute to it a higher one. To calculate the resulting price, we can
observe that:

p(dt) = δ · max
i

Ei[dt+1 + p(dt+1) | dt],

since,

• if the price is lower than the expression on the right-hand side, investors that believe it has a higher value will
compete for it, increasing its price;

• if the price is higher than the expression on the right-hand side, investors wish to sell the asset and repurchase
it the next period.

9.53 When dt = 1, the type 2 investor believes that the value of the asset is themaximumpossible, therefore her valuation
must be what drives the asset price:

p(1) = δ · max
i

Ei[dt+1 + p(dt+1) | dt = 1] = δ · E2[dt+1 + p(dt+1) | dt = 1] = δ[1 + p(1)].

Then we have
p(1) =

δ

1− δ
= 3.

9.54 When dt = 0, the type 2 investor believes that the value of the asset is forever 0, therefore the price must be driven
by type 1’s valuation:

p(0) = δ · max
i

Ei[dt+1 + p(dt+1) | dt = 0] = δ · E1[dt+1 + p(dt+1) | dt = 0] = δ
0 + p(0)

2
+ δ

1 + p(1)

2
.

Then we have
p(0) =

12

5
.

9.55 Observe that the price p(0) is a price resulting from speculation:

• The type 1 investor is willing to pay so much for the asset (at time t, when dt = 0) only because she believes
the investors of type 2 will, with some probability, purchase it back for a higher value than it actually worth.
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• Her actual valuation of the asset is of only V 1(0) = 3
2 <

12
5 = p(0).

9.56 In this example with a common prior, we obtain speculative trade as a result.

9.7 Characterization of the common prior assumption

9.57 Reference: Dov Samet, Common priors and separation of convex sets, Games and Economic Behavior 24 (1998),
172–174.

9.58 Let f : Ω → R be a random variable with f((a, a)) = f((b, b)) = 1 and f((a, b)) = f((b, a)) = −1. There exists
no common prior π such that

E1(f | ω) > 0 > E2(f | ω) for all ω ∈ Ω.

On the other hand, it is easy to find p1 and p2 such that E1(f | ω) > 0 with respect to p1 and E2(f | ω) < 0 with
respect to p2, e.g., p1({(a, a)}) = p1({(b, b)}) = 1/2, and p2({(b, a)}) = p2({(a, b)}) = 1/2.

9.59 Theorem (Samat 1998): In a two-player game with finite states, there is no common prior if and only if there exists
a random variable f : Ω → R such that

E1(f | ω) > 0 > E2(f | ω) for all ω ∈ Ω.

(The “if ” part is due to Aumann)

In other words, under common prior it can never be common knowledge that 1’s expectation of f is always positive
when that of 2 is always negative.

9.60 Proof. (1) There is no common prior, thenX1 andX2 can be strongly separated, that is, there are g : Ω → R and
c ∈ R, such that

x1 · g > c > x2 · g

for each x1 ∈ X1 and x2 ∈ X2.

(2) Subtracting c and write f = g − c1, we have

x1 · f > 0 > x2 · f.

(3) Thus, for each ω, take x1 = µ1(P1(ω)), and x2 = µ2(P2(ω)), then

E1(f | ω) = µ1

(
P1(ω)

)
· f > 0 > µ2

(
P2(ω)

)
· f = E2(f | ω).

9.61 Lemma: LetK1,K2, . . . ,Kn be convex, closed subsets of the simplex∆m inRm. Then ∩n
i=1Ki = ∅ if and only if

there are f1, f2, . . . , fn in Rm, such that
∑n

i=1 fi = 0, and xifi > 0 for each xi ∈ Ki, for i = 1, 2, . . . , n.

Proof. (1) Consider the bounded, closed and convex subsets of Rmn,X = ×n
i=1Ki and

Y = {(p, p, . . . , p) ∈ Rmn | p ∈ ∆m}.

(2) Clearly, ∩n
i=1Ki = ∅ if and only ifX and Y are disjoint
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(3) X and Y are disjoint if and only if there is a constant c and g = (g1, g2, . . . , gn) ∈ Rmn, where gi ∈ Rm for
each i, such that for each x = (x1, x2, . . . , xn) ∈ X and y = (p, p, . . . , p) ∈ Y ,

x · g > c > y · g.

(4) Moreover, we may assume that c = 0 (by subtracting c
n from all the components of g).

(5) Hence,
∑n

i=1 xi · gi > 0 and
∑n

i=1 p · gi < 0.

(6) Since
∑n

i=1 p · gi holds for all p ∈ ∆m and therefore it is equivalent to
∑n

i=1 gi < 0.

(7) Moreover, whereas the coordinates ofxi are non-negative, increasing the coordinates of the gi does not change
the first inequality, and hence the intersection ofKis is empty if and only if there is g such that

n∑
i=1

gi = 0, and
n∑

i=1

xi · gi > 0.

(8) Let x̄i be the point that minimizes xi · gi overKi.

(9) Whereas
∑n

i=1 x̄i · gi > 0, there are constants ci such that

x̄i · gi + ci > 0 for i = 1, 2, . . . , n, and
n∑

i=1

ci = 0.

(10) Denote by 1 the vector of 1s in Rm and define fi = gi + ci1.

(11) Then
∑
fi =

∑
gi = 0 and for each xi ∈ Ki, xi · fi ≥ x̄i · fi = x̄i · gi + cix̄i1 > 0, as x̄i · 1 = 1.

9.62 Theorem (Samat 1998, Morris 1995): There exists a common prior if and only if there are no f1, f2, . . . , fn ∈ RΩ,
such that

∑n
i=1 fi = 0, and Ei fi > 0 for all i ∈ N .

9.63 Note that two players can make a bet that both sides expect to win in the ex-ante stage if and only if they have
different priors. The above theorem says that if the posterior beliefs of the two players are inconsistent with a
common prior, then they can still make a bet that both sides expect to win in the interim stage. The key is that all
types of players 1 and 2 agree to have player 2 pay f to player 1 in the proof above. Hence, the fact the players agree
to the bet does not reveal extra information.

9.8 Unawareness

9.64 Reference: EddieDekel, Barton L. Lipman andAldoRustichini, Standard state-spacemodels preclude unawareness,
Econometrica 66 (1998), 159–173.

9.65 Unawareness is a real-life phenomenon associated with an unconscious mental state directed toward, or lacking
of positive knowledge about, a definite event. Unawareness can play an important role in economic implications.
For example, unforeseen contingencies could prevent contracting parties from writing a complete contract with
contingencies of which they were unaware at the contractual date.

9.66 Unawareness of something is related to a complete lack of positive knowledge regarding it. In particular, “knowing
that not knowing an event” can not be called “being unaware of the event”.
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9.67 Example: Consider the following simple version of a story from Sherlock Holmes.

• There are 2 states b (dog barks) and b̄ (dog does not bark).

• At b, Watson is aware that there is an intruder;

• At b̄, Watson is not aware this.

Question: Is Watson, at b̄, “unaware” b?

Somewhat surprisingly, the concept of “unawareness” can not be modeled in any standard state space!

9.68 We consider a standard state-space model
⟨Ω,K, U⟩,

where Ω is a state space which has partitional information structure,K : 2Ω → 2Ω is the knowledge operator, and
U : 2Ω → 2Ω is the unawareness operator.

For an event E, U(E) represents the event that decision-maker is unaware of E.

9.69 Dekel, Lipman and Rustichini suggested three axioms for unawareness:

• Plausibility: U(E) ⊆ ¬K(E) ∩ ¬K(¬K(E)).

• KU introspection: K(U(E)) = ∅.

• AU introspection: U(E) ⊆ U(U(E)).

Plausibility means: if decision-maker is unaware of an event, then it must be the case that the event is unknown
and it is not known that the event is unknown.

KU introspection means: decision-maker shouldn’t know he is unaware of the event.

AU introspection means: decision-maker should be unaware he is unaware of the event.

9.70 Dekel, Lipman and Rustichini showed that standard state-space models preclude sensible unawareness.

Theorem: Assume (Ω,K, U) is plausible and satisfiesKU introspection and AU introspection. Then

(1) IfK satisfies necessitation, i.e.,K(Ω) = Ω, then for every event E, U(E) = ∅.

(2) If K satisfies monotonicity, i.e., K(E) ⊆ K(F ) whenever E ⊆ F , then for all events E and F , U(E) ⊆
¬K(F ).

Statement (1) says that “necessitation” implies that decision-maker is never unaware of anything.

Statement (2) says that “monotonicity” implies that decision-maker, being unaware of anything, knows nothing.

9.71 Proof. (1) By AU introspection and plausibility,

U(E) ⊆ U(U(E)) ⊆ ¬K(¬K(U(E))).

By necessitation, U(E) = ∅ for all E.

(2) By monotonicity,K(F ) ⊆ K(Ω) for all F . Hence monotonicity implies U(E) ⊆ ¬K(F ) for all E and F .
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Interactive epistemology
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In the traditional game theory, we appeal informally to assumptions about what the players know. We here use the
model of knowledge to examine formally assumptions about the players’ knowledge and information that lie behind
various solution concepts. This line of research can help to understand the applicability and limitations of our analysis to
economic phenomena.

This approach analyzes games in terms of the rationality of the players and their epistemic state: what they know or
believe about each other’s rationality, actions, knowledge, and beliefs. It provides precise treatments of epistemic matters
in games.

The epistemic program adds to the traditional description of a game a mathematical language for talking about the
rationality or irrationality of the players, their beliefs or knowledge, and related epistemic aspects.

10.1 Epistemic conditions for Nash equilibrium

10.1 Given a fixed strategic gameG = ⟨N, (Ai), (ui)⟩, a model of knowledge for gameG is given by�

M(G) = ⟨Ω, (Pi), (ai), (µi)⟩,

where

• Ω is the set of states;

• Pi is i’s partitional information function;

• ai(ω) is i’s action at ω;

• µi(ω) is i’s belief at ω, which is a probability measure on A−i = ×j ̸=iAj .

141
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10.2 Say “i is rational at ω” if ai(ω) is a best response of player i to his belief µi(ω) in ∆
(
a−i

(
Pi(ω)

))
, where�

a−i

(
Pi(ω)

)
= {a−i(ω

′) : ω′ ∈ Pi(ω)}.

In words, i is rational at ω if i’s action at ω maximizes his expected payoff with respect to the belief that i holds at
ω, where the belief is required to be consistent with his knowledge (support(µi(ω)) ⊆ a−i(Pi(ω))).

10.3 The event that i is rational is defined as�

Ri = {ω : i is rational at ω}.

LetR = ∩i∈NRi denote the event that everyone is rational.

10.4 We now seek sufficient epistemic conditions for Nash equilibrium that are in a sense as “spare” as possible.�

Proposition 1: Let
ω ∈

∩
i∈N

(
Ri ∩Ki

({
ω′ | a−i(ω

′) = a−i(ω)
}))

.

Then a(ω) is a Nash equilibrium.

10.5 The condition in the Proposition can be restated as follows:

• i is rational at ω: ai(ω) is a best response of i to his belief µi(ω), which is consistent with his knowledge:
support(µi(ω)) ⊆ a−i(Pi(ω)), i.e., ω ∈ Ri.

• i knows the other players’ actions: Pi(ω) ⊆ {ω′ | a−i(ω
′) = a−i(ω)}, i.e., ω ∈ Ki

({
ω′ | a−i(ω

′) =

a−i(ω)
})

.

10.6 Proof. (1) Since ω ∈ Ki

({
ω′ | a−i(ω

′) = a−i(ω)
})

, we have Pi(ω) ⊆ {ω′ | a−i(ω
′) = a−i(ω)}, and hence

a−i(Pi(ω)) = {a−i(ω
′) | ω′ ∈ Pi(ω)} = {a−i(ω)}.

(2) Since ω ∈ Ri, ai(ω) is a best response of i to µi(ω) = 1 ◦ a−i(ω).

10.7 Remark: Though very simple, this proposition is significant; it calls for “mutual knowledge” of the action choices,
with no need for “common knowledge/any higher order knowledge”. For rationality, not even mutual knowledge is
needed; only that the players are in fact rational.

10.8 A mixed strategy of a player can be interpreted as another player’s conjecture about the player’s choice. The sec-�

ond result provides some epistemic condition for this kind of equilibrium in beliefs: In two-person games, if the
rationality of the players and their “consistent” conjectures are mutual knowledge, then the conjectures constitute
a mixed-strategy Nash equilibrium.

Proposition 2: Suppose that each player’s belief is consistent with his knowledge. Let

ω ∈
∩

i,j=1,2;i ̸=j

(
Kj(Ri) ∩Kj

({
ω′ | µi(ω

′) = µi(ω)
}))

.

Then
(
µ2(ω), µ1(ω)

)
is a mixed-strategy Nash equilibrium.

10.9 The condition in the Proposition can be restated as follows:

• Each player’s belief is consistent with his knowledge: support(µj(ω)) ⊆ ai(Pj(ω));
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• j knows that i is rational;

• j knows i’s belief: Pj(ω) ⊆ {ω′ | µi(ω
′) = µi(ω)}.

10.10 Proof. (1) Let a∗i ∈ support
(
µj(ω)

)
. Since j’s belief is consistent with his knowledge, there is ω∗ ∈ Pj(ω) such

that ai(ω∗) = a∗i .

(2) Since ω ∈ Kj(Ri), we have ω∗ ∈ Pj(ω) ⊆ Ri, and hence a∗i = ai(ω
∗) is a best response of i to µi(ω

∗).

(3) By ω ∈ Kj

({
ω′ | µi(ω

′) = µi(ω)
})

, we have ω∗ ∈ Pj(ω) ⊆ {ω′ | µi(ω
′) = µ(ω)}, and hence a∗i = ai(ω

∗)

a best response to µi(ω
∗) = µi(ω).

10.11 The following example demonstrates that Proposition 2 does not have an analog when there are more than two
players.

L R
U 2, 3, 0 2, 0, 0
D 0, 3, 0 0, 0, 0

A

L R
U 0, 0, 0 0, 2, 0
D 3, 0, 0 3, 2, 0

B

State α β γ δ ϵ ξ

Probability 32/63 16/63 8/63 4/63 2/63 1/63

1’s action U D D D D D

2’s action L L L L L L

3’s action A B A B A B

1’s partition {α} {β γ} {δ ϵ} {ξ}
2’s partition {α β} {γ δ} {ϵ ξ}
3’s partition {α} {β} {γ} {δ} {ϵ} {ξ}

Let the set of states beΩ = {α, β, γ, δ, ϵ, ξ} and let the players’ action functions and information functions be those
given in the table at the bottom of the figure; assume that the players’ beliefs are derived from the same prior, which
is given in the first row of the table.

Consider the state δ. All conditions in Proposition are satisfied:

• Since each player’s belief at δ is defined from the common prior, each player has a belief that is consistent with
his knowledge.

• For player 1, She knows that the state is either δ or ϵ, so that she knows that player 2’s information is either
{γ, δ} or {ϵ, ξ}. In both cases player 2 believes that with probability 2

3 the pair of actions chosen by players 1
and 3 is (D,A) and that with probability 1

3 it is (D,B). Given this belief, the action L is optimal for player 2.
Thus player 1 knows that player 2 is rational.
Player 2 knows that player 1’s information is either {β, γ} or {δ, ϵ}. In both cases player 1 believes that with
probability 2

3 players 2 and 3 will choose (L,B) and that with probability 1
3 they will choose (L,A). Given

this belief,D is optimal for player 1. Thus, player 2 knows that player 1 is rational.
Player 3 knows that player 1’s information is {δ, ϵ} and that player 2’s information is {γ, δ}. Thus, as argued
above, player 3 knows that players 1 and 2 are rational.
In the three states γ, δ and ϵ, player 3’s belief is that the pair of actions of players 1 and 2 is (D,L), and thus
in the state δ players 1 and 2 know player 3’s belief. They also know she is rational since her payoffs are always
zero.
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However in the state δ the beliefs do not define a Nash equilibrium. In fact, the beliefs at δ are not common
knowledge, e.g., the players’ belief about each other’s behavior do not even coincide: player 1 believes that player
3 chooses A with probability 1

3 while player 2 believes that she does so with probability 2
3 . Neither of these beliefs

together with the actionsD and L forms a mixed-strategy Nash equilibrium of the game.

10.12 Remark: Aumann and Brandenburger (Econometrica, 1995) show that if all players share a common prior and in
some state rationality is mutual knowledge and the players’ beliefs are common knowledge then the beliefs at that
state form a mixed-strategy Nash equilibrium even if there are more than two players. The key point is that if the
beliefs of players 1 and 2 about player 3’s action are common knowledge and if all the players share the same prior,
then the beliefs must be the same.

10.2 Epistemic foundation of rationalizability

10.13 We show that the notion of rationalizability is the logical implication of CKR.�

Proposition 3: Let ω ∈ CKR. Then a(ω) is a rationalizable strategy profile.

10.14 Proof. (1) Since ω ∈ CKR, there exists a self-evident event F ⊆ R with ω ∈ F .

(2) For each i ∈ N , define
Zi = {ai(ω′) | ω′ ∈ F}.

Therefore, for each ω′ ∈ F , a−i(Pi(ω
′)) ⊆ Z−i.

(3) Since ω′ ∈ Ri, ai(ω′) is a best response for player i to the belief µi(ω
′) ∈ ∆(Z−i).

10.15 Proposition 4: Let a∗ be a rationalizable action profile. Then there is a model of knowledge M(G) such that�

a∗ = a(ω) for some ω ∈ CKR.

10.16 Proof. (1) It suffices to show that there existsM(G) such that a∗ = a(ω) for some ω in a self-evident event inR.

(2) Since a∗ is a rationalizable profile, there exists a product subset Z of action profiles that contains a∗ such that
for each i, each ai ∈ Zi is a best response to some belief µi(ai) ∈ ∆(Z−i).

(3) Define
Ω =

{
ω | ω =

(
ai, µi(ai)

)
i∈N

}
.

For any ω =
(
ai, µi(ai)

)
i∈N

in Ω, for each i, let ai(ω) = ai, µi(ω) = µi(ai), and

Pi(ω) =
{
ω′ ∈ Ω | ai(ω′) = ai(ω) and µi(ω

′) = µi(ω)
}
.

Clearly, a−i(Pi(ω)) = Z−i. Thus, i is rational at every ω, and hence Ω is itself a self-evident event inR.

10.17 In finite strategic games, we have
CKR = R∗ = IENBR = IESDA .

10.18 Example [OR Exercise 81.1]: Knowledge and correlated equilibrium.
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10.3 Epistemic foundation of correlated equilibrium

10.4 The electronic mail game

A B
A M,M 1,−L
B −L, 1 0, 0

Ga (probability 1− p)

A B
A 0, 0 1,−L
B −L, 1 M,M

Gb (probability p)

Figure 10.1: The parameters satisfy L > M > 1 and p < 1
2 .

10.19 • InGa (resp. Gb), the players get a positive payoff,M , if both choose the action A (resp. B).

• If they choose the same action but it is the “wrong” one they get 0. If they fail to coordinate, then the player
who played B gets −L, where L > M . Thus, it is dangerous for a player to play B unless he is confident
enough that his partner is going to playB as well.

• Ga is more likely to occur, andGb occurs with probability p < 1
2 .

10.20 If the true game is common knowledge between two players, then it has a Nash equilibrium in which each player
chooses A inGa andB inGb.

If the true game is known initially only to player 1, but not to player 2. we can model this situation as a Bayesian
game that has a unique Nash equilibrium, in which player 1 chooses A inGa andGb, and player 2 chooses A.

10.21 • The true game is known initially only to player 1, but not to player 2.

• Player 1 can communicate with player 2 via computers if the game isGb. There is a small probability ϵ > 0 that
any givenmessage does not arrive at its intended destination, however. (If a computer receives a message then
it automatically sends a confirmation; this is so not only for the original message but also for the confirmation,
the confirmation of the confirmation, and so on)

• If a message does not arrive then the communication stops.

• At the end of communication, each player’s screen displays the number of messages that his machine has sent.

10.22 Model as a Bayesian game. Consider the following figure:

(0, 0) (1, 0) (1, 1) (2, 1) (2, 2) (3, 2) (q, q − 1) (q, q) (q + 1, q)True state

1− p pǫ pǫ(1− ǫ) pǫ(1 − ǫ)2 pǫ(1 − ǫ)3 pǫ(1− ǫ)4 pǫ(1− ǫ)2q−2
pǫ(1− ǫ)2q−1

pǫ(1− ǫ)2qProbability

1’s information 0 1 2 2 q q + 1

2’s information 0 1 2 q − 1 q

Figure 10.2

Define the set of states to be

Ω = {(Q1, Q2) ∈ Z+ × Z+ : Q1 = Q2 orQ1 = Q2 + 1}.

In state (q, q), player 1’s computer sends q messages, all of which arrive at player 2’s computer, and the qth message
sent by player 2’s computer goes astray.

In state (q, q + 1), player 1’s computer sends q + 1 messages, and all but the last arrive at player 2’s computer.
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The signal function τi of player i is defined by

τi(Q1, Q2) = Qi.

Player 1’s information partition is

Π1 =
{
{(0, 0)}, {(1, 0), (1, 1)}, {(2, 1), (2, 2)}, . . . , {(q, q − 1), (q, q)}, . . .

}
.

Player 2’s information partition is

Π2 =
{
{(0, 0), (1, 0)}, {(1, 1), (2, 1)}, {(2, 2), (3, 2)}, . . . , {(q, q), (q, q + 1)}, . . .

}
.

Each player’s belief onΩ is the same, derived from the technology (characterized by ϵ) and the assumption that the
game isGa with probability 1− p:

p(0, 0) = 1− p, p(q + 1, q) = pϵ(1− ϵ)2q, p(q + 1, q + 1) = pϵ(1− ϵ)2q+1.

Denote by G(Q1, Q2) the game that is played in the state (Q1, Q2); that is, G(0, 0) = Ga and G(Q1, Q2) = Gb

otherwise. In each state (Q1, Q2), the payoffs are determined by the gameG(Q1, Q2).

10.23 Question: If ϵ is small then with high probability each player sees a very high number on his screen. When player
1 sees “1” on her screen, she is not sure whether player 2 knows that the game isGb, and consequently may hesitate
to play B. But if the number on her screen is, for example, “17” then it seems to be “almost” common knowledge
that the game isGb, and thus it may seem that she will adhere to themore desirable equilibrium (B,B) of the game
Gb.

10.24 Proposition: This game has a unique Bayesian Nash equilibrium, in which both players always choose A.

10.25 Proof. We shall prove it by induction.

(1) In any equilibrium, player 1 must choose A when receiving the signal 0.

When player 2’s signal is 0, if he chooses A, then his expected payoff is at least M(1−p)
1−p+pϵ ; if he chooses B then

his expected payoff is at most −L(1−p)+Mpϵ
1−p+pϵ . Therefore player 2 must also chooseAwhen receiving the signal

0 in any equilibrium.

(2) Assume inductively that when received signal is less then q, players 1 and 2 both chooseA in any equilibrium.

Consider player 1’s decision when receiving the signal q. Player 1 believes (q, q − 1) with probability z =
pϵ(1−ϵ)2q−2

pϵ(1−ϵ)2q−2+pϵ(1−ϵ)2q−1 = 1
2−ϵ >

1
2 and (q, q) with probability 1− z = 1−ϵ

2−ϵ .

If player 1 choosesB, then her expected payoff is at most−Lz+M(1− z) under the induction assumption;
if player 1 chooses A, then her expected payoff is at least 0. Thus, player 1 should choose A.

Similarly, player 2 chooses A when receiving the signal q.

10.26 Rubinstein’s electronic mail game tells that players’ strategic behavior under “almost common knowledge” may be
very different from that under common knowledge. Even if both players know that the game isGb and the noise ϵ is
arbitrarily small, the players act as if they had no information and playA, as they do in the absence of an electronic
mail system.
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Rubinstein’s electronic mail game also tells us how even an extreme large iteration if mutual knowledge can fall
short of actual common knowledge.
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We investigate games with perfect information in which each player is perfectly informed about the players’ previ-
ous actions at each point in the game. The standard solution concept for such games is the notion of “subgame perfect
equilibrium” in which each player is required to reassess his plans as play proceeds.

11.1 Extensive games with perfect information

11.1 Definition: An extensive game with perfect information is defined as:�

Γ = ⟨N,H,P, (≿i)⟩.

• A setN of players.

• A setH of sequences that satisfies the following three properties.

– The empty sequence ∅ is a member ofH .

– If (ak)Kk=1 ∈ H (K may be infinite) and L < K then (ak)Lk=1 ∈ H .

– If an infinite sequence (ak)∞k=1 satisfies (ak)Lk=1 ∈ H for every positive integer L then (ak)∞k=1 ∈ H .

Each member ofH is a history; each component of a history is an action.

A history (ak)Kk=1 ∈ H is terminal if it is infinite or if there is no aK+1 such that (ak)K+1
k=1 ∈ H . The set of

terminal histories is denoted Z .

• A function P : H \ Z → N that assigns to each non-terminal history a member ofN .

P is called the player function, and P (h) is the player who takes an action after the history h.

149
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• For each player i a preference relation on Z .

11.2 The game tree is a convenient representation for a extensive game.

11.3 After any non-terminal history h player P (h) chooses an action from

A(h) = {a : (h, a) ∈ H}.

11.4 If the setH of possible histories is finite then the game is finite. If the length of every history is finite then the game
has a finite horizon. For an extensive game Γ denote by ℓ(Γ) the length of the longest history in Γ; we refer to ℓ(Γ)
as the length of Γ.

11.5 Definition: A strategy si of player i in the extensive game Γ is a function that assigns an action in A(h) to each�

non-terminal history h ∈ H \ Z for which P (h) = i.

A strategy specifies the action chosen by a player for every history afterwhich it is his turn tomove, even for histories
that, if the strategy is followed, are never reached.

11.6 For each strategy profile s = (si) in the extensive game Γ, we define the outcome O(s) of s to be the terminal
history that results when each player i follows the precepts of si.

11.7 Definition: A Nash equilibrium of Γ = ⟨N,H,P, (≿i)⟩ is a strategy profile s∗ such that for every player i we have�

O(s∗−i, s
∗
i ) ≿i O(s∗−i, si) for every strategy si of player i.

11.8 Proposition: s∗ is a Nash equilibrium of Γ if and only if it is a Nash equilibrium of the strategic game derived from
Γ.

11.9 Example: Consider the following extensive game Γ.

R

1, 2

L

R′

2, 1

L′

0, 0

Figure 11.1: Non-credible threat.

The strategic game derived from Γ is as follows:

• 2 players.

• A1 = {L,R}, A2 = {L′, R′}.

• Payoffs are as follows:

Player 1

Player 2
L′ R′

L 0, 0 2, 1
R 1, 2 1, 2

There are two Nash equilibria: (L,R′) and (R,L′).
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11.2 Subgame perfect equilibrium

11.10 In the example above, consider the Nash equilibrium (R,L′),L′ is not credible for player 2 sinceR′ is strictly better
than L′ for him.

11.11 Nash equilibrium requires that each player’s strategy be optimal, given the other players’ strategies. Of course, what
a strategy calls for at a decision node that is not reached can not matter for a player’s payoff; the action assigned to
a contingency matters only if one is called upon to implement it.

Nash equilibrium does not require that a strategy prescribe an optimal action for decision nodes not reached (un-
reached information sets) during the course of equilibrium play.

Thus, a Nash equilibrium does not require that the prescribed action be optimal for all contingencies, but rather
only for those reached over the course of equilibrium play (i.e., the sequence of play that occurs when players use
their equilibrium strategies).

11.12 Definition: For history h ∈ H , the subgame Γ(h) is defined as�

⟨N,H|h, P |h, (≿i |h)⟩,

where

• H|h is the set of sequences h′ of actions for which (h, h′) ∈ H .

• P |h is defined by P |h(h′) = P (h, h′) for each h′ ∈ H|h.

• ≿i |h is defined by h′ ≿i |hh′′ if and only if (h, h′) ≿i (h, h
′′).

11.13 Definition: A subgame perfect equilibrium of Γ is a strategy profile s∗ such that for every subgame Γ(h) with�

P (h) = i we have

Oh(s
∗
−i|h, s∗i |h) ≿i |hOh(s

∗
−i|h, si|h) for every strategy si of player i,

where si|h is i’s strategy restricted to Γ(h) andOh is the outcome function of Γ(h).

11.14 Proposition: s∗ is a subgame perfect equilibrium if and only if s∗|h is a Nash equilibrium in every Γ(h).

11.15 Definition (The one deviation property): The profiles s∗ is said to satisfy the one deviation property if for every i�

and every h ∈ H with P (h) = i,
Oh(s

∗
−i|h, s∗i |h) ≿i |hOh(s

∗
−i|h, ti)

for every strategy ti of player i in Γ(h) that differs from s∗i |h only in the action it prescribes after the initial history
of Γ(h).

11.16 Interpretation of the one deviation property: For each subgame the player who makes the first move can not obtain
a better outcome by changing only his initial action.

11.17 Theorem: In a finite-horizon game Γ, the profiles s∗ is a subgame perfect equilibrium if and only if s∗ satisfies the�

one deviation property.

Actually, in any perfect-information extensive game with either finite horizon or discounting, a strategy profile is a
subgame perfect equilibrium if and only if it satisfies the one deviation property.
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11.18 Idea of proof: If a strategy profile is not subgame perfect then some player can deviate and obtain a strictly higher
payoff, say by ϵ > 0, in some subgame. Now look at the last deviation. If it makes the player better off, then the
strategy does not satisfy the one deviation property. If it does not makes the player better off, then the player will
still be better off without the last deviation. The same argument can be repeated until we find a single beneficial
deviation.

11.19 Proof. “⇒”: Trivial.

“⇐”:

(1) Suppose that s∗ is not a subgame perfect equilibrium. Then i can deviate profitably in Γ(h′).

(2) Then there exists a profitable deviant strategy si of player i in Γ(h′) for which si(h) ̸= s∗i |h′(h) for a number
of histories h not larger then the length of Γ(h′); since Γ has a finite horizon this number is finite.

(3) From among all the profitable deviations of player i in Γ(h′) choose a strategy si for which the number of
histories h such that si(h) ̸= s∗i |h′(h) is minimal.

(4) Let h∗ be the longest history h of Γ(h′) for which si(h) ̸= s∗i |h′(h).

(5) Then the initial history of Γ(h′, h∗) is the only history in Γ(h′, h∗) at which the action prescribed by si differs
from that prescribed by s∗i |h′ .

(6) Further, si|h∗ is a profitable deviation in Γ(h′, h∗), since otherwise there would be a profitable deviation in
Γ(h′) that differs from s∗i |h′ after fewer histories than does si (contradicts to the choice of si), i.e., without
this deviation, e.g. (si|h′−h∗ , s∗i |h∗).

(7) Thus si|(h′,h∗) is a profitable deviation in Γ(h′, h∗) that differs from s∗i |(h′,h∗) only in the action that it pre-
scribes after the initial history of Γ(h′, h∗).

11.20 For extensive games with infinite horizon, a strategy profile may not be a subgame perfect equilibrium although it
satisfies the one deviation property.

Example: In the following one-player game, the strategy in which the player chooses S after every history satisfies
the one deviation property, but is not a subgame perfect equilibrium.

C

S

C

S

C

S S

Figure 11.2: In infinite-horizon games, one deviation property ̸⇒ subgame perfect equilibrium.

11.21 Note that Theorem 11.17 only works for subgame perfect equilibrium in games with perfect information. It is not
true for Nash equilibrium, and it is not true for subgame perfect equilibrium in games with imperfect information.

11.22 Theorem (Kuhn’s Theorem): Every finite extensive game with perfect information has a subgame perfect equilib-�

rium.

Proof. Let Γ = ⟨N,H,P, (≿i)⟩ be a finite extensive game with perfect information. We construct a subgame
perfect equilibrium of Γ by induction on ℓ(Γ(h)). We also define a function R that associates a terminal history
with every history h ∈ H and show that this history is a subgame perfect equilibrium outcome of the subgame
Γ(h).
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(1) If ℓ(Γ(h)) = 0, i.e., h is a terminal history of Γ, defineR(h) = h. Since there is no feasible action,R(h) = h

is a subgame perfect equilibrium outcome in Γ(h).

(2) Suppose that R(h) is defined for all h ∈ H with ℓ(Γ(h)) ≤ k for some k ≥ 0. Let h∗ be a history for which
ℓ(Γ(h∗)) = k + 1 and let P (h∗) = i. Since ℓ(Γ(h∗)) = k + 1 we have ℓ(Γ(h∗, a)) ≤ k for all a ∈ A(h∗).
Define

si(h
∗) ∈ argmax

a∈A(h∗)

R(h∗, a),

and defineR(h∗) = R(h∗, si(h
∗)). It is clear thatR(h∗) is a subgame perfect equilibrium outcome in Γ(h∗).

By induction we have now defined a strategy profile s in Γ; by the one deviation property, this strategy profile is a
subgame perfect equilibrium of Γ.

11.23 The procedure used in proof of Kuhn’s theorem is often referred to as backwards induction. Backwards induction
will eliminate the Nash equilibria that rely on non-credible threats or promises.

11.24 Example: Backwards induction.

R

1, 2

L

R′

2, 1

L′

0, 0

Figure 11.3: The procedure of backwards induction.

(1) There are two non-terminal histories: ∅ and L.

(2) For L, it is player 2’s turn to move. If he chooses L′, he will get 0; otherwise he will get 1. ThenR(L) = R′.

(3) For ∅, it is player 1’s turn to move, and he has 2 choices: L and R. If he chooses R, he will get 1; otherwise,
the subgame Γ(L) is reached, and the equilibrium outcome therein is 2 for player 1. Thus, he will choose L.

(4) Now we have a strategy profile: player 1 chooses L and player 2 chooses R′ at histories ∅ and L respectively,
which is a subgame perfect equilibrium.

Note that we can not obtain the other Nash equilibrium (R,L′) in backwards induction.

11.25 For games with finite horizon, Kuhn’s theorem does not necessarily hold.

Consider the one-player game in which the player chooses a number in the interval [0, 1), and prefers larger num-
bers to smaller ones. This game has a finite horizon (the length of the longest history is 1) but has no subgame
perfect equilibrium, since [0, 1) has no maximal element.

11.26 For infinite-horizon games with the requirement that after any history each player have finitely many possible ac-
tions, Kuhn’s theorem does not necessarily hold.

In the infinite-horizon one-player game the beginning of which is shown in Figure 11.4 the single player chooses
between two actions after every history. After any history of length k the player can choose to stop and obtain a
payoff of k+1 or to continue; the payoff if she continues for ever is 0. The game has no subgame perfect equilibrium.

11.27 Kuhn’s theorem makes no claim of uniqueness.
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C

S

C

S

C

S S

Figure 11.4

11.28 Proposition: Say that a finite extensive game with perfect information satisfies the no indifferent condition if

z ∼j z
′ for all j ∈ N whenever z ∼i z

′ for some i ∈ N,

where z and z′ are terminal histories. Then, by induction on the length of subgames, every player is indifferent
among all subgame perfect equilibrium outcomes of such a game. Furthermore, if s and s′ are subgame perfect
equilibria then so is s′′, where for each player i the strategy s′′i is equal to either si or s′i, that is, the equilibria of
game are interchangeable.

11.3 Examples

11.29 Example: Stackelberg model of duopoly.

Consider the Stackelberg model of duopoly where two firms produce a homogeneous product. The price for the
product it P (Q) = a − Q if Q ≤ a and 0 otherwise, where Q = q1 + q2 and qi is the output level of firm i. The
cost function of firm i is ciqi. Due to the restriction of technology, firm 1 can produce either q1h or q1l, where
q1h ≥ q1l ≥ 0. Firm 2 can produce any quantity q2 ≥ 0. Assume a− q1h > max{c2, 2c1 − c2}.

The game takes place in two stages:

• Firm 1 chooses a quantity q1 ∈ {q1h, q1l}.

• Firm 2 observes q1 and then chooses a quantity q2 ≥ 0.

For i = 1, 2, the payoff to firm i is given by

πi(q1, q2, x) = qiP (Q)− ciqi.

Denote ξ = a− q1h − q1l − 2c1 + c2.

(i) Find the backwards induction outcomes for ξ > 0 and ξ < 0 respectively.

(ii) For ξ > 0, find all the subgame perfect equilibria.

(iii) For ξ > 0, find a Nash equilibrium in which firm 1’s strategy is different from its strategy in the subgame
perfect equilibrium.

Answer.

11.30 Example: Each of two firms, A and B, will choose a number between 0 and 1 which represents the “location”. Let
xA and xB be the numbers chosen by A andB, respectively. The payoff function for firm A is given by

uA(xA, xB) =

xA+xB

2 , if xA ≤ xB,

1− xA+xB

2 , if xA > xB,
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where xA is the number chosen by A and xB is chosen by B. The payoff function for B is uB(xA, xB) = 1 −
uA(xA, xB). Assume that A chooses the number first, and B, after observing xA, chooses xB . Formulate the
problem as an extensive game, and find all pure-strategy subgame perfect equilibria and all pure-strategy Nash
equilibria.

Answer. (i) Given xA,

uB(xA, xB) =

1− xA+xB

2 , if xA ≤ xB ,

xA+xB

2 , if xA > xB .

1 − xA+xB

2 achieves the maximal 1 − xA when xB = xA, and xA+xB

2 has the supremum xA when xB
approaches to xA.
Therefore,

• When xA ≤ 1
2 , 1−xA ≥ xA, and hence uB will achieve themaximal 1−xA. In this case uA = xA ≤ 1

2 .
• When xA > 1

2 , xA > 1 − xA, and hence there is no best response for player B. In this case uA =

1− xA < 1
2 .

Thus, playerA will choose 1
2 due to backwards induction. However, there is no subgame perfect equilibrium

since there is no best response for playerB when he faces xA > 1
2 .

(ii)

11.31 Example: There are n lions in a clearing in the jungle, along with one dead lamb, and the lions are ranked from
L1 (highest) to Ln (lowest). The lions move sequentially, in order of rank, and they can choose to eat or not to
eat. They are hungry (payoff: 0), and therefore prefer to eat (payoff: 1), but they are also cautious; they will not
eat if eating will lead to their death (payoff: −1). The lions have reason to be fearful, because they are narcoleptic,
cannibalistic, and cowardly: if they eat, they fall asleep immediately, at which time they will be prey to the next lion
in the sequence, who will eat only sleeping lions. Finally, the lions are finicky, so they will eat only recently dead,
or newly asleep, meat—they will not eat meat (i.e. sleeping lions or the dead lamb) that has been passed over by
others. In other words, if the dead lamb is not eaten by the first lion L1, then no lion will choose to eat this dead
lamb; if a sleeping lion Li (i = 1, 2, . . . , n − 1) is not eaten by the next lion Li+1, then no lion will choose to eat
this sleeping lion Li.

Represent this problem as an extensive game. What is the subgame perfect outcome if there are six lions in the
pride? What if there are seven lions in the pride?

Answer. (i) When there are six lions, the game tree is as follows:
By backwards induction, the subgame perfect outcome is “L1 does not eat”.

(ii) When there are seven lions, the game tree is as follows:
By backwards induction, the subgame perfect outcome is “L1 eats, and L2 does not eat”.

11.32 Example: Splitting four coins/Ultimatum with a finite number of alternatives.

Players 1 and 2 are bargaining over how to split 4 coins. Player 1 proposes to take s1 coins (s1 should be an integer),
leaving (4−s1) coins for player 2. Then player 2 either accepts or rejects the offer. If player 2 accepts the offer, then
the payoffs are s1 coins to player 1, and (4− s1) coins to player 2. If player 2 rejects the offer, then the payoffs are
zero to both.
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(i) Find all the pure-strategy Nash equilibria.

(ii) Find all the pure-strategy subgame perfect equilibria.

Answer. Figure 11.7 is the game tree.

40
2

31

R

0, 0

A

0, 4

R

0, 0

A

1, 3

R

0, 0

A

2, 2

R

0, 0

A

3, 1

R

0, 0

A

4, 0

Figure 11.7

It is easy to see that player 1’s strategy space is S1 = {0, 1, 2, 3, 4}. Since a strategy is a complete plan of actions in
every contingency when a player is called upon to make, a strategy for player 2 can be represented as a function

f : S1 → {A,R}.
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For example,

f(s1) =

A, if s1 = 0, 2, 4;

R, if s1 = 1, 3

is a strategy of player 2 in which player 2 will accept if player 1 offers 0, 2 and 4, and otherwise she will reject.

Thus, the space of all strategies of player 2 is the set of all functions from S1 to {A,R}. We denote it by S2.

(i) (1) Player 1’s best-response correspondence: Given a strategy f of player 2, note that for any s1 ∈ f−1(A),
player 2will accept the offer. Hence, given f , player 1will choose themaximum in f−1(A). Since f−1(A)

is a subset of S1, the maximal always exists. Thus, player 1’s best-response correspondence is

B∗
1(f) =


S1, if f−1(A) = ∅;

S1, if 0 is the maximum of f−1(A);

{s∗}, if f−1(A) has a maximum s∗ ̸= 0.

(2) Player 2’s best-response correspondence: note that player 2’s strategy is a function

B∗
2(s1) =

{f ∈ S2 : f(s1) = A}, if s1 < 4;

S2, if s1 = 4.

That means for any s1 < 4, player 2 will accept. If s1 = 4, player 2 is indifferent between the two actions
(accept or reject).

(3) We can use various combinations of the conditions in the expression of B∗
1 and B∗

2 to construct all the
Nash equilibria:

• When f∗−1(A) ⫌ {0}, (s∗1, f∗) is a Nash equilibrium if and only if s∗1 = max f∗−1(A);
• When f∗−1(A) = {0}, (s∗1, f∗) is a Nash equilibrium if and only if s∗1 = 0 or 4;
• When f∗−1(A) = ∅, (s∗1, f∗) is a Nash equilibrium if and only if s∗1 = 4.

(ii) For each given s1, we need to consider a corresponding subgame, displayed in Figure 11.8. We know if f∗ is

R

0, 0

A

s1, 1− s1

Figure 11.8

subgame perfect, f∗(s1) = A for any s1 < 4. Hence, if (s∗1, f∗) is subgame perfect, f∗ should be either f∗1
or f∗2 :

f∗1 (s1) =

A, if s1 = 0, 1, 2, 3;

R, if s1 = 4.
or f∗2 (s1) ≡ A for all s1.

It is easy to check that there are 2 subgame perfect equilibria: (s∗1 = 3, f∗1 ) and (s∗1 = 4, f∗2 ).

11.33 Example: Ultimatum with jealousy.
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Players 1 and 2 are bargaining over how to split a dollar. Player 1 proposes to take a share s1 of the dollar, leaving
(1 − s1) for player 2. The share s1 can be any real number in the interval [0, 1]. Then, player 2 either accepts or
rejects the offer. If player 2 accepts the offer, the payoffs are αs1 + (1− α)(2s1 − 1) to player 1, and β(1− s1) +

(1− β)(1− 2s1) to player 2. If player 2 rejects the offer, the payoffs are zero to both. In this game, they may care
about the difference between the shares as well as his/her own share.

(i) Suppose α = β = 1
2 . Find all pure-strategy subgame perfect equilibria.

(ii) Suppose thatα and β are real numbers in the interval [0, 1] and thatα+β > 0. Find a pure-strategy subgame
perfect equilibrium.

Answer. Figure 11.9 is the game tree.

s1

RA

αs1 + (1− α)(2s1 − 1)
β(1− s1) + (1− β)(1− 2s1)

0
0

Figure 11.9

(i) The payoffs when player 2 accepts the offer are 3
2s1 −

1
2 to player 1 and 1 − 3

2s1 to player 2. Clearly, player
2’s payoff 1− 3

2s1 ≥ 0 if and only if s1 ≤ 2
3 . In order to be a subgame perfect equilibrium, player 2’s strategy

must be as follows:

s∗2 =

accept if s1 ≤ 2
3

reject if s1 > 2
3

, s∗∗2 =

accept if s1 < 2
3

reject if s1 ≥ 2
3

.

Note that, if player 2 uses the strategy s∗∗2 , then there is no best choice for player 1. Therefore, the strategy
profile yielding the backwards induction outcome can only be the following subgame perfect equilibrium:

(s∗1 = 2
3 , s

∗
2).

(ii) Thepayoffswhenplayer 2 accepts the offer areαs1+(1−α)(2s1−1) to player 1 andβ(1−s1)+(1−β)(1−2s1)

to player 2. It easy to see that player 2’s payoff β(1− s1) + (1− β)(1− 2s1) ≥ 0 if and only if s1 ≤ 1
2−β . In

order to be a subgame perfect equilibrium, player 2’s strategy must be as follows:

s∗2 =

accept if s1 ≤ 1
2−β

reject if s1 > 1
2−β

, s∗∗2 =

accept if s1 < 1
2−β

reject if s1 ≥ 1
2−β

.

Note that, if player 2 uses the strategy s∗∗2 , then there is no best choice for player 1. If player 2 uses the
strategy s∗2, then player 1’s optimal strategy s∗1 = 1

2−β yields a payoff of α+β−αβ
2−β > 0 (because α, β ∈ [0, 1]
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and α + β > 0). Therefore, the strategy profile yielding the backwards induction outcome can only be the
following subgame perfect equilibrium:

(s∗1 = 1
2−β , s

∗
2).

11.34 Example: Splitting one dollar/Ultimatum with an infinite number of alternatives.

Players 1 and 2 are bargaining over one dollar (divisible) in two periods: In the first period, Player 1 proposes s1
for himself and 1 − s1 for player 2. In the second period, player 2 decides whether to accept the offer or to reject
the offer. If player 2 accepts the offer, the payoff are s1 for player 1 and 1 − s1 for player 2. If player 2 rejects the
offer, the payoff are zero for both players.

(i) Describe all strategies of player 1 and player 2.

(ii) Find all Nash equilibria.

(iii) Find a subgame perfect equilibrium of the game.

(iv) Find a Nash equilibrium which are not subgame perfect.

Answer. Figure 11.10 is the game tree.

s1

R

0, 0

A

s1, 1− s1

Figure 11.10

(i) It is easy to see that player 1’s strategy space is S1 = [0, 1]. Since a strategy is a complete plan of actions
in every contingency when a player is called upon to make, a strategy for player 2 can be represented as a
function

f : [0, 1] → {A,R}.

For example,

f(s1) =

A, if 0 ≤ s1 ≤ 1
2 ;

R, otherwise

is a strategy of player 2 in which player 2 will accept if player 1 offers any s1 ≤ 1
2 and otherwise she will reject.

Thus, the space of all strategies of player 2 is the set of all functions from [0, 1] to {A,R}. We denote it by S2.

(ii) (1) Player 1’s best-response correspondence: Given a strategy f of player 2, note that for any s1 ∈ f−1(A),
player 2 will accept the offer. Hence, given f , player 1 will choose the maximum in f−1(A) if it exists.
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Thus, player 1’s best-response correspondence is

B∗
1(f) =



[0, 1], if f−1(A) = ∅;

[0, 1], if 0 is the maximum of f−1(A);

{s∗}, if f−1(A) has a maximum s∗ ̸= 0;

∅, if f−1(A) has no maximum.

(2) Player 2’s best-response correspondence: note that player 2’s strategy is a function

B∗
2(s1) =

{f ∈ S2 : f(s1) = A}, if 0 ≤ s1 < 1;

S2, if s1 = 1.

That means for any s1 < 1, player 2 will accept. If s1 = 1, player 2 is indifferent between the two actions
(accept or reject).

(3) We can use various combinations of the conditions in the expression of B∗
1 and B∗

2 to construct all the
Nash equilibria:

• When f∗−1(A) ⫌ {0}, (s∗1, f∗) is aNash equilibrium if andonly if s∗1 = sup f∗−1(A) = max f∗−1(A);

• When f∗−1(A) = {0}, (s∗1, f∗) is a Nash equilibrium if and only if s∗1 = 0 or 1;

• When f∗−1(A) = ∅, (s∗1, f∗) is a Nash equilibrium if and only if s∗1 = 1.

(iii) For each given s1, we need to consider a corresponding subgame, displayed in Figure 11.11. We know if f∗

R

0, 0

A

s1, 1− s1

Figure 11.11

is subgame perfect, f∗(s1) = A for any s1 < 1. Hence, if (s∗1, f∗) is subgame perfect, f∗ should be either f∗1
or f∗2 :

f∗1 (s1) =

A, if s1 < 1;

R, if s1 = 1.
or f∗2 (s1) ≡ A for all s1.

It is easy to check that only (s∗1 = 1, f∗2 ) is the unique subgame perfect equilibrium.

(iv) (s∗1 = 1, f∗ ≡ R) is a Nash equilibrium but not a subgame perfect equilibrium.

11.35 Example [JR Exercise 7.29]: Take-it-or-leave-it game.

A referee is equipped withN dollars. He places one dollar on the table. Player 1 can either take the dollar or leave
it. If he takes it, the game ends. If he leaves it, the referee places a second dollar on the table. Player two is now
given the option of taking the two dollars or leaving them. If he takes them, the game ends. Otherwise the referee
places a third dollar on the table and it is again player 1’s turn to take or leave the three dollars. The game continues
in this manner with the players alternately being given the choice to take all the money the referee has so far placed
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on the table and where the referee adds a dollar to the total whenever a player leaves the money. If the last player
to move chooses to leave theN dollars the game ends with neither player receiving any money. Assume thatN is
public information.

(i) Without thinking too hard, how would you play this game if you were in the position of player 1? Would it
make a difference ifN were very large (like a million) or quite small (like 5)?

(ii) Calculate the backward induction strategies. Do these make sense to you?

(iii) Prove that the backward induction strategies form a Nash equilibrium.

(iv) Prove that the outcome that results from the backward induction strategies is the unique outcome in any Nash
equilibrium. Is there a unique Nash equilibrium?

11.36 Two players, A and B, take turns choosing a number between 1 and 9 (inclusive). The cumulative total of all the
numbers chosen is calculated as the game progresses. The player whose choice of number takes the total to exactly
100 is the winner. Is there a first mover advantage in this game?

11.4 Three notable games

11.37 Father-Son-CEO-Manager game.

Player 1 (an entrepreneur) has to decide whether to sell the firm (actionL1) or to delegate control to his son (player
2). Player 2 can then decide to manage the firm himself (actionL2) or hire player 3 (CEO) to run the business. The
CEO, in turn, may or may not delegate control to player 4 (a manager). The manager can, then, either exert effort
to manage the business well (action L4), or shirk (actionR4). Assume that the game, actions, and resulting payoffs
as depicted in the following figure are all common knowledge.

R1L1

1, 1, 1,−1 R2L2

2, 2, 2, 0 R3L3

0, 3, 3, 0 R4

0, 0, 0, 1

L4

0, 4, 4, 1

Figure 11.12: Father-Son-CEO-Manager game.

There are two subgame perfect equilibria: (L1, R2, R3, L4) and (L1, R2, L3, R4), which share the same payoff
(1, 1, 1,−1). However, players can do better through an course of actions (R1, L2, ·, ·).

11.38 The chain-store game.

A chain-store (playerCS) has branches inK cities, numbered 1, 2, . . . ,K . In each city k there is a single potential
competitor, player k. In each period one of the potential competitors decides whether or not to compete with player
CS; in period k it is player k’s turn to do so. If player k decides to compete then the chain-store can either fight
(F ) or cooperate (C). The chain-store responds to player k’s decision before player k + 1 makes its decision. Thus
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5, 1

k

C

2, 2

F

0, 0

CS

Figure 11.13: The chain-store game.

in period k the set of possible outcomes isQ = {Out, (In,C), (In, F )}. The structure of the players’ choices and
their considerations in a single period are summarized in the following figure.

There are two assumptions:

• At every point in the game all players know all the actions previously chosen. The set of histories is

(∪K
k=0Q

k) ∪ (∪K−1
k=0 (Qk × {In})),

whereQk is the set of all sequences of k members ofQ, and the player function is given by P (h) = k + 1 if
h ∈ Qk and P (h) = CS if h ∈ Qk × {In}, for k = 0, 1, . . . ,K − 1.

• the payoff of the chain-store in the game is the sum of its payoffs in theK cities.

This game has a multitude of Nash equilibria: in period k, player k and chain-store choose (Out, F ) or (In,C).

This game has a unique subgame perfect equilibrium: every challenger choose In, and the chain-store always
chooses C . In cityK the chain-store must choose C , regardless of the history, so that in cityK − 1 it must do the
same, continuing the argument one sees that the chain-store must always choose C .

Although the chain-store’s unique subgame perfect equilibrium strategy does indeed specify that it cooperate with
every entrant, it seemsmore reasonable for a competitorwhohas observed the chain-store fight repeatedly to believe
that its entry will be met with an aggressive response, especially if there are many cities still to be contested. If a
challenger enters then it is in the myopic interest of the chain-store to be cooperative, but intuition suggests that it
may be in its long-term interest to build a reputation for aggressive behavior, in order to deter future entry.

11.39 ????? Reputation

11.40 The centipede game.

C

S

1, 0

C

S

0, 2

C

S

3, 1

C

S

2, 4

C

S

5, 3

C 6, 5

S

4, 6

Figure 11.14: The centipede game.

The set of histories in the game is

{C(t) = (C, . . . , C︸ ︷︷ ︸
t

) : t = 0, 1, . . . , T} ∪ {S(t) = (C, . . . , C︸ ︷︷ ︸
t−1

, S) : t = 1, . . . , T}.
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The player function is defined by

P (C(t)) =

1, if t = 0, 2, 4;

2, if t = 1, 3, 5.

The game has unique subgame perfect equilibrium; in this equilibrium each player chooses S in every period.

Now assume that there is a Nash equilibrium that ends with player i choosing S in period t. If t ≥ 2 then player j
can increase his payoff by choosingS in period t−1. Hence in any equilibriumplayer 1 choosesS in the first period.
In order for this to be optimal for player 1, player 2 must choose S in period 2. The notion of Nash equilibrium
imposes no restriction on the players’ choices in later periods: any pair of strategies in which player 1 chooses S in
period 1 and player 2 chooses S in period 2 is a Nash equilibrium.

In the unique subgame perfect equilibrium of this game each player believes that the other player will stop the game
at the next opportunity, even after a history in which that player has chosen to continue many times in the past.
Such a belief is not intuitively appealing.

After a history in which both a player and his opponent have chosen to continue many times in the past, the basis
on which the player should form a belief about his opponent’s action in the next period is far from clear.

11.5 Iterated elimination of weakly dominated strategies

11.41 LetΓ be a finite extensive game with perfect information in which no player is indifferent between any two terminal
histories. Then Γ has a unique subgame perfect equilibrium.

We now define a sequence for eliminating weakly dominated actions in the induced strategic gameG of Γ (weakly
dominated strategies in Γ) with the property that all the action profiles ofG that remain at the end of the procedure
generate the unique subgame perfect equilibrium outcome of Γ.

Let h be a history of Γ with P (h) = i and ℓ(Γ(h)) = 1 and let a∗ ∈ A(h) be the unique action selected by
the procedure of backwards induction for history h. Backwards induction eliminates every strategy of player i that
chooses an action different from a∗i after history h. Among these strategies, those consistent with h (i.e., that choose
the component of h that follows h′ whenever h′ is a subhistory of h with P (h′) = i) are weakly dominated actions
inG. Perform this elimination for each history h with ℓ(Γ(h)) = 1.

Then we turn to histories h with ℓ(Γ(h)) = 2 and perform an analogous elimination; we continue back to the
beginning of the game in this way.

Every strategy of player i that remains at the end of this procedure chooses the action selected by backwards induc-
tion after any history that is consistent with player i’s subgame perfect equilibrium strategy. Thus in particular the
subgame perfect equilibrium remains and every strategy profile that remains generates the unique subgame perfect
equilibrium outcome.

11.42 Example:

H = {∅, (A), (B), (A,C), (A,D), (A,C,E), (A,C, F )}, S1 = {AE,AF,BE,BF}, S2 = {C,D}.

(1) Consider (A,C) firstly. For player 1,E is better than F , then the strategyAF is weakly dominated byAE: if
player 2 choosesD, AF and AE yield the same payoff; if player 2 chooses C , AE is strictly better than AF .
AF is eliminated.

(2) Then consider (A), and it is player 2’s turn. D is better than C given that player 1 will choose E when he
choose C here. Then the strategy C is weakly dominated by D: if player 1 chooses BE or BF , then C and
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B

3, 3

A

1

D

1, 1

C

2

F

0, 2

E

2, 0

1

Figure 11.15: Iterated elimination of weakly dominated strategies.

D yield the same payoff; if player 1 chooses AE, then D is strictly better than C . Note that AF has been
eliminated, and will be not considered any longer. C is eliminated.

(3) Lastly, consider ∅. It is player 1’s turn. AE is weakly dominated byBE, and eliminated.

(4) BE,BF andD remain.

We will see that every strategy of player i that remains at the end of this procedure chooses the action selected by
backwards induction after any history that is consistent with player i’s subgame perfect equilibrium strategy.

For player 1, his subgame perfect equilibrium strategy is BE, consistent history can be ∅ and (B). At the history
∅, the outcomesBE andBF both suggest that player 1 chooseB, same as the equilibrium behavior.

11.43 Note, however, that other orders of elimination may remove all subgame perfect equilibria.

Consider the strategy example above.

C D
AE 2, 0 1, 1
AF 0, 2 1, 1
BE 3, 3 3, 3
BF 3, 3 3, 3

(1) AE is weakly (actually strictly) dominated byBE, and eliminated;

(2) D is weakly dominated by C , and eliminated;

(3) AF is weakly dominated byBF , and eliminated;

(4) (BE,C) and (BF,C) remain, but neither of them are subgame perfect equilibria.

11.6 Forward induction

11.44 In the following game, player 1’s strategy set is

S1 = {(Book,O), (Book, F ), (Outside,O), (Outside, F )},

and player 2’s strategy set is {O,F}.

Consider its reduced strategic form:
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Outside

O F
O 3, 1 0, 0
F 0, 0 1, 3

Book

2, 2

Figure 11.16: Forward induction.

O F
Book 2, 2 2, 2

O 3, 1 0, 0
F 0, 0 1, 3

F is strictly dominated for player 1 by Book, and eliminated. Then F is weakly dominated for player 2 by O, and
eliminated. Finally, Book is strictly dominated byO for player 1. The outcome that remains is (O,O).

This sequence of eliminations corresponds to the following argument for the extensive game:

(1) If player 2 has to make a decision he knows that player 1 has not chosenBook.

(2) Such a choice makes sense for player 1 only if she plans to chooseO.

(3) Thus player 2 should chooseO also.

The logic of such an argument is referred to in the literature as “forward induction”.

11.45 Two individuals are going to play the battle of sexes. Before doing so player 1 can discard a dollar (take the action
D) or refrain from doing so (take the action 0); her move is observed by player 2.

Player 1’s strategy set is

S1 = {0OO, 0OF, 0FO, 0FF,DOO,DOF,DFO,DFF},

and player 2’s strategy set is {OO,OF, FO, FF}.

D

O F
O 2, 1 −1, 0
F −1, 0 0, 3

0

O F
O 3, 1 0, 0
F 0, 0 1, 3

Figure 11.17: Forward induction.

The reduced strategic game is as follows:
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OO OF FO FF
0O 3, 1 3, 1 0, 0 0, 0
0F 0, 0 0, 0 1, 3 1, 3
DO 2, 1 −1, 0 2, 1 −1, 0
DF −1, 0 0, 3 −1, 0 0, 3

Weakly dominated actions can be eliminated iteratively as follows.

(1) DF is weakly dominated for player 1 by 0O;

(2) FF is weakly dominated for player 2 by FO;

(3) OF is weakly dominated for player 2 byOO;

(4) 0F is strictly dominated for player 1 byDO;

(5) FO is weakly dominated for player 2 byOO;

(6) DO is strictly dominated for player 1 by 0O.

The single strategy pair that remains is (0O,OO): the fact that player 1 can throw away a dollar implies, under
iterated elimination of weakly dominated actions, that the outcome is player 1’s favorite.

An intuitive argument that corresponds to this sequence of eliminations is the following.

(1) Player 1 must anticipate that if she chooses 0 then she will obtain an expected payoff of at least 3
4 , since for

every belief about the behavior of player 2 she has an action that yields her at least this expected payoff.

(2) Thus if player 2 observes that player 1 choosesD then he must expect that player 1 will subsequently choose
O (since the choice of F can not possibly yield player 1 a payoff in excess of 3

4 ).

(3) Given this, player 2 should choose O if player 1 chooses D; player 1 knows this, so that she can expect to
obtain a payoff of 2 if she choosesD.

(4) But now player 2 can rationalize the choice 0 by player 1 only by believing that player 1 will choose O (since
F can yield player 1 no more than 1), so that the best action of player 2 after observing 0 is O. This makes 0
the best action for player 1.
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12.1 Game theory deals with situations in which people’s interests conflict. The people involved may try to resolve
the conflict by committing themselves voluntarily to a course of action that is beneficial to all of them. If there
is more than one course of action more desirable than disagreement for all individuals and there is conflict over
which course of action to pursue then some form of negotiation over how to resolve the conflict is necessary. The
negotiation/bargaining process may be modeled using the tools of game theory.

12.2 Reference: Section 4.4 in Fudenberg and Tirole (1991), Section 2.1D in Gibbons (1992), Chapter 7 in Osborne and
Rubinstein (1994), Osborne and Rubinstein (1990), Rubinstein (1982), Ståhl (1972).

12.1 A bargaining game of alternating offers

12.3 Players 1 and 2 are bargaining over one dollar. Let xi denote the share of player i, i = 1, 2. The set of agreements is

X = {(x1, x2) ∈ R2
+ | x1 + x2 = 1}.

12.4 The game lasts for T periods (T could be infinite).�

(1) In period 1, player 1 makes an offer, x11 for himself and x12 for player 2. If player 2 accepts (A), then they split
the dollar according to the offer. If player 2 rejects (R), then they move to period 2.

(2) In period 2, they exchange roles with player 2 making an offer x22 for himself and x21 for player 1, and player
1 decides whether to accept.

167
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(3) In general, player 1 makes offer in odd periods, and player 2 makes offer in even periods.

(4) The game continues until an agreement is reached or after the end of period T .

12.5 Convention: We will assume that a player accepts whenever he is indifferent between accepting and rejecting. All
payoffs are evaluated from the current period.

12.6 If an agreement (x1, x2) is reached in period t, then player i receives payoff�

ui(xi, t) = δtixi,

where δi ∈ (0, 1) is player i’s discount factor. The discount factors are assumed to be common knowledge.

12.7 If no agreement is reached after T − 1 periods, then an exogenous settlement d = (s1, s2) (breakdown’s payoff�

profile) is enforced in period T , where s1 + s2 ≤ 1.

One typical breakdown’s payoff profile is (0, 0).

12.2 Bargaining games with finite horizon

12.8 For finite T , we can find the subgame perfect equilibria by backwards induction.

12.9 Suppose T = 3 and d = (s1, s2). The unique subgame perfect equilibrium can be determined by the backwards
induction.

x1

1

RA

x1
1, x

1
2

2

x2

2

RA

x2
1, x

2
2

1

s1, s2

Figure 12.1

(1) In period 2, player 1 can obtain s1 in the next period by rejecting player 2’s present offer. Thus, player 1 will
reject the offer (x21, x22) if and only if x21 is strictly worse than δ1s1.
Based on this observation, player 2 can obtain at least 1− δ1s1 in period 2.

(2) In period 1, player 2 knows that he can obtain 1− δ1s1 in the next period. Hence, by the same reasoning, he
will accept the present offer if and only if

x12 ≥ δ2(1− δ1s1) = δ2 − δ1δ2s1,
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i.e., x11 ≤ 1− δ2 + δ1δ2s1.

(3) Hence, in the subgame perfect equilibrium player 1 offers

(1− δ2 + δ1δ2s1︸ ︷︷ ︸
x∗
1(3)

, δ2 − δ1δ2s1︸ ︷︷ ︸
x∗
2(3)

)

and player 2 accepts in period 1.

12.10 Suppose T = 5. This case is equivalent to the case T = 3with the breakdown’s payoff profile (1−δ2+δ1δ2s1, δ2−
δ1δ2s1).

Hence player 1’s equilibrium share is:

x∗1(5) = 1− δ2 + δ1δ2(1− δ2 + δ1δ2s1) = (1− δ2)(1 + δ1δ2) + (δ1δ2)
2s1.

12.11 By induction, when T = 2n+ 1, we have player 1’s equilibrium share

x∗1(2n+ 1) = (1− δ2)
n−1∑
i=0

(δ1δ2)
i + (δ1δ2)

ns1.

12.12 When T = 2n+ 2, we know that if the game proceeds to period 2, player 2 will obtain

(1− δ1)

n−1∑
i=0

(δ1δ2)
i + (δ1δ2)

ns2.

So, in this case, player 1 equilibrium share is

x∗1(2n+ 2) = 1− δ2(1− δ1)

n−1∑
i=0

(δ1δ2)
i − δ2(δ1δ2)

ns2.

12.3 Bargaining games with infinite horizon

12.13 We will focus on the case d = (0, 0).

12.14 The set of Nash equilibria of a bargaining game of alternating offers is very large, and almost any division of the
dollar can be obtained as a Nash equilibrium outcome. In particular, for any x∗ ∈ X there is a Nash equilibrium
in which the players immediately agree on x∗ (i.e. player 1’s equilibrium strategy assigns x∗ in period 1 and player
2’s strategy assigns A to x∗).

One such equilibrium is that in which both players always offer x∗ and always accept a proposal x if and only if
x = x∗.

12.15 For many specifications of the players’ preferences there are Nash equilibria in which an agreement is not reached
immediately. For example, for any agreement x and period t, there is a Nash equilibrium for which the outcome is
the acceptance of x in period t.

One such equilibrium is that in which through period t − 1 each player demands the whole dollar and rejects all
proposals, and from period t on offers x and accepts only x.
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12.16 The notion of Nash equilibrium does not exclude the use of “incredible threats.” Consider the Nash equilibrium in
which both players always offer x∗ = (x∗1, x

∗
2) and player i accepts a proposal x if and only if xi ≥ x∗i .

Take a particular proposal x = (x1, x2) such that x1 = x∗1 and x∗2 > x2 > δ2x
∗
2. Then in the equilibrium player

2’s strategy dictates that he rejects such a proposal x. This “threat” induces player 1 to offer x∗.

Player 2’s threat is incredible, given player 1’s strategy: the best outcome that can occur if player 2 carries out
his threat to reject x is that there is agreement on x∗ in the next period, an outcome that player 2 likes less than
agreement on x in the previous period, which he can achieve by accepting x (since x2 > δ2x

∗
2).

12.17 Since T = ∞, we can no longer find subgame perfect equilibria by backwards induction (since there is no final
period). In this case, we need to use an extra trick to final the equilibrium.

12.18 Recall: A strategy profile is said to satisfy the one deviation property if for each subgame the player who makes the
first move can not obtain a better outcome by changing only his initial action.

12.19 Proposition: In any perfect information extensive game with either finite horizon or discounting, a strategy profile
is a subgame perfect equilibrium if and only if it satisfies the one deviation property.

This property is extremely useful in gameswith an infinite horizon, such as the current bargaining game or infinitely
repeated games. In these games, since the players have an infinite number of strategies, it is hard to show that any
particular strategy is a best response. The one deviation property says that we need only to show that at every
decision node a player will not deviate in that decision node and follow the equilibrium strategy in the future.

12.20 Proof. OR 123.1

12.21 Consider Equations in 12.11 and 12.12. Let T go to infinity, then we have

x∗1 ≡ lim
T→∞

x∗1(T ) =
1− δ2
1− δ1δ2

, x∗2 ≡ lim
T→∞

x∗2(T ) = δ2
1− δ1
1− δ1δ2

.

Note that the limit is the same whether T is odd or even.

12.22 Let (y∗1(T ), y∗2(T )) denote the equilibrium division when we interchange the roles of the players and let player 2
make offer in period 1. When T goes to infinity, the equilibrium share will become

y∗1 ≡ lim
T→∞

y∗1(T ) = δ1
1− δ2
1− δ1δ2

, y∗2 ≡ lim
T→∞

y∗2(T ) =
1− δ1
1− δ1δ2

.

Note that
y∗1 = δ1x

∗
1 and x∗2 = δ2y

∗
2 .

12.23 Theorem (Rubinstein, 1982): In the bargaining game with infinite horizon, there is a unique subgame perfect equi-�

librium where

• in every odd period, player 1 offers (x∗1, x∗2) and player 2 accepts any x2 ≥ x∗2,

• in every even period, player 2 offers (y∗1 , y∗2) and player 1 accepts any y1 ≥ y∗1 .

Therefore, the subgame perfect equilibrium outcome is that player 1 offers

( 1− δ2
1− δ1δ2

, δ2
1− δ1
1− δ1δ2

)
and player 2 accepts in period 1.

This theorem says that in each period the players will behave as if in a extremely long finite horizon game.
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12.24 Note that the game is stationary: the subgame starting from any period t looks exactly like the original game. This
is an extremely important property because it implies that if a strategy profile is an equilibrium in period t, it will
be an equilibrium in the next period as well.

12.25 Proof of subgame perfection.

(1) To show that the strategy profile is subgame perfect, we need to show that no player can gain by deviating
once immediately and follow the equilibrium strategy in the future.

(2) In all odd periods:

• Obviously, player 1 will not be strictly better off by proposing (x1, 1− x1) with x1 < x∗1.

• If player 1 offers (x1, 1− x1) with x1 > x∗1, then player 2 will rejects the offer and player 1 will obtain

δ1y
∗
1 = δ21x

∗
1 < x∗1

in the next period, making him worse off.

• If player 2 rejects x∗2, then he will obtain y∗2 in the next period. Hence it is a best response to accept any
x2 ≥ δ2y

∗
2 = x∗2.

(3) The case for even periods is similar.

12.26 Proof of uniqueness.

(1) Let x̄1 and x1 denote the maximal and minimal subgame perfect equilibrium payoffs for player 1 when player
1 is the proposer respectively. Let ȳ2 and y

2
denote the maximal and minimal subgame perfect equilibrium

payoffs for player 2 when player 2 is the proposer respectively.

(2) Consider an odd period. Since player 2 can get at least y
2
in the next period by rejecting player 1’s offer, in

any subgame perfect equilibrium, player 1 must offer player 2 at least δ2y2. Hence,

x̄1 ≤ 1− δ2y2.

(3) On the other hand, considering an even period, player 1 can get at most x̄1 in the next period by rejecting
player 2’s offer. It would not be an equilibrium for player 2 to offer more than δ1x̄1 to player 1. Hence,

y
2
≥ 1− δ1x̄1.

(4) Combining the two inequalities, we have

x̄1 ≤ 1− δ2(1− δ1x̄1) = 1− δ2 + δ1δ2x̄1,

which means that
x̄1 ≤ 1− δ2

1− δ1δ2
= x∗1.

(5) Interchanging the roles of the players, the same arguments imply that

ȳ2 ≤ 1− δ1x1, and x1 ≥ 1− δ2ȳ2.
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(6) Combining the two inequalities, we have

x1 ≥ 1− δ2(1− δ1x1) = 1− δ2 + δ1δ2x1

which means that
x1 ≥ 1− δ2

1− δ1δ2
= x∗1.

(7) Since we know x̄1 ≥ x1, it follows that x∗1 = x̄1 = x1. By the same logic, we can show that y∗2 = ȳ2 = y
2
.

(8) This shows that the subgame perfect equilibriumpayoff is unique. Given this, it is obvious that the equilibrium
itself must also be unique.

12.27 Remark: If discount factors are not assumed to be common knowledge, then bargaining can last for more than one
period in the alternating offers model.

12.4 Properties of subgame perfect equilibria in Rubinstein bargaining games

12.28 Efficiency: The structure of a bargaining game of alternating offers allows negotiation to continue indefinitely.
Nevertheless, in the unique subgame perfect equilibrium it terminates immediately; from an economic point of
view, the bargaining process is efficient (no resources are lost in delay).

To which features of the model can we attribute this result? We saw that in a Nash equilibrium of the game, delay
is possible. Thus the notion of subgame perfection plays a role in the result.

12.29 Stationarity: The subgame perfect equilibrium strategies are stationary: for any history after which it is player i’s
turn to offer an agreement he offers the same agreement, and for any history after which it is his turn to respond to
a proposal he uses the same criterion to choose his response.

We have not restricted players to use stationary strategies; rather, such strategies emerge as a conclusion.

12.30 First mover advantage: There is a first-mover advantage even though there are many periods of negotiation.

Suppose that δ1 = δ2 = δ, then the only asymmetry in the game is that player 1 moves first. Player 1’s equilibrium
payoff is 1

1+δ which exceeds 1
2 , but approaches

1
2 as δ tends to 1. Thus if the players are equally and only slightly

impatient, player 1’s first mover advantage is small and the outcome is almost symmetric.

Player 1 gets the whole dollar if δ2 = 0, since a myopic player 2 will accept any positive amount this period rather
than wait one period. However, even if δ1 = 0 player 2 does not get the whole dollar if δ2 < 1.

12.31 The breakdown share is irrelevant: the division is entirely driven by the discounts factor.

12.32 Effect of changes in patience: A player’s share increases with his discount factor and decreases with his opponent’s
discount factor, and player i’s payoff converges to 1 as δi → 1. That is, fixing the patience of player 2, player 1’s
share increases as she becomes more patient.

12.33 Let exp(−ri∆) be player i’s discounting factor, where ri is player i’s discounting rate and∆ is the duration of each
period. Then the subgame perfect equilibrium payoff profile converges to

(
r2

r1+r2
, r1
r1+r2

)
as ∆ → 0.
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12.5 Bargaining games with cost

12.34 Consider the following two-player bargaining game. Each player i incurs the cost ci > 0 for every period, that is,
player i’s payoff if the agreement is concluded in period t is xi − cit.

12.35 Proposition [OR Exercise 125.2]: If c1 < c2, then the bargaining game has a unique subgame perfect equilibrium
where in every odd period, player 1 offers (1, 0) and player 2 accepts any x2 ≥ 0, and in every even period player
2 offers (1− c1, c1) and player 1 accepts any y1 ≥ 1− c1.

Proof. Omitted.

12.36 Proposition [OR Exercise 125.2]: If c1 = c2 = c < 1, then the game has many subgame perfect equilibrium
outcomes including, if c < 1

3 , equilibria in which agreement is delayed.

Proof. Omitted.

12.6 n-person bargaining games

12.37 Reference: David P. Baron and John A. Ferejohn, Bargaining in Legislatures, American Political Science Review 83
(1989), 1181–1206.

12.38 Consider the following n-person bargaining game:

• n (odd) players try to allocate one dollar among them. Let

X =
{
x ∈ Rn

+ |
∑n

i=1 xi ≤ 1
}

be the set of feasible allocations.

• The game is played for T periods (T could be infinite).

• In any period t, a player is chosen as a proposer with probability 1
n .

• The proposer suggests how to divide the one dollar, i.e., chooses some x = (x1, x2, . . . , xn) fromX .

• The player vote publicly and sequentially (in some order). If the proposal is approved by the majority, then it
is implemented and the game is over.

Otherwise the game moves on to the next period.

• If no proposal is approved by the end of the game, then everyone receives 0.

• Each player’s discount factor is δ ∈ (0, 1), which is common knowledge.

12.39 Suppose T = 2.

(1) In period 2, whoever is chosen as a proposer can request everything.

(2) In period 1, the proposer can buy one vote by paying δ
n . Hence the proposer can pay δ

n to n−1
2 players so that

his proposal just gets the majority votes.

12.40 Suppose T = ∞. We first focus on symmetric stationary subgame perfect equilibrium, where

(i) the distribution of proposals is same independent of histories,
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(ii) every player except for the proposer is treated symmetrically by the equilibrium proposal,

(iii) the equilibrium voting behavior is the same across all the players.

12.41 Theorem: For any δ ∈ (0, 1), there exists the unique symmetric stationary subgame perfect equilibrium. In equilib-
rium, the proposer always proposes to distribute δ

n to randomly selected n−1
2 players. Player i votes for the proposal

if and only if the proposal assigns player i at least δ
n .

12.42 Proof. (1) It is easy to prove that it satisfies the one deviation property.

(2) Take any symmetric stationary subgame perfect equilibrium. Every player’s equilibrium payoff in the begin-
ning of each period must be the same. Denote this by v.

(3) Each proposer is guaranteed to receive at least 1− δv n−1
2 by paying δv to n−1

2 players.

(4) To minimize expense, it must be the case that the proposer pays exactly δv to n−1
2 players. Note that each

other player is in the coalition with probability 1
2 . So v must satisfy

v =
1

n

(
1− δv

n− 1

2

)
+
n− 1

n

1

2
δv.

Hence, v = 1
n .

12.43 Once stationarity is dropped, then many allocations can be supported by subgame perfect equilibria.

In fact, any allocation can be supported if there are many players and the players are patient.

12.44 Theorem: Suppose that n ≥ 5 and n+1
2(n−1) < δ < 1. Then any x ∈ X can be achieved by a subgame perfect

equilibrium where

• every proposer proposes x if there has been no deviation by any proposer. This proposal is accepted by every
player immediately.

• if player j deviates and proposes y ̸= x, then

(1) it is rejected by some majorityM(y) that does not include j,

(2) the next proposer proposes z(y) ∈ X such that zj(y) = 0 and everyone inM(y) votes for z(y).

• if the next proposer k proposes w ̸= y instead of y in the previous step, then repeat the previous step with
(z(w), k) instead of (z(y), j).

12.45 Proof. (1) No proposer has an incentive to deviate from x because then the continuation payoff is 0.

(2) Consider (j, y)-phase. We defineM(y) and z(y) as follows:

• M(y) is a group of n+1
2 players such that j /∈M(y) and

∑
i∈M(y) yi is minimized.

• zi(y) = 0 for i /∈M(y) and zi(y) ∈ yi∑
k∈M(y) yk

for i ∈M(y).

(3) No proposer in (j, y)-phase (even player j) does not have an incentive to deviate and propose something
different from z(y) because then the continuation payoff is 0.

(4) Everyone votes for x and every player inM(y) votes for z(y) (a deviation just causes a delay).

(5) Finally we need to make sure thatM(y) rejects y in favor of z(y) in the next period.

• This is trivially satisfied for i ∈M(y) such that yi = 0.
• For i ∈ M(y) with yi > 0, we need δzi(y) ≥ yi, which is δ ≥

∑
k∈M(y) yk. The least upper bound of∑

k∈M(y) yk is n+1
2(n−1) , which is less than 1 if n ≥ 5.
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12.46 Remark: In this construction, if i is the pivotal voter (voting n+1
2 -th “yes”) inM(y) and zi(y) = 0, then i is playing

a weakly dominated strategy by voting for zi(y). This can be fixed easily by considering a slightly more complicated
transfer: it is possible to perturb zi(y) slightly so that δzi(y) > yi holds for every i ∈M(y).
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Repeated games
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A repeated game is simply a situation in which players have the same encounter over and over, i.e., the same game
is played repeatedly. The game that is played repeatedly is known as the stage game. The stage game itself could be a
simultaneous move game or a sequential move game. If the stage game is played finitely many times then we have a
finitely repeated game. If the stage game is played infinitely many times then we have an infinitely repeated game.

Repeated games generate fundamentally different incentives from isolated interactions, providing explanations to:

• collusion (oligopoly, procurement auctions, sports, etc.)

• cooperation (human, animals)

Repeated games often admit a simple characterization of the set of equilibrium payoffs, known as the “folk theorem”.
If the players’ actions are observed at the end of each period, it becomes possible for players to condition their play on
the past play of their opponents, which can lead to equilibrium outcomes that do not arise when the game is played only
once.

References: Chapter 5 in Fudenberg and Tirole (1991), Chapters 2 and 3 in Mailath and Samuelson (2006), Takahashi
(2014).

13.1 Infinitely repeated games

13.1 The game begins in period 0. In each period, n players play a simultaneous-move stage game.�

177
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• Player setN = {1, 2, . . . , n}.

• Let Ai denote player i’s stage-game action set, and ∆(Ai), the set of probability distributions over Ai, serves
as player i’s stage-game mixed action set. Let A = ×n

i=1Ai.

• Let ui : A→ R denote player i’s stage-game payoff function. Let u = (u1, u2, . . . , un).

Furthermore, we have the following notations:

• Feasible payoffs

F = cou(A) = convex hull {x ∈ Rn | there exists a ∈ A such that u(a) = x}.

• The minmax value
vi = min

α−i∈×j ̸=i∆(Aj)
max
ai∈Ai

ui(ai, α−i).

It is the minimum payoff a player can guarantee himself regardless of the other players’ strategies. A payoff ui
is individually rational in the repeated game if it is not less than ui.

The minmax action profile

αi
−i = argmin

α−i∈×j ̸=i∆(Aj)

max
ai∈Ai

u1(ai, α−i),

aii = argmax
ai∈Ai

ui(ai, α
i
−i).

• Feasible and weakly individually rational payoffs

F+ = {x ∈ F | for each i, xi ≥ vi}.

• Feasible and individually rational payoffs

F++ = {x ∈ F | for each i, xi > vi}.

13.2 Example: Infinitely repeated prisoners’ dilemma. The stage game is as follows:

H C
H 1, 1 −1, 2
C 2,−1 0, 0

Figure 13.1

In this stage-game,

• F is the gray region in Figure 13.2.

• vi = 0 for i = 1, 2.

• F+ = F ∩ {(u1, u2) | u1, u2 ≥ 0}.

• F++ = F ∩ {(u1, u2) | u1, u2 > 0}.
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O

(1, 1)

(2,−1)

(−1, 2)

u1

u2

Figure 13.2

13.3 In the beginning of each period, the players observe actions chosen in last. For each t ∈ {0, 1, 2, . . .}, a t-period�

history is a vector
ht = (∅, a0, a1, . . . , at−1),

where as = (as1, a
s
2, . . . , a

s
n) is the action profile chosen in period s for s = 0, 1, . . . , t − 1. The “null” history, ∅,

serves no real function. It is inserted for consistency in notation.

LetHt denote the set of all t-period histories.

The set of all possible histories isH = ∪∞
t=0H

t.

13.4 Players choose their stage-game action based on what has happened in the past.�

A period t’s (behavior) strategy for player i is

σt
i : H

t → ∆(Ai).

A repeated-game strategy of player i is
σi : H → ∆(Ai).

that describes player i’s strategy in every period.

Let Σi denote the set of repeated-game strategies of player i.

13.5 An outcome (or full history, or path) is an infinite sequence of action profiles a = (a0, a1, . . . , at, . . .).

13.6 The players discount future payoffs by a common discount factor δ ∈ [0, 1).

When the outcome is a = (a0, a1, . . . , at, . . .), player i’s discounted payoff is

∞∑
t=0

δtui(a
t).

The discount factor can be interpreted as a preference for the present over the future. It can also be interpreted as
one minus the probability that the game determinate in that period.

If a player always gets x in each period, then her discounted payoff is x
1−δ .

13.7 In most applications, it is mathematically more convenient to work with the normalized discounted payoff (also�
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called average payoff):

(1− δ)
∞∑
t=0

δtui(a
t).

Since the normalized discounted payoff is just a monotone transformation of the discounted payoff, they represent
the same underlying preferences.

If a player receives a stage-game payoff x in each of the first t periods and y in each of all subsequent periods, then
her normalized discounted payoff is a weighted average of x and y:

(1− δ) ·

(
t−1∑
s=0

δsx+
∞∑
s=t

δsy

)
= (1− δt) · x+ δty.

If a player always gets x in each period, then her normalized discounted payoff is also x (compare with the dis-
counted payoff x

1−δ ).

13.8 A repeated-game strategy profile σ induces a probability distribution over the set of full histories.

If σ is a pure strategy profile, then player i’s normalized discounted payoff is

Ui(σ) = (1− δ)

∞∑
t=0

δtui
(
at(σ)

)
,

where at(σ) is the induced action profile in period t.

As usual, the normalized discounted payoff to player i from a profile of behavior strategies σ is the expected value
of the payoffs of the realized outcomes, also denoted Ui(σ).

Let U = (U1, U2, . . . , Un).

13.9 Definition: A strategy profile σ is a Nash equilibrium if Ui(σ) ≥ Ui(σ
′
i, σ−i) for any player i and any i’s strategy�

σ′
i.

13.10 Proposition: If σ is a Nash equilibrium, then U(σ) ∈ F+.�

Proof. (1) Fix any Nash equilibrium σ.

(2) U(σ) can be represented as a convex combination of u(a) as follows:

U(σ) =
∑
a∈A

µ(a)U(a),

where µ(a) = (1− δ)
∞∑
t=0

δt Probσ(at(σ) = a) for each a ∈ A. Thus, we have U(σ) ∈ F .

(3) For each i, define σ′
i by σ′

i(h) ∈ argmax
ai

ui(ai, σ−i(h)) for any h.

(4) Since σ is a Nash equilibrium, we have Ui(σ) ≥ Ui(σ
′
i, σ−i), where

Ui(σ
′
i, σ−i) = (1− δ)Eσ−i

[ ∞∑
t=0

δt max
ai

ui(ai, σ−i(h))

]
≥ (1− δ)

∞∑
t=0

δtvi = vi.

Thus, we have U(σ) ∈ F+.
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13.11 For any history ht ∈ H , we define the continuation game to be the infinitely repeated games that begins in period�

t, following history ht.

For any strategy profile σ, player i’s continuation strategy after ht, σi|ht : H → ∆(Ai), is given by

σi|ht(h′) = σ(hth′) for any h′ ∈ H,

where hth′ is the concatenation of the history ht followed by the history h′.

Note that σi|ht ∈ Σi.

13.12 Note that the same stage game is played repeatedly and the stage-game payoffs depend only on actions taken in that
period. Thus, history influences only the future actions of the players. This also means that the game is stationary—
starting from any period t, any continuation game from period t onwards is exactly the same as the original game.
Non-stationary repeated games are difficult to analyze.

13.13 Definition: A strategy profileσ is a subgameperfect equilibrium if for any player i ∈ N , any period t ∈ {0, 1, 2, . . .},�

any history ht ∈ Ht and any strategy σ′
i ∈ Σi,

Ui(σi|ht , σ−i|ht) ≥ Ui(σ
′
i, σ−i|ht).

That is, σ is subgame perfect if it induces a Nash equilibrium in every continuation game.

13.14 There are a lot of subgames (infinitely many) and for each subgame there are a large number of possible deviations
(also infinitely many)! It is impossible to verify a strategy profile is subgame perfect by brute force. In the following
we shall go through two fundamental results that are crucial to the analysis of repeated games.

13.15 We say that a strategy profile σ does not have profitable one-shot deviations if for any player i ∈ N , any history h,�

and any action ai,

Ui(σ|h) ≥ (1− δ) · ui(ai, σ−i(h)) + δ
∑
a−i

σ−i(h)(a−i) · Ui(σ|haia−i).

Equivalently, for any σi ∈ Σi, define

Ψ(σi) = {βi ∈ Σi | βs
i = σs

i for all s ≥ 1}.

Ψ(σi) is the set of strategies that are identical to σi from period 1 onward.

A strategy profileσ does not have profitable one-shot deviations if for any player i ∈ N , any period t ∈ {0, 1, 2, . . .},
and any history ht ∈ Ht,

Ui(σi|ht , σ−i|ht) ≥ Ui(σ
′
i, σ−i|ht) for all σ′

i ∈ Ψ(σi|ht).

A strategy profile does not have profitable one-shot deviations if no player can gain by deviating only in the first
period of every continuation game including those that are off the equilibriumpath ofσ. It is weaker than the notion
of subgame perfect equilibrium because the latter concept allows players to deviate inmore than one periods. There
are still an infinite number of subgames to check but at least the number of first period deviations is finite (as the
number of stage-game actions is finite).

13.16 Theorem (One-shot deviation principle): A strategy profile σ is subgame perfect if and only if it does not have�
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profitable one-shot deviations.

Idea of proof: It is obvious that a strategy profile has one deviation property if it is a subgame perfect equilibrium.
We need to show a strategy profile is a subgame perfect equilibrium is it has one deviation property.

The formal proof is tedious, but the basic idea is quite simple. If a strategy profile is not subgame perfect then some
player can obtain a strictly higher payoff, say by ϵ > 0, in some continuation game by deviating. Since future payoffs
are discounted, the player must be better off by deviating by only in the first T periods for some finite T . Now look
at the last deviation. If it makes the player better off, then the strategy profile does not have one deviation property.
If it does not makes the player better off, then the player will still be better off without the last deviation. The same
argument can be repeated until we find a single beneficial deviation. For a complete proof, see Page 25 in Mailath
and Samuelson (2006).

It is probably that Bellman and Shapley in 1950s should take credit for the one-shot deviation principle in the
contexts of single-agent dynamic optimization problems and of stochastic games, respectively.

13.17 Observation: If α∗ is a Nash equilibrium of the stage game, then the strategy profile “each player i plays α∗
i from

now on” is a subgame perfect equilibrium.

Moreover, if the game has m Nash equilibria {αj}mj=1 of the stage game, then for any map j : {0, 1, 2, . . .} →
{1, 2, . . . ,m}, the strategy profile “play αj(t) in period t” is a subgame perfect equilibrium as well.

13.18 Infinitely repeated prisoners’ dilemma. The stage game is as follows:

H C
H 1, 1 −1, 2
C 2,−1 0, 0

Figure 13.3

H is the cooperative action, andC is the uncooperative action. When a game is repeated many times, it seems that
some sort of “cooperative” behavior might be induced. We will consider two types of strategies:

• Player i’s trigger strategy:

– in period 1, player i plays the cooperative action;

– in any period t, player i plays the cooperative action if no one has played the uncooperative action in the
past; otherwise, plays the uncooperative action.

• Player i’s tit-for-tat strategy:

– in period 1, player i plays the cooperative action;

– in any period t, player i plays the action her opponent chooses in the previous period.

13.2 Trigger strategy equilibrium

13.19 In the infinitely repeated prisoners’ dilemma, player i’s trigger strategy is as follows:

• in period 1, player i choosesH ;

• in any period t, player i choosesH if no one has chosen C in the past; otherwise, chooses C .
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13.20 To check whether the trigger strategy profile is a subgame perfect equilibrium, we need to make sure that no player
can deviate once profitably in any subgame. Although there are infinite many of them, subgames all belong to one
of two types:

• no player has deviated before and the continuation strategy is the same as the initial strategy;

• some player has deviated before and the continuation strategy for each player to play C in all future periods.

13.21 Consider the subgames of the first type.

• If a player follows the equilibrium strategy, then she will obtain 1 in each period, and her equilibrium payoff
is therefore equal to 1.

• If she deviates and playC , she receives 2 in the current period and 0 in all subsequent periods (since according
to the equilibrium strategy, they will play C after someone has deviated). The deviation payoff is (1− δ) · 2.

A player will not deviate if and only if
(1− δ) · 2 ≤ 1,

that is, δ ≥ 1
2 .

13.22 Consider the subgames of the second type.

• The players are supposed to play C in all periods, regardless of history. The equilibrium (normalized dis-
counted) payoff for each player is 0.

• If player 1 deviates and playH in the first period and C in all future periods, assuming that the other player
is following the equilibrium strategy, her deviation payoff is (1− δ) · (−1) which is less than 0.

Hence, player 1 will be worse off if she deviates.

13.23 Hence, this strategy profile is a subgame perfect equilibrium if and only if δ ≥ 0.5.

13.24 This is known as a trigger strategy equilibrium. Note that both players playingC is a Nash equilibrium in the stage
game. In a trigger strategy, each player begins playing a cooperate action (H in this case) and continue to do so
until someone has deviated. Any deviation will “trigger” or cause a shift to the punishment phase where the players
play stage-game Nash equilibrium in all future periods.

13.25 Note that in general playing a stage-game Nash equilibrium in every period regardless of history is also a subgame
perfect equilibrium. Since by definition deviation from a stage-game Nash equilibrium will not be profitable in the
current period, and if the strategy is history dependent, then the current deviation will not increase future payoffs.
Hence, the deviation will not be profitable for the whole game. Thus, a trigger strategy profile will be an equilibrium
as long as it is unprofitable to deviate from the initial cooperation phase.

13.26 Example [G Section 2.3.C]: Collusion between Cournot duopolies.

Suppose there are 2 firms in a Cournot oligopoly. Inverse demand is given by P (Q) = a−Q, whereQ = q1 + q2

and qi is the quantity to be produced by firm i. Each firm has a constant marginal cost of production, c, and no
fixed cost. Consider the infinitely repeated game based on this stage game.

What is the lowest value of δ such that the firms can use trigger strategies to sustain the monopoly output level in
a subgame perfect equilibrium?
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13.27 Example [G Exercise 2.15]: Cournot model.

Suppose there are n firms in a Cournot oligopoly. Inverse demand is given by P (Q) = a − Q, where Q =

q1+ · · ·+ qn and qi is the quantity to be produced by firm i. Each firm has a constant marginal cost of production,
c, and no fixed cost. Consider the infinitely repeated game based on this stage game.

What is the lowest value of δ such that the firms can use trigger strategies to sustain the monopoly output level in
a subgame perfect equilibrium?

Answer. Calculate firm i’s production and profit in the collusion, Cournot competition, and deviation from pun-
ishment cases, respectively:

• Cooperative production and profit: In the collusion, the production is qci = a−c
2n , and profit is πc

i = (a−c)2

4n ;

• In-cooperative production and profit: In the Cournot competition, production is qmi = a−c
n+1 , and profit is

πm
i = (a−c)2

(n+1)2 ;

• Deviation production and profit: For each j ̸= i, firm j produces qcj = a−c
2n , then firm i can increases its

profit by producing qdi = (n+1)(a−c)
4n , and profit is πd

i = (n+1)2(a−c)2

(4n)2 .

For each i, consider the following trigger strategy Ti for firm i:

• In period 1 produce qci .

• In period t (t > 1), produce qci if every firm j has produced qcj in each of the t− 1 previous stages; otherwise,
produce qmi .

Fix firm i, and assume that each other firm j ̸= i chooses the trigger strategy Tj . We want to find the condition
which guarantees the trigger strategy Ti to be firm i’s best response.

• If firm i does not choose the trigger strategy, then we consider the following two cases:

– If firm i always chooses the cooperative production qci in every stage game (it is a strategy for firm i, but
not the trigger strategy), then the payoff is as same as the payoff when it chooses trigger strategy.

– If firm i deviates in some period and the profit maximizer is qdi . Without loss of generality, we assume
that period t is the first period when firm i deviates, then it can get at most πd

i in this period.
From period (t+ 1) on, every other firm j will produce in-cooperative production qmj . Thus firm i will
receive at most πm

i in each of the subsequent periods, and period t’s present value of its discounted payoff
from period t onwards is at most

πd
i + δπm

i + δ2πm
i + · · · = πd

i +
δπm

i

1−δ .

It is easy to understand when looking at the following table, where ∗ means we do not know exactly the
action of firm i in that period.

Period 1 · · · t− 1 t t+ 1 t+ 2 t+ 3 · · ·
Firm j ̸= i qcj · · · qcj qcj qmj qmj qmj · · ·

Firm i qci · · · qcj qdi ∗ ∗ ∗ · · ·
Firm i’s payoff πc

i · · · πc
i πd

i ≤ πm
i ≤ πm

i ≤ πm
i · · ·

• If firm i chooses the trigger strategy Ti, then it will receive πc
i in each period, and period t’s present value of

its discounted payoff from period t onwards is

πc
i + δπc

i + δ2πc
i + · · · = πc

i

1−δ .
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• In order for firm i to play trigger strategy Ti, we should have

πc
i

1−δ ≥ πd
i +

δπm
i

1−δ ,

that is δ ≥ (n+1)2

(n+1)2+4n .

Since limn→∞
(n+1)2

(n+1)2+4n = 1, the lowest value of δ approaches 1. That is, as n increases, a larger δ is required to
deter the deviation. In other words, there is more incentive to deviate the trigger strategy.

13.28 Example [G Exercise 2.13]: Bertrand duopoly model with homogenous products.

Find δ > 0 such that the trigger strategy is a subgame perfect equilibrium for the game which infinitely repeats the
stage game of Bertrand model with homogeneous products described in the lecture.

Answer. Calculate firm i’s price and profit in the collusion, Bertrand competition, and deviation from punishment
cases, respectively:

• Cooperative price and profit: In the collusion, the price is pci = a+c
2 , and profit is πc

i = (a−c)2

8 ;

• In-cooperative price and profit: In the Bertrand competition, price is pmi = c, and profit is πm
i = 0;

• Deviation price and profit: Firm j’s price is pcj = a+c
2 , firm i ̸= j can increases its profit by choosing a price

pdi <
a+c
2 , but as close as possible to a+c

2 , and profit is almost equal to monopoly profit πd
i = (a−c)2

4 .

For each i, consider the following trigger strategy Ti for firm i:

• In period 1, choose price pci .

• In period t, choose pci if firm j chooses price pcj in each of the t− 1 previous periods; otherwise, choose price
pmi .

For any i, assume that firm j ̸= i chooses the trigger strategy Tj . We want to find the condition which guarantees
the trigger strategy Ti to be firm i’s best response.

• If firm i does not choose the trigger strategy, then we consider the following two cases:

– If firm i always chooses the cooperative production pci in every stage game (it is a strategy for firm i, but
not the trigger strategy), then the payoff is as same as the payoff when it chooses trigger strategy.

– If firm i deviates in some period and the profit maximizer is pdi . Without loss of generality, we assume
that period t is the first period when firm i deviates, then it can get at most πd

i in this period.
From period (t + 1) on, firm j ̸= i will choose in-cooperative price pmj . Thus firm i will receive at
most πi

m = 0 in each of the subsequent periods, and period t’s present value of its payoff from period t
onwards is at most

πd
i .

It is easy to understand when looking at the following table, where ∗ means we do not know exactly the
action of firm i in that period.

Period 1 · · · t− 1 t t+ 1 t+ 2 t+ 3 · · ·
Firm j ̸= i pcj · · · pcj pcj pmj pmj pmj · · ·

Firm i pci · · · pci pdi ∗ ∗ ∗ · · ·
Firm i’s payoff πc

i · · · πc
i πd

i ≤ πm
i ≤ πm

i ≤ πm
i · · ·
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• If firm i chooses the trigger strategy Ti, then it will receive πc
i in each stage, and the present value of its

discounted payoff from t-th stage onwards is

πc
i + δπc

i + δ2πc
i + · · · = πc

i

1−δ .

In order for firm i to play trigger strategy Ti, we should have

πc
i

1−δ ≥ πd
i ,

that is δ ≥ 1
2 .

13.29 Example: Reputation.

The king has borrowed 100 dollars from the lender at 10% interest. The King can repay or renege. The King may
need a loan in future periods with a probability b. A loan is worth 125 dollars to the King.

• Lender’s strategy: The lender initially provides a loan when needed and continues to do so as long as the king
has repaid past loans. If the king ever reneges, then the lender refuses to lend to him again.

• The king’s strategy: Repay the initial loan and any future loan if he has always repaid it in the past. If he ever
reneges, then he reneges on all future loans.

Lender: If the king has always repaid his loans, then lending to him again yields a payoff of 10 on each loan. If,
instead, the king has reneged on a past loan, then, according to the king’s strategy, he’ll renege on all future loans.
In that case, the lender does not want to lend to him. The lender’s strategy is then optimal.

King:

• If he ever reneged, then it is indeed optimal for himnot to repay a loan, since, according to the lender’s strategy,
he won’t get a future loan regardless of what he does. His payoff from repaying the loan is −110, while it is
zero from reneging.

• Suppose the king has always repaid in the past and has an outstanding loan. If he repays the loan his payoff is

−110 + 15bδ + 15bδ2 + · · · = −110 + 15b δ
1−δ .

The payoff is zero in all periods from reneging.

• It is then optimal for the king to repay the loan when

−110 + 15b δ
1−δ ≥ 0 ⇐⇒ δ ≥ 110

110+15b .

The king repays a loan to preserve a reputation conducive to securing more loans. As b → 0, δ → 1. cooperation
becomes more difficult if future probability of a loan is low.

13.30 Example: In the infinitely repeated prisoners’ dilemma, we define another strategy s∗i of player i as follows:

• in period 1, playH ;

• in period t ≥ 2, if the outcome of the previous period is either (C,C) or (H,H), playH ; otherwise, play C .

Find the condition on δ under which (s∗1, s
∗
2) is a subgame perfect equilibrium.
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13.3 Tit-for-tat strategy equilibrium

13.31 A problem with trigger strategies is that they are too unforgiving—once someone has deviated, they will play the
in-cooperative action forever. This will not work well in situations where players may deviate by mistake or due to
mis-communication.

13.32 A potential alternative to trigger strategies is tit-for-tat. In tit-for-tat:

• in period 1, a player begins with playingH ;

• in all future periods, she will choose the action her opponent chooses in the previous period. That is, a player
will cooperate if her opponent cooperate in the last period and will defect if her opponent defect in the last
period.

13.33 Tit-for-tat strategy profile has many nice features.

• The strategy is simple, so it is easy for a player to learn that the other player is playing tit-for-tat.

• Unlike trigger strategies, it will not get stuck in the punishment phase forever. It was the winner in the famous
repeated prisoners’ dilemma tournament conducted by Axelrod in which strategies devised by well-known
game theorists were pitched against each other. It did better than many much more complicated strategies.

13.34 Subgames all belong to one of four types:

• the last period’s action profile isHH ;

• the last period’s action profile isHC ;

• the last period’s action profile is CH ;

• the last period’s action profile is CC .

13.35 To determine whether tit-for-tat is a subgame perfect equilibrium, we need to check whether the players would
want to deviate in any subgame. Since the game is symmetric, we only need to consider player 1.

13.36 Consider the subgame of the first type (the last period’s action profile isHH): The equilibrium payoff is 1.

If player 1 deviates, she will get 2 in the current period. The current period outcomewill beCH , so the continuation
path in the next period will be: HC,CH,HC, . . .The deviation payoff is therefore equal to

(1− δ) · (2− δ + 2δ2 − δ3 + · · · ) = 2−δ
1+δ .

Player 1 will not deviate if and only if
1 ≥ 2−δ

1+δ ,

that is, δ ≥ 1
2 .

13.37 Consider the subgame of the second type (the last period’s action profile isHC): The equilibrium payoff is

(1− δ) · (2− δ + 2δ2 − δ3 + · · · ) = 2−δ
1+δ .

Player 1 is supposed to chooseC , if she deviates toH , then she will get 1 in the current period. So the continuation
path in the next period will be: HH,HH,HH, . . . So the deviation payoff is 1.

Player 1 will not deviate if
2−δ
1+δ ≥ 1,
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that is, δ ≤ 1
2 .

13.38 Consider the subgame of the third type (the last period’s action profile is CH): The equilibrium payoff is

(1− δ) · (−1 + 2δ − δ2 + 2δ3 − · · · ) = 2δ−1
1+δ .

Player 1 is supposed to chooseH , if she deviates toC , then she will get 1 in the current period. So the continuation
path in the next period will be: CC,CC,CC, . . . So the deviation payoff is 0.

Player 1 will not deviate if
2δ−1
1+δ ≥ 0,

that is, δ ≥ 1
2 .

13.39 Consider the subgame of the fourth type (the last period’s action profile is CC): The equilibrium payoff is 0.

Player 1 is supposed to chooseC , if she deviates toH , then shewill get−1 in the current period. So the continuation
path in the next period will be: CH,HC,CH, . . . So the deviation payoff is

(1− δ) · (−1 + 2δ − δ2 + 2δ3 − · · · ) = 2δ−1
1+δ .

Player 1 will not deviate if
0 ≥ 2δ−1

1+δ ,

that is, δ ≤ 1
2 .

13.40 All four conditions can be satisfied simultaneously if δ = 0.5. Hence, tit-for-tat strategy profile is subgame perfect
only if δ is exactly equal to 0.5.

13.41 Intuitively, the problem of tit-for-tat strategy is that it does not distinguish whether a C is played as a deviation or
as a punishment. Hence, after one player plays C as a punishment, the other player will play C in the next period,
leading to a CH,HC,CH, . . . cycle. The game will not return to the cooperation pathHH,HH,HH, . . ..

13.4 Folk theorem

13.42 The “folk theorems” for repeated games asserts that if the players are sufficiently patient then any feasible, individ-
ually rational payoffs can be enforced by an equilibrium.

Folk theorems refer to a collection of results concerning the set of feasible subgame perfect equilibrium payoff
profiles as the discount factor converges to one. Since the equilibrium payoff set is increasing in δ, these results
provide an upper bound on the set of payoffs that can be achieved through intertemporal cooperation.

This is called the “folk theorem” because it was part of game theory’s oral tradition or “folk wisdom” long before it
was recorded in print.

13.43 Theorem (Folk theorem): For every payoffs u ∈ U with ui > vi for all i ∈ N , there exists a δ < 1 such that for all�

δ ∈ (δ, 1) there is a Nash equilibrium with payoffs u.

13.44 Proof. (1) For simplicity we shall assume that there is a pure-strategy profile a such that u(a) = u.

(2) Consider the following strategy for each player i:

• play ai in period 1, and continue to play ai as long as
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– the action profile in the previous period is a;

– the action profile in the previous period differed from a in two or more components;

• if in some period player i is the only one not to follow a, then each player j ̸= i plays αi
j for the rest of

the game.

(3) In period t, player i deviates, then she will receive at most maxa ui(a) in period t, and at most vi in periods
after period t. Thus, player i obtains at most

(1− δ)max
a
ui(a) + δvi,

which is less than ui as long as δ exceeds δi defined by

ui = (1− δi)max
a
ui(a) + δivi.

(4) Since ui > vi, the solution δi is less than 1.

(5) Taking δ = maxi δi completes the proof.

13.45 Under the strategies used in the proof, a single deviation provokes unrelenting punishment. Now, such punishments
may be very costly for the punishers to carry out. For example, in a repeated quantity-setting oligopoly, theminmax
strategies require player i’s opponents to produce somuch output that price falls below player i’s average cost, which
may be below their own costs as well. Since minmax punishments can be costly, the question arises if player i ought
to be deterred from a profitable one-shot deviation by the fear that her opponents will respond with the unrelenting
punishment specified above.

More formally, the point is that the strategies we used to prove the Nash folk theorems are not subgame perfect.
This raises the question of whether the conclusion of the folk theorem applies to the payoffs of subgame perfect
equilibrium.

13.5 Nash-threats folk theorem

13.46 Nash-threats folk theorem (Friedman (1971)): Let a∗ be a Nash equilibrium of the stage game with payoffs e. Then�

for any u ∈ U such that ui > ei for all i ∈ N , there is a δ < 1 such that for all δ ∈ (δ, 1) there is a subgame perfect
equilibrium with payoffs u.

13.47 Friedman’s theorem shows that any payoff profile that strictly dominates e can be supported by subgame perfect
equilibria when the players are sufficiently patient.

13.48 Proof. (1) For simplicity we shall assume that there is a pure-strategy profile â such that u(â) = u.

(2) The following strategy profile, commonly known as a trigger strategy profile, is a subgame perfect equilibrium
when δ converges to one.

• Cooperation phase: in period 1, player i chooses âi. Continue to play âi as long as â has been chosen in
all previous periods. Switch to the punishment phase if some player has deviated from â.

• Punishment phase: player i chooses a∗i in every period regardless of history.

(3) Since a∗ is a Nash equilibrium of the stage game, to show that the strategy profile is a subgame perfect equi-
librium, it is sufficient to show that no player wants to deviate from the cooperation phase.
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(4) Let ūi be player i’s maximum stage-game payoff. If player i deviates, she gets at most ū in the current period
and ei in all future periods. Her deviating payoff is at most

(1− δ) · (ūi + δei + δ2ei + · · · ) = (1− δ)ūi + δei

which is less than ui, player i’s equilibrium payoff in the cooperation phase, for δ sufficiently close to one.

13.49 Note that player i’s equilibrium payoff will never be lower than vi. It turns out that for discount factor sufficiently
close to one, the converse is also true.

13.50 Example: Infinitely repeated prisoners’ dilemma. The stage game is as follows:

H C
H 1, 1 −1, 2
C 2,−1 0, 0

Figure 13.4

The set of feasible payoffs is the gray region in Figure 13.2, and Friedman’s theorem guarantees that any point in both
the gray region and the first quadrant can be achieved as the payoff in a subgame perfect equilibrium of infinitely
repeated prisoners’ dilemma, provided the discount factor is sufficiently close to one.

13.6 Perfect folk theorem

13.51 Two-person perfect folk theorem (Theorem 1 in Fudenberg and Maskin (1986)): In any two-person infinitely-�

repeated game, for any u ∈ U with ui > ui for all i = 1, 2, there exists δ < 1 such that for all δ ∈ (δ, 1) there is a
subgame perfect equilibrium with payoff profile u.

13.52 Since the equilibrium payoff can not go below vi, this result says that when any strictly individually rational payoff
is a subgame perfect equilibrium payoff. Anything is possible in repeated games.

13.53 Proof. (1) For simplicity we shall assume that there is a pure strategy profile a = (a1, a2) such that u(a) = u.
Also assume that for (i, j) = (1, 2), (2, 1), the minmax action aji is pure.1 Let a = (a21, a

1
2) denote the

“mutual” minmax action profile.

(2) PickK sufficiently large so that for any i = 1, 2,

K(ui − ui(a)) > max
a
ui(a)− ui.

(3) Consider the following strategy profile:

• Cooperation phase: play (a1, a2) in each period. If either player deviates, the game goes to the punish-
ment phase.

• Punishment phase: play (a21, a12) forK periods. If no player deviates during theK periods, return to the
cooperation phase. If any player deviates, restart the punishment phase.

1If not, we have to add a “reward phase” to make each player i indifferent over all actions in the support of αj
i .
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(4) For cooperation phase, if player i deviates, she gets at most

(1− δ) ·
(
max
a
ui(a) + δui(a) + · · ·+ δKui(a) + δK+1ui + δK+2ui + · · ·

)
= (1− δ)max

a
ui(a) + (δ − δK+1)ui(a) + δK+1ui.

Player i will not deviate if

ui ≥ (1− δ)max
a
ui(a) + (δ − δK+1)ui(a) + δK+1ui,

that is,
max
a
ui(a)− ui ≤ δ(1 + δ + · · ·+ δK−1)︸ ︷︷ ︸

→K(δ→1)

(ui − ui(a)). (13.1)

Note that Equation (13.1) holds when δ is sufficiently close to one.

(5) For punishment phase, it is sufficient to show that the players do not have incentives to deviate in the beginning
of the punishment phase. (She has the highest incentive to do so in the first period of the punishment phase)
Player i’s equilibrium payoff is

(1− δK)ui(a) + δKui.

If player i deviates, her payoff is at most

(1−δ)·
(
ui + δui(a) + · · ·+ δKui(a) + δK+1ui + δK+2ui + · · ·

)
= (1−δ)ui+(δ−δK+1)ui(a)+δ

K+1ui.

Player i will not deviate if

(1− δK)ui(a) + δKui ≥ (1− δ)ui + (δ − δK+1)ui(a) + δK+1ui,

that is,
ui − ui(a) ≤ δK(ui − ui(a)). (13.2)

Since ui > ui ≥ ui(a), we can get δ such that Equation (13.2) holds.

(6) Therefore there exists δ < 1, such that for any δ ∈ (δ, 1), there is a subgame perfect equilibrium with payoff
profile u.

13.54 Note that this proof applies only to two-player games as it is generally impossible to minmax more than two players
simultaneously.

Example (Example 3 in Fudenberg and Maskin (1986)): In this game, player 1 chooses rows, player 2 chooses
columns, and player 3 chooses matrices. Note that whatever one player gets, the others get too.

A B
A 1, 1, 1 0, 0, 0
B 0, 0, 0 0, 0, 0

A B
A 0, 0, 0 0, 0, 0
B 0, 0, 0 1, 1, 1

For any δ < 1 there does not exist a subgame perfect equilibrium in which the normalized discounted payoff ϵ is
less than 1

4 (the mixed-strategy equilibrium payoff of the stage game).
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13.55 Perfect folk theorem (Theorem 2 in Fudenberg and Maskin (1986)): Assume that the dimensionality of U equals�

the number of players. Then for any u ∈ U , there exists δ < 1 such that for all δ ∈ (δ, 1) there exists a subgame
perfect equilibrium in which player i’s normalized discounted payoff is ui.

Proof. (1) For simplicity, assume that there exists a pure action profile ã ∈ A such that u = u(ã). Also assume
that for each i, the minmax action profile ai = (aii, a

i
−i) is pure.

(2) Since dimF = n, there exist “player-specific punishments” u1, u2, . . . , un ∈ F++ such that

ui > uii, and uji > uii for all j ̸= i.

Again, for simplicity, assume that for each i, there exists a pure action profile ai ∈ A such that ui = u(ai).

(3) PickK sufficiently large so that
K(uii − vi) > max

a
ui(a)− uii

for any i ∈ N .

(4) Consider the following strategy for player i:

• Normal phase: play ãi in each period. If player j deviates, the game goes to the punishment phase j.
Ifmultiple players deviate simultaneously, we can ignore such deviations, or punish the “youngest” among
all deviators.

• Punishment phase j: play aji for K periods and move to reward phase j if no one deviates; if player k
deviates, move to the beginning of the punishment phase k. (This rule applies even if k = j.)

• Reward phase j: play aji in each period. If player k deviates, move to the beginning of the punishment
phase k.2

(5) For normal phase, if player i deviates, she gets at most

(1− δ) ·
(
max
a
ui(a) + δui(a) + · · ·+ δKui(a) + δK+1uii + δK+2uii + · · ·

)
= (1− δ)max

a
ui(a) + (δ − δK+1)ui(a) + δK+1uii.

Player i will not deviate if

ui ≥ (1− δ)max
a
ui(a) + (δ − δK+1)ui(a) + δK+1uii.

This inequality holds since RHS approaches uii when δ is sufficiently close to one.

(6) For punishment phase, it is sufficient to show that the players do not have incentives to deviate in the beginning
of the punishment phase. (She has the highest incentive to do so in the first period of the punishment phase)
Player i’s equilibrium payoff is

(1− δK)ui(a) + δKuii.

If player i deviates, her payoff is at most

(1−δ)
(
ui(ai, a

i
−i)+δui(a)+· · ·+δKui(a)+δK+1uii+· · ·

)
= (1−δ)ui(ai, ai−i)+(δ−δK+1)ui(a)+δ

K+1uii.

Player i will not deviate if

(1− δK)ui(a) + δKuii ≥ (1− δ)ui(ai, a
i
−i) + (δ − δK+1)ui(a) + δK+1uii,

2The reward phase j is not to reward player j, but to reward all other players. Without such a reward phase, player i ̸= j would not be willing
to play aji in punishment phase j since punishing player j can be costly to player i.
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which is equivalent to
(1− δK)ui(a) + δKuii︸ ︷︷ ︸

→ui
i(δ→1)

≥ ui(ai, a
i
−i).

Since ui(ai, ai−i) ≤ vi and uii > vi, this inequality holds when δ is sufficiently close to one.

(7) For reward phase, if player i deviates to ai in her own reward phase, she gets

(1− δ)ui(ai, a
i
−i) + (δ − δK+1)u(a) + δK+1uii.

Player i will not deviate if

uii ≥ (1− δ)ui(ai, a
i
−i) + (δ − δK+1)u(a) + δK+1uii,

which holds when δ is sufficiently close to one due to the choice of T .

13.56 Reference: Dilip Abreu, Prajit Dutta and Lones Smith, The folk theorem for repeated games: a NEU condition,
Econometrica 62 (1994), 939–948.

13.57 A game satisfies the non-equivalent utilities condition (abbreviated as “NEU”) if for any i, j there exists no c and d
such that ui = c+ duj .

13.58 Folk theorem (Sufficiency): If a game satisfies NEU, then any strictly individually rational payoff can be supported
as a subgame perfect equilibrium as δ goes to one.

13.59 A stage game satisfies the condition of no simultaneous minimizing (abbreviated as “NSM”) if no two players can
be simultaneously hold to their respective minimal attainable payoffs or below.

13.60 Folk theorem (Necessity): For any repeated game that satisfies NSM,NEU is a necessary condition for folk theorem.

13.7 Finitely repeated games

13.61 Theorem: If the stage game has a unique Nash equilibrium a∗, then for a finitely repeated game (T periods), there
is a unique subgame perfect equilibrium that is a repetition of the stage game Nash equilibrium. No cooperation is
sustainable.

Proof. By backwards induction, at period T , we will have that (regardless of history) aT = a∗. Given this, then we
have aT−1 = a∗, and continuing inductively, at = a∗ for each t = 1, 2, . . . , T regardless of history.
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Chapter 14
Extensive games with imperfect information
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14.1 Extensive games with imperfect information

14.1 In extensive games with imperfect information, some player may have only partial information about the history
of the play.

We analyze this kind of games by assuming that each player, when choosing an action, forms an expectation about
the unknowns.

• These expectations are not derived solely from the players’ equilibrium behavior as in strategic games, since
the players may face situations inconsistent with that behavior.

• These expectations relate not only to the other players’ future behavior as in extensive games with perfect
information but also to events that happened in the past.

14.2 Definition: An extensive game with imperfect information is defined as:�

Γ = ⟨N,H,P, fc, (Ii), (≿i)⟩.

• A setN = {1, 2, . . . , n} of players.

• A setH of sequences that satisfies the following three properties.

– The empty sequence ∅ is a member ofH .
– If (ak)Kk=1 ∈ H (K may be infinite) and L < K then (ak)Lk=1 ∈ H .
– If an infinite sequence (ak)∞k=1 satisfies (ak)Lk=1 ∈ H for every positive integer L then (ak)∞k=1 ∈ H .

195
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Each member ofH is a history; each component of a history is an action.

A history (ak)Kk=1 ∈ H is terminal if it is infinite or if there is no aK+1 such that (ak)K+1
k=1 ∈ H . The set of

terminal histories is denoted Z .

After any non-terminal history h player P (h) chooses an action from

A(h) = {a : (h, a) ∈ H}.

• A function P : H \ Z → N ∪ {c} that assigns to each non-terminal history a member ofN ∪ {c}.
P is called the player function, and P (h) is the player who takes an action after the history h.

If P (h) = c then chance determines the action taken after the history h.

• A function fc that associates with every history h for which P (h) = c a probability measure fc(· | h) on
A(h), where each such probability measure is independent of every other such measure.

• For each player i ∈ N a partition Ii of {h ∈ H : P (h) = i} with the property that A(h) = A(h′) whenever
h and h′ are in the same member of the partition.

For Ii ∈ Ii we denote by A(Ii) the set A(h) and by P (Ii) the player P (h) for any h ∈ Ii.

Ii is the information partition of player i; a set Ii ∈ Ii is an information set of player i.

The information set containing the history h is denoted by I(h).

• For each player i a preference relation on Z .

14.3 ????? Example 202.1

14.4 ????? Example Myerson 1991, Section 2.1

14.5 Definition: A pure strategy for a player is a complete plan of actions—specifies an action for the player in every�

contingency; i.e.,
si : Ii → ∪Ii∈IiA(Ii)

such that si(Ii) ∈ A(Ii).

si can be rewritten as a vector
(
si(Ii)

)
Ii∈Ii

.

Denoted by Si the set of player i’s strategies.

14.6 We refer to games in which at every point every player remembers whatever he knew in the past as games with
perfect recall.

Let ⟨N,H,P, fc, (Ii), (≿i)⟩ be an extensive game and let Xi(h) be the record of player i’s experience along the
history h: Xi(h) is the sequence consisting of the information sets that the player encounters in the history h and
the actions that he takes at them, in the order that these events occur.

An extensive game has perfect recall if for each player i we haveXi(h) = Xi(h
′) whenever the histories h and h′

are in the same information set of player i.

14.7 Examples of extensive games with imperfect recall.
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(a)

1

(b)

1 1

1

(c)

Figure 14.1: Extensive games with imperfect recall.

14.2 Mixed and behavioral strategies

14.8 Definition: Amixed strategy of player i in an extensive game ⟨N,H,P, fc, (Ii), (≿i)⟩ is a probability measure over�

Si, usually denoted by αi.

A behavioral strategy of player i is a collection βi = (βi(Ii))Ii∈Ii
∈ ×Ii∈Ii∆A(Ii) of independent probability

measures, where βi(Ii) is a probability measure over A(Ii).

We denote by βi(Ii)(a) the probability assigned to the action a ∈ A(Ii).

14.9 Differences between mixed strategies and behavior strategies: Consider the following game.

BA

2

DC DC

Figure 14.2

For player 2, there are four pure strategies: (A,C), (A,D), (B,C), (B,D). Hence, each player 2’s mixed strategy
can be written as α ◦ (A,C) + β ◦ (A,D) + γ ◦ (B,C) + (1− α− β − γ) ◦ (B,D).

Each player 2’s behavioral strategy can be represented by (x ◦A+ (1− x) ◦B, y ◦ C + (1− y) ◦D).

14.10 ????? Hart 1992 handbook chap 2 page 32, Remark: A useful way of viewing the difference between mixed and
behavior strategies is as follows. One can think of each pure strategy as a book of instructions, where for each of
the player’s information sets there is on page which states what choice he should make at that information set. The
player’s set of pure strategies is a library of such books. A mixed strategy is a probability distribution on his library
of books, so that, in playing according to a mixed strategy, the player chooses on book from his library by means
of a chance device having the prescribed probability distribution. A behavior strategy is a single book of a different
sort. Although each page still refers to a single information set of the player, it specifies a probability distribution
over the choices at that set, not a specific choice.

14.11 For any profile σ = (σi)i∈N of either mixed or behavioral strategies in an extensive game, we define the outcome
O(σ) of σ to be the probability distribution over the terminal histories that results when each player i follows the
precepts of σi.

14.12 Two (mixed or behavioral) strategies of any player are outcome-equivalent if for every collection of pure strategies
of the other players the two strategies induce the same outcome.
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14.13 Observation: For any behavioral strategy βi of any player i in extensive games with perfect recall, themixed strategy
defined as follows is outcome-equivalent: the probability assigned to any pure strategy si (which specifies an action
si(Ii) for every information set Ii ∈ Ii) is ΠIi∈Iiβi(Ii)(si(Ii)).

In Example 14.9, for the behavioral strategy (x ◦A+ (1− x) ◦B, y ◦ C + (1− y) ◦D), the outcome-equivalent
mixed strategy can be defined as:

xy ◦ (A,C) + x(1− y) ◦ (A,D) + (1− x)y ◦ (B,C) + (1− x)(1− y) ◦ (B,D).

14.14 Note that the derivation of the mixed strategy relies on the assumption that the collection
(
βi(Ii)

)
Ii∈Ii

is indepen-
dent.

Consider the following imperfect recall game. The behavioral strategy that assigns probability p ∈ (0, 1) to a to a
generates the outcomes (a, a), (a, b), and b with probabilities p2, p(1 − p), and 1 − p respectively, a distribution
that can not be duplicated by any mixed strategy: the set of pure strategies are {a, b}. Any mixed strategy can
be represented by q ◦ a + (1 − q) ◦ b, which generates the outcomes (a, a) and b with probabilities q and 1 − q

respectively.

b

0

a

b

1

a

0

Figure 14.3

14.15 Proposition (Kuhn, 1950 and 1953): For any mixed strategy of a player in a finite extensive game with perfect recall
there is an outcome-equivalent behavioral strategy.

14.16 Proof. (1) For any history h = (a1, a2, . . . , ak) define a pure strategy si of player i to be consistent with h if for
every subhistory (a1, a2, . . . , al) of h for which P (a1, a2, . . . , al) = i we have si(a1, a2, . . . , al) = al+1.

(2) Let σi be a mixed strategy of player i. For any history h let πi(h) be the sum of the probabilities according to
σi of all the pure strategies of player i that are consistent with h.

(3) Let h and h′ be two histories in the same information set Ii of player i, and let a ∈ A(h). Since the game has
perfect recall, the sets of actions of player i in h and h′ are the same. Thus πi(h) = πi(h

′).

(4) Since in any pure strategy of player i the action a is taken after h if and only if it is taken after h′, we also have
πi(h, a) = πi(h

′, a).

(5) Define a behavioral strategy βi of player i:

βi(Ii)(a) =


πi(h,a)
πi(h)

, if πi(h) > 0,

immaterial, otherwise,

where h ∈ Ii.

(6) Let s−i be a collection of pure strategies for the players other than i. Let h be a terminal history.

• If h includes moves that are inconsistent with s−i then the probability of h is zero under both αi and βi.
Now assume that all the moves of players other than i in h are consistent with s−i.
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• If h includes a move after a subhistory h′ ∈ Ii of h that is inconsistent with σi then βi(Ii) assigns
probability zero to this move, and thus the probability of h according to βi is zero.

• If h is consistent with σi then πi(h′) > 0 for all subhistories h′ of h and the probability of h according to
βi is the product of πi(h

′,a)
πi(h′) over all (h′, a) that are subhistories of h; this product is πi(h), the probability

of h according to σi.

14.17 Remark: Kuhn’s Theorem allows us to focus on behavioral strategies.

14.18 Consider Example 14.9 again. For amixed strategyα◦(A,C)+β ◦(A,D)+γ ◦(B,C)+(1−α−β−γ)◦(B,D),
the outcome-equivalent behavioral strategy can be defined as follows:

(
(α+ β) ◦A+ (1− α− β) ◦B, (α+ γ) ◦ C + (1− α− γ) ◦D

)
.

14.19 A Nash equilibrium of an extensive game is a strategy profile σ∗ with the property that for every player i ∈ N we
have

O(σ∗
−i, σ

∗
i ) ≿i O(σ∗

−i, σi) for every strategy σi of player i.

Here σ∗ could refer to pure-strategy profile, mixed-strategy profile, or behavioral-strategy profile.

14.20 In the following game, the unique pure-strategy Nash equilibrium is (L,R′). When adopting the strategy profile
(L,R′), player 2’s information set is not reached.

RL

2, 2

M
2

R′

0, 2

L′

3, 1

R′

1, 1

L′

0, 2

Player 1

Player 2
L′ R′

L 2, 2 2, 2
M 3, 1 0, 2
R 0, 2 1, 1

But in this case player 2’s optimal action in the event that his information set is reached depends on his belief about
the history that has occurred. The actionR′ is optimal if he assigns probability of at least 1

2 to the historyM , while
L′ is optimal if he assigns probability of at most 1

2 to this history.

Thus his optimal action depends on his explanation of the cause of his having to act. His belief can not be derived
from the equilibrium strategy, since this strategy assigns probability zero to his information set being reached.

14.21 The solutions for extensive games that we have studied so far have a single component: a strategy profile. We will
study solutions that consist of both a strategy profile and a belief system, where a belief system specifies, for each
information set, the beliefs held by the players who have to move at that information set about the history that
occurred.

It is natural to include a belief system as part of the equilibrium, given our interpretation of the notion of subgame
perfect equilibrium. When discussing this notion of equilibrium we argue that to describe fully the players’ rea-
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soning about a game we have to specify their expectations about the actions that will be taken after histories that
will not occur if the players adhere to their plans, and that these expectations should be consistent with rationality.

14.3 Subgame perfect equilibrium

14.22 Definition: In an extensive game with imperfect information, the subgame after history h ∈ H�

• begins at a history h that is a singleton information set (but is not the game’s initial history), that is, I(h) =
{h};

• includes all the histories following h (but no histories that do not follow h);

• does not cut any information sets (i.e., if h′ is a history following h, and h′′ is in the information set containing
h′, then h′′ also follows h).

14.23 Definition: A strategy profile σ is a subgame perfect equilibrium (abbreviated as “SPE”) of the extensive game with�

imperfect informationΓ ifσ induces aNash equilibrium in every subgame inΓ. Hereσ∗ could refer to pure-strategy
profile, mixed-strategy profile, or behavioral-strategy profile.

14.24 Example: Consider the following games of complete information, where the three numbers below each terminal
node are the payoffs to player 1, player 2, and player 3 from top to bottom.

RL

BA DC

T

0, 0, 0

S

0, 20, 20

T

12, 12, 12

S

8, 8, 8

T

10, 15, 10

S

10, 5, 10

Y

5, 10, 15

X

15, 10, 5

Figure 14.4

(i) How many information sets does player 3 have?

(ii) How many pure strategies does player 3 have? What are they?

(iii) How many subgames do you find in the above game?

(iv) Find all the pure-strategy Nash equilibria for the game.

(v) Identify those pure-strategy Nash equilibria which are subgame prefect or not.

Answer. (i) Player 3 has two information sets: One is a non-singleton information set and the other is a singleton
information set.

(ii) Player 3 has four strategies: SX , SY , TX , and TY .

(iii) Only one subgame.

(iv) In the following tables, one can find all the pure-strategy Nash equilibrium in the entire game. If player 1
chooses L:
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Player 2

Player 3
SX SY TX TY

AC 0, 20, 20 0, 20, 20 0, 0, 0 0, 0, 0
AD 0, 20, 20 0, 20, 20 0, 0, 0 0, 0, 0
BC 8, 8, 8 8, 8, 8 12, 12, 12 12, 12, 12
BD 8, 8, 8 8, 8, 8 12, 12, 12 12, 12, 12

If player 1 choosesR:

Player 2

Player 3
SX SY TX TY

AC 10, 5, 10 10, 5, 10 10, 15, 10 10, 15, 10
AD 15, 10, 5 5, 10, 15 15, 10, 5 5, 10, 15
BC 10, 5, 10 10, 5, 10 10, 15, 10 10, 15, 10
BD 15, 10, 5 5, 10, 15 15, 10, 5 5, 10, 15

Subgame perfect equilibria: (L,BC, TY ), (L,BD, TY ), (R,AC, TY ), and (R,AD,SY ).

Not subgame perfect equilibria: (L,BC, TX) and (R,AC, TX).

14.25 Example: Consider the following game. In the game tree, the numbers at the top are payoffs to player 1 and the
numbers at the bottom are payoffs to player 2, as usual.

R

1, 1

L
M

2

R′

−2, 0

L′

x, 1

R′

−1, 1

L′

2, 0

Figure 14.5

(i) How many subgames are there in this game, not counting the whole game as one subgame?

(ii) If x ≥ x0, then there are two pure-strategy subgame perfect equilibria. If x < x0, then there is only one pure-
strategy subgame perfect equilibrium. Find this threshold value x0. What are the two pure-strategy subgame
perfect equilibria if x ≥ x0?

Answer. (i) 0. Thus, every Nash equilibrium is a subgame perfect equilibrium.

(ii) Consider the following payoff table:
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Player 1

Player 2
L′ R′

L x, 1 −2, 0
M 2, 0 −1, 1
R 1, 1 1, 1

If x ≥ 2, then there are two pure-strategy subgame perfect equilibria (L,L′) and (R,R′). Otherwise, there
is unique pure-strategy subgame perfect equilibrium (R,R′). Therefore x0 = 2.

14.26 Example [G Exercise 2.6]: Market with three oligopolists.

Three oligopolists operate in a market with inverse demand given by P (Q) = a−Q, whereQ = q1 + q2 + q3 and
qi is the quantity produced by firm i. Each firm has a constant marginal cost of production, c, and no fixed cost.
The firms choose their quantities as follows:

• firm 1 chooses q1 ≥ 0;

• firms 2 and 3 observe q1 and then simultaneously choose q2 and q3, respectively.

What is the pure-strategy subgame perfect outcome?

q1

q2

q3

πi(qi, q−i)

Figure 14.6

Answer. Figure 14.6 is the game tree. Given q1, suppose q1 ≤ a − c (otherwise firm 1’s payoff is non-positive),
which implies a− q1 ≥ c. Note that firms 2 and 3’s pure strategies are both functions of q1.

The second stage is exactly a Cournot model of duopoly, with total demand a′ = a − q1, and marginal cost c2 =

c3 = c ≤ a− q1. Therefore the unique Nash equilibrium is (q∗2(q1), q∗3(q1)) = (a−q1−c
3 , a−q1−c

3 ).

For firm 1, consider the following optimization problem

max
q1≤a−c

q1(a− c− q1 − q∗2(q1)− q∗3(q1)) = max
q1≤a−c

1

3
q1(a− q1 − c),

which has a unique maximizer q∗1 = a−c
2 . Hence q∗2 = q∗3 = a−c

6 .

Hence, the subgame perfect outcome is: firm 1 chooses a−c
2 in the first stage, and firms 2 and 3 choose a−c

6 .

14.27 Example: Consider strategic investment in a duopoly model. Firm 1 and firm 2 currently both have a constant
average cost of 2 per unit. Firm 1 can install a new technology with an average cost of 0 per unit; installing the tech-
nology costs 8. Firm 2 will observe whether or not firm 1 invests in the new technology. Once firm 1’s investment
decision is observed, the two firms will simultaneously choose output levels q1 and q2 as in Cournot model. Here
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let the price be P (Q) = 14−Q ifQ < 14 and 0 otherwise. What is the pure-strategy subgame perfect outcome of
the game?

a = 14 c1 = c2 = 2a = 14 c1 = 0 c2 = 2

Figure 14.7

Answer. Figure 14.7 is the extensive-form representation of the game. There are 2 stages:

• In the first stage, firm 1 choose “Install” or “Not install”;

• In the second stage, firms 1 and 2 play the Cournot Duopoly Game.

(a) If firm 1 chooses “Install” in the first stage, then a = 14, c1 = 0, c2 = 2. Since 0 ≤ ci <
a
2 , by Example 2.33,

the unique Nash equilibrium is (q∗1 , q∗2) = (a−2c1+c2
3 , a−2c2+c1

3 ) = ( 163 ,
10
3 ), and firm 1’s payoff is 16

3 (14 −
16
3 − 10

3 )− 8 = 20 4
9 .

(b) If firm 1 chooses “Not install” in the first stage, then a = 14, c1 = c2 = 2 < a, and the unique Nash
equilibrium is (q∗1 , q∗2) = (a−c

3 , a−c
3 ) = (4, 4). Firm 1’s payoff is 4(14− 8− 2) = 16.

Since 16 < 20 4
9 , the subgame perfect outcome is: firm 1 chooses “Install” in the first stage, and firms 1 and 2 choose

16
3 and 10

3 , respectively in the second stage.

14.28 Example: Three pirates jointly own 6 coins. They have to decide on an allocation which exhausts the coins. They
decide they should be democratic and choose the following rule: The oldest pirate proposes an allocation. If at least
half approve, it is enforced. Otherwise, the oldest pirate is executed. The same procedure is then followed with the
oldest pirate of the remainder proposing.

Assume that the pirates are perfectly distinguishable by seniority. Find all the pure-strategy subgame perfect out-
comes.

Answer. Denote by player i the i-th oldest pirate. Let a = (a1, a2, a3) denote an allocation, where a1+a2+a3 = 6

and ai = 1, 2, . . . , 6. We assume the proposer always says “yes”. There are three subgame perfect outcomes:
(6, 0, 0), (5, 0, 1) and (5, 1, 0). The game tree is as follows:

Note that, if the allocation a is rejected in the first period, then the second oldest pirate can enforce any allocation
a′ in the second period (and, hence, the second oldest pirate gets all the coins and the youngest pirate gets nothing).
So, in the second period, the second oldest pirate will choose the best allocation a′ = (0, 6, 0) that will be enforced.
We need only care about the strategies in the first period.

To support the outcome (5, 1, 0), for example, we may consider the following strategies by which the outcome
(5, 1, 0) is enforced in the first period:

s∗1 = (5, 1, 0), s∗2 =

Y, if s1 = (0, 6, 0)

N, if s1 ̸= (0, 6, 0)
, s∗3 =

Y, if s1 ̸= (6, 0, 0)

N, if s1 = (6, 0, 0)
.

Since (6, 0, 0) can not be approved by the specified strategies, the oldest pirate can get atmost 5 coins and, therefore,
has no incentive to deviate from s∗1 = (5, 1, 0). Since the second oldest pirate will get all the coins and the youngest
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a

NY

N

a

Y

a

NY

a

a′

N

a′

Y

a′

Figure 14.8

pirate will get nothing if the game goes to the second period, both players 2 and 3 have no incentive to deviate,
respectively, from s∗1 and s∗3. (Intuitively, since the second oldest pirate will get all the coins if the game goes to the
second period, the second oldest pirate may not accept the offer except a = (0, 6, 0); since the youngest pirate will
get nothing if the game goes to the second period, the youngest pirate may accept any offer.) Thus, the outcome
(5, 1, 0) can be supported by a subgame perfect equilibrium.

Analogous discussions also apply to the other two outcomes.

s∗1 = (5, 0, 1), s∗2 =

Y, if s1 = (0, 6, 0)

N, if s1 ̸= (0, 6, 0)
, s∗3 =

Y, if s1 ̸= (6, 0, 0)

N, if s1 = (6, 0, 0)
.

s∗1 = (6, 0, 0), s∗2 =

Y, if s1 = (0, 6, 0)

N, if s1 ̸= (0, 6, 0)
, s∗3 ≡ Y.

14.29 Example: Consider the following Bayesian game.

Nature selects Game 1 with probability 9
13 , Game 2 with probability 3

13 , and Game 3 with probability 1
13 .

Player 1 learns whether nature has selected Game 1 or not; player 2 learns whether nature has selected Game 3 or
not.

Players 1 and 2 simultaneously choose their actions: player 1 chooses either T or B, and player 2 chooses either L
orR.

Payoffs are given by the game selected by nature. In the cells of the tables, the first number is the payoff to player 1
and the second number is the payoff to player 2.

L R
T 2, 2 0, 0
B 3, 0 1, 1

Game 1

L R
T 2, 2 0, 0
B 0, 0 1, 1

Game 2

L R
T 2, 2 0, 0
B 0, 0 1, 1

Game 3

All of this is common knowledge. Notice that Game 2 and Game 3 are identical.
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(i) Represent the above Bayesian game as an extensive game.

(ii) How many information sets does player 1 have?

(iii) How many information sets does player 2 have?

(iv) How many pure strategies does player 1 have? What are they?

(v) How many pure strategies does player 2 have? What are they?

(vi) Find the pure-strategy Bayesian Nash equilibrium. You should specify the strategy profile. Please show your
work.

Answer. (i) The game tree is given in Figure 14.9.

RL
M

1

BT BT BT
2 2

R

0, 0

L

2, 2

R

1, 1

L

3, 0

R

0, 0

L

2, 2

R

1, 1

L

0, 0

R

0, 0

L

2, 2

R

1, 1

L

0, 0

Figure 14.9

(ii) Two information sets for player 1.

(iii) Two information sets for player 2.

(iv) Four pure strategies for player 1: TT , TB,BT , andBB (for each pure strategy, the first letter is the action to
take knowing that nature has selected Game 1, and the second letter is the action to take knowing that nature
has selected Game 2 or 3).

(v) Four pure strategies for player 2: LL, LR, RL, and RR (for each pure strategy, the fist letter is the action to
take knowing that nature has selected Game 1 or 2, and the second letter is the action to take knowing that
nature has selected Game 3).

(vi) The unique pure-strategy Bayesian Nash equilibrium is (BB,RR):

Player 1

Player 2
LL LR RL RR

TT 2, 2, 2, 2 2, 32 , 2, 0 0, 12 , 0, 2 0, 0, 0, 0
TB 2, 0, 32 , 0 2, 14 ,

3
2 , 1 0, 34 ,

1
4 , 0 0, 1, 14 , 1

BT 3, 2, 12 , 2 3, 32 ,
1
2 , 0 1, 12 ,

3
4 , 2 1, 0, 34 , 0

BB 3, 0, 0, 0 3, 14 , 0, 1 1, 34 , 1, 0 1, 1, 1, 1

The first number is the payoff to type {1} of player 1, the second number is the payoff to type {2, 3} of player
1, the third number is the expected payoff to type {1, 2} of player 2, and the fourth number is the expected
payoff to type {3} of player 2 in each cell.

Remark: Onemay find the Bayesian Nash equilibrium by the following argument. Player 1 of type {1}must choose
B because it is the strictly dominant action in Game 1. Then player 2 of type {1, 2} must choose R as his best
response regardless of player 1’s choice in Game 2. Then player 1 of type {2, 3}must chooseB as his best response
regardless of player 2’s choice in Game 3. Finally, player 2 of type {3} should chooseR because it is his best response
to player 2’s choice ofB in Game 3.
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14.4 Perfect Bayesian equilibrium

14.30 Consider the subgame perfect equilibria of the following game.

R

1, 3

L
M

2

R′

0, 0

L′

2, 1

R′

0, 1

L′

0, 2

Figure 14.10: Motivation of perfect Bayesian equilibrium

The induced strategic game is

Player 1

Player 2
L′ R′

L 2, 1 0, 0
M 0, 2 0, 1
R 1, 3 1, 3

There are 2 Nash equilibria: (L,L′) and (R,R′). Note that the above game has no subgames. Thus both (L,L′)

and (R,R′) are subgame perfect equilibria.

However, (R,R′) is based on a non-credible threat: if player 1 believes that player 2’s threat of playing R′, then
player 1 indeed should choose R to end the game with payoff 1 for himself and 3 for player 2 since choosing L or
M will give him 0.

On the other hand, if player 1 does not believe the threat by playingL orM , then player 2 gets themove and chooses
L′. Since L′ strictly dominatesR′ for player 2. The threat of playingR′ from player 2 is indeed non-credible.

14.31 For a given equilibrium in a given extensive game, an information set is on the equilibrium path if it will be reached
with positive probability if the game is played according to the equilibrium strategies, and is off the equilibrium path
if it is certain not to be reached if the game is played according to the equilibrium strategies, where “equilibrium”
can mean Nash, subgame perfect, Bayesian, or perfect Bayesian equilibrium.

14.32 Aperfect Bayesian equilibrium (abbreviated as “PBE”) is a strategy profileσ and a belief systemµ = (µ1, µ2, . . . , µn),�

where µi specifies i’s belief at each of his information sets, such that for every player i,

• Sequential rationality: At each of his information sets, σi is a best response to σ−i, given his belief µi at that
information set.

• Belief consistency: At information sets on the equilibrium path, his belief µi is derived from Bayes’ rule using
the strategy profile σ.

• Belief consistency +: At information sets off the equilibrium path, his belief µi is derived from Bayes’ rule
using the strategy profile σ where possible.

14.33 (σ, µ) is a weak perfect Bayesian equilibrium (abbreviated as “WPBE”) if it satisfies “sequential rationality” and
“belief consistency”.

14.34 Bayes’ rule: Given an information set I , where this information set contains n histories: k1, k2, . . . , kn, if the
decision node ki will be reached with probability pi for each i = 1, 2, . . . , n, then the belief on this information set
should be as follows:
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(a) If p1 + p2 + · · ·+ pn ̸= 0, then the player with the move should believe that the history ki has been reached
with probability

pi
p1 + p2 + · · ·+ pn

.

(b) If p1 + p2 + · · ·+ pn = 0, the belief can be arbitrary.

14.35 It is clear that in a perfect Bayesian equilibrium (σ, µ), σ is a subgame perfect equilibrium.

14.36 Theorem: There exists a (possibly mixed) perfect Bayesian equilibrium for a finite extensive game with perfect
recall.

Idea of proof: Backwards induction starting from the information sets at the end ensures perfection, and one can
construct a belief system supporting these strategies, so the result is a perfect Bayesian equilibrium.

14.37 Consider the game in Figure 14.10 again. We assume player 2 to believe that L has been played by player 1 with
probability p, shown in Figure 14.11.

R

1, 3

L

[p]

M

[1− p]

2

R′

0, 0

L′

2, 1

R′

0, 1

L′

0, 2

Figure 14.11

Given this belief, we can compute player 2’s expected payoff:p · 1 + (1− p) · 2 = 2− p, if playing L′,

p · 0 + (1− p) · 1 = 1− p, if playingR′.

R′ is not optimal at the information set with any belief. Thus (R,R′) is not a perfect Bayesian equilibrium.

14.38 Remark on “belief consistency +”: Consider the following game.

A

2, 0, 0

D

R

[1− p]

L

[p]

3

R′

3, 3, 3

L′

1, 2, 1

R′

0, 1, 1

L′

0, 1, 2

Figure 14.12

(1) The induced strategic game is
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LL′ LR′ RL′ RR′

A 2, 0, 0 2, 0, 0 2, 0, 0 2, 0, 0
D 1, 2, 1 3, 3, 3 0, 1, 2 0, 1, 1

There are four Nash equilibria: (A,L,L′), (A,R,L′), (A,R,R′) and (D,L,R′).

(2) The game has a unique subgame: it begins at player 2’s only decision node.

We can represent this subgame as the following strategic game:

Player 2

Player 3
L′ R′

L 2, 1 3, 3
R 1, 2 1, 1

The subgame has a unique Nash equilibrium: (L,R′). Therefore the unique subgame perfect equilibrium is
(D,L,R′).

(3) Consider the Nash equilibrium (A,L,L′). To support L′ to be optimal for player 3, p should satisfy

p · 1 + 2 · (1− p) ≥ p · 3 + (1− p) · 1,

that is p ≤ 1
3 . Thus (A,L,L′) and p ∈ [0, 13 ] satisfy the requirements “sequential rationality” and “belief

consistency”.

(4) However, requirement “belief consistency +” can rule out (A,L,L′) and p ∈ [0, 13 ] as a perfect Bayesian
equilibrium. Bayes’ rule results in p = 1 since player 2 plays strategy L although it is off the path.

14.39 Example: Selten’s horse.

D

[p]

C c 1, 1, 1

d

[1− p]R

0, 0, 0

L

3, 3, 2

R

0, 0, 1

L

4, 4, 0

Figure 14.13: Selten’s horse.

• The induced strategic game is
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cL cR dL dR
C 1, 1, 1 1, 1, 1 4, 4, 0 0, 0, 1
D 3, 3, 2 0, 0, 0 3, 3, 2 0, 0, 0

There are two pure-strategy Nash equilibria: (C, c,R) and (D, c, L).

• For the Nash equilibrium (D, c, L), belief consistency implies p = 1. When p = 1, L is a best response for
player 3 given the belief (1, 0) on his information set.

• To support the Nash equilibrium (C, c,R) to be a perfect Bayesian equilibrium, we have 1− p ≥ 2p, that is,
p ≤ 1

3 .

14.40 Perfect Bayesian equilibrium is a relativelyweak equilibrium concept for dynamic games of incomplete information.
It is often strengthened by restricting beliefs on information sets that are not reached along the equilibrium path.

14.41 Example [G Exercise 4.10].

Two partners must dissolve their partnership. Partner 1 currently owns share s of the partnership, partner 2 owns
share 1 − s. the partners agree to play the following game: partner 1 names a price, p, for the whole partnership,
and partner 2 then chooses either to buy 1’s share for ps or to sell his or her share to 1 for p(1 − s). Suppose
it is common knowledge that the partners’ valuations for owning the whole partnership are independently and
uniformly distributed on [0, 1], but that each partner’s valuation is private information. What is the perfect Bayesian
equilibrium?

Answer. Figure 14.14 is the game tree.

v1 v′1v1

v2 v′2v2 v2 v′2v2

p p p p

ps

v2 − ps

v1 − (1− s)p

(1− s)p

ps

v′2 − ps

v1 − (1− s)p

(1− s)p

ps

v2 − ps

v′1 − (1− s)p

(1− s)p

ps

v′2 − ps

v′1 − (1− s)p

(1− s)p

Figure 14.14

For v1 ∈ [0, 1], partner 1’s maximization problem is:

max
p

[v1 − p(1− s)]Prob(v2 − ps ≤ p(1− s)) + ps[1− Prob(v2 − ps ≤ p(1− s))].
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Since Prob(v2 − ps ≤ p(1− s)) = p, partner 1’s maximization problem becomes:

max
p

[v1 − p(1− s)]p+ ps(1− p).

By first order condition, we have p∗ = v1+s
2 . Therefore, the perfect Bayesian equilibrium is: for v1, v2 ∈ [0, 1],

s∗1(v1) = p∗ =
v1 + s

2
, s∗2(v2 | p) =

sell, if v2 ≤ p

buy, if v2 > p
,

partner 1’s belief about the partner 2’s valuation is a uniform distribution on [0, 1], and partner 2’s belief about the
partner 1’s valuation is a uniform distribution on [0, 1].

14.42 Example [G Exercise 4.11].

A buyer and a seller have valuations vb and vs. It is common knowledge that there are gains from trade (i.e., that
vb > vs), but the size of the gains is private information, as follows: the seller’s valuation is uniformly distributed
on [0, 1]; the buyer’s valuation vb = k · vs, where k > 1 is common knowledge; the seller knows vs (and hence vb)
but the buyer does not know vb (or vs). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2?

Answer. Figure 14.15 is the game tree.

vs ∼ U [0, 1]

p

N

0, vs

Y

vb − p, p

Figure 14.15

Clearly, the buyer has no incentive to offer p > 1, since the seller will accept p ≥ vs and vs is uniformly distributed
on [0, 1].

• By backwards induction, the seller’s best response is

s∗s(vs | p) =

accept, if vs ≤ p

reject, if vs > p
.

Note that we assume seller will accept if vs = p. This will not affect the our analysis of the game since the
probability is zero for vs = p.
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• The buyer’s maximization problem is:

max
0≤p≤1

E[vb − p | vs ≤ p].

Since vb = kvs, the buyer’s maximization problem is:

max
0≤p≤1

∫ p

0

(kvs − p) dvs = max
0≤p≤1

(k/2− 1)p2.

Therefore, the maximizer is

p∗ =

1, if k > 2

0, if k < 2
.

• Each information set of buyer is reached, so buyer’s belief is a uniform distribution on [0, 1].

To summarize, the perfect Bayesian equilibrium is:

s∗b = p∗ =

1, if k > 2

0, if k < 2
,

and for vs ∈ [0, 1],

s∗s(vs | p) =


accept, if vs < p

accept or reject, if vs = p

reject, if vs > p

,

the buyer’s belief about the seller’s valuation is a uniform distribution on [0, 1].

14.5 Sequential equilibrium

14.43 An assessment is a pair (β, µ) where β is a profile of behavioral strategies and µ is a function that assigns to every
information set a probability measure on the set of histories in the information set.

14.44 Letβk ⇝ β denote a “trembling sequence” {βk}∞k=1 of completelymixed behavioral strategy profiles that converges�

to a behavioral strategy profile β.

14.45 An assessment (β, µ) is a sequential equilibrium (abbreviated as “SE”) of a finite extensive game with perfect recall�

if there is {βk}∞k=1 such that βk ⇝ β, and for all i ∈ N , Ii ∈ Ii, and k ≥ 1

• Sequential consistency: µk(Ii) → µ(Ii), where µk(Ii) ∈ ∆(Ii) is the belief on Ii which derived from βk by
Bayes’ rule.

• Sequential rationality: the restriction of βi to information sets that succeed Ii is i’s best response to the re-
striction of β−i to these information sets, using µ(Ii).

14.46 Example:

(1) The induced strategic game is
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RL

3, 3

M
2

R′

0, 0

L′

0, 1

R′

5, 1

L′

1, 0

Figure 14.16

L′ R′

L 3, 3 3, 3
M 0, 1 0, 0
R 1, 0 5, 1

There are two pure-strategy Nash equilibria: (L,L′) and (R,R′).

The set of mixed-strategy Nash equilibria is

{
(R,R′)

}
∪
{
(L,α ◦ L′ + (1− α) ◦R′) | 1

2 ≤ α ≤ 1
}
.

(2) Consider the assessment (β, µ), where β1 = L, β2 = L′ and µ({M,R})(R) = 0.

Let βk
1 = (1− 1

k − 1
k2 ) ◦ L+ 1

k ◦M + 1
k2 ◦R, βk

2 = (1− 1
k ) ◦ L

′ + 1
k ◦R′. Then βk ⇝ β.

Given βk
1 , (M) and (R) will be reached with probabilities 1

k and 1
k2 respectively. By Bayes’ rule, the belief

µk({M,R})(M) = 1/k
1/k+1/k2 = k

k+1 → 1 = µ({M,R})(M). Therefore, the sequential consistency is
satisfied.

Given µ, it is clear that L′ is optimal for player 2. Given player 2’s strategy L′, L is optimal for player 1. Thus,
the sequential rationality is satisfied.

Therefore, (β, µ) is a sequential equilibrium.

(3) Consider the assessment (β, µ), where β1 = R, β2 = R′ and µ({M,R})(R) = 1.

Let βk
1 = 1

k ◦ L+ 1
k ◦M + k−2

k ◦R, βk
2 = 1

k ◦ L′ + k−1
k ◦R′. Then βk ⇝ β.

Given βk
1 , (M) and (R) will be reached with probabilities 1

k and k−2
k respectively. By Bayes’ rule, the belief

µk({M,R})(R) = (k−2)/k
1/k+(k−2)/k = k−2

k−1 → 1 = µ({M,R})(R). Therefore, the sequential consistency is
satisfied.

Given µ, it is clear thatR′ is optimal for player 2. Given player 2’s strategyR′,R is optimal for player 1. Thus,
the sequential rationality is satisfied.

Therefore, (β, µ) is a sequential equilibrium.

14.47 Example: Selten’s horse.

D

[p]

C c 1, 1, 1

d

[1− p]R

0, 0, 0

L

3, 3, 2

R

0, 0, 1

L

4, 4, 0

Figure 14.17: Selten’s horse.
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• The induced strategic game is

cL cR dL dR
C 1, 1, 1 1, 1, 1 4, 4, 0 0, 0, 1
D 3, 3, 2 0, 0, 0 3, 3, 2 0, 0, 0

There are two pure-strategy Nash equilibria: (C, c,R) and (D, c, L).
Since the payoffs of (C, c,R) and (C, c, L) are same. To support (C, c, α ◦ R + (1 − α) ◦ L) to be a Nash
equilibrium, α should satisfy:

1 ≥ 3 · (1− α) and 1 ≥ 4 · (1− α),

that is, α ≥ 3
4 .

Since the payoffs of (D, c, L) and (D, d, L) are same. To support (D, γ ◦ c + (1 − γ) ◦ d, L) to be a Nash
equilibrium, γ should satisfy:

3 ≥ γ + 4 · (1− γ),

that is, γ ≥ 1
3 .

• For any Nash equilibrium (C, c, α ◦R+ (1−α) ◦L) with α ≥ 3
4 , there is a sequential equilibrium (β, µ) in

which β1(∅)(C) = 1, β2(C)(c) = 1, β3(I)(R) = α, and µ3(I)(D) = 1
3 , where I = {(D), (C, d)}.

Let βk
1 (∅)(C) = 1− 1

k , βk
2 (C)(d) =

2/k
1−1/k , and βk

3 (I)(R) = α− 1
k . Then it is clear that βk ⇝ β.

Given (βk
i )i, (D) will be reached with probability 1

k , and (C, d) will be reached with probability (1 − 1
k ) ·

2/k
1−1/k = 2

k . Thus, by Bayes’ rule, the beliefµk
3(I)(D) = 1

3 = µ3(I)(D). Therefore the sequential consistency
is satisfied.
Given the belief ( 13 ,

2
3 ) on the information set I , L and R are indifferent for player 3. Thus, sequential ratio-

nality is satisfied.

• Any Nash equilibrium (D, γ ◦ c + (1 − γ) ◦ d, L) with γ ≥ 1
3 is not part of any sequential equilibrium:

since the associated assessment violates sequential rationality at player 2’s (singleton) information set (since
4 > 1 · γ + 4(1− γ)).

14.48 Any sequential equilibrium is a perfect Bayesian equilibrium. The converse does not hold.

If (β, µ) is a sequential equilibrium, then β is a subgame perfect equilibrium.

14.49 Existence: For every finite extensive game, there exists at least one sequential equilibrium.

This result is based on the results proved later.

14.50 Consider the following game.

RL

2, 2

M
2

R′

0, 0

L′

1, 3

R′

5, 1

L′

0, 0

Figure 14.18

It is easy to see there are two pure-strategy Nash equilibria: (L,L′) and (R,R′), and both of them can be supported
as sequential equilibria. For the sequential equilibrium

(
(L,L′), µ

)
, player 2 should believe, in the event that his

information set is reached, that with high probability player 1 choosesM .



14.6. Trembling hand perfect equilibrium 214

However, if player 2’s information set is reached then a reasonable argument for him may be that since the action
M for player 1 is strictly dominated by L it is not rational for player 1 to chooseM and hence she must choose R.
This argument excludes any belief that supports (L,L′) as a sequential equilibrium outcome.

14.51 Consider the following game.

0.1

0.9

c

[1− q][1− p] QB

[q][p] QB

2 2

N
3, 1

F
1, 0

N
2, 0

F
0, 1

N
2, 1

F
0, 0

N
3, 0

F
1, 1

Figure 14.19

This game has two types of sequential equilibrium, as follows.

• Both types of player 1 choose B, and player 2 fights if he observes Q and not if he observes B. If player 2
observesQ then he assigns probability of at least 0.5 that player 1 is weak.

• Both types of player 1 choose Q, and player 2 fights if he observes B and not if he observes Q. If player 2
observesB then he assigns probability of at least 0.5 that player 1 is weak.

The following argument suggests that an equilibrium of the second type is not reasonable.

(1) If player 2 observes that player 1 choseB then he should conclude that player 1 is strong, as follows. If player
1 is weak then she should realize that the choice ofB is worse for her than following the equilibrium (in which
she obtains the payoff 3), whatever the response of player 2.

(2) Further, if player 1 is strong and if player 2 concludes from player 1 choosing B that she is strong and con-
sequently chooses N , then player 1 is indeed better off than she is in the equilibrium (in which she obtains
2).

(3) Thus it is reasonable for a strong type of player 1 to deviate from the equilibrium, anticipating that player 2
will reason that indeed she is strong, so that player 2’s belief that player 1 is weak with positive probability
when she observesB is not reasonable.

14.52 Example [JR Example 7.7].

14.6 Trembling hand perfect equilibrium

14.53 A trembling hand perfect equilibrium or simply perfect equilibrium (abbreviated as “PE”) of a finite strategic game
is a mixed-strategy profile σ with the property that there exists a sequence (σk)∞k=0 of completely mixed-strategy
profiles that converges to σ such that for each player i the strategy σi is a best response to σk

−i for all values of k.
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14.54 A trembling hand perfect equilibrium of a finite extensive game is a behavioral strategy profile β with the property�

that there is a sequence {βk}∞k=1 with βk ⇝ β such that for all i ∈ N , Ii ∈ Ii and k ≥ 1,

Ui

(
βi(Ii), β

k(−Ii)
)
≥ Ui

(
a, βk(−Ii)

)
for all a ∈ A(Ii).

Observation: A behavioral strategy profile is a perfect equilibrium if and only if it is a perfect equilibrium of the
agent-strategic-form of the game.

14.55 Thebasic idea is that each player’s actions be optimal not only givenhis equilibriumbeliefs but also given a perturbed
belief that allows for the possibility of slight mistakes.

14.56 Example:

A B C
A 0, 0 0, 0 0, 0
B 0, 0 1, 1 2, 0
C 0, 0 0, 2 2, 2

There are three pure-strategy Nash equilibria (A,A), (B,B) and (C,C). However, (B,B) is the only perfect
equilibrium.

• Consider (A,A). If player 2 chooses the mixed strategy (1− ϵ1 − ϵ2) ◦A+ ϵ1 ◦B + ϵ2 ◦ C , then it is clear
thatB is strictly better than A for player 1.

• Consider (C,C). If player 2 chooses the mixed strategy ϵ1 ◦A+ ϵ2 ◦B + (1− ϵ1 − ϵ2) ◦ C , then it is clear
thatB is strictly better than C for player 1.

• Consider (B,B). Let σk
1 = σk

2 = ( 1k ◦ A + k−2
k ◦ B + 1

k ◦ C). Then σk ⇝ σ. It is clear that B is always
optimal for player i given σk

j for all k ≥ 1. Therefore, (B,B) is a perfect equilibrium.

14.57 For every perfect equilibrium β of a finite extensive game with perfect recall there is a belief system µ such that
(β, µ) is a sequential equilibrium of the game.

Proof. (1) Let (βk) be the sequence of completely mixed behavioral strategy profiles that corresponds to the se-
quence ofmixed-strategy profiles in the agent strategic formof the game that is associatedwith the equilibrium
β.

(2) At each information set Ii ∈ Ii, define the belief µ(Ii) to be the limit of the beliefs defined from βk using
Bayes’ rule. Then (β, µ) is a consistent assessment.

(3) Since every player’s information set is reached with positive probability, by the one deviation property and the
continuity of payoff functions, βi is a best response to β−i when the belief at Ii is defined by µ(Ii).

(4) Thus (β, µ) is a sequential equilibrium.

The converse does not hold. Consider the game in Example 14.56. (A,A) and (C,C) can be supported as sequential
equilibria, but there are not perfect equilibria.

14.58 Example: Selten’s horse

• Any Nash equilibrium σ = (C, c, α ◦R+ (1− α) ◦ L) with α ≥ 3
4 is a perfect equilibrium strategy profile.
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D
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C c 1, 1, 1
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[1− p]R

0, 0, 0

L
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0, 0, 1
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4, 4, 0

Figure 14.20: Selten’s horse.

For each k, let σk
1 = (1− 1

k ) ◦ C + 1
k ◦D, σk

2 = 1−3/k
1−1/k ◦ c+ 2/k

1−1/k ◦ d, and

σk
3 =

α ◦R+ (1− α) ◦ L, if α < 1;

(1− 1
k ) ◦R+ 1

k ◦ L, if α = 1.

Then σk ⇝ σ and σi is optimal given σk
−i for all i ∈ N and k ≥ 1.

• Any Nash equilibrium (D, γ ◦ c + (1 − γ) ◦ d, L) with γ ≥ 1
3 is not a perfect equilibrium since it is not a

sequential equilibrium.

14.59 Existence: Every finite strategic game has a perfect equilibrium. Every finite extensive game with perfect recall has
a perfect equilibrium and thus also a sequential equilibrium.

Proof. It suffices to show that every finite strategic game has a perfect equilibrium.

(1) Define a perturbation of the gameΓ(ϵ) by letting the set of actions of each player i be the set ofmixed strategies
of player i that assign probability of at least ϵ to each action of player i.

(2) Every such perturbed game has a pure-strategy Nash equilibrium by Nash’s theorem.

(3) Consider a sequence of such perturbed games Γ(ϵk) and their corresponding Nash equilibria σk in which
ϵk → 0. By the compactness of the set of strategy profiles, we can pick a subsequence {σkl}∞l=1 of {σk}∞k=1

such that σkl ⇝ σ.

(4) By the continuity of payoff functions, σ is a perfect equilibrium of the game.

14.60 Summary:
PE ⫋ SE ⫋ PBE ⫋ SPE ⫋ NE .

14.61 Example [JR Exercise 7.48].

14.62 Example [JR Exercise 7.49].
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15.1 In this chapter, we consider situations in which an asymmetry of information exists among market participants.
Asymmetric information is usually distinguished by two types: adverse selection and moral hazard.

Adverse selection models hidden characteristics, where asymmetric information exists before the parties enter into
a relationship. An example is the market of used cars. In the market, buyers often do not observe the quality of
the cars, which is privately information of the sellers. Due to the common existence of low quality used cars (the
“lemons”), buyers will be reluctant to pay high price for a high quality car (the “peach”), since they cannot tell its
quality. As a consequence of low market prices, high quality sellers are driven out of the market (they lose if they
sell), and whoever sells on the market is more likely to be selling a low quality car-adverse selection arises. As a
result, buyer’s willingness to pay decreases further, and eventually, the market of high quality cars disappears.

Signaling and screening are two primary solutions to adverse selection.

• In signaling the informed party moves first. For example, the seller of a high quality car can (costly) signal
to potential buyers by offering a long warranty, which is not affordable to low quality car sellers, as a way to
distinguish them from low quality car sellers.

• In screening, the uninformed party moves first. For example, the uninformed party offers a term of exchange
such that the informed party can choose to accept or reject. For example, the uninformed buyer can ask for a

217
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long enough warranty to screen out low quality sellers. The insurance market gives a better illustration, where
the insurance company, who is uninformed of conditions of the clients, offers different insurance packages,
and ideally, each type of clients only find one package acceptable.

Moral hazardmodels hidden action, where asymmetric information forms after the parties enter into a relationship.
Consider that a firm (the principal) hires a worker (the agent) to work on a project, which succeeds with probability
p if the worker exerts effort. The firm may only observe the outcome of the project but not the agent’s effort level.
In such a situation, the firm’s payment contract can only depend on the outcome, which is an imperfect indicator
of the worker’s effort level. If the worker is paid fixed wage or if the payment conditional on success is not high
enough, since effort is costly, the worker will shirk-moral hazard arises.

15.1 Adverse selection

15.2 In this section we look at problems of adverse selection where one party to a transaction knows things pertaining
to the transaction that are relevant to but unknown by the second party. Adverse selection models hidden char-
acteristics, where asymmetric information exists before the parties enter into a relationship. It refers to a market
process in which undesired results occur when buyers and sellers have asymmetric information (access to different
information); the “bad” products or services are more likely to be selected.

One example is the market of used cars. In the market, buyers often do not observe the quality of the cars, which is
privately information of the sellers. Due to the commonexistence of lowquality used cars (the “lemons”), buyerswill
be reluctant to pay high price for a high quality car (the “peach”), since they cannot tell its quality. As a consequence
of low market prices, high quality sellers are driven out of the market (they lose if they sell), and whoever sells on
the market is more likely to be selling a low quality car—adverse selection arises. As a result, buyers’ willingness to
pay decreases further, and eventually, the market of high quality cars disappears.

One primary solution to these problems is signaling, where the party in possession of superior information signals
what she knows through her actions. For example, and insurance company may offer life insurance on better terms
if the insure is willing to accept very limited benefits for the first two or three years the policy is in effect, on the
presumption that someone suffers from ill health and is about to die is unwilling to accept those limited benefits.
Another primary solution is screening.

15.3 Example: There are two types of used cars: peaches and lemons. A peach, if it is known to be a peach, is worth
$3000 to a buyer and $2500 to a seller. A lemon, on the other hand, is worth $2000 to a buyer and $1000 to a seller.
There are twice as many lemons as peaches.

If buyers and sellers both had the ability to look at a car and see whether it was a peach or a lemon, there would be
no problem: Peaches would sell for $3000 and lemons for $2000.

Or if neither buyer nor seller knew whether a particular car was a peach or a lemon, we would have no problem
(at least, assuming risk neutrality, which we will to avoid complications): A seller, thinking she has a peach with
probability 1/3 and a lemon with probability 2/3, has a car that (in expectation) is worth $1500. A buyer, thinking
that the car might be a peach with probability 1/3 and a lemon with 2/3, thinks that the car is worth on average
$2333.33. Assuming an inelastic supply of cars and perfectly elastic demand, the market clears at $2333.33.

The seller, having lived with the car for quite a while, knows whether it is a peach or a lemon. Buyers typically can
not tell. If we make the extreme assumption that the buyers can not tell at all, then the peach market breaks down.

Therefore, the expected value of the car to sellers is $2333.33, and that would be the maximal amount she is willing
to pay for the car. Given this, only sellers of lemons sell, because a peach values $2500 to sellers. So the market
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attracts only sellers of lemons and the way it selects sellers is a version of adverse selection.

Moreover, if only lemons are put on the market, buyer’s beliefs update: they understand the logic behind adverse
selection (sellers of peaches are not willing to sell), the actually probability that they are facing a peach is zero. As
a result, we get as equilibrium: Only lemons are put on the market, at a price of $2000.

This example says that owners of good cars will not place their cars on the used car market. This is sometimes
summarized as “the bad driving out the good” in the market.

15.4 Adverse selection: Assume a particular good comes in many different qualities. If in a transaction one side but not
the other knows the quality in advance, the other side must worry that it will get an advance selection out of the
entire population. A classic example of this is in life/health insurance. If premiums are set at actuarially fair rates
for the population as a whole, insurance may be a bad deal for healthy people, who then will refuse to buy. Only
the sick and dying will sign up. And premium rates then must be set to reflect this.

15.5 Akerlof ’s model: buyer’s decision.

Assume that there are just two groups of traders: groups one and two. Each member in group 1 has a car, and each
member in group two is a potential buyer.

A buyer’s utility function is
u2 =M +

3

2
· q · n,

whereM is the consumption of goods other than cars, q is the quality of the car, and n is the number of cars. For
sake of simplicity, we assume n is 0 (not buy) or 1 (buy).

A buyer has a budget constraint
y2 =M + p · n,

where y2 is the income, and p is the price of the used car.

A buyer’s expected valuation is

E[u2] =M +
3

2
· E[q] · n =M +

3

2
· µ · n,

where µ△E[q] is the average quality of used cars.

Therefore, the buyer’s aim is to maximize

E[u2] = y2 + [ 32 · µ− p] · n.

So, a buyer will buy (n = 1) if and only if
3

2
· µ ≥ p.

15.6 Akerlof ’s model: seller’s decision.

A seller’s utility function is
u1 =M + q · n,

and the budget constraint is
y1 =M + p · n.

Note that the coefficient of quality in u1 is 1 which is less than that in u2, 3
2 . It means that the car is more needed

for buyers.
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The seller’s aim is to maximize her utility (not expected utility)

u1 = y1 + (q − p) · n.

Therefore, a seller will sell (n = 0) her car if and only if

p ≥ q.

15.7 Akerlof ’s model: adverse selection.

Assume that q is uniformly distributed on [0, 2].

level 1 buyer knows the expected valuation is µ = 1, and her highest buying price is p = 3
2 · µ = 3

2 .

level 2 seller knows that buyer’s highest price is 3
2 . Then only the cars with quality less than 3

2 will be sold.

level 3 buyer knows that only the cars with quality less than 3
2 will be sold, so she believes that q is uniformly

distributed on [0, 32 ]. It is the first adverse selection.

Analogously, we have µ2 = 3
4 , and p

2 = 3
2 · 3

4 = 9
8 . So the cars with quality higher than 9

8 will be kicked off, and
buyers believe that q is uniformly distributed on [0, 98 ].

Repeat this process, p and q will converge to zeros, that is, the good cars may be driven out of the market by the
bad cars. Actually we have the bad driving out the not-so-bad driving out the medium driving out the not-so-good
driving out the good in such a sequence of events that no market exists at all.

15.8 Akerlof ’s model with symmetric information.

If q is public information, then the trade occurs if and only if

q ≤ p ≤ 3

2
q,

and buyer and seller will both benefit from the trade.

15.2 Signalling

15.9 A signaling game is an extensive game of imperfect information involving two players: a Sender (S) and a Receiver
(R). The timing of the game is as follows.

(1) Nature draws a type ti for the Sender froma set of feasible typesT = {t1, t2, . . . , tI} according to a probability
distribution P (ti).

(2) TheSender observes ti and then chooses amessagemj froma set of feasiblemessagesM = {m1,m2, . . . ,mJ}.

(3) The Receiver observes mj (but not ti) and then chooses an action ak from a set of feasible actions A =

{a1, a2, . . . , aK}.

(4) Payoffs are given by US(ti,mj , ak) and UR(ti,mj , ak).

A strategy for Receiver is a function from T toM , and a strategy for Sender is a function fromM to A.

15.10 We translate the requirements for a perfect Bayesian equilibrium to the case of signaling games.
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1. After observing any messagemj fromM , the Receiver must have a belief about which types could have sent
mj . Denote this belief by the probability distribution µ(ti | mj), where µ(ti | mj) ≥ 0 for each ti ∈ T , and∑

ti∈T µ(ti | mj) = 1.

2R. For each mj ∈ M , the Receiver’s action a∗(mj) must maximize the Receiver’s expected utility, given the
belief µ(ti | mj) about which types could have sentmj . That is, a∗(mj) solves

max
ak∈A

∑
ti∈T

µ(ti | mj)UR(ti,mj , ak).

2S. For each ti ∈ T , the Sender’s messagem∗(ti)must maximize the Sender’s utility, given the Receiver’s strategy
a∗(mj). That is,m∗(ti) solves

max
mj∈M

US(ti,mj , a
∗(mj)).

3. Let Tj denote the set of types that send the messagemj .

For eachmj ∈M , if there exists ti ∈ T such thatm∗(ti) = mj , i.e., Tj ̸= ∅, then the Receiver’s belief at the
information set corresponding tomj must follow from Bayes’ rule and the Sender’s strategy:

µ(ti | mj) =
P (ti)∑

ti∈Ti
P (ti)

.

15.11 A simple example:

[ 12 ]

[ 12 ]

[1− q][1− p] RL t2

[q][p]
RL t1

d
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2, 4

d
4, 1

u
3, 3
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u
0, 2

d
2, 2

u
4, 1

Figure 15.1

(1) Nature has two types t1 and t2 with the same probability.

(2) The Sender observes ti and then chooses a message L orR.

(3) The Receiver observes the message and then chooses an action u or d.

(4) Payoffs depend on the type of Nature, the message of Sender, and the action of Receiver.

Sender’s strategies are: LL,LR,RL,RR, wherem′m′′ means that Sender playsm′ when facing type t1, andm′′

when facing type t2.

Receiver’s strategies are: uu, ud, du, dd, where a′a′′ means that Receiver plays a′ following L and a′′ followingR.
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Receiver has two non-trivial information sets. The believes on them are given in the game tree: (p, 1 − p) for the
left information set and (q, 1− q) for the right information set.

We analyze the possibility of the four Sender’s strategies to be perfect Bayesian equilibria.

15.12 Case 1: Pooling on L. Suppose Sender adopts the strategy LL.

(1) By Bayes’ rule, p = 1− p = 1
2 .

(2) On the left information set, given the belief ( 12 ,
1
2 ), Receiver’s expected payoff is 1

2 · 4 + 1
2 · 3 = 7

2 for u and
1
2 · 5 + 1

2 · 1 = 3 for d. Thus, Receiver’s best response for message L is u.

(3) For the right information set, the belief (q, 1− q) can not be determined by Sender’s strategy, thus any belief
(q, 1− q) is available. Furthermore, both u and d are possible for some q respectively.

Hence we need only to see if sending L is better than sendingR for both types t1 and t2 and for one of u and
d.

(4) If u is the Receiver’s best response on the right information set, i.e., Receiver’s strategy is uu, then

• For type t1, Sender’s payoff is 2 if L is sent, and 0 ifR is sent. Hence sending L is optimal.

• For type t2, Sender’s payoff is 3 if L is sent, and 4 ifR is sent. Hence sending L is not optimal.

(5) If d is the Receiver’s best response on the right information set, i.e., Receiver’s strategy is ud, then

• For type t1, Sender’s payoff is 2 if L is sent, and 3 ifR is sent. Hence sending L is not optimal.

• For type t2, Sender’s payoff is 3 if L is sent, and 2 ifR is sent. Hence sending L is optimal.

Therefore, there is no perfect Bayesian equilibrium in which Sender plays LL.

15.13 Case 2: Pooling onR. Suppose Sender adopts the strategy RR.

(1) By Bayes’ rule, q = 1− q = 1
2 .

(2) On the right information set, given the belief ( 12 ,
1
2 ), Receiver’s expected payoff is 1

2 · 2 + 1
2 · 1 = 3

2 for u and
1
2 · 2 + 1

2 · 2 = 2 for d. Thus, Receiver’s best response for messageR is d.

(3) For the left information set, the belief (p, 1 − p) can not be determined by Sender’s strategy, thus any belief
(p, 1− p) is available. Furthermore, both u and d are possible for some p respectively.

Hence we need only to see if sendingR is better than sending L for both types t1 and t2 and for one of u and
d.

(4) If u is the Receiver’s best response on the left information set, i.e., Receiver’s strategy is ud, then

• For type t1, Sender’s payoff is 2 if L is sent, and 3 ifR is sent. Hence sendingR is optimal.

• For type t2, Sender’s payoff is 3 if L is sent, and 2 ifR is sent. Hence sendingR is not optimal.

(5) If d is the Receiver’s best response on the left information set, i.e., Receiver’s strategy is dd, then

• For type t1, Sender’s payoff is 1 if L is sent, and 3 ifR is sent. Hence sendingR is optimal.

• For type t2, Sender’s payoff is 4 if L is sent, and 2 ifR is sent. Hence sendingR is not optimal.

Therefore, there is no perfect Bayesian equilibrium in which Sender playsRR.

15.14 Case 3: Separation with t1 playing L. Suppose Sender adopts the separation strategy LR.

(1) By Bayes’ rule, p = 1 and q = 0.

(2) Based on these beliefs, d and d are Receiver’s best responses on the left and right information sets respectively.
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(3) For type t1, Sender’s payoff is 1 when sending L and 3 when sendingR. Thus L is not optimal.

(4) For type t2, Sender’s payoff is 4 when sending L and 2 when sendingR. ThusR is not optimal.

Therefore, there is no perfect Bayesian equilibrium in which Sender plays LR.

15.15 Case 4: Separation with t1 playingR. Suppose Sender adopts the separation strategyRL.

(1) By Bayes’ rule, p = 0 and q = 1.

(2) Based on these beliefs, u is Receiver’s best response on the left information set. On the right information set,
u and d are indifferent for Receiver.

(3) If Receiver chooses u on the right information set, then for type t1, sendingR is not optimal.

Now let receiver’s best response be d.

(4) For type t1, Sender’s payoff is 2 when sending L and 2 when sendingR. ThusR is optimal.

(5) For type t2, Sender’s payoff is 3 when sending L and 2 when sendingR. Thus L is optimal.

Therefore,
(
(RL, ud), (p = 0, q = 1)

)
is a perfect Bayesian equilibrium.

15.16 Alternative method.

Sender

Receiver
uu ud du dd

LL 2.5, 3.5 2.5, 3.5 2.5, 3 2.5, 3
LR 3, 2.5 2, 3 2.5, 3 1.5, 3.5
RL 1.5, 2.5 3, 2.5 2, 1.5 3.5, 1.5
RR 2, 1.5 2.5, 2 2, 1.5 2.5, 2

The payoff profile in each cell is the expected payoff profile for two players given the prior probability of Nature.
For example, when Sender and Receiver chooseRL and du respectively, their payoffs are:

(US , UR) =
1

2
(0, 2)︸ ︷︷ ︸

Nature chooses t1

+
1

2
(4, 1)︸ ︷︷ ︸

Nature chooses t2

= (2, 1.5).

There is unique Nash equilibrium (RL, ud). Since Sender’s strategy is RL, then p = 0 and q = 1. Based on
such believes, Receiver’s strategy is a best response. Therefore,

(
(RL, ud), (p = 0, q = 1)

)
is a perfect Bayesian

equilibrium.

15.17 Example: Beer and Quiche (Cho and Kreps (1987)).

Player 1 enters a restaurant to have breakfast, where there is a bully-player 2. Player 1 is either strong or weak; if he
is strong, he prefers Beer, and if he is weak, he prefers Quiche. Player 2 would enjoy from bullying (fighting) player
1 only if player 1 is weak, but he observes only player 1’s choice for breakfast (player 1’s signal) but not player 1’s
type. This game models armed negotiation.
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Figure 15.2: Beer and Quiche.

Answer. Case 1: Pooling onB. Suppose player 1 adopts the strategyBB.

• p = 0.9.

• On the left information set, player 2 choosesN . Hence, player 1 gets 3 if he is strong, and 2 if he is weak.

• On the right information set, player 2 should choose F ; otherwise player 1 choosingB when he is weak is not
optimal.

• q ≤ 1
2 .(

(BB,NF ), p = 0.9, q ≤ 1
2

)
is a perfect Bayesian equilibrium.

Case 2: Pooling onQ. Suppose player 1 adopts the strategyQQ.

• q = 0.9.

• On the right information set, player 2 choosesN .

• On the left information set, player 2 should choose F ; otherwise player 1 choosingQ when he is strong is not
optimal.

• p ≤ 1
2 .(

(QQ,FN), p ≤ 1
2 , q = 0.9

)
is a perfect Bayesian equilibrium.

Case 3: Separation with “strong” playingB. Suppose player 1 adopts the separation strategyBQ.

• p = 1 and q = 0.

• On the left information set, player 2 choosesN .

• On the right information set, player 2 choosesF . However, player 1 will deviate fromQ toB when he is weak.

No perfect Bayesian equilibrium exists in this case.

Case 4: Separation with “strong” playingQ. Suppose player 1 adopts the separation strategyQB.

• p = 0 and q = 1.

• On the left information set, player 2 chooses F . However, player 1 will deviate fromB toQ when he is weak.

• On the right information set, player 2 choosesN .
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No perfect Bayesian equilibrium exists in this case.

15.18 Example [G Exercise 4.3]: Three-type signaling games.

Find all perfect Bayesian equilibria in the following signaling games.

R

[q3]

L

[p3]

t3

[ 13 ]

R

[q2]

L

[p2]

t2

[ 13 ]

R

[q1]

L

[p1]

t1

[ 13 ]
d

1, 0

u
1, 1

d
0, 0

u
2, 1

d
0, 0

u
1, 1

d
0, 0

u
0, 1

d
1, 0

u
1, 1

d
2, 1

u
0, 0

Figure 15.3

Answer. Let (p1, p2, p3) and (q1, q2, q3) be player 2’s beliefs at the left and right information sets, respectively. Note
that u dominates d at the left information set. Therefore, we only need to consider the following induced strategic
game.

• T = {t1, t2, t3},M = {L,R}, and A = {u, d}.

• Payoff table:

Sender

Receiver
uu ud

LLL 4/3, 1 4/3, 1
LLR 1, 2/3 5/3, 1
LRL 1, 1 1, 2/3
LRR 2/3, 2/3 4/3, 2/3
RLL 1, 1 1, 2/3
RLR 2/3, 2/3 4/3, 2/3
RRL 2/3, 1 2/3, 1/3
RRR 1/3, 2/3 1, 1/3
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For example,

U(RLR, du) = Prob(t1) · U(R, u | t1) + Prob(t2) · U(L, d | t2) + Prob(t3) · U(R, u | t3)

=
1

3
(0, 1) +

1

3
(0, 0) +

1

3
(0, 0) = (0, 1/3)

There are two pure-strategy Nash equilibria (LLL, uu) and (LLR, ud), which are also the subgame perfect Nash
equilibria since there is no subgame.

• To check whether (LLL, uu) is a perfect Bayesian equilibrium, we need only to find beliefs, satisfying Re-
quirements 1, 2S, 2R and 3.

– Requirement 1: Assume the probability distributions on left and right information set are (p1, p2, p3)
and (q1, q2, q3), respectively, displayed in the figure, where p1 + p2 + p3 = q1 + q2 + q3 = 1.

– Requirement 2S: Holds automatically. (since (LLL, uu) is a Nash equilibrium)
– Requirement 2R: It is obvious that u is the best response for Receiver when Sender choosesL. To support
u to be a best response for Receiver when Sender choosesR, we should take q3 ≤ 1

2 .
– Requirement 3: Since Sender chooses LLL, Bayes’ rule implies p1 = p2 = p3 = 1

3 and q1, q2, q3 could
be arbitrary.

Hence, (LLL, uu) with player 2’s beliefs (p1, p2, p3) = ( 13 ,
1
3 ,

1
3 ) and (q1, q2, q3) where q3 ≤ 1

2 .

• To check whether (LLR, ud) is a perfect Bayesian equilibrium, we need only to find beliefs, satisfying Re-
quirements 1, 2S, 2R and 3.

– Requirement 1: Assume the probability distributions on left and right information set are (p1, p2, p3)
and (q1, q2, q3), respectively, displayed in the figure, where p1 + p2 + p3 = q1 + q2 + q3 = 1.

– Requirement 2S: Holds automatically. (since (LLR, ud) is a Nash equilibrium)
– Requirement 2R: It is obvious that u is the best response for Receiver when Sender choosesL. To support
d to be a best response for Receiver when Sender choosesR, we should take q3 ≥ 1

2 .
– Requirement 3: Since Sender chooses LLR, Bayes’ rule implies p1 = p2 = 1

2 , p3 = 0 and q1 = q2 = 0,
q3 = 1.

Hence, (LLR, ud) with player 2’s beliefs (p1, p2, p3) = ( 12 .
1
2 , 0) and (q1, q2, q3) = (0, 0, 1) is a perfect

Bayesian equilibrium.

15.19 Example: There are two players in the game: Judge and Plaintiff. The Plaintiff has been injured. Severity of the
injury, denoted by v, is the Plaintiff ’s private information. The Judge does not know v andbelieves that v is uniformly
distributed on {0, 1, . . . , 9} (so that the probability that v = i is 1

10 for any i ∈ {0, 1, . . . , 9}). The Plaintiff can
verifiably reveal v to the Judge without any cost, in which case the Judge will know v. The order of the events is as
follows. First, the Plaintiff decides whether to reveal v or not. Then, the Judge rewards a compensation R which
can be any non-negative real number. The payoff of the Plaintiff isR− v, and the payoff of the Judge is−(v−R)2.
Everything described so far is common knowledge. Find a perfect Bayesian equilibrium.

Answer. The signaling game is as follows: types T = {0, 1, . . . , 9}; signalsM = {R,N}, whereR is “Reveal” and
N is “Not Reveal”; actions A = R+.

Figure 15.4 is the game tree. From the game tree, there are 10 subgames, and Judge has 11 information sets
I0, I1, . . . , I9, where for v = 0, 1 . . . , 9, Iv denotes that Plaintiff reveals v to Judge, and I10 denotes the case that
Plaintiff does not reveal the value.
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Figure 15.4

Plaintiff ’s strategy space is

S = {s = (s0, s1, . . . , s9) | sv = R orN, v = 0, 1, . . . , 9}.

For a particular strategy of Plaintiff s = (s0, s1, . . . , s9), sv is the action of Plaintiff when she/he faces injury v.

Judge’s strategy space is

Q = {q = (x0, x1, . . . , x9, x10) | xv ≥ 0, v = 0, 1, . . . , 9, 10}.

For a particular strategy of Judge q = (x0, x1, . . . , x9, x10), xv is the action of Judge at the information set Iv .

Given any strategy s of Plaintiff, let s−1(N) = {v : s(v) = N}, which denotes the set of Plaintiff ’s types at which
the value is not revealed to Judge.

(1) Claim 1: In any perfect Bayesian equilibrium (s∗, q∗, p∗), if Plaintiff chooses R when v = 0, that is s∗0 = R,
then Judge’s action on information set I10 should be 0, that is, x∗10 = 0.

(2) Proof of Claim 1: Otherwise, Plaintiff can be better off by deviating fromR toN : If Plaintiff choosesR when



15.2. Signalling 228

v = 0, then she/he will get 0 when v = 0; otherwise she/he will get x∗10 > 0. Therefore, such a strategy s∗

can not be a strategy in a perfect Bayesian equilibrium, which is a contradiction.

(3) Claim 2: In a perfect Bayesian equilibrium (s∗, q∗, p∗), if (s∗)−1(N) ̸= ∅, then Judge’s strategy should be

q∗ =

0, 1, . . . , 9,
∑

v∈s−1(N)

v

n

 ,

where n = |s−1(N)|.

(4) Motivation of Claim 2: Based on Judge’s belief p∗, her/his optimal action x∗10 should be weighted payoff

0 · p∗0 + 1 · p∗1 + 2 · p∗2 + · · ·+ 9 · p∗9.

Given Plaintiff ’s strategy s∗, Judge’s belief p∗ on the information set I10 can be determined by Bayes’ law.

(5) Proof of Claim 2: (s∗, q∗) should be a subgame perfect equilibrium, and hence on the information set Iv(v =

0, 1, . . . , 9), Judge will choose optimal action based on her/his payoff −(v − xv)
2. Therefore, Judge’s action

on the information set Iv should be v (v = 0, 1, 2 . . . , 9).

On the information set I10, which is on the equilibrium path, only the branches v, where v ∈ s−1(N) can be
reached. Thus, by Bayes’ rule, Judge believes that these branches are reached with equal probability, 1

n , where
n = |s−1(N)|. Thus, Judge will choose the optimal action based on her/his expected payoff, and the optimal
action is the maximizer of the following maximization problem

max
x10≥0

− 1

n

∑
v∈s−1(N)

(v − x10)
2.

By first order condition, it is easy to find the unique maximizer x∗10 = 1
n

∑
v∈s−1(N) v.

(6) Claim 3: In any perfect Bayesian equilibrium (s∗, q∗, p∗), Plaintiff ’s strategy s∗ should be

(R,R, . . . , R) or (N,R, . . . , R).

(7) Proof of Claim 3:

• Case 1: assume (s∗)−1(N) = {v0}, where v0 ̸= 0. Given such a Plaintiff ’s strategy s∗, that is, s∗(v0) =
N , and s∗(v) = R for others v, by Claim 2, Judge’s best response is

q∗ = (0, 1, 2, . . . , 9, v0).

However, s∗ is not a best response for Plaintiff given Judge’s strategy q∗(s): when v = 0, Plaintiff can be
better off if she/he choosesN rather thenR: if she/he choosesR, she/he will get 0; otherwise, she/he will
get v0 > 0.

• Case 2: assume (s∗)−1(N) contains at least 2 elements. Let v1 = min(s∗)−1(N), and v2 = max(s∗)−1(N).
Note that,

v1 < x∗10 =
1

n

∑
v∈s−1(N)

v < v2.
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By Claim 2, Judge’s best response is

q∗ =

0, 1, 2, . . . , 9,
∑

v∈s−1(N)

v

n

 .

However, s∗ is not a best response for Plaintiff given Judges’ strategy q∗: when the injury is v2, Plaintiff
can get a higher amount v2 by revealing: if she/he chooses N , she/he will get x∗10 − v2 < 0; otherwise
she/he will get 0.

Case 2 implies that there is at most 1 type at which Plaintiff choosesN in a perfect Bayesian equilibrium; and
Case 1 implies that this unique type can only be v = 0.

(8) Claim 4:
s∗ = (N,R, . . . , R), q∗ = (0, 1, 2, . . . , 9, 0)

with belief (1, 0, . . . , 0) on I10 is a perfect Bayesian equilibrium.

(9) Proof of Claim 4: Routine.

(10) Claim 5:
s∗ = (R,R, . . . , R), q∗ = (0, 1, 2, . . . , 9, 0)

with belief (1, 0, . . . , 0) on I10 is a perfect Bayesian equilibrium:

(11) Proof of Claim 5: By Claims 1, 2 and 3, this strategy profile could be a strategy profile in a perfect Bayesian
equilibrium.

Assume Judge’s belief on the information set I10 is (p∗0, p∗1, . . . , p∗9), then Judge’s maximization problem is

max
x10≥0

−p∗0(x10 − 0)2 − p∗1(x10 − 1)2 − · · · − p∗9(x10 − 9)2.

Then the unique maximizer is x∗10 = p∗0 · 0 + p∗1 · 1 + · · ·+ p∗9 · 9. We have already known that x∗10 = 0, this
implies p∗0 = 1 and p∗1 = p∗2 = · · · = p∗9 = 0, that is, Judge believes that v = 0 with probability 1.

15.2.1 The market for “lemons”

15.20 Reference: Akerlof (1970).

15.21 Akerlof ’s model of market for “lemons”.

Suppose a seller wants to sell his used car. The seller knows what is the quality of the car, but the buyer does not.
The buyer knows only that the car could be a “good quality” car with probability 1

2 and a “lemon” with probability
1
2 . If the car is good, the buyer’s valuation for it is $20,000 and the seller’s is $10,000. If it is a “lemon”, both buyer’s
and seller’s valuations are $0.

The seller can make two offers (asking price): $5,000 and $15,000. Then, the buyer can accept the offer (buy the
car) or reject the offer.

Find all the perfect Bayesian equilibria.

Answer. The following is the game tree.
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Case 1: Separation with typeH playing 5.

In this case, p = 1, and q = 0. It is easy to see that a∗(5) = Y and a∗(15) = N . At type H , sending 5 is not
optimal.

Case 2: Separation with typeH playing 15.

In this case, p = 0, and q = 1. It is easy to see that a∗(15) = Y and a∗(5) = N . At type H , sending 15 is not
optimal.

Case 3: Pooling on 5.

In this case, p = 1
2 , and it is easy to see that a∗(5) = Y . If a∗(15) = Y or N , then at type H , sending 5 is not

optimal.

Case 4: Pooling on 15.

In this case, q = 1
2 , and it is easy to see that a∗(15) = N . When p > 1

4 , we have a∗(5) = Y . Then at type L,
sending 15 is not optimal.

When p ≤ 1
4 , we have a∗(5) = N . Then at both typesH and L, sending 15 is optimal.

Hence,
((

(15, 15), (N,N)
)
, 0 ≤ p ≤ 1

4 , q =
1
2

)
is a perfect Bayesian equilibrium.

15.22 Example: The market for “lemons” with different prior probability.

Suppose a seller wants to sell his used car. The seller knows what is the quality of the car, but the buyer does not.
The buyer knows only that the car could be a “good quality” car with probability 4

5 and a “lemon” with probability
1
5 . If the car is good, the buyer’s valuation for it is $20,000 and the seller’s is $10,000. If it is a “lemon”, both buyer’s
and seller’s valuations are $0.

The seller can make two offers (asking price): $5,000 and $15,000. Then, the buyer can accept the offer (buy the
car) or reject the offer.

(i) Would there be a separating perfect Bayesian equilibrium in this case?

(ii) Find all the pooling perfect Bayesian equilibria.

Answer. The following is the game tree.
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Figure 15.6

(i) There is no separating perfect Bayesian equilibrium.

(ii) The pooling perfect Bayesian equilibria are:

• a∗1(H) = a∗1(L) = 15, a∗2(5) = a∗2(15) = Y , β∗(5) ∈ [ 14 , 1], β
∗(15) = 4

5 .

• a∗1(H) = a∗1(L) = 15, a∗2(5) = N , a∗2(15) = Y , β∗(5) ∈ [0, 14 ], β
∗(15) = 4

5 .

15.23 Example: The market for “lemons” with an option of passing an inspection.

In the context of previous example, consider the following variation in which the seller has an option of passing an
inspection. If the inspection finds the car in good shape, the seller is charged $200 to get the proof of inspection.
Otherwise, he needs to pay $15,200 to have his car serviced and get the proof of inspection. In this case, the buyer’s
valuation for the serviced car is $20,000 and the seller’s is $10,000. Now, the seller has four choices: $5,000 with
inspection (“5i”), $15,000 with inspection (“15i”), $5,000 without inspection (“5”), and $15,000 without inspection
(“15”).

Show that

a∗1(H) = 15i, a∗1(L) = 5, a∗2(5) = a∗2(15) = N, a∗2(5i) = a∗2(15i) = Y,

β∗(5) = 0, β∗(15) ∈ [0, 34 ], β
∗(5i) ∈ [0, 1], β∗(15i) = 1,

is a separating perfect Bayesian equilibrium.

Answer. The following is the game tree.
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15.2.2 Job-market signaling

15.24 Reference: Spence (1970).

15.25 Spence’smodel of education: Aworker (the sender) knows his productive ability θ, while his employer (the receiver)
does not. The timing is as follows:

(1) Nature determines a worker’s productive ability, θ, which can be either high (θH) with probability pH or low
(θL < θH ) with probability pL.

(2) The worker, before entering the labor market, learns his ability and then chooses a level of education e ∈
[0,+∞).

(3) A employer observes the worker’s education (but not the worker’s ability) and then pays the worker a wage
w ∈ [0,+∞).



15.2. Signalling 233

(4) The payoffs are w − e
θ to the worker and −(θ − w)2 to the employer (under the assumption of perfect com-

petition on the demand side).

15.26 The first-best outcome: suppose that θ is perfectly observable. Then:

w = θ, and e = 0.

15.27 The extensive form is as follows.

θLθH

e e′e e e′e

w

w − e/θH
−(w − θH)2

w

w − e/θL
−(w − θL)2

w′

w′ − e′/θH
−(w′ − θH)2

w′

w′ − e′/θL
−(w′ − θL)2

Figure 15.8

15.28 A strategy for the worker is (eH , eL) which specifies actions for typesH and L, where eH , eL ∈ [0,+∞).

A strategy for the employer is a wage schedule w(·) which depends on the observed signal (i.e. the level of educa-
tion).

15.29
(
(e∗H , e

∗
L), w

∗(·), µ∗) is a perfect Bayesian equilibrium, where µ∗(· | e) specifies the belief about the worker’s types
when the observed signal is e.

15.30 Pooling equilibrium: Both types choose the same level of education: e∗H = e∗L = e∗.

By the definition of perfect Bayesian equilibrium, w∗(e∗) = pHθH + pLθL. To be a perfect Bayesian equilibrium
pooling on e∗, the easiest way is to pessimistically believe that any deviation e ̸= e∗ is from type L. Thus the wage
schedule should be:

w∗(e) =

pHθH + pLθL, if e = e∗,

θL, if e ̸= e∗.

To be a perfect Bayesian equilibrium pooling on e∗, each type of workers does not want to deviate from e∗. Thus,

w∗(e∗)− e∗

θH
≥ θL − e

θH
, ∀e

w∗(e∗)− e∗

θL
≥ θL − e

θL
,∀e

⇐⇒ w∗(e∗)− e∗

θL
≥ θL ⇐⇒ e∗ ≤ pH(θH − θL)θL.
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Therefore,
(
(e∗, e∗), w∗(·), µ∗) is a pooling perfect Bayesian equilibrium, where

µ∗(H | e) =

pH , if e = e∗

0, if e ̸= e∗
and 0 ≤ e∗ ≤ pH(θH − θL)θL.

15.31 Separating equilibrium: The two types of workers choose different levels of education: e∗H > e∗L = 0 (the wage
paid to L is θL, independent of eL).

We consider the most pessimistic wage schedule:

w∗(e) =

θH , if e = e∗H ,

θL, if e ̸= e∗H .

To be a separating perfect Bayesian equilibrium, each type should have no incentive to mimic the other. Therefore,

θH − e∗H
θH

≥ θL

θL ≥ θH − e∗H
θL

⇐⇒ (θH − θL)θL ≤ e∗H ≤ (θH − θL)θH .

Therefore,
(
(e∗H , 0), w

∗(·), µ∗) is a pooling perfect Bayesian equilibrium, where

µ∗(H | e) =

1, if e = e∗H

0, if e ̸= e∗H

and (θH − θL)θL ≤ e∗H ≤ (θH − θL)θH .

15.2.3 Cheap talk

15.32 Literature: Crawford and Sobel (1982), Krishna and Morgan (2008).

15.33 Cheap talk games are analogous to signaling games, but in cheap talk games the sender’s messages are just talk—
costless, nonbingding, nonverifiable claims.

15.34 Such talk cannot be informative in Spence’s signaling game: a worker who simply announced “My ability is high”
would not be believed.

It is because that all types have the same preferences over the receiver’s possible actions: all workers prefer high
wages, independent of ability. Therefore, a situation when two types of sender send different messages and the re-
ceiver responds differently to these messages is impossible at equilibrium: the sender-type who gets a less favorable
response is better off with changing his message to the one employed by the other type.

15.35 It turns out that in a variety of contexts cheap talk is informative. An example is an expert advising a politician. The
politician, after hearing the opinion of the expert, makes a decision which affects the payoffs of both players.

For cheap talk to be useful, the following conditions are necessary:

• Different sender-types should have different preferences over the receiver’s actions.

• The receiver should prefer different actions depending on the sender’s type.

• The receiver’s preferences over actions should not be completely opposed to the sender’s. Otherwise, the
sender is worse off revealing true information about his type. Therefore, cheap talk cannot be informative in
this situation: the receiver will be mislead by the sender.
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15.36 A decision maker (receiver) must choose some decision a. Her payoff depends on a and on an unknown state of
the world θ, which is distributed uniformly onΘ. The decisionmaker can base her decision on the costless message
m sent by an expert (sender) who knows the precise value of θ.

The decision maker’s payoff is
ur(θ, a) = −(a− θ)2,

and the expert’s payoff is
us(θ, a) = −[a− (θ + b)]2,

where b ≥ 0 is a “bias” parameter that measures how nearly agents’ interests coincide.

15.37 Because of the tractability of the “uniform-quadratic” specification, much of the cheap talk literature, restricts at-
tention to this case.

Quadratic loss means that themarginal cost is increasing in the distance between the state and action. It also means
that the players are risk-averse; they prefer a constant gap to a varying gap (depending on θ) with the same mean.

15.38 Note that under this set up, the expert consistently prefers a bigger action than the decision maker (since b ≥ 0).
A more general case, discussed in Melumad and Shibano (1991), is to have

us(θ, a) = −[a− (λθ + b)]2,

in which case the difference between the ideal action of the expert and decision maker depends on θ. When λ is
greater than one and b is zero, the agent prefers a proportionally greater than action.

15.39 The sequence of play is as follows:

Expert learns θ Expert sends messagem Decision maker chooses action a

Figure 15.9

• The expert learns her type θ ∈ Θ;

• The expert sends a messagem ∈ Θ to the decision maker; the message may be random, and can be viewed as
a noisy estimate of θ;

• The decision maker processes the information in the expert’s message and chooses an action a, which deter-
mines players’ payoffs.

15.40 In this cheap talk game, a pure-strategy PBE of this game consists of

• a strategy for the expert, denotedm∗(θ) : Θ → Θ,

• a strategy for the decision maker, denoted a∗(m) : Θ → R,

• a belief system, denoted µ∗(· | m) ∈ ∆(Θ),

such that

• Given the decision maker’s strategy a∗(m), the expert of type θ send a messagem∗(θ) so that

m∗(θ) ∈ argmax
m∈Θ

us(θ, a
∗(m), b).
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• The decision maker’s action a∗(m) satisfies

a∗(m) ∈ argmax
a∈R

∫
Θ

ur(θ, a) dµ∗(θ | m).

• µ∗(· | m) is derived via the Bayes’ rule whenever possible.

Themodel with two types

15.41 We first consider the simplest case in which Θ = {θL, θH}. The decision maker initially regards the two states as
equally likely.

15.42 We now investigate the conditions under which communication can be informative. In this case, the strategy profile
m(θ) = θ, a(m) = m and the beliefs system µ(θ | θ) = 1 consist of a PBE.

In the following, we check the incentives facing the expert. Consider Figure 15.10, which shows the the expert’s
payoffs in different states.

a

us

us(a, θL) us(a, θH)

O

θL θL + b θH θH + b

Figure 15.10: The expert’s payoffs with two states

(1) Clearly, the expert has no incentive to misrepresent the facts when the state is θH .

(2) If the state instead is θL, a truthful (and trusted) report by the expert induces a policy a = θL. This is smaller
than the expert’s ideal policy of θL + b in state θL. If the expert instead claims that the state is θH , the policy
outcome will be a = θH . The expert may prefer this larger policy, but it also might be too large even for her
tastes. The expert will report truthfully in state θL if and only if

(θL + b)− θL ≤ θH − (θL + b).

Notice that this inequality is satisfied for the case depicted in Figure 15.10.

(3) We can rewrite the inequality as a limitation on the size of the divergence in preferences; that is,

b ≤ θH − θL
2

. (15.1)
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15.43 When Equation (15.1) is satisfied, there exists a PBE with informative communication. In such an equilibrium,
the expert educates the decision maker about the state of the world. The equilibrium that results is fully revealing,
because the decision maker learns the true state for all possible values of the random variable θ.

15.44 If, in contrast, Equation (15.1) is not satisfied, the expert’smessage lacks credibility. Thedecisionmakerwould know
in such circumstances that the expert had an incentive to announce the state as θH no matter what the true state
happened to be. For this reason, the expert’s message is uninformative, and the decision maker is well justified in
ignoring its content. In the event, the decision maker sets the policy a = θH+θL

2 that matches her prior expectation
about the mean value of θ. Evidently, the transmission of information via cheap talking requires a sufficient degree
of alignment between the interests of the decision maker and the expert.

Themodel with three types

15.45 We then consider the case that Θ = {θL, θM , θH}.

15.46 Similar with the two-state case, the θL-type expert will reveal his information truthfully if and only if

b ≤ θM − θL
2

,

and the θM -type expert will reveal his information truthfully if and only if

b ≤ θH − θM
2

.

Therefore, truth-telling is a PBE strategy if and only if

b ≤ min
{
θM − θL

2
,
θH − θM

2

}
.

Themodel with a continuum of types

15.47 We finally turn to consider the case thatΘ = [0, 1]. As the number of possible states grows, full revelation becomes
ever more difficult to achieve. For a sender to be able to distinguish among all possible states, b must be smaller
than one-half of the distance between any two of them. But as the number of states tends to infinity—as it must,
for example, when θ represents a continuous variable—this requirement becomes impossible to fulfil.

15.48 Proposition: If the expert is even slightly biased, all equilibria entail some information loss.

Proof. If the expert’s message always revealed the true state and the decision maker believed him, then the expert
would have the incentive to exaggerate the state: in some state θ, he would report θ + b.

15.49 Proposition: There always exists a “babbling equilibrium” in which the sender always send the same message and
the message is always ignored.

15.50 Theorem (Theorem 1 in Crawford and Sobel (1982)): All the perfect Bayesian equilibria are equivalent to a partially
pooling equilibrium of the following form: the type space is divided into the n intervals (steps)

[x0 = 0, x1), [x1, x2), . . . , [xn−1, 1 = xn];

all the types in a given interval send the same message, but types in different intervals send different messages.
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Idea of proof. Since in equilibrium a∗(m) is weakly increasing, every points in between must send the same mes-
sage.

We will refer to the message sent when θ ∈ [xi−1, xi] asmi for i = 1, 2 . . . , n.

15.51 A two-step (n = 2) equilibrium (m∗, a∗, µ∗):

(1) Suppose all the types in the interval [0, x1) send one message while those in [x1, 1] send another.

(2) After receiving the message from the types in [0, x1), the decision maker will believe that the expert’s type is
uniformly distributed on [0, x1), so the decision maker’s optimal action will be x1

2 ; likewise, after receiving
the message from the types in [x1, 1], the decision maker’s optimal action will be x1+1

2 .

(3) For the types in [0, x1) to be willing to send their message, it must be that all these types prefer the action x1

2

to the action x1+1
2 ; likewise, all the types above x1 must prefer x1+1

2 to x1

2 .

(4) Since the expert’s utility is symmetric around her optimal action θ + b, the type-θ expert prefers x1

2 to x1+1
2

if the midpoint between these two actions exceeds that type’s optimal action θ + b, but prefers x1+1
2 to x1

2 if
θ + b exceeds the midpoint.

(5) Thus, for a two-step equilibrium to exist, the x1-type expert must be indifferent between x1+1
2 and x1

2 :

x1 + b = 1
2 [

x1

2 + x1+1
2 ],

that is, x1 = 1
2 − 2b.

(6) Since the type space is Θ = [0, 1], x1 must be positive, so a two-step equilibrium exists only if b < 1
4 ; for

b ≥ 1
4 the players’ preferences are too dissimilar to allow even the limited communication.

(7) To complete the characterization of this two-step equilibrium, we address the issue of messages that are off the
equilibrium path. For example, let the expert’s strategy be that all types θ < x1 send themessagem1 ∈ [0, x1)

and all types θ ≥ x1 send the messagem2 ∈ [x1, 1]. Then wemay let the decision maker’s off-path belief after
observing any message from [0, x1) \ {m1} be that θ is uniformly distributed on [0, x1), and after observing
any message from [x1, 1] \ {m2} be that θ is uniformly distributed on [x1, 1].

15.52 An n-step equilibrium (m∗, a∗, µ∗):

(1) By Bayes’ rule, µ∗((a, b) | mi

)
= |(a,b)∩[xi−1,xi]|

xi−xi−1
.

(2) Sequential rationality implies that
a∗(mi) =

xi+xi−1

2 .

(3) In equilibrium, the xi-type expert must be indifferent betweenmi andmi+1 for i = 1, 2, . . . , n − 1. Given
the quadratic-loss utility function, it must be that

(xi + b)− xi−1+xi

2 = xi+xi+1

2 − (xi + b),

equivalently,
(xi+1 − xi) = (xi − xi−1) + 4b.

The width of each step increases by 4b.

(4) If the first step is of length d, then the boundary condition must imply

d+ (d+ 4b) + · · ·+ [d+ (n− 1)4b] = 1,



15.3. Screening 239

equivalently,
nd+ n(n− 1)2b = 1.

(5) Hence, given any n such that n(n− 1)2b < 1, there exists a value of d such that nd+ n(n− 1)2b = 1. That
is, there is an n-step equilibrium as long as n(n− 1)2b < 1.

(6) Since the length of the first step must be positive, the largest possible number of steps in such an equilibrium,
n∗(b), is the largest value of n such that n(n− 1)2b < 1, i.e., n∗(b) is the largest integer less than

1
2

[
1 +

√
1 + 2

b

]
.

Imprecise messages can still be credible when the interests of the expert and the decision maker do not align com-
pletely.

15.53 Remark: More communication can occur through cheap talkwhen the players’ preferences aremore closely aligned.
But perfect communication cannot occur unless the players’ preferences are perfectly aligned.

15.54 n∗(b) decreases in b but approaches infinity only as b approaches zero: more communication can occur through
cheap talk when the players’ preferences are more closely aligned, but perfect communication cannot occur unless
the players’ preferences are perfectly aligned.

If there exists an equilibrium with nmessages, there must be other equilibria with less than nmessages. It always
includes the babbling equilibrium in which the decision maker never listen the expert and the expert never convey
the true information.

15.55 Expected welfare analysis: let us rank the equilibria by evaluating the expected welfare of the decision maker and
the expert in each possible equilibrium.

(1) Since the decision maker’s utility function is ur(θ, a) = −(θ − a)2 and she sets a = xi−1+xi

2 if the decision
maker heard θ is in [xi−1, xi].

(2) Hence, the decision maker’s expected welfare is

Ur(n) = −
n∑

i=1

∫ xi

xi−1

(
xi−1 + xi

2
− θ

)2

dθ = − 1

12

n∑
i=1

(xi − xi−1)
3 =

1

12n2
+
b2(n2 − 1)

3
.

(3) Likewise, the expert’s expected welfare is

Us(n) = −
n∑

i=1

∫ xi

xi−1

(
xi−1 + xi

2
− θ − b

)2

dθ = Ur(n)− b2.

(4) Since Ur(n) is an increasing function of n. Thus, we can conclude that in the ex ante sense, the more n we
get, the better equilibrium we achieve.

15.3 Screening

15.3.1 Pricing a single indivisible good

15.56 Literature:
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15.3.2 Nonlinear pricing

15.57 Literature:

15.58 Consider a transaction between a seller and a buyer, where the seller seeks to sell a good to the buyer.

The buyer’s utility if she purchases q units of the good and pays a monetary transfer t to the seller is

ub(q, t, θ) = θv(q)− t,

where v(0) = 0, v′(q) > 0 and v′′(q) < 0 for all q. The characteristics θ > 0 is a number that we can interpret as
the buyer’s valuation of the good.

Assuming that the seller’s unit production costs are given by c > 0, her profit from selling q units against a sum of
money t is given by

us(q, t) = t− cq.

15.59 We assume that the value of θ is known to the buyer, but it is not known to the seller. This seems plausible in many
contexts. Buyers often know better than sellers how well some particular product meets their preferences. We shall
refer below to θ as the buyer’s type. While the seller does not know the buyer’s type, she does have a subjective
probability distribution over possible values of θ.

15.60 The question of interest here is, what is the best, that is, the profit maximizing, contract (q, t) that the seller will be
able to induce the buyer to choose?

Let A be the set of all feasible contracts, that is,

A = {(q, t) | q ≥ 0, t ∈ R}.

Themodel with two types

15.61 We suppose that set of possible characteristics

θ = {θH , θL}, with θH > θL.

15.62 The first-best contract: perfect discrimination.

(1) If the seller can observe the types θ of the buyer, she can then treat each type of buyer separately and offer her
a type-specific contract, that is, (qi, ti) for type θi (i = H,L).

(2) The seller will try to maximize her profits subject to inducing the buyer to accept the proposed contract.
Assume the buyer obtains 0 if she does not take the seller’s offer. So the seller will solve the following program:

maximize
(qi,ti)∈A

ti − cqi

subject to θiv(qi)− ti ≥ 0.

The solution to this program will be the first-best contract menu {(q∗i , t∗i )}i=H,L such that

θiv
′(q∗i ) = c and θiv(q∗i ) = t∗i for i = H,L.

(3)
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q

t θH-type buyer’s indiffer-
ence curve: θHv(q) = t

Seller’s isoprofit curve

θL-type buyer’s indiffer-
ence curve: θLv(q) = t

Seller’s isoprofit curve

O q∗L

t∗L

q∗H

t∗H

Figure 15.11: Illustration of a first-best contract, where v(q) = √
q, c = 2

3 , θL = 1 and θH = 2.

Figure 15.11 illustrates the two first-best contracts when v(q) = √
q, c = 2

3 , θL = 1 and θH = 2. The two
curves shown are the indifference curves corresponding to zero utility for the two types of the buyer. The lines
tangent to them are isoprofit curves, with equation t = cq + K , where K ∈ R. Note that the utility of the
buyer increases when going southeast, while the profit of the seller increases when going northwest.

Since θH > θL and v′ is decreasing, we have

q∗H > q∗L.

15.63 The second-best: optimal nonlinear pricing.

(1) We now consider the case where the seller cannot observe directly the buyer’s type. We assume that

P(θ = θL) = β and P(θ = θH) = 1− β.

If the seller proposes the first-best contracts (q∗i , t∗i ), the θH-type buyer will choose (q∗L, t
∗
L), the contract

designed for the θL-type:

u(q∗L, t
∗
L, θH) = θHv(q

∗
L)− t∗L = (θH − θL)v(q

∗
L) + [θLv(q

∗
L)− t∗L]

= (θH − θL)v(q
∗
L) ≥ 0 = u(q∗H , t

∗
H , θH),

where the inequality holds strictly whenever q∗L > 0. Thus, the two types cannot be treated separately any
more. Both will choose (q∗L, t∗L).

(2) Our interest is in the best pair of contracts (the second-best optimum). At first sight, this looks like a hard
problem, as the contract set that the seller can use is potentially large. However, a simple, yet crucial result
enables us to get a handle on this optimization problem. The result says that we can restrict our attention to
a small set of contracts.

(3) Amenuof contracts {(qL, tL), (qH , tH)} is incentive compatiblewhen (qL, tL) isweakly preferred to (qH , tH)
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by type-θL buyer, and (qH , tH) is weakly preferred to (qL, tL) by type-θH buyer; that is,

θLv(qL)− tL ≥ θLv(qH)− tH , (ICL)

θHv(qH)− tH ≥ θHv(qL)− tL, (ICH)

(4) A menu of contracts {(qL, tL), (qH , tH)} is individual rational if

θLv(θL)− tL ≥ 0, (IRL)

θHv(θH)− tH ≥ 0, (IRH)

(5) The problem of the seller is therefore to solve

max
(qL,tL),(qH ,tH)

β[tL − cqL] + (1− β)[tH − cqH ],

subject to

θLv(qL)− tL ≥ θLv(qH)− tH , (ICL)

θHv(qH)− tH ≥ θHv(qL)− tL, (ICH)

θLv(θL)− tL ≥ 0, (IRL)

θHv(θH)− tH ≥ 0, (IRH)

(6) Step 1: Equation (IRH) is not bind at the optimum. Indeed Equation (IRH ) will be satisfied automatically
because of Equations (IRL) and (ICH):

θHv(qH)− tH ≥ θHv(qL)− tL ≥ θLv(qL)− tL ≥ 0. (15.2)

(7) Step 2: Equation (IRL) is bind at the optimum, so tL = θLv(qL). If Equation (IRL) was not bind, so would
be Equation (IRH ) by Equation (15.2). We then could increase tL and tH by the same amount. This would
increase the seller’s profit without any effect on incentive compatibility.

(8) Step 3: Equation (ICH ) is bind at the optimum, so tH − tL = θH [v(qH)− v(qL)]. Assume not, then

θHv(qH)− tH > θHv(qL)− tL ≥ θLv(qL)− tL ≥ 0.

Wecan therefore increase tH without breaking incentive compatibility or individual rationality. This obviously
increases the seller’s profit, and hence the original contract cannot be optimal.

(9) Step 4: qH ≥ qL at the optimum. To see it, we add Equations (ICL) and (ICH ) and get

θH [v(qH)− v(qL)] ≥ θL[v(qH)− v(qL)].

Since θH > θL and v is increasing, we have qH ≥ qL.

(10) Step 5: Equation (ICL) is not bind at the optimum. This because

θLv(qL)− tL = θHv(qL)− tL − (θH − θL)v(qL)

= θHv(qH)− tH − (θH − θL)v(qL) By Equation (ICH)

= θLv(qH)− tH + (θH − θL)[v(qH)− v(qL)]
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≥ θLv(qH)− tH By Step 4

(11) Step 6: The seller’s problem now reduces to

max
(qL,tL),(qH ,tH)

β[tL − cqL] + (1− β)[tH − cqH ],

subject to

θHv(qH)− tH = θHv(qL)− tL,

θLv(qL)− tL = 0.

Substituting for the values of tL and tH in the seller’s objective function, we obtain the following unconstrained
optimization problem:

max
qL,qH

β[θLv(qL)− cqL] + (1− β)[θHv(qH)− (θH − θL)v(qL)− cqH ].

The following first-order conditions characterize the unique interior solution (q∗∗L , q∗∗H ) to the above program,
if this solution exists:

θHv
′(q∗∗H ) = 0 and θLv′(q∗∗L ) =

c

1− 1−β
β

θH−θL
θL

> c.

(12) Figure 15.12 illustrates the second-best contract when v(q) = √
q, c = 2

3 , θL = 1, θH = 2 and β = 2
3 .

q

t θH-type buyer’s indiffer-
ence curve: θHv(q) = t

θL-type buyer’s indiffer-
ence curve: θLv(q) = t

O q∗L

t∗L

q∗H = q∗∗H

t∗H

q∗∗L

t∗∗L

t∗∗H

Figure 15.12: Illustration of a second-best contract, where v(q) = √
q, c = 2

3 , θL = 1, θH = 2 and β = 2
3 .

Themodel with a continuum of types

15.64
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15.4 Moral hazard and the principle-agent problem

15.65 Moral hazardmodels hidden action, where asymmetric information forms after the parties enter into a relationship.
A moral hazard is a situation in which a party is more likely to take risks because the costs that could result will not
be borne by the party taking the risk. Moral hazard arises because an individual or institution does not take the full
consequences and responsibilities of its actions, and therefore has a tendency to act less carefully than it otherwise
would, leaving another party to hold some responsibility for the consequences of those actions.

In a principal–agent problem, one party, called an agent, acts on behalf of another party, called the principal. The
agent usually has more information about his or her actions or intentions than the principal does, because the
principal usually cannot completely monitor the agent. The agent may have an incentive to act inappropriately
(from the viewpoint of the principal) if the interests of the agent and the principal are not aligned.

15.66 A principal (employer) hires an agent (employee) to work on a project. The project values V to the principal if
it succeeds (s = 1) and values 0 otherwise (s = 0). The principal pays the agent a wage of w. Assume that the
principal is risk-neutral and her payoff function is

Up = sV − w.

The agent receives the wage w and decides whether to exert effort (e = 1) or not to (e = 0); the cost of the agent is
c = e. Assume that the agent is risk-averse in payment and his payoff function is

Ua =
√
w − e.

Let
Prob(s = 1 | e = 1) = p ∈ (0, 1), and Prob(s = 1 | e = 0) = 0.

That is, the project succeeds with probability p if the agent exerts effort and it fails for sure if he shirks.

For simplicity, we also assume that if the agent does not work for the principal, his outside option is 0; And if the
principal abandons the project, her outside is 0 too.

15.4.1 Complete information

15.67 Let’s first consider what will happen if the agent’s effort level is perfectly observable.

Since cost of working is 1 and the benefit is pV , as long as pV > 1, the agent and the principal will have incentive
to cooperate and generate a total surplus pV − 1, and then divide it through adjusting the wage.

Suppose the principal gets to offer the agent a take-it-or-leave-it wage contract.

Since the principal is risk-neutral while the agent is risk-averse, the optimal wage contract should not depend on
the outcome. To see this, suppose the worker exerts effort and w1 is paid when the project succeeds (s = 1) and
w0 is paid when it fails (s = 0). Then

Up = pV −
(
pw1 + (1− p)w0

)
,

Ua = p
√
w1 + (1− p)

√
w0 − 1.
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15.4.2 Asymmetric information

15.68 Now suppose the principal cannot observe the agent’s effort level e. A direct consequence is that effort-based wage
contracts are not available any more and now the principal has to turn to outcome-based contract {ws=0, ws=1}.
For notational simplicity, let w1 = ws=1 and w0 = ws=0.

15.69 If the principal offers a fixed wage independent of the outcome, i.e., w0 = w1, then the agent will simply take the
wage and shirk.

15.70 The principal needs to incentivize the agent to accept the contract and exert effort. Therefore, the outcome-based
wage contract {w0, w1} should satisfy the following two constraints:

• Individual rationality (IR): The agent should have the incentive to participate. That is, by accepting the wage
contract, he should be able to ensure himself a payoff weakly better than her outside option:

p
√
w1 + (1− p)

√
w0 − 1 ≥ 0.

• Incentive compatibility (IC): The agent should have the incentive to exert e§ort instead of shirking. That is,
her payoff from exerting effort should be weakly higher than that from shirking:

p
√
w1 + (1− p)

√
w0 − 1 ≥

√
w0 − 0.

15.71 The principal’s problem is
maximize

w0,w1

p(V − w1) + (1− p)(−w0)

subject to {w0, w1} satisfies IR and IC

15.72 Note that the IC condition implies IR condition, so we do not need to consider the IR condition.

15.73 To maximize the principal’s payoff, the IC condition should be binding, that is, p√w1 + (1 − p)
√
w0− = w0.

Otherwise, p(√w1 −
√
w0) − 1 > 0, then the principal can lower w1 by a little and can still maintain the agent’s

incentive to exert effort.

15.74 Since the principal’s problem is equivalent to minimize pw1 + (1− p)w0, to achieve that conditional on p(√w1 −
√
w0)− 1 = 0, the obvious way to do it is to set w0 = 0. As a result, w1 = 1

p2 .

15.75 The payoff of the principal is thus
p(V − 1

p2 ) = pV − 1
p < pV − 1.

This payoff is called the principal’s second-best payoff, which is less than her first-best payoff pV − 1: Recall that
under complete information, whenever pV −1 > 0, it is benefitable for them to cooperate, while under asymmetric
information, the condition becomes p(V − 1

p2 ) > 0.

15.76 Intuition: when effort is observable, to incentivize the agent, the principal only needs to cover the cost of his effort.
When effort is unobservable, however, the principal’s payment has to depend on whether the project succeeds and
let the agent bear the risk. So to incentivize him, the principal also needs to compensate him for the risk he is facing
by paying him the risk-premium.
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Social choice theory
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16.1 Social choice

16.1 A society, denoted by ⟨X,N, (≿i)⟩, consists of�

• Non-empty setX of mutually exclusive social states (or alternatives). AlthoughX could be infinite, we focus
on the case thatX is finite.

• SetN = {1, 2, . . . , n} of individuals, where n ≥ 2.

• Each individual i has his own preference ≿i over the set of social states. Let L denote the set of preferences
onX .

16.2 To determine the social choice, we will need some ranking of the social states inX that reflects society’s preferences.
Ideally, we would like to be able to compare any two alternatives in X from a social point of view, and we would
like those binary comparisons to be consistent in the usual way.

A social preference relation,≿, is a complete and transitive binary relation on the setX of social states. For x and
y inX , we read x ≿ y as the statement “x is socially at least as good as y.”

16.3 Issue 1: How can we go from the often divergent, but individually consistent, personal views of society’s members
to a single and consistent social view?

16.4 Condorcet’s paradox: When we insist on transitivity as a criterion for consistency in social choice, certain well-
known difficulties can easily arise.

A society of three individuals and three alternatives x, y and z. The preferences of the individuals are as follows:

The outcome is determined by majority voting.

247
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Individual 1 Individual 2 Individual 3
x y z
y z x
z x y

Table 16.1

(1) In a choice between x and y, xwould get two votes and y wold get one, so the social preference undermajority
rule would be x ≻ y.

(2) In a choice between y and z, majority voting gives y ≻ z.

(3) Because x ≻ y and y ≻ z, transitivity of social preferences would require that x ≻ z.

(4) In a choice between y and z, majority voting gives z ≻ x, which violates transitivity.

Hence, no single best alternative can be determined by majority rule.

16.2 Arrow’s impossibility theorem

16.5 Issue 2: How can we go from consistent individual views to a social view that is consistent and that also respects
certain basic values on matters of social choice that are shared by members of the community?

That is, we can imagine our problem as one of finding a “rule,” or function, capable of aggregating and reconciling
the different individual views represented by the individual preference relations ≿i into a single social preference
relation≿ satisfying certain ethical principles.

16.6 Definition: A social welfare function F is a function from Ln to L.�

16.7 Arrow has proposed a set of four conditions that might be considered minimal properties the social welfare func-
tion, F , should possess. They are as follows.

U. Unrestricted domain. The domain of F must include all possible combinations of individual preferences on
X .

PE. Pareto efficiency. For any pair of alternatives x and y inX , if x ≻i y for all i, then x ≻ y.

IIA. Independent of irrelevant alternatives. Let

≿= F (≿1,≿2, . . . ,≿n), ≿′= F (≿′
1,≿′

2, . . . ,≿′
n),

and let x and y be any two alternatives inX . If each individual i ranks x versus y under≿i the same way that
he does under≿′

i, then the social ranking of x versus y is the same under≿ and≿′.

D. Non-dictatorship. There is no individual i such that for all x and y inX , x ≻i y implies x ≻ y regardless of
the preferences≿j of all other individuals j ̸= i.

16.8 Remark:

• Condition U says that F is able to generate a social preference ordering regardless of what the individuals’
preference relations happen to be.
As we have seen before, this condition, together with the transitivity requirement on ≿, rules out majority
voting as an appropriate mechanism because it sometimes fails to produce a transitive social ordering when
there are more than three alternatives to consider.
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• Condition PE says society should prefer x to y if every single member of society prefers x to y.

Notice that this is a weak Pareto requirement because it does not specifically require the social preference to
be for x if, say, all but one strictly prefer x to y, yet one person is indifferent between x and y.

• Condition IIA says that the social ranking of x and y should depend only on the individual rankings of x and
y.

• Condition D says there should be no single individual who “gets his way” on every single social choice, re-
gardless of the views of everyone else in society.

16.9 Arrow’s impossibility theorem: If there are at least three social states, then there is no social welfare function F that�

simultaneously satisfies Conditions U, PE, IIA, and D.

16.10 Proof. The strategy of the proof is to show that conditions U, PE, and IIA imply the existence of a dictator.

(1) Consider any social state, c. Suppose each individual places state c at the bottom of his ranking. By PE, the
social ranking must place c at the bottom as well. See Table 16.2.

≿1 ≿2 · · · ≿n ≿
∗ ∗ · · · ∗ ∗
...

...
...

...
...

...
...

...
c c · · · c c

Table 16.2

(2) (i) Imagine now moving c to the top of individual 1’s ranking, leaving the ranking of all other states un-
changed.

(ii) Next, do the same with individual 2: move c to the top of 2’s ranking.

(iii) Continue doing this one individual at a time, keeping in mind that each of these changes in individual
preferences might have an effect on the social ranking.

(iv) Eventually, c will be at the top of every individual’s ranking, and so it must then also be at the top of the
social ranking by Condition PE.

Consequently, there must be a first time during this process that the social ranking of c increases. Let indi-
vidualm be the first such that raising c to the top of his ranking causes the social ranking of c to increase.

(3) We claim that, as shown in Table 16.3, when cmoves to the top of individualm’s ranking, the social ranking
of c not only increases but c also moves to the top of the social ranking.

≿1 ≿2 · · · ≿m ≿m+1 · · · ≿n ≿
c c · · · c ∗ · · · ∗ c
...

...
...

...
...

...
...

...
...

...
...

...
∗ ∗ · · · ∗ c · · · c ∗

Table 16.3
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To see this, assume by way of contradiction that the social ranking of c increases, but not to the top; i.e., α ≿ c
and c ≿ β for some states α, β ̸= c. See Table 16.4.

≿1 ≿2 · · · ≿m ≿m+1 · · · ≿n ≿
c c · · · c ∗ · · · ∗ ∗
...

...
...

...
...

...
...

...
...

...
... α

α, β α, β α, β α, β α, β c
...

...
...

...
... β

...
...

...
...

...
...

∗ ∗ · · · ∗ c · · · c ∗

Table 16.4

Now, because c is either at the bottomor at the top of every individual’s ranking, we can change each individual
i’s preferences so that β ≻i α, while leaving the position of c unchanged for that individual. See Table 16.5.

≿1 ≿2 · · · ≿m ≿m+1 · · · ≿n ≿
c c · · · c ∗ · · · ∗ ∗
...

...
...

...
...

...
β β β β β α
...

...
...

...
... c

α α α α α β
...

...
...

...
...

...
∗ ∗ · · · ∗ c · · · c ∗

Table 16.5

On one hand, β ≻i α for every individual implies by PE that β must be strictly preferred to α according to
the social ranking; i.e., β ≻ α.

On the other hand, because the rankings of c relative to α and of c relative to β have not changed in any
individual’s ranking (see Tables 16.4 and 16.5), IIA implies that the social rankings of c relative to α and of c
relative to β must be unchanged; i.e., as initially assumed, we must have α ≿ c and c ≿ β. But transitivity
then implies α ≿ β, contradicting β ≻ α. This establishes our claim that cmust have moved to the top of the
social ranking.

(4) Consider now any two distinct social states a and b, each distinct from c. In Table 16.3, change the profile of
preferences as follows: change individualm’s ranking so that a ≻m c ≻m b, and for every other individual
rank a and b in any way so long as the position of c is unchanged for that individual. See Table 16.6.
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≿1 ≿2 · · · ≿m ≿m+1 · · · ≿n ≿

c c · · · ∗ ∗ · · · ∗
...

...
...

...
...

... a
...

... a
...

...
...

a, b a, b c a, b a, b c
...

... b
...

...
...

...
...

...
...

... b

∗ ∗ · · · ∗ c · · · c
...

Table 16.6

Note that in the new profile of preferences the ranking of a to c is the same for every individual as it was just
before raising c to the top of individualm’s ranking in Step (2). Therefore, by IIA, the social ranking of a and
cmust be the same as it was at that moment, see Table 16.7. But this means that a ≻ c because at that moment
c was still at the bottom of the social ranking.

≿1 ≿2 · · · ≿m−1 ≿m · · · ≿n ≿
c c · · · c ∗ · · · ∗ ∗
...

...
...

...
...

...
a a a a a a
...

...
...

...
...

...
∗ ∗ · · · ∗ c · · · c c

Table 16.7

Similarly, in the new profile of preferences, the ranking of c to b is the same for every individual as it was just
after raising c to the top of individual m’s ranking in Step (2), see Table 16.8. Therefore by IIA, the social
ranking of c and b must be the same as it was at that moment. But this means that c ≻ b because at that
moment c had just risen to the top of the social ranking.

≿1 ≿2 · · · ≿m ≿m+1 · · · ≿n ≿
c c · · · c ∗ · · · ∗ c
...

...
...

...
...

...
b b b b b b
...

...
...

...
...

...
∗ ∗ · · · ∗ c · · · c ∗

Table 16.8

Therefore, as in Table 16.6, because a ≻ c and c ≻ b, we may conclude by transitivity that a ≻ b. Note then
that no matter how the others rank a and b, the social ranking agrees with individualm’s ranking. By IIA, and
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because a and b were arbitrary, we may therefore conclude that for all social states a and b distinct from c

a ≻m b implies a ≻ b.

That is, individualm is a dictator on all pairs of social states not involving c.

(5) The final step shows that individualm is in fact a dictator.

Let a be distinct from c. We may repeat the above steps with a playing the role of c to conclude that some
individual is a dictator on all pairs not involving a.

However, recall that individual m’s ranking of c (bottom or top) in Table 16.3 affects the social ranking of c
(bottom or top). Hence, it must be individualmwho is the dictator on all pairs not involving a. Because awas
an arbitrary state distinct from c, and together with our previous conclusion about individualm, this implies
thatm is a dictator.

16.11 AlthoughArrow’s theorem is amathematical result, it is often expressed in a non-mathematicalwaywith a statement
such as “No voting method is fair”, “Every ranked voting method is flawed”, or “The only voting method that isn’t
flawed is a dictatorship”.

More importantly, Arrow’s theorem says that a deterministic preferential voting mechanism—that is, one where
a preference order is the only information in a vote, and any possible set of votes gives a unique result—can not
comply with all of the conditions given above simultaneously.

16.3 Borda count, simple plurality rule, and two-round system

16.12 Borda count.

The Borda count is commonly used for making collective choices. Individual i assigns a Borda count, Bi(x), to
every alternative x, whereBi(x) is the number of alternatives inX to which x is preferred by agent i. Alternatives
are then ranked according to their total Borda count as follows:

x ≿ y ⇐⇒
n∑

i=1

Bi(x) ≥
n∑

i=1

Bi(y).

16.13 Example.

Individual 1 Individual 2 Individual 3
x y x
y z z
z x y

Table 16.9

x, y and z have 4, 3 and 2 points respectively.

16.14 Example: Consider 100 individuals who can be broken down into three groups based on their preferences over
three alternatives, x, y and z.
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40% 24% 36%
x y z
y z y
z x x

Table 16.10

x gets 40× 2 = 80 points, y gets 24× 2+ 76× 1 = 124 points and z gets 36× 2+ 24× 1 = 96 points. With this
procedure y wins with z in the second place and x in the third place.

16.15 Borda count satisfies U, PE and D, but does not satisfy IIA.

16.16 Because it sometimes elects broadly acceptable candidates, rather than those preferred by the majority, the Borda
count is often described as a consensus-based electoral system, rather than a majoritarian one.

16.17 Borda count was developed independently several times, but is named for the 18-th century French mathematician
and political scientist Jean-Charles de Borda, who devised the system in 1770.

16.18 Reversal paradox.

Consider seven individuals and four alternatives {x, y, z, w}. The preferences are:

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6 Individual 7
x z x y z z y
y x y w x x w
w y w z y y z
z w z x w w x

Table 16.11

Total points: x : 12, y : 13, z : 11 and w : 6. So, y is the winner and the social ranking is y ≻ x ≻ z ≻ w.

If the worst alternative w is eliminated, then the rankings are:

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6 Individual 7
x z x y z z y
y x y z x x z
z y z x y y x

Table 16.12

Total points: x : 7, y : 6 and z : 8. So, the winner is z and the ranking is z ≻ x ≻ y.

The social ranking is completely reversed! (Reason: failure of IIA.)

16.19 Simple plurality rule.

In this system the single winner is the personwith themost votes (plurality); there is no requirement that the winner
gain an absolute majority of votes, but rather only a plurality, sometimes called a relative/simple majority.

16.20 Example: Consider 100 individuals who can be broken down into three groups based on their preferences over
three alternatives, x, y and z.
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40% 24% 36%
x y z
y z y
z x x

Table 16.13

With simple plurality rule, x gets 40%, y gets 25% and z gets 36%. So, x is the winner, although 60% rank it the
lowest!

16.21 Two-round system.

The two-round system (also known as the second ballot, runoff voting or ballotage) is a voting system used to elect
a single winner where the voter casts a single vote for their chosen candidate. However, if no candidate receives the
required number of votes (usually an absolute majority or 40–45% with a winning margin of 5–15%), then those
candidates having less than a certain proportion of the votes, or all but the two candidates receiving the most votes,
are eliminated, and a second round of voting occurs.

16.22 Example.

40% 24% 36%
x y z
y z y
z x x

Table 16.14

In the first round, x gets 40%, y gets 24% and z gets 36%. If y is eliminated, in the second round x gets 40% and z
gets 60% of the votes and z is the winner.

16.23 Outcomes under different methods.

40% 24% 36%
x y z
y z y
z x x

Table 16.15

• Simple plurality rule: x is the best.

• Borda count: y is the best.

• Two-round system: z is the best.
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16.4 Gibbard-Satterthwaite theorem

16.24 We have focused solely on the task of aggregating the preference profile into a single preference for society. This
task, as we have seen, is a formidable one. Indeed, it can not be carried out if we insist on all of Arrow’s conditions.

16.25 Issue 3: Maybe Arrow’s impossibility theorem held because we required a whole preference ordering. So social
choice functions might be easier to find. Firstly We will need to redefine our criteria for the social choice function
setting; PE and IIA discussed the ordering.

16.26 Issue 4: Implicit in our analysis has been the assumption that the true preferences of each individual can be obtained
and that society’s preferences are then determined according to its social welfare function. But how, exactly, does
society find out the preferences of its individual members?

One possibility, of course, is to simply ask each individual to report his ranking of the social states. But this in-
troduces a serious difficulty. Individuals would be better off lying about their preferences than reporting them
truthfully if a false report leads to a better social state for them.

Thus, in addition to the problem of coherently aggregating individual rankings into a social ranking, there is the
problem of finding out individual preferences in the first place.

16.27 Definition: A social choice function is a function f : Ln → X . Specifically, for each preference profile (≿1,≿2�

, . . . ,≿n), f(≿1,≿2, . . . ,≿n) is the society’s choice fromX .

16.28 Definition: A social choice function f is dictatorial if there is an individual i such that whenever f(≿1,≿2, . . . ,≿n�

) = x it is the case that x ≿i y for every y ∈ X .

16.29 Definition: A social choice function f is Pareto efficient if f(≿1,≿2, . . . ,≿n) = x whenever x ≻i y for every�

individual i and every y ∈ X distinct from x.

16.30 Definition: A social choice function f is monotonic if whenever f(≿1,≿2, . . . ,≿n) = x and for every individual�

i and every alternative y the preference ≻′
i ranks x above y if≿i does, then f(≿′

1,≿′
2, . . . ,≿′

n) = x.

An alternative x must remain the winner whenever the support for it is increased in a preference profile under
which x was already winning.

16.31 Definition: A social choice function f is strategy-proof when, for every individual, i, for every pair ≿i and ≿′
i of�

his preferences, and for every profile≿−i of others’ preferences, we have

f(≿i,≿−i) ≿i f(≿′
i,≿−i).

16.32 Example.

Individual 1 Individual 2 Individual 3 Individual 4
x z w x
y x y z
z w z w
w y x y

Table 16.16

Apply Borda count. Total points: x : 8, y : 4, z : 7 and w : 5. So, x is the best.
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Individuals 1 and 4 will tell the truth since the winner x is their top choices.

If individual 2 reports the preference z ≻2 w ≻2 y ≻2 x as shown in the following table, the total points are: x : 6,
y : 5, z : 7 and w : 6, and hence z is the best. That is, individual 2 prefers z to x in the original ranking and would
like to lie.

Individual 1 Individual 2 Individual 3 Individual 4
x z w x
y w y z
z y z w
w x x y

Table 16.17

If individual 3 reports the preference z ≻3 w ≻3 y ≻3 x as shown in the following table, the total points are: x : 8,
y : 3, z : 9 and w : 4, and hence z is the best. That is, individual 3 prefers z to x in the original ranking and would
like to lie.

Individual 1 Individual 2 Individual 3 Individual 4
x z z x
y x w z
z w y w
w y x y

Table 16.18

16.33 Lemma: Suppose that f is a monotonic social choice function and that f(≿1, . . . ,≿n) = x, where≿1, . . . ,≿n are
each strict rankings of the social states inX .

(i) Suppose that for some individual i, ≿i ranks y just below x, and let ≿′
i be identical to ≿i except that y is

ranked just above x, i.e., the ranking of x and y is reversed. Then either f(≿′
i,≿−i) = x or f(≿′

i,≿−i) = y.

(ii) Suppose that≿′
1, . . . ,≿′

n are strict rankings such that for every individual i, the ranking of x versus any other
social state is the same under≿′

i as it is under≿i. Then f(≿′
1, . . . ,≿′

n) = x.

Proof. (i) Suppose that f(≿′
i,≿−i) = z ̸= x, y, then we have for every w ∈ X z ≻i w whenever z ≻′

i w, and
for every j ̸= i and every w ∈ X z ≻j w whenever z ≻′

j w. Then by monotonicity f(≿i,≿−i) = z ̸= x, a
contradiction.

(ii) Routine.

16.34 Lemma: Let f be a monotonic social choice function and suppose that the social choice must be x whenever all
individual rankings are strict and x is at the top of individualm’s ranking. Then the social choice must be at least
as good as x for individual m when the individual rankings are not necessarily strict and x is at least as good for
individualm as any other social states.

Proof. By Lemma 16.33. Argue by contradiction and change preferences monotonically so that all preferences are
strict and x is at the top ofm’s ranking.
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16.35 Lemma: Let x and y be distinct social states. Suppose that the social choice is at least as good as x for individual i
whenever x is at least as good as every other social state for i. Suppose also that the social choice is at least as good
as y for individual j whenever y is at least as good as every other social state for j. Then i = j.

Proof.

16.36 Gibbard-Satterthwaite theorem: If there are at least three social states, then every onto strategy-proof social choice�

function is dictatorial.

This theorem is named after Allan Gibbard and Mark Satterthwaite.

16.37 Part 1: strategy-proofness implies monotonicity. Let (≿1,≿2, . . . ,≿n) be an arbitrary preference profile and sup-
pose that f(≿1, . . . ,≿n) = x. Fix an individual, i say, and let ≿′

i be a preference for i such that for every y ∈ X

distinct from x, x ≻′
i y if x ≿i y. We shall show that f(≿′

i,≿−i) = x.

(1) Suppose, by way of contradiction, that f(≿′
i,≿−i) = y ̸= x.

(2) Given that the others report ≿−i, individual i, when his preferences are ≿i can report truthfully and obtain
the social state x or he can lie by reporting ≿′

i and obtain the social state y. Strategy-proofness requires that
lying can not be strictly better than telling the truth. Hence we must have x ≿i y.

(3) According to the definition of≿′
i, we then have x ≻′

i y.

(4) Consequently, when individual i’s preferences are ≿′
i he strictly prefers x to y and so, given that the others

report≿−i, individual i strictly prefers lying (reporting≿i and obtaining x) to telling the truth (reporting≿′
i

and obtaining y), contradicting strategy-proofness.

(5) We conclude that f(≿′
i,≿−i) = x.

16.38 Part 2: onto and monotonicity implies Pareto efficiency. Let x be an arbitrary social state and let (≿i)i be a prefer-
ence profile with x at the top of each individual’s ranking≿i. We must show that f(≿1, . . . ,≿n) = x.

(1) Because f is onto, f(≿′
1, . . . ,≿′

n) = x for some (≿′
1, . . . ,≿′

n) ∈ Ln.

(2) Obtain the preference profile (≿′′
i )i from (≿′

i)i by moving x to the top of every individual’s ranking≿′′
i .

(3) By monotonicity, f(≿′′
1 , . . . ,≿′′

n) = x.

(4) Because (≿i)i places x at the top of every individual ranking≿i and f(≿′′
1 , . . . ,≿′′

n) = x, we can again apply
monotonicity and conclude that f(≿1, . . . ,≿n) = x, as desired.

16.39 Part 3: |X| ≥ 3, monotonicity and Pareto efficiency imply dictatorship. (1) Consider any two distinct social states
x, y ∈ X and a profile of strict rankings inwhichx is ranked highest and y lowest for every individual i. Pareto
efficiency implies that the social choice at this profile is x.

(2) Consider now changing individual 1’s ranking by strictly raising y in it one position at a time. Bymonotonicity,
the social choice remains equal to x so long as y is below x in 1’s ranking.

(3) When y finally does rise above x, Lemma 16.33 implies that the social choice either changes to y or remains
equal to x.

http://en.wikipedia.org/wiki/Gibbard%E2%80%93Satterthwaite_theorem
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(4) If the social choice is x, then begin the same process with individual 2, then 3, etc. until for some individual
m, the social choice does change from x to y when y rises above x in m’s ranking. There must be such an
individualm because y will eventually be at the top of every individual’s ranking and by Pareto efficiency the
social choice will then be y. Tables 16.19 and 16.20 depict the situations just before and just after individual
m’s ranking of y is raised above x.

≿1 · · · ≿m−1 ≿m ≿m+1 · · · ≿n Social choice
y · · · y x x · · · x x

x · · · x y
...

...
...

...
...

...
...

...
...

...
...

...
∗ · · · ∗ ∗ y · · · y

Table 16.19

≿1 · · · ≿m−1 ≿m ≿m+1 · · · ≿n Social choice
y · · · y y x · · · x y

x · · · x x
...

...
...

...
...

...
...

...
...

...
...

...
∗ · · · ∗ ∗ y · · · y

Table 16.20

(5) Consider Tables 16.21 and 16.22 below. Table 16.21 is derived from Table 16.19 (and Table 16.22 from Ta-
ble 16.20) by moving x to the bottom of individual i’s ranking for i < m and moving x to the second last
position in i’s ranking for i > m.

≿1 · · · ≿m−1 ≿m ≿m+1 · · · ≿n Social choice
y · · · y x ∗ · · · ∗ x
...

... y
...

...
...

...
...

...
...

...
...

... x · · · x
x · · · x ∗ y · · · y

Table 16.21



16.4. Gibbard-Satterthwaite theorem 259

≿1 · · · ≿m−1 ≿m ≿m+1 · · · ≿n Social choice
y · · · y y ∗ · · · ∗ y
...

... x
...

...
...

...
...

...
...

...
...

... x · · · x
x · · · x ∗ y · · · y

Table 16.22

(6) Wewish to argue that these changes do not affect the social choices, i.e., that the social choices are as indicated
in the tables.
Note that the social choice in Table 16.22 must, by Lemma 16.33, be y because the social choice in Table 16.20
is y and no individual’s ranking of y versus any other social state changes in the move from Table 16.20 to
Table 16.22.
Note that the preference profiles in Tables 16.21 and 16.22 differ only in individualm’s ranking of x and y. By
Lemma 16.33, the social choice in Table 16.21 must be either x or y because the social choice in Table 16.22
is y. When the social choice in Table 16.21 is y, by Lemma 16.33, the social choice in Table 16.19 must be y,
a contradiction.

(7) Because there are at least three social states, we may consider a social state z ∈ X distinct from x and y. Since
the (otherwise arbitrary) profile of strict rankings in Table 16.23 can be obtained from the Table 16.21 profile
without changing the ranking of x versus any other social state in any individual’s ranking, the social choice
in Table 16.23 must, by Lemma 16.33, be x.

≿1 · · · ≿m−1 ≿m ≿m+1 · · · ≿n Social choice
∗ · · · ∗ x ∗ · · · ∗ x
...

... z
...

...
...

... y
...

...
...

...
...

...
...

z · · · z
... z · · · z

y · · · y
... x · · · x

x · · · x ∗ y · · · y

Table 16.23

(8) Consider the profile of rankings in Table 16.24 derived from the Table 16.23 profile by interchanging the
ranking of x and y for individuals i > m.
Because this is the only difference between the profiles in Tables 16.23 and 16.24, and because the social choice
in Table 16.23 is x, the social choice in Table 16.24 must, by Lemma 16.33, be either x or y.
But the social choice in Table 16.24 can not be y because z is ranked above y in every individual’s Table 16.24
ranking, and monotonicity would then imply that the social choice would remain y even if z were raised to
the top of every individual’s ranking, contradicting Pareto efficiency.
Hence the social choice in Table 16.24 is x.
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≿1 · · · ≿m−1 ≿m ≿m+1 · · · ≿n Social choice
∗ · · · ∗ x ∗ · · · ∗ x
...

... z
...

...
...

... y
...

...
...

...
...

...
...

z · · · z
... z · · · z

y · · · y
... y · · · y

x · · · x ∗ x · · · x

Table 16.24

(9) Note that an arbitrary profile of strict rankingswithx at the top of individualm’s ranking can be obtained from
the profile in Table 16.24 without reducing the ranking of x versus any other social state in any individual’s
ranking. Hence, Lemma 16.33 implies that the social choicemust be xwhenever individual rankings are strict
and x is at the top of individualm’s ranking.

Lemma 16.34 implies that evenwhen individual rankings are not strict and indifferences are present, the social
choice must be at least as good as x for individualm whenever x is at least as good as every other social state
for individualm.

(10) So, we may say that individualm is a dictator for the social state x. Because x was arbitrary, we have shown
that for each social state x ∈ X , there is a dictator for x. But Lemma 16.35 implies there can not be distinct
dictators for distinct social states. Hence there is a single dictator for all social states and therefore the social
choice function is dictatorial.

16.40 Proposition: A social choice function f is strongly monotonic if whenever f(≿1, . . . ,≿n) = x and for every
individual i and every alternative y the preference≿′

i ranks x above y if≿i does, then f(≿′
1, . . . ,≿′

n) = x.

Suppose there are two individuals, 1 and 2, and three social states, x, y, and z. Define the social choice function f
to choose individual 1’s top-ranked social state unless it is not unique, in which case the social choice is individual
2’s top-ranked social state among those that are top-ranked for individual 1, unless this too is not unique, in which
case, among those that are top-ranked for both individuals, choose x if it is among them, otherwise choose y.

(i) f is strategy-proof.

(ii) Show by example that f is not strongly monotonic. (Hence, strategy-proofness does not imply strong mono-
tonicity, even though it implies monotonicity.)

16.41 Proposition: Show that if f is an onto monotonic social choice function and the finite set of social states isX , then
for every x ∈ X there is a profile, (≻i)i, of strict rankings such that f(≻1, . . . ,≻n) = x.

16.42 Proposition: Show that when there are just two alternatives and an odd number of individuals, the majority rule
social choice function (i.e., that which chooses the outcome that is the top ranked choice for the majority of indi-
viduals) is Pareto efficient, strategy-proof and non-dictatorial.
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17.1 The theory of mechanism design can be thought of as the “engineering” side of economic theory. Much theoretical
work focuses on existing economic institutions. The theorist wants to explain or forecast the economic or social
outcomes that these institutions generate.

But in mechanism design theory the direction of inquiry is reversed. We begin by identifying our desired social
goal. We then ask whether or not an appropriate institution (mechanism) could be designed to attain that goal.

Almost any kind of market institution or economic organization can be viewed, in principle, as a mechanism.
Examples include: school choice, auction, kidney exchange, tax codes, contract design, etc.

17.2 Leonid Hurwicz defined a mechanism as a communication system in which participants send messages to each
other and/or to a “message center”, and where a pre-specified rule assigns an outcome (such as an allocation of
goods and services) for every collection of received messages.

The difficulty in mechanism design is that the individuals have private information and different objectives, and so
may not have the incentive to behave in a way that reveals what they know. The key point is how to design “incentive
compatible” mechanisms that can generate the information needed as they are executed.
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17.1 Envelope theorem

17.3 Consider a one-agent decision problem
V (θ) = max

a∈A
h(a, θ),

where a is the agent’s chosen action and θ ∈ Θ an exogenous parameter. In an auction, θ could be bidder’s valuation,
and a bidder’s choice of bid.

17.4 A could be either discrete or continuous, but Θ is an interval.

17.5 Let a∗(θ) be the set of optimal choices, that is,

a∗(θ) = argmax
a∈A

h(a, θ).

Let ha and hθ denote partial derivatives of h.

17.6 Theorem (Envelope theorem): Suppose for all θ ∈ Θ, a∗(θ) in non-empty, and for all a and θ, hθ exists. Let a(θ)�

be any selection from a∗(θ).

(i) If V is differentiable at θ, then
V ′(θ) = hθ

(
a(θ), θ

)
.

(ii) If V is absolutely continuous, then for any θ′ > θ,

V (θ′)− V (θ) =

∫ θ′

θ

hθ
(
a(t), t

)
dt.

Proof of (i). (1) If V is differentiable at θ, then

V ′(θ) = lim
ϵ↓0

V (θ + ϵ)− V (θ)

ϵ
= lim

ϵ↓0

V (θ)− V (θ − ϵ)

ϵ
.

(2) Take a(θ) ∈ a∗(θ), then V (θ) = h(a(θ), θ), and

V (θ + ϵ) = max
a
h(a, θ + ϵ) ≥ h(a(θ), θ + ϵ).

(3) Then we have

V ′(θ) = lim
ϵ↓0

V (θ + ϵ)− V (θ)

ϵ
≥ lim

ϵ↓0

h(a(θ), θ + ϵ)− h(a(θ), θ)

ϵ
= hθ(a(θ), θ).

(4) For the same number a(θ), V (θ − ϵ) = maxa h(a, θ − ϵ) ≥ h(a(θ), θ − ϵ), and hence

V ′(θ) = lim
ϵ↓0

V (θ)− V (θ − ϵ)

ϵ
≤ lim

ϵ↓0

h(a(θ), θ)− h(a(θ), θ − ϵ)

ϵ
= hθ(a(θ), θ).

(5) So
hθ(a(θ), θ) ≤ V ′(θ) ≤ hθ(a(θ), θ).
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Proof of (ii). (1) Absolute continuity: for all ϵ > 0, there exists δ > 0 such that for any finite, disjoint set of
intervals {[xk, yk]}k=1,2,...,M with

∑
k |yk − xk| < δ,∑

k

|V (yk)− V (xk)| < ϵ.

(2) Absolute continuity is equivalent to V being differentiable almost everywhere and being the integral of its
derivative, so the second part follows directly from the first part.

17.7 Remark: The derivative of the value function is the derivative of the objective function, evaluated at the maximizer.

17.8 Corollary: Assume that

• for each a ∈ A, h(a, ·) is differentiable,

• there existsB > 0, such that for all a ∈ A and almost all θ ∈ Θ

|hθ(a, θ)| ≤ B,

• a∗(θ) = argmaxa∈A h(a, θ) ̸= ∅.

Then V is Lipschitz continuous with Lipschitz constant 1, and hence absolutely continuous and almost everywhere
differentiable. Therefore the two formulas in Theorem 17.6 still hold.

Proof. For any two distinct θ and θ′, we have

|V (θ)− V (θ′)| = |max
a∈A

h(a, θ)− max
a∈A

h(a, θ′)| ≤ max
a∈A

|h(a, θ)− h(a, θ′)| ≤ max
a∈A

B · |θ − θ′| = B · |θ − θ′|.

17.2 A general mechanism design setting

17.9 Mechanism design theory distinguishes sharply between the apparatus under the control of the designer, which we
call a mechanism, and the world of things that are beyond the designer’s control, which we call the environment.

17.10 An environment comprises three lists:

• a list of participants or potential participants,

• a list of the possible outcomes,

• a list of the participants’ possible types—that is, their capabilities, preferences, information, and beliefs.

A mechanism consists of rules that govern what the participants are permitted to do, and how these permitted
actions determine outcomes.

17.11 Mechanism theory evaluates alternative designs based on their comparative performance. Formally, performance
is the function that maps environments into outcomes.

The goal of mechanism design analysis is to determine what performance is possible and how mechanism can best
be designed to achieve the designer’s goals. Mechanism design addresses three common questions:
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• Is it possible to achieve a certain kind of performance, for instance a map that picks an efficient allocation for
every possible environment in some class?

• What is the complete set of performance functions that are implementable by some mechanism?

• What mechanism optimizes performance according to the mechanism designer’s performance criterion?

17.12 Setup:�

• There areN agents. The set of agents is denoted by N = {1, 2, . . . , N}.

• The set of potential social decisions is denoted byD.

• Agent i’s information is represented by a type θi which lies in a set Θi. Let θ = (θ1, θ2, . . . , θN ), and Θ =

Θ1 ×Θ2 × · · · ×ΘN .

• Agents have preferences over decisions that are represented by a utility function. Agent i’s utility if decision d
is chosen, and agent i pays transfer ti is:

vi(d, θi)− ti.

17.13 A decision rule is a mapping d : Θ → D.�

A decision rule d(·) is efficient if∑
i

vi
(
d(θ), θi

)
≥
∑
i

vi
(
d′, θi

)
for all θ ∈ Θ and d′ ∈ D,

that is
d(θ) ∈ argmax

d′∈D

∑
i

vi(d
′, θi) for all θ ∈ Θ.

17.14 Agent i’s transfer function is a mapping ti : Θ → R. ti(θ) represents the payment that i receives based on the�

announcement of types θ. Let t(θ) =
(
t1(θ), t2(θ), . . . , tN (θ)

)
.

A transfer function t is said to be feasible if
∑

i ti(θ) ≥ 0 for all θ.

A transfer function t is said to be balanced if
∑

i ti(θ) = 0 for all θ. (d, t) satisfies budget balance if the transfer
function is balanced.

17.15 A pair (d, t) will be referred to as a social choice function.

17.16 The utility that i receives, if θ′ is the announced vector of types, and i’s true type is θi, is

vi
(
d(θ′), θi

)
− ti(θ

′).

17.17 A mechanism is a pair (M, g), where�

• M =M1 ×M2 × · · · ×MN is a cross product of message spaces.

• g : M → D × RN is an outcome function.

17.18 Note that a social choice function (d, t) can be viewed as a mechanism, where Mi = Θi and g = (d, t). This is
referred as a direct mechanism.

17.19 A social choice function (d, t) is implemented by amechanism (M, g) if there exists a functionm = (m1,m2, . . . ,mN ),�

where eachmi : Θi →Mi, such that

(
d(θ), t(θ)

)
= (g ◦m)(θ) for all θ.
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MessagesM

Types Θ OutcomesD × RN

m
g

(d, t)

Figure 17.1

We always require that m satisfies some equilibrium condition, for example m is a dominant strategy profile or a
Bayesian Nash equilibrium.

17.3 Dominant strategy mechanism design

17.3.1 Revelation principle for dominant strategies

17.20 A strategymi ∈Mi is a dominant strategy at θi, if

vi
(
gd(mi,m−i), θi

)
− gti(mi,m−i) ≥ vi

(
gd(m

′
i,m−i), θi

)
− gti(m

′
i,m−i)

for allm−i andm′
i.

17.21 A social choice function (d, t) is implemented in dominant strategies by the mechanism (M, g) if there exists�

functionsmi : Θi →Mi such that

• mi(θi) is a dominant strategy for each i and θi ∈ Θi,

• g
(
m(θ)

)
= (d, t)(θ) for all θ ∈ Θ.

17.22 A direct mechanism f = (d, t) is dominant strategy incentive compatible if θi is a dominant strategy at θi for each�

i and θi ∈ Θi.

That is, for all θi, θ′i and θ−i,

vi
(
d(θi, θ−i), θi

)
− ti(θi, θ−i) ≥ vi

(
d(θ′i, θ−i), θi

)
− ti(θ

′
i, θ−i).

17.23 Theorem (Revelation principle for dominant strategies): If amechanism (M, g) implements a social choice function�

(d, t) in dominant strategies, then the direct mechanism (d, t) is dominant strategy incentive compatible.

Proof. Note that (d, t)(θ) = g
(
m(θ)

)
for each θ.
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MessagesM

Types Θ OutcomesD × RN

m
g

(d, t) = g ◦m

Figure 17.2: Revelation principle

The powerful implication of the revelation principle is that if we wish to find out the social choice functions can
implemented in dominant strategies, we can restrict our attention to the set of direct mechanisms.

17.3.2 Payoff equivalence theorem

17.24 Theorem (Payoff equivalence theorem): SupposeΘi = [θi, θ̄i], v(d, ·) is differentiable, and there existsB > 0 such�

that for all d and θ |vθ(d, θ)| ≤ B. If the direct mechanism
(
d(·), t(·)

)
is dominant strategy incentive compatible.

Then for every θ,

v
(
d(θi, θ−i), θi

)
− t(θi, θ−i) = v

(
d(θi, θ−i), θi

)
− t(θi, θ−i) +

∫ θi

θi

vθ
(
d(s, θ−i), s

)
ds.

17.25 Proof.

(1) Fixed θ−i, let h(θ′i, θi) = v
(
d(θ′i, θ−i), θi

)
− t(θ′i, θ−i) and V (θi) = maxθ′

i
h(θ′i, θi).

(2) Then we have hθi = vθi for all θi.

(3) Since (d, t) is dominant strategy incentive compatible, we have

θi ∈ argmax
θ′
i

h(θ′i, θi),

and hence V (θi) = h(θi, θi).

(4) By Corollary 17.8, we have

V (θi)− V (θi) =

∫ θi

θi

hθi(t, t) dt,

that is,

v
(
d(θi, θ−i), θi

)
− t(θi, θ−i) = v

(
d(θi, θ−i), θi

)
− t(θi, θ−i) +

∫ θi

θi

vθi
(
d(s, θ−i), s

)
ds.

17.26 Corollary: Suppose Θi = [θi, θ̄i], v(d, ·) is differentiable, and there exists B > 0 such that for all d and θ
|vθ(d, θ)| ≤ B. If (d, t) and (d, t′) are two dominant strategy incentive compatible, then for each θ−i, there exists
c(θ−i) ∈ R, such that for all θi

t(θi, θ−i)− t′(θi, θ−i) = c(θ−i).
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Proof. By Theorem 17.24, we have

v
(
d(θi, θ−i), θi

)
− t(θi, θ−i) = v

(
d(θi, θ−i), θi

)
− t(θi, θ−i) +

∫ θi

θi

vθi
(
d(s, θ−i), s

)
ds.

v
(
d(θi, θ−i), θi

)
− t′(θi, θ−i) = v

(
d(θi, θ−i), θi

)
− t′(θi, θ−i) +

∫ θi

θi

vθi
(
d(s, θ−i), s

)
ds.

Therefore,
t(θi, θ−i)− t′(θi, θ−i) = t(θi, θ−i)− t′(θi, θ−i) ≜ c(θ−i).

17.3.3 Gibbard-Satterthwaite theorem

17.27 A decision rule d is dominant strategy incentive compatible if the social choice function (d, t0) is dominant strategy
incentive compatible, where t0 is the transfer function that is identically 0.

A decision rule d is dictatorial if there exists i such that

d(θ) ∈ argmax
d′∈Rd

vi(d
′, θi) for all θ,

whereRd = {d ∈ D | there exists θ ∈ Θ such that d = d(θ)} is the range of d.

17.28 Theorem: Suppose thatD is finite and type spaces include all possible strict orderings overD. A decision rule with
at least three elements in its range is dominant strategy incentive compatible if and only if it is dictatorial.

Proof.

17.3.4 VCGmechanism

17.29 Definition: A direct mechanism (d, tVCG) is called a Vickrey-Clarke-Groves mechanism if d is an efficient decision�

rule, and if for every i there is a function
hi : Θ−i → R,

such that
tVCGi (θ) = −

∑
j ̸=i

vj
(
d(θ), θj

)
+ hi(θ−i).

for all θ ∈ Θ.

17.30 Exercise: How to derive transfer function of VCG mechanism?

17.31 In a VCG mechanism each agent i is paid the sum of the other agents’ utility from the implemented alternative
whereby utilities are calculated using the agents’ reported types. This is the first term in the formula. This term
aligned agent i’s interests with utilitarian welfare. The second term is a constant that depends on the other agents’
reported types, and that does not affect agent i’s incentives. This constant can be used to raise the overall revenue
from the mechanism.

17.32 Proposition: VCG mechanisms are dominant strategy incentive compatible.

Proof. (1) Consider any agent i and take θ−i as given.
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(2) If agent i is of type θi, and reports that she is of type θ′i, then her utility is:

vi
(
d(θ′i, θ−i), θi

)
+
∑
j ̸=i

vj
(
d(θ′i, θ−i), θj

)
− hi(θ−i) =

∑
j∈N

vj
(
d(θ′i, θ−i), θj

)
− hi(θ−i).

(3) Note that hi(θ−i) is not changed by agent i’s report. Only the first expression matters for i’s incentives.

(4) Since d is efficient, we have ∑
j∈N

vj
(
d(θi, θ−i), θj

)
≥
∑
j∈N

vj
(
d(θ′i, θ−i), θj

)
for all θ′i.

(5) Therefore, it is optimal for agent i to report her true type.

17.33 Remark: Every efficient social choice function can be truthfully implemented in a dominant strategy equilibrium
by a VCG mechanism.

17.34 Proposition: If d is an efficient decision rule, (d, t) is dominant strategy incentive compatible, and the type spaces
are complete in the sense that

{vi(·, θi) | θi ∈ Θi} = {v : D → R} for each i,

then for each i there exists a function hi : Θ−i → R such that the transfer function t satisfies

ti(θ) = hi(θ−i)−
∑
j ̸=i

vj
(
d(θ), θj

)
.

Proof. (1) Let d be an efficient decision rule, (d, t) is dominant strategy incentive compatible, and the type spaces
are complete.

(2) Note that for each i there exists a function hi : Θ → R such that

ti(θ) = hi(θ)−
∑
j ̸=i

vj
(
d(θ), θj

)
.

We need only show that hi is independent of θi.

(3) Suppose to the contrary, that there exists i, θ and θ′i such that hi(θ) < hi(θ−i, θ
′
i).

(4) Let ϵ = 1
2 [hi(θ−i, θ

′
i)− hi(θ)].

(5) By dominant strategy incentive compatibility, it follows that

vi
(
d(θ−i, θi), θi

)
− t(θ−i, θi) ≥ vi

(
d(θ−i, θ

′
i), θi

)
− t(θ−i, θ

′
i),

that is,

vi
(
d(θ−i, θi), θi

)
+
∑
j ̸=i

vj
(
d(θ−i, θi), θj

)
− hi(θ−i, θi)

≥ vi
(
d(θ−i, θ

′
i), θi

)
+
∑
j ̸=i

vj
(
d(θ−i, θ

′
i), θj

)
− hi(θ−i, θ

′
i).
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If d(θ) = d(θ−i, θ
′
i), then we have

hi(θ−i, θ
′
i) ≥ hi(θ),

which is a contradiction. Hence d(θ) ̸= d(θ−i, θ
′
i).

(6) Given the completeness of type spaces, there exists θ′′i ∈ Θi such that

vi
(
d(θ−i, θ

′
i), θ

′′
i

)
+
∑
j ̸=i

vj
(
d(θ−i, θ

′
i), θj

)
= ϵ,

and
vi(d, θ

′′
i ) +

∑
j ̸=i

vj(d, θj) = 0 for any d ̸= d(θ−i, θ
′
i).

(7) If d(θ−i, θ
′′
i ) ̸= d(θ−i, θ

′
i), then by efficiency of d we have

0 = vi
(
d(θ−i, θ

′′
i ), θ

′′
i

)
+
∑
j ̸=i

vj
(
d(θ−i, θ

′′
i ), θj

)
≥ vi

(
d(θ−i, θ

′
i), θ

′′
i

)
+
∑
j ̸=i

vj
(
d(θ−i, θ

′
i), θj

)
= ϵ > 0,

which is a contradiction. Hence, d(θ−i, θ
′′
i ) = d(θ−i, θ

′
i).

(8) By dominant strategy incentive compatibility, we have

vi
(
d(θ−i, θ

′
i), θ

′
i

)
− ti(θ−i, θ

′
i) ≥ vi

(
d(θ−i, θ

′′
i ), θ

′
i

)
− ti(θ−i, θ

′′
i ),

vi
(
d(θ−i, θ

′′
i ), θ

′′
i

)
− ti(θ−i, θ

′′
i ) ≥ vi

(
d(θ−i, θ

′
i), θ

′′
i

)
− ti(θ−i, θ

′
i).

Then ti(θ−i, θ
′
i) = ti(θ−i, θ

′′
i ).

(9) Thus, the utility to i from truthful announcement at θ′′i is

vi
(
d(θ−i, θ

′′
i ), θ

′′
i

)
− ti(θ−i, θ

′′
i ) = ϵ− hi(θ−i, θ

′
i),

and by lying and reporting θi at θ′′i , i gets −hi(θ).

(10) This contradicts dominant strategy incentive compatibility since hi(θ) < hi(θ−i, θ
′
i)− ϵ.

17.35 Proposition: Suppose that for every i, the set Θi is a convex subset of a finite-dimensional Euclidean space. More-
over, assume that for every i the function vi(d, θi) is a convex function of θi. Suppose that (d, t) is a dominant
strategy incentive compatible mechanism, and suppose that d is efficient. Then (d, t) is a VCG mechanism. (Exer-
cise. Reference: Börgers Corollary 7.1)

17.3.5 Pivot mechanism

17.36 One version of VCG mechanism is called the pivot mechanism, where�

hi(θ−i) = max
d∈D

∑
j ̸=i

vj(d, θj).
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17.37 In the pivot mechanism, i’s transfer becomes

t
pivot
i (θ) = −

∑
j ̸=i

vj
(
d(θ), θj

)
+ max

d∈D

∑
j ̸=i

vj(d, θj).

This transfer is always non-negative, and so the pivot mechanism is always feasible.

17.38 • The term maxd∈D

∑
j ̸=i vj(d, θj) maximizes the sum of everyone else’s utility if i were ignored.

• The term
∑

j ̸=i vj
(
d(θ), θj

)
is the maximum sum of other agents’ utility when i is taken into account.

Agent i get paid everyone else’s utility under the allocation that is actually chosen, i.e.,
∑

j ̸=i vj
(
d(θ), θj

)
, and get

charged everyone’s utility in the world where you do not participate. That is, agent i pays her social cost.

17.39 • If i’s presence makes no difference in maximizing choice of d in two cases, then ti(θ) = 0, that is, agents who
do not affect the outcome pay 0.

• Otherwise, we can think of i as being pivotal, and then ti represents the loss in value that is imposed on the
other agents due to the change in decision that results from i’s presence in society.

17.40 Definition: A social choice function (d, t) is (ex post) individually rational if for each agent i, for each θi and θ−i,

vi
(
d(θi, θ−i), θi

)
− ti(θi, θ−i).

17.41 Proposition: If the function v is always nonnegative, the pivot mechanism is indvidually rational.

Proof. Routine.

17.42 Proposition (Uniqueness of VCG transfers): Suppose Θi = [θi, θ̄i], v(d, ·) is differentiable, and there existsB > 0

such that for all d and θ |vθ(d, θ)| ≤ B. If (d, t) is dominant strategy incentive compatible and d is efficient, then
there exists hi : Θ−i → R, such that

ti(θ) = t
pivot
i (θ) + hi(θ−i) for all θ ∈ Θ.

Proof. By Corollary 17.26, for two dominant strategy incentive compatible mechanisms (d, t) and (d, tpivot), we
have

ti(θ) = t
pivot
i (θ) + hi(θ−i).

17.43 Proposition: Among all dominant strategy incentive compatible and individually rational mechanism, the pivot
mechanism has the largest expected budget surplus.

Proof. ?????

17.44 Example: Three agents run the pivot mechanism to decide whether or not to build an airport. Their reports are:

Agent Utility (build) Utility (not build) Payment
1 0 60 ?
2 45 15 ?
3 45 5 ?

What outcome will pivot mechanism given the above reports? If the outcome is to build, what are agents 2 and 3’s
payments?
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Answer. Since 0 + 45 + 45 = 90 > 80 = 60 + 15 + 5, the outcome is to build the airport.

If agent 2 were not present, then the airport would not be built, and the other agents would get 60 + 5 = 65. The
other agents get utility 0 + 45 from the airport’s being built. So agent 2’s payment is 65− 45 = 20.

If agent 3 were not present, then the airport would not be built, and the other agents would get 60 + 15 = 75. The
other agents get utility 0 + 45 from the airport’s being built. So agent 3’s payment is 75− 45 = 30.

17.45 Example: A social planner wishes to build a road connecting A and F . There are several agents who can build the
sub-road with some cost. The costs are presented in Figure 17.3; e.g., agent AB can build the part AB with cost
3. The cost is the agents’ private information, and they could lie about their cost. The planner’ goal is to find the
relevant agents to work together to build the entire road andminimize the total cost. What outcomewill be selected
by the planner? In the outcome, what are the costs for agents AC , AB,BE andBF ?

A

B

C

D

E

F

3

2

2

1

3

5

2

1

Figure 17.3: Building a road.

Solution. (1) Note that minimizing the social cost is equivalent to maximizing the negative of total cost, which
goes back to the familiar expression in VCG mechanism that the goal is to maximize something.

(2) It is clear that the path ABEF will be selected.

(3) For agentAC : The smallest cost takingAC ’s declaration into account is 5, and imposes cost 5 on agents other
than AC . The smallest cost without AC ’s declaration is also 5. So tAC = (−5)− (−5) = 0.

(4) For agentAB: The smallest cost takingAB’s declaration into account is 5, and imposes cost 2 on agents other
than AB. The smallest cost without AB’s declaration is 6. So tAB = (−6)− (−2) = −4.

(5) For agentBE: tBE = (−6)− (−4) = −2.

(6) For agentBF : tBE = (−7)− (−4) = −3.

Note that EF has more market power: for the other agents, the situation without EF is worse than the situation
withoutBE.

17.46 The pivot mechanism is susceptible to collusion.

Agent Utility (build) Utility (not build) Payment
1 200 0 150
2 100 0 50
3 0 250 0

If agents 1 and 2 both increase their declared valuations by 50, we have
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Agent Utility (build) Utility (not build) Payment
1 250 0 100
2 150 0 0
3 0 250 0

The choice is unchanged, but both of their payments are reduced. Thus, while no agent can gain by changing her
reporting, groups can.

17.47 Revenuemonotonicity: The revenue that amechanismwould obtainwould always weakly increase as adding agents
to the mechanism.

The pivot mechanism may violate revenue monotonicity.

Agent Utility (build) Utility (not build) Payment
1 0 90 0
2 100 0 90

Agent Utility (build) Utility (not build) Payment
1 0 90 0
2 100 0 0
3 100 0 0

Adding agent 3 causes the pivot mechanism to make the same choice but to collect zero revenue.

17.3.6 Balancing the budget

17.48 Theorem: There exists a VCG mechanism that satisfies budget balance if and only if for every i there is a function�

fi : Θ−i → R such that
N∑
i=1

vi
(
d(θ), θi

)
=

N∑
i=1

gi(θ−i) for all θ ∈ Θ.

17.49 Proof of necessity.

(1) Suppose that a VCG mechanism
(
d(·), tVCG(·)

)
is budget balanced, then we have

N∑
i=1

hi(θ−i)−
∑
j ̸=i

vj
(
d(θ), θj

) =
N∑
i=1

tVCGi (θ) = 0.

(2) This equality is equivalent to

N∑
i=1

hi(θ−i) =
N∑
i=1

∑
j ̸=i

vj
(
d(θ), θj

)
= (N − 1)

N∑
i=1

vi
(
d(θ), θi

)
.

(3) Hence, if we set for every i and θ−i,

gi(θ−i) =
hi(θ−i)

N − 1
,

we have obtained the desired form for the function
∑N

i=1 vi
(
d(θ), θi

)
.
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17.50 Proof of sufficiency.

(1) Suppose that
∑N

i=1 vi
(
d(θ), θi

)
has the form described in the statement.

(2) For every i and every θ−i we consider the VCG mechanism with

hi(θ−i) ≜ (N − 1)gi(θ−i).

(3) Then for every θ, the sum of agents’ payments is

N∑
i=1

tVCGi (θ) =

N∑
i=1

hi(θ−i)−
∑
j ̸=i

vj
(
d(θ), θj

) = (N − 1)

[
N∑
i=1

gi(θ−i)−
N∑
i=1

vi
(
d(θ), θi

)]
= 0.

17.4 Bayesian mechanism design

17.51 Dominant strategy incentive compatibility is a very strong condition as it requires that truthful revelation of pref-
erences be a best response, regardless of the potential announcements of the others.

17.52 Given a mechanism (M, g), a Bayesian strategy is a mappingmi : Θi →Mi. A Bayesian strategy profilem : Θ →
M is a Bayesian equilibrium if

Eθ−i

[
vi
(
gd
(
mi(θi),m−i(θ−i)

)
, θi
)
− gti

(
mi(θi),m−i(θ−i)

)
| θi
]

≥ Eθ−i

[
vi
(
gd
(
m′

i,m−i(θ−i)
)
, θi
)
− gti

(
m′

i,m−i(θ−i)
)
| θi
]

for each i, θi,m′
i.

17.53 A direct mechanism (d, t) is Bayesian incentive compatible if reporting truth is a Bayesian equilibrium. This is
expressed as

Eθ−i

[
vi
(
d(θi, θ−i), θi

)
− ti(θi, θ−i) | θi

]
≥ Eθ−i

[
vi
(
d(θ′i, θ−i), θi

)
− ti(θ

′
i, θ−i) | θi

]
17.54 A mechanism (M, g) implements a social choice function (d, t) in Bayesian equilibrium if there exists a Bayesian

equilibriumm : Θ →M of (M, g) such that g
(
m(θ)

)
= (d, t)(θ) for all θ.

17.55 Theorem (Revelation principle for Bayesian equilibrium): If a mechanism (M, g) implements a social choice func-
tion (d, t) in Bayesian equilibrium, then the direct mechanism (d, t) is Bayesian incentive compatible.

17.56 Claude d’Aspremont and Louis André Gerard-Varet and Kenneth Arrow independently showed that the balance
difficulties exhibited by VCG mechanisms could be overcome in a setting where agents have probabilistic beliefs
over the types of other agents.

17.57 Definition: A direct mechanism (d, tAGV) is called a Arrow-d’Aspremont-Gérard-Varet mechanism if d is an effi-
cient rule, and for each θ,

tAGVi (θ) =
1

N − 1

∑
k ̸=i

Eθ−k

∑
j ̸=k

vj
(
d(θk, θ−k), θj

) ∣∣∣∣∣∣ θk
− Eθ−i

∑
j ̸=i

vj
(
d(θi, θ−i), θj

) ∣∣∣∣∣∣ θi
 .
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17.58 Proposition: The AGV mechanism is Bayesian incentive compatible and tAGV is balanced.

Proof. The balance of tAGV follows directly from its definition. Let us verify that (d, tAGV) is Bayesian incentive
compatible.

Eθ−i

[
vi
(
d(θ′i, θ−i), θi

)
− tAGVi (θ′i, θ−i) | θi

]
= Eθ−i

[
vi
(
d(θ′i, θ−i), θi

)
| θi
]
+ Eθ−i

∑
j ̸=i

vj
(
d(θi, θ−i), θj

) ∣∣∣∣∣∣ θ′i


− 1

N − 1
Eθ−i

∑
k ̸=i

Eθ−k

∑
j ̸=k

vj
(
d(θk, θ−k), θj

) ∣∣∣∣∣∣ θk
 ∣∣∣∣∣∣ θi


= Eθ−i

vi(d(θ′i, θ−i), θi
)
+
∑
j ̸=i

vj
(
d(θ′i, θ−i), θj

) ∣∣∣∣∣∣ θi
− 1

N − 1

∑
k ̸=i

Eθ

∑
j ̸=k

vj
(
d(θ), θj

) .
Thesecond expression is independent of the announced θ′i, and somaximizingEθ−i

[
vi
(
d(θ′i, θ−i), θi

)
− tAGVi (θ′i, θ−i) | θi

]
with respect to θ′i boils down to maximizing

Eθ−i

vi(d(θ′i, θ−i), θi
)
+
∑
j ̸=i

vj
(
d(θ′i, θ−i), θj

) ∣∣∣∣∣∣ θi
 .

Since d is efficient, this expression is maximized when θ′i = θi.

17.5 Characterization of incentive compatibility

17.59 In this section, we focus on the environment:

• only one agent, whose utility is v(d, θ)− t when decision d is chosen and transfer is t.

• D is an interval in R.

• Θ = [θ, θ̄].

In this case, the strict dominant incentive compatibility is equivalent to the Bayesian incentive compatibility.

17.60 Definition: v : D × Θ → R satisfies strictly increasing difference (abbreviated as “SID”) if for each θ, θ′ ∈ D, for
each θ, θ′ ∈ Θ, d′ > d and θ′ > θ implies

v(d′, θ′)− v(d, θ′) > v(d′, θ)− v(d, θ).

17.61 Lemma: If vdθ(d, θ) ≜ ∂2v
∂d∂θ exists everywhere, then v has SID if and only if vdθ > 0 for all (d, θ) ∈ D ×Θ.

17.62 Lemma: If v has SID, and
(
d(·), t(·)

)
is incentive compatible, then d(·) is non-decreasing.

Proof.

(1) Fix θ′ > θ. Suppose
(
d(·), t(·)

)
is incentive compatible.
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(2) Then we have
v(d(θ), θ)− t(θ) ≥ v(d(θ′), θ)− t(θ′),

thus,
v(d(θ), θ)− v(d(θ′), θ) ≥ t(θ)− t(θ′).

(3) Likewise,
v(d(θ′), θ′)− t(θ′) ≥ v(d(θ), θ′)− t(θ),

thus,
t(θ)− t(θ′) ≥ v(d(θ), θ′)− v(d(θ′), θ′).

(4) Therefore,
v(d(θ), θ)− v(d(θ′), θ) ≥ v(d(θ), θ′)− v(d(θ′), θ′).

(5) If we assume d(θ) > d(θ′), then the equation above contradicts SID. Therefore, we must have d(θ′) ≥ d(θ).

17.63 Lemma: Suppose v has SID. If
(
d(·), t(·)

)
satisfies

v(d(θ), θ)− t(θ) = v(d(θ), θ)− t(θ) +

∫ θ

θ

vθ(d(s), s) ds for all θ ∈ Θ,

and d(·) is non-decreasing, then
(
d(·), t(·)

)
is IC.

Proof.

(1) Fix θ, θ′ ∈ Θ.

(2) We have

v(d(θ, θ))− t(θ)− v(d(θ′), θ) + t(θ′)

= v(d(θ, θ))− t(θ)− v(d(θ′), θ′) + t(θ′) + v(d(θ′), θ′)− v(d(θ′), θ)

=

∫ θ

θ′
vθ(d(s), s) ds+

∫ θ′

θ

vθ(d(θ
′), s) ds

=

∫ θ

θ′
vθ(d(s), s)− vθ(d(θ

′), s) ds

(3) Since d(·) is non-decreasing and v has SID,

v(d(θ, θ))− t(θ)− v(d(θ′), θ) + t(θ′) ≥ 0.

17.64 Theorem (IC characterization): If v has SID, then (d(·), t(·)) is IC if and only if envelope condition and mono-�

tonicity condition hold.

17.6 Bilateral trade

17.65 A seller S owns a single indivisible good, and there is one potential buyerB.
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17.66 The seller’s utility if her valuation is θS and she receives a payment t is

(1− d) · θS − tS ,

where d = 0means “no trade” and d = 1means “trade takes place”. Assume θS is a random variable onΘS = [0, 1]

with cumulative distribution function FS and density fS .

17.67 The buyer’s utility if her valuation is θB and she pays t is

d · θB − tB ,

where d = 0means “no trade” and d = 1means “trade takes place”. Assume θB is a randomvariable onΘB = [0, 1]

with cumulative distribution function FB and density fB .

17.68 A direct mechanism (d, t) is efficient if

d(θ) = d∗(θ) ≜

1, if θB ≥ θS ,

0, otherwise.

Note that the efficiency is a special case in Definition 17.13.

17.69 A direct mechanism (d, t) is (ex post) budget balanced if for each θ

tB(θ) + tS(θ) = 0.

17.70 LetDi : Θi → [0, 1] be the probability that trade takes place conditioning on agent i’s type.

Let Ti : Θi → R be agent i’s expected transfer conditional on her type.

Let Ui : Θi → R be agent i’s expected utility conditional on her type:

US(θS) = (1−DS(θS)) · θS − TS(θS),

UB(θB) = DB(θB) · θB − TB(θB).

17.71 A direct mechanism (d, t) is interim individually rational if

US(θS) ≥ θS , and UB(θB) ≥ 0.

17.72 Theorem (Myerson and Satterthwaite): In the bilateral trade problem, there is no mechanism that is efficient,�

Bayesian incentive compatible, individual rational and budget balanced.

17.73 Proof.

(1) Consider an efficient and Bayesian incentive compatible mechanism (d∗, t) which is interim individually ra-
tional.

(2) By payoff equivalence theorem on interim expected payoff (Theorem 17.24), we have

TS(θS) = T
pivot
S (θS)− T

pivot
S (1) + TS(1),

TB(θB) = T
pivot
B (θB)− T

pivot
B (0) + TB(0).
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(3) By the definition of pivot mechanism, we have Upivot
S (1) = U

pivot
B (0) = 0.

(4) Since (d∗, t) is interim individually rational, we have US(1) ≥ 1 and UB(0) ≥ 0. Then

1 + TS(1) = US(1) ≥ 1, and TB(0) ≥ 0.

(5) Thus,
TS(θS) ≥ T

pivot
S (θS), and TB(θB) ≥ T

pivot
B (θB).

(6) By the definition of pivot mechanism, we have

t
pivot
S (θ) =

−θB , if θB ≥ θS

0, otherwise
, t

pivot
B (θ) =

θS , if θB ≥ θS

0, otherwise
.

(7) This pivot mechanism runs an expected deficit of

Eθ

[
t
pivot
S (θS , θB) + t

pivot
B (θS , θB)

]
= Eθ

[
max{θS − θB , 0}

]
> 0.

(8) Therefore, we have

Eθ

[
tS(θ) + tB(θ)

]
≥ Eθ

[
t
pivot
S (θS , θB) + t

pivot
B (θS , θB)

]
> 0,

which contradicts the budget balanced condition.
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Chapter 18
Auction: mechanism design approach
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18.1 An auction is one of many ways that a seller can use to sell an object to potential buyers with unknown values. In
an auction, the object is sold at a price determined by competition among the buyers according to rules set out by
the seller—the auction format—but the seller could use other methods. The range of options is virtually unlimited.

Let us consider the underlying allocation problem by abstracting away from the details of any particular selling
format and asking the question: What is the best way to allocate an object?

18.2 Environment:

• A seller has one indivisible object to sell and there are N risk-neutral potential buyers (or bidders) from the
set N = {1, 2, . . . , N}.

• Buyers have private values and these are independently distributed. Buyer i’s valueXi is distributed over the
interval Xi ≡ [0, ωi] according to the distribution function Fi with associated density function fi.

Let X = X1 ×X2 × · · · × XN .

Let f(x) be the joint density of x = (x1, x2, . . . , xN ), which is f1(x1)× f2(x2)× · · · × fN (xN ). Similarly,
let f−i(x−i) be the joint density of x−i = (x1, . . . , xi−1, xi+1, . . . , xN ).

• Suppose that the value of the object to seller is 0.

18.3 General criterions for the selling format (mechanism) designer:

• The mechanism designer can not force people to play—they have to be willing to play.

• The mechanism designer need to assume people will play an equilibrium within whatever game you define.

279
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18.4 We assume that the designer has full commitment power—once he defines the rules of the game, the players have
complete confidence that he will honor those rules. This is important—you had bid differently in an auction if you
thought that, even if you won, the seller might demand a higher price or mess with you some other way.

18.5 Broadly speaking, mechanism design takes the environment as given—the players, their value distributions, and
their preferences over the different possible outcomes—and designs a game for the players to play in order to select
one of the outcomes. Outcomes can be different legislative proposals, different allocations of one or more objects,
etc.

Here we will focus on the auction problem—designing a mechanism to sell a single object, and try to maximize the
expected revenue or expected welfare. So the set of possible outcomesX consists of who (if anyone) gets the object,
and how much each person pays.

18.6 A selling mechanism (B, π, µ) has the following components:

• a set of possible messages (or “bids”) Bi for each buyer;

• an allocation rule π : B → ∆, where ∆ = {(π1, π2, . . . , πN ) | 0 ≤ πi ≤ 1 for all i and
∑

i∈N ≤ 1} is the
set of probability distributions over the set of buyers and seller N ∪ {0};

• a payment rule µ : B → RN .

An allocation rule determines, as a function of allN messages, the probability µi(b) that i will get the object.

A payment rule determines, as a function of all N messages, for each buyer i, the expected payment µi(b) that i
must make.

18.7 Example: Both first- and second-price auctions are mechanisms.

• The set of possible bids Bi in both can be safely assumed to be Xi.

• There is no reservation price, and

πi(b) =

1, if bi > maxj ̸=i bj ,

0, if bi < maxj ̸=i bj .

• For a first-price auction,

µI
i(b) =

bi, if bi > maxj ̸=i bj ,

0, if bi < maxj ̸=i bj .

For a second-price auction,

µII
i (b) =

maxj ̸=i bj , if bi > maxj ̸=i bj ,

0, if bi < maxj ̸=i bj .

18.8 Every mechanism defines a game of incomplete information among the buyers. AnN -tuple of strategies βi : Xi →
Bi is a Bayesian Nash equilibrium of a mechanism if for all i and for all xi, given the strategies β−i of other buyers,
βi(xi) maximizes i’s expected payoff.

18.1 The revelation principle for Bayesian equilibrium

18.9 A mechanism could, in principle, be quite complicated since we have made no assumptions on the sets i of “bids”
or “messages.” A smaller and simpler class consists of those mechanisms for which the set of messages is the same
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as the set of values—that is, for all i, Bi = Xi. Such mechanisms are called direct, since every buyer is asked to
directly report a value.

18.10 Formally, a direct mechanism (q,m) consists of a pair of functions

q : X → ∆, m : X → RN ,

where qi(x) is the probability that i will get the object, 1−
∑

i∈N qi(x) is the probability that the good is not sold,
andmi(x) is the expected payment by i.

We refer to the pair (q(x),m(x)) as the outcome of the mechanism at x.

18.11 Theorem (Revelation principle for Bayesian equilibrium): Given amechanism and a Bayesian Nash equilibrium for
that mechanism, there exists a direct mechanism in which

(i) it is a Bayesian Nash equilibrium for each buyer to report his or her value truthfully;

(ii) the outcomes are the same as in the given equilibrium of the original mechanism.

Proof. (1) Suppose that (B, π, µ) is a mechanism and β is a Bayesian Nash equilibrium of this mechanism.

(2) Let q : X → ∆ andm : X → RN be defined as follows:

q(x) = π
(
β(x)

)
, m(x) = µ

(
β(x)

)
.

Bids

Values Outcomes

β
(π, µ)

(π, µ) ◦ β

Figure 18.1: Revelation principle for Bayesian equilibrium

(3) It is clear that

E
[
qi(xi, X−i) · xi −mi(xi, X−i)

]
= E

[
πi
(
βi(xi), β−i(X−i)

)
· xi − µi

(
βi(xi), β−i(X−i)

)]
> E

[
πi
(
βi(zi), β−i(X−i)

)
· xi − µi

(
βi(zi), β−i(X−i)

)]
= E

[
qi(zi, X−i) · xi −mi(zi, X−i)

]
for all zi ∈ Xi, which implies that truthfully reporting is an equilibrium strategy for each buyer in the direct
mechanism (q,m), and its outcome is the same as in β.

18.12 Remark: This result shows that the outcomes resulting from any equilibrium of anymechanism can be replicated by
a truthful equilibrium of some direct mechanism. In this sense, there is no loss of generality in restricting attention
to direct mechanisms.
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18.2 Incentive compatibility and individual rationality

18.13 Given a direct mechanism (q,m), define

Qi(zi) =

∫
X−i

qi(zi, x−i)f−i(x−i) dx−i

to be the probability that i will get the object when she reports her value to be zi and all other buyers report their
values truthfully.

Similarly, define

Mi(zi) =

∫
X−i

mi(zi, x−i)f−i(x−i) dx−i

to be the expected payment of i when his report is zi and all other buyers tell the truth.

Note that both the probability of getting the object and the expected payment depend only on the reported value
zi and not on the true value xi.

18.14 The expected payoff of buyer i when his true value is xi and he reports zi, again assuming that all other buyers tell
the truth, can then be written as

Qi(zi) · xi −Mi(zi).

18.15 The direct mechanism (q,m) is said to be Bayesian incentive compatible if truth telling is a Bayesian Nash equilib-
rium; that is, if for all i, for all xi and for all zi,

Ui(xi) ≜ Qi(xi) · xi −Mi(xi) ≥ Qi(zi) · xi −Mi(zi).

We will refer to Ui as the equilibrium payoff function.

18.16 Lemma: A direct mechanism is Bayesian incentive compatible, then for every i, the functionQi is increasing.

Proof. (1) Consider xi and zi with xi > zi.

(2) Bayesian incentive compatibility requires

Qi(xi) · xi −Mi(xi) ≥ Qi(zi) · xi −Mi(zi), andQi(zi) · zi −Mi(zi) ≥ Qi(xi) · zi −Mi(xi).

(3) Then we have
[Qi(xi)−Qi(zi)] · (xi − zi) ≥ 0,

and henceQi(xi) ≥ Qi(zi).

18.17 Lemma: If a direct mechanism is Bayesian incentive compatible, then for every i, the functionUi is increasing. It is
also convex, andhence differentiable except in atmost countablymanypoints. For allxi forwhich it is differentiable,
it satisfies

U ′
i(xi) = Qi(xi).

Proof. (1) Bayesian incentive compatibility implies that for all xi,

Ui(xi) = max
zi∈Xi

(
Qi(zi) · xi −Mi(zi)

)
.
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(2) Given any value of zi,Qi(zi) · xi −Mi(zi) is an increasing and affine (and hence convex) function.

(3) The maximum of increasing functions is increasing, and the maximum of convex functions is convex. There-
fore, Ui is increasing and convex.

(4) Convex functions are not differentiable in at most countably many points.

(5) Then, by envelope theorem (Theorem 17.6), we have U ′
i(xi) = Qi(xi) whenever Ui is differentiable.

Remark: Bayesian incentive compatibility is equivalent to the requirement that for all xi and zi,

Ui(zi) ≥ Ui(zi) +Qi(xi) · (zi − xi).

This implies that for all xi,Qi(xi) is the slope of a line that supports the function Ui at the point xi.

18.18 Proposition (Payoff equivalence): Consider a direct Bayesian incentive compatible mechanism. Then for all i and
all xi, we have

Ui(xi) = Ui(0) +

∫ xi

0

Qi(zi) dzi.

Proof. Since Ui is convex, it is absolutely continuous. Since for all xi for which Ui is differentiable, it satisfies
U ′
i(xi) = Qi(xi), we have

Ui(xi)− Ui(0) =

∫ xi

0

U ′
i(zi) dzi =

∫ xi

0

Qi(zi) dzi.

18.19 Remark: Proposition 18.18 shows that the interim expected payoffs of the different buyer values are pinned down
by the functions Qi and the expected payoff of the lowest value. That is, Proposition 18.18 implies that up to an
additive constant, the interim expected payoff to a buyer in a Bayesian incentive compatible direct mechanism
(q,m) depends only on the allocation rule q.

If (q,m) and (q, m̄) are two Bayesian incentive compatiblemechanismswith the same allocation rule q but different
payment rules, then the expected payoff functions associated with the two mechanisms, Ui and Ūi, respectively,
differ by at most a constant; the two mechanisms are payoff equivalent. Put another way, the “shape” of the ex-
pected payoff function is completely determined by the allocation rule q alone. The payment rulem only serves to
determine the constants Ui(0).

18.20 Proposition: A direct mechanism (q,m) is Bayesian incentive compatible if and only if for every i

(i) Qi is increasing;

(ii) For every xi ∈ Xi,

Ui(xi) = Ui(0) +

∫ xi

0

Qi(zi) dzi.

Proof. (1) Let xi > zi ∈ Xi.

(2) SinceQi is increasing, we have∫ xi

zi

Qi(yi) dyi ≥
∫ xi

zi

Qi(zi) dyi = Qi(zi) · (xi − zi).
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(3) Since ∫ xi

zi

Qi(yi) dyi =
[∫ xi

0

−
∫ zi

0

]
Qi(yi) dyi = Ui(xi)− Ui(zi),

we have
Ui(xi)− Ui(zi) ≥ Qi(zi) · (xi − zi).

(4) Then

Ui(xi) ≥ Qi(zi) · (xi − zi) + Ui(zi) = Qi(zi) · (xi − zi) +Qi(zi) · zi −Mi(zi) = Qi(zi) · xi −Mi(zi).

(5) If xi < zi, the argument is analogous.

18.21 Proposition (Revenue equivalence): Consider a direct Bayesian incentive compatible mechanism. Then for all i
and all xi, we have

Mi(xi) =Mi(0) +Qi(xi) · xi −
∫ xi

0

Qi(zi) dzi.

Proof. Since Ui(xi) = Qi(xi) · xi −Mi(xi) and Ui(0) = −Mi(0), by Proposition 18.18, we have

Qi(xi) · xi −Mi(xi) = −Mi(0) +

∫ xi

0

Qi(zi) dzi.

18.22 Proposition 18.21 shows similarly that the interim expected payments of the different buyer values are pinned
down by the functions Qi and the expected payment of the lowest value. Note that this does not mean that the ex
post payment functions mi are uniquely determined. Different functions mi might give rise to the same interim
expected paymentsMi.

18.23 Proposition 18.21 generalizes the revenue equivalence principle in Theorem 5.58, to situations where buyers may
be asymmetric.

18.24 Example: Consider the symmetric case in which F1 = F2 = · · · = FN = F . Suppose we wanted to compare the
auctioneer’s expected revenue from the second-price auction with minimum bid 0 to the expected revenue from
the first-price auction with minimum bid 0.

In the second-price auction it is a weakly dominant strategy, and hence a Bayesian Nash equilibrium, to bid one’s
true value.

A symmetric Bayesian Nash equilibrium for the first-price auction is constructed in Proposition 5.25. This equi-
librium is in strictly increasing strategies. Hence this equilibrium shares with the equilibrium of the second-price
auction that the expected payment of the lowest value is zero (because this value’s probability of winning is zero),
and that the highest value wins with probability 1. Therefore, the equilibria imply the same values forMi(0) and
Qi(0) for all i and xi. The revenue equivalence theorem implies that the expected revenue from the �equilibria of
the two different auction formats is the same.

18.25 Proposition: A direct mechanism (q,m) is Bayesian incentive compatible if and only if for every i

(i) Qi is increasing;
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(ii) For every xi ∈ Xi,

Mi(xi) =Mi(0) +Qi(xi) · xi −
∫ xi

0

Qi(zi) dzi. (18.1)

Proof. Similar with proof of Proposition 18.20.

18.26 Remark: We have now obtained a complete understanding of the implications of Bayesian incentive compatibility
for the seller’s choice. The seller can focus on two choice variables: firstly the allocation rule q, and secondly the
interim expected payment by a buyer with the lowest type: Mi(0).

As long as the seller picks an allocation rule q such that the functions {Qi}i∈N are increasing, she can pick the
interim expected payments by the lowest values in any arbitrary way, and be assured that there will be some transfer
scheme that makes the allocation rule Bayesian incentive compatible and that implies the given interim expected
payments by the lowest values. Moreover, any such transfer scheme will give she the same expected revenue, and
therefore the seller does not have to worry about the details of this transfer scheme.

18.27 A direct mechanism is individually rational if each agent, conditional on her type, is willing to participate, that is,
if

Ui(xi) ≥ 0 for all i and xi.

We are implicitly assuming here that by not participating, a buyer can guarantee herself a payoff of zero.

18.28 Proportion: A Bayesian incentive compatible direct mechanism is individually rational if and only if for every i, we
have

Ui(0) ≥ 0.

Proof. Ui is increasing for Bayesian incentive compatible direct mechanisms. Therefore,Ui(xi) is non-negative for
all xi if and only if it is non-negative for the lowest xi, which is zero.

Since Ui(0) = −Mi(0), this is equivalent to the requirement thatMi(0) ≤ 0.

18.3 Optimal auction

18.29 In this section we view the seller as the designer of the mechanism and examine mechanisms that maximize the
expected revenue—the sum of the expected payments of the buyers—among all mechanisms that are Bayesian
incentive compatible and individually rational. We reiterate that when carrying out this exercise, the revelation
principle guarantees that there is no loss of generality in restricting attention to direct mechanisms. Suppose that
the seller uses the direct mechanism (q,m).

We will refer to a mechanism that maximizes expected revenue, subject to the Bayesian incentive compatibility and
individual rationality constraints, as an optimal mechanism.

18.30 Setup:

(1) The expected revenue of the seller is ∑
i∈N

E[Mi(Xi)],

where the ex ante expected payment of buyer i is

E[Mi(Xi)] =

∫ ωi

0

Mi(xi)fi(xi) dxi.
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(2) By substituting Equation (18.1), we have

E[Mi(Xi)] =Mi(0) +

∫ ωi

0

Qi(xi) · xi · fi(xi) dxi −
∫ ωi

0

∫ xi

0

Qi(zi)fi(xi) dzi dxi.

(3) Interchanging the order of integration in the last term results in∫ ωi

0

∫ xi

0

Qi(zi)fi(xi) dzi dxi =
∫ ωi

0

∫ ωi

zi

Qi(zi)fi(xi) dxi dzi =
∫ ωi

0

(
1− Fi(zi)

)
Qi(zi) dzi.

(4) Thus, we can write

E[Mi(Xi)] =Mi(0) +

∫ ωi

0

(
xi −

1− Fi(xi)

fi(xi)

)
Qi(xi)fi(xi) dxi

=Mi(0) +

∫
X

(
xi −

1− Fi(xi)

fi(xi)

)
qi(x)f(x) dx.

(5) The seller’s objective therefore is to find a mechanism that maximizes

∑
i∈N

Mi(0) +
∑
i∈N

∫
X

(
xi −

1− Fi(xi)

fi(xi)

)
qi(x)f(x) dx,

subject to the constraint that the mechanism is

IC Bayesian incentive compatible, which is equivalent to the requirement that Qi be increasing and that
Equation (18.1) be satisfied;

IR individually rational, which is equivalent to the requirement thatMi(0) ≤ 0.

18.31 We first ask which function q the seller would choose if she did not have to make sure that the functions Qi are
increasing. In a second step, we introduce an assumption that makes sure that the optimal q from the first step
implies increasing functionsQi.

(1) Let

ψi(xi) = xi −
1− Fi(xi)

fi(xi)
for all i and xi,

which is referred to as virtual valuation of a buyer with value xi.

(2) Focus on
max
q

∫
X

[∑
i∈N

ψi(xi)qi(x)f(x) dx
]
,

then the optimal choice of q without constraints is: for all i and x,

qi(x)

> 0, if ψi(xi) = maxj∈N ψj(xj) ≥ 0,

= 0, otherwise.

18.32 Condition of regularity: for every i, the function ψi(xi) is strictly increasing.

Since
ψi(xi) = xi −

1

λi(xi)
,

where λi = fi/(1 − Fi) is the hazard rate function associated with Fi, a sufficient condition for regularity is that
for all i, λi is increasing.
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18.33 Lemma: If ψi(xi) is strictly increasing, thenQi is increasing.

Proof. (1) Suppose zi < xi. Then by the regularity condition, ψi(zi) < ψi(xi).

(2) For any x−i, if qi(zi, x−i) ≥ 0, then

ψi(zi) = max
j∈N

ψj(xj) ≥ 0,

and hence
ψi(zi) > max

j ̸=i
ψj(xj) ≥ 0.

Therefore, qi(xi, x−i) = 1 ≥ qi(zi, x−i).

(3) If qi(zi, x−i) = 0, it means the virtual value of bidder i with value zi is not the highest. Now when her value
is xi, the virtual value is either still not the highest, which gives zero, or the virtual value becomes the highest
among all bidders which give strictly positive number. Thus qi(xi, x−i) ≥ qi(zi, x−i).

(4) Therefore,Qi is an increasing function.

18.34 Lemma: If a Bayesian incentive compatible and individually rational direct mechanism maximizes the seller’s ex-
pected revenue, then for every i,Mi(0) = 0.

Proof. It is clear that Mi(0) ≤ 0. If Mi(0) < 0, then the seller could increase expected revenue by choosing
a direct mechanism with the same q, but a higher Mi(0). By the formula for payments in Proposition 18.25, all
values’ payments would increase.

WhenMi(0) = 0, we have

Mi(xi) = Qi(xi) · xi −
∫ xi

0

Qi(zi) dzi.

18.35 Theorem: Suppose the design problem is regular. Then the following is an optimal mechanism:

qi(x)

≥ 0, if ψi(xi) = maxj∈N ψj(xj) ≥ 0,

= 0, otherwise,

and
Mi(x) = Qi(xi) · xi −

∫ xi

0

Qi(zi) dzi.

Proof. It is clear that (q,m) is Bayesian incentive compatible and individually rational. It is optimal, since it sepa-
rately maximizes ∑

i∈N

Mi(0) and
∑
i∈N

∫
X
ψi(xi)qi(x)f(x) dx

over all q : X → ∆. In particular, it gives positive weight only to non-negative and maximal terms in∑
i∈N

ψi(xi)qi(x).
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18.36 Remark: We have characterized the optimal choice of the allocation rule q and of the interim expected payments.
We have not described the actual transfer schemes that make these choices Bayesian incentive compatible and
individually rational.

18.37 In the optimal mechanism, the maximized value of the expected revenue is

E[max{ψ1(X1), ψ2(X2), . . . , ψN (XN ), 0}].

In other words, it is the expectation of the highest virtual valuation, provided it is non-negative.

18.38 One possible payment rulem is

mi(x) = qi(x) · xi −
∫ xi

0

qi(zi, x−i) dzi.

It is clear thatmi(0, x−i) = 0 for all x−i, and hence

Mi(0) =

∫
X−i

mi(0, x−i)f−i(x−i) dx−i = 0.

18.39 Let
yi(x−i) = inf{zi | ψi(zi) ≥ 0 and ψi(zi) ≥ ψj(zj) for all j ̸= i}

as the smallest value for i that “wins” against x−i.

Then

qi(zi, x−i) =

1, if zi > yi(x−i),

0, otherwise,

which results in ∫ xi

0

qi(zi, x−i) dzi =

xi − yi(x−i), if xi > yi(x−i),

0, if xi < yi(x−i),

and so payment rule becomes

mi(x) =

yi(x−i), if qi(x) = 1,

0, if qi(x) = 0.

That is, only the winning buyer pays anything: she pays the smallest value that would results in her winning.

18.40 Corollary: Suppose the design problem is regular. Then the following is an optimal mechanism:

qi(x) =

1, if ψi(xi) > maxj ̸=i ψj(xj) and ψi(xi) ≥ 0,

0, if ψi(xi) < maxj ̸=i ψj(xj),

and

mi(x) =

yi(x−i), if qi(x) = 1,

0, if qi(x) = 0.

18.41 Example: Suppose that we have a symmetric problem so the distributions of values are identical across buyers. In
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other words, for all i, fi = f , and hence for all i, ψi = ψ. Now we have that,

yi(x−i) = max
{
ψ−1(0),max

j ̸=i
xj

}
.

Thus, the optimal mechanism is a second-price auction with a reserve price r∗ = ψ−1(0).

18.42 Remark: Note that in the case with asymmetric buyers, the optimal mechanism may sometimes give the good to a
buyer who does not have the highest value.

18.4 Maximizing welfare

18.43 Suppose that the seller is not maximizing expected revenue but expected welfare. So the seller uses the following
utilitarian welfare function, where each agent has equal weight:∑

i∈N

qi(x) · xi.

Note that this seller is no longer concerned with transfer payments, and expected welfare depends only on the
allocation rule q.

18.44 By Lemma 18.16, the seller can choose any rule q that is such that the functions Qi are increasing. By Proposi-
tion 18.28, she can choose any transfer payments such thatMi(0) ≤ 0 for all i.

18.45 If values were known, maximization of the welfare function would require that the object be allocated to the po-
tential buyer for whom xi is largest.

Because transferring to the buyer for whom xi is largest maximizes welfare for every type vector, it also maximizes
expected welfare.

In this case, it is clear thatQi is increasing.

18.46 Proposition: Among all Bayesian incentive compatible, individually rational direct mechanisms, a mechanism
maximizes expected welfare if and only if for all i and all x:

(i)

qi(x) =

1, if xi > xj for all j ̸= i,

0, otherwise.

(ii)
Mi(xi) ≤ Qi(xi) · xi −

∫ xi

0

Qi(zi) dzi.

18.47 Remark: Note that this result does not rely on regularity condition.

18.48 Differences between welfaremaximizing and revenuemaximizingmechanisms in the case that regularity condition
holds.

• Revenue maximizing mechanism allocates the object to the highest virtual type whereas the welfare maxi-
mizing mechanism allocates the object to the highest actual type. In the symmetric case, the functions ψi are
the same for all i and there is no difference between these two rules. But in the asymmetric case the revenue
maximizing mechanism might allocate the object inefficiently.
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• Revenue maximizing mechanism sometimes does not sell the object at all, whereas the welfare maximizing
mechanism always sells the object. This is an instance of the well-known inefficiency that monopoly sellers
make goods artificially scarce.

18.49 Example: Suppose that ω1 = ω2 = 1, and that x1 and x2 are independently and uniformly distributed on [0, 1].
Then Fi(xi) = xi, and

ψi(xi) = xi −
1− Fi(xi)

fi(xi)
= 2xi − 1.

Note that the regularity condition is satisfied.

In an expected revenue maximizing auction, the good is sold to neither bidder if

ψ1(x1), ψ2(x2) < 0,

that is,
x1, x2 <

1
2 .

If the good is sold, it is sold to bidder 1 if and only if

ψ1(x1) > ψ2(x2) ⇔ x1 > x2.

The expected revenue maximizing auction will allocate the object to the buyer with the highest value provided that
this value is larger than 1

2 . A first- or second-price auction with reserve price 1
2 will implement this mechanism.

18.50 Example: Suppose that ω1 = ω2 = 1, and that F1(x1) = x21 and F2(x2) = 2x2 − x22. Thus, buyer 1 is moe likely
to have high values than buyer 2.

ψ1(x1) = x1 − 1−F1(x1)
f1(x1)

= 3
2x1 −

1
2x1

,

and
ψ2(x2) = x2 − 1−F2(x2)

f2(x2)
= 3

2x2 −
1
2 .

Note that the regularity condition is satisfied.

In an expected revenue maximizing auction, the good is sold to neither bidder if

ψ1(x1), ψ2(x2) < 0,

that is,
x1 <

1√
3
, and x2 < 1

3 .

If the good is sold, it is sold to buyer 1 if and only if

ψ1(x1) > ψ2(x2) ⇔ x2 < x1 − 1
3x1

+ 1
3 .
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x1

x2

0 1√
3

1
3

1

1

no sale
buyer 1

buyer 2

18.5 VCGmechanism

18.51 Let Xi = [αi, ωi]. Thereby we allow, when αi < 0, for the possibility of negative values.

18.52 • An allocation rule q∗ : X → ∆ is said to be efficient if it maximizes “social welfare”—that is, for all x ∈ X ,

q∗(x) ∈ argmax
q∈∆

∑
j∈N

qjxj .

When there are no ties, an efficient rule allocates the object to the buyer who values it the most.

• A mechanism with an efficient allocation rule is said to be efficient.

18.53 Given an efficient allocation rule q∗, define the maximized value of social welfare by

W (x) ≜
∑
j∈N

q∗j (x)xj ,

when the values are x.

Similarly, define
W−i(x) ≜

∑
j ̸=i

q∗j (x)xj

as the welfare of agents other than i.

18.54 TheVickrey-Clarke-Groves, orVCGmechanism (q∗,mV ), is an efficientmechanismwith the payment rulemV : X →
RN given by

mV
i (x) = hi(x−i)−W−i(xi, x−i).

There are many choices for hi(x−i), and one is W (αi, x−i). In this case, mV
i (x) is thus the difference between

social welfare at i’s lowest possible value αi and the welfare of other agents at i’s reported value xi, assuming that
in both cases that the efficient allocation rule q∗ is employed.

When hi(x−i) = maxx
∑

j ̸=i q
∗
j (x)xj , the VCG mechanism is called pivot mechanism.

18.55 In the context of auctions, take hi(x−i) =W (αi, x−i) andαi = 0 and it is routine to see that the VCGmechanism
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is the same as a second-price auction. In the auction context,

mV
i (x) =W (0, x−i)−W−i(xi, x−i) =W−i(0, x−i)−W−i(xi, x−i),

=
∑
j ̸=i

[
q∗j (0, x−i)− q∗j (xi, x−i)

]
xj ,

and this is positive if and only if xi ≥ maxj ̸=i xj .

In that case,mV
i (x) is equal to maxj ̸=i xj , the second-highest value.

18.56 VCG mechanism is Bayesian incentive compatible: If the other buyer report values x−i, then by reporting a value
of zi, agent i’s payoff is

q∗i (zi, x−i)xi −mV
i (zi, x−i) = q∗i (zi, x−i)xi − hi(x−i) +

∑
j ̸=i

q∗j (zi, x−i)xj

=
∑
j∈N

q∗j (zi, x−i)xj − hi(x−i).

The definition of q∗ implies that for all x−i, the first term is maximized by choosing zi = xi; and since the second
term does not depend on zi, it is optimal to report zi = xi.

Actually, the VCG mechanism is dominant strategy incentive compatible.

Thus, i’s equilibrium payoff when the values are x is

q∗i (x)xi −mV
i (x) = q∗i (x)xi −

∑
j∈N

q∗j (x)xj − hi(x−i) =W (x)− hi(x−i),

which is just the difference in social welfare induced by iwhen she reports her true value xi as opposed to her lowest
possible value αi.

18.57 VCG mechanism is individually rational: Since the VCG mechanism is incentive compatible, the equilibrium ex-
pected payoff function UV

i associated with the VCG mechanism,

UV
i (xi) = E[W (xi, X−i)−W (αi, X−i)]

is convex and increasing.

Clearly, UV
i (αi) = 0, and the monotonicity of UV

i implies that VCG mechanism is individually rational.

18.58 If (q∗,m) is some other efficient mechanism that is also incentive compatible, then by the revenue equivalence
principle we know that for all i, the expected payoff functions for this mechanism, say Ui, differ from UV

i by at
most an additive constant, say ci.

If (q∗,m) is also individually rational, then this constant must be non-negative—that is, ci = Ui(xi)−UV
i (xi) ≥ 0.

This is because otherwise we would have Ui(αi) < UV
i (αi) = 0, contradicting that (q∗,m) was individually

rational.

Since the expected payoffs in (q∗,m) are greater than in the VCGmechanism, and the two have the same allocation
rule, the expected payments must be lower.

18.59 Proposition: Among all mechanisms for allocating a single object that are efficient, incentive compatible, and in-
dividually rational, the VCG mechanism maximizes the expected payment of each agent.
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18.6 AGVmechanism

18.60 A mechanism is said to balance the budget if for every realization of values, the net payments from agents sum to
zero—that is, for all x, ∑

i∈N
mi(x) = 0.

18.61 The Arrow-d’Aspremont-Gérard-Varet or AGV mechanism (also called the “expected externality” mechanism)
(q∗,mA) is defined by

mA
i (x) =

1

N − 1

∑
j ̸=i

EX−j [W−j(xj , X−j)]− EX−i [W−i(xi, X−i)] .

So that for all x, ∑
i∈N

mA
i (x) = 0.

18.62 It is easy to see that the AGV mechanism may not satisfy the individual rationality constraint.

18.63 Proposition: There exists an efficient, incentive compatible, and individually rational mechanism that balances the
budget if and only if the VCG mechanism results in an expected surplus.

Proof. By Proposition 18.59, if the VCG mechanism runs a deficit, that is

E
[∑

i

mV
i (X)

]
< 0,

then all efficient, incentive compatible, and individually rational mechanisms must run a deficit, which can not
balance the budget.

We now show that the condition is sufficient by explicitly constructing an efficient, incentive compatiblemechanism
that balances the budget and is individually rational.

(1) Since we know
UV
i (xi) = E[W (xi, X−i)−W (αi, X−i)] = E[W (xi, X−i)]− cVi ,

where cVi = E[W (αi, X−i)].

(2) Since (q∗,mV ) and (q∗,mA) are incentive compatible direct mechanisms, by revenue equivalence principle,
we have

UA
i (xi) = E[W (xi, X−i)]− cAi .

(3) Suppose that the VCG mechanism runs an expected surplus, that is,

E
[∑
i∈N

mV
i (X)

]
≥ 0.

(4) Then
E
[∑
i∈N

mV
i (X)

]
≥ E

[∑
i∈N

mA
i (X)

]
,

where the right-hand side is exactly 0 due to the budget balance constraint. Equivalently,∑
i∈N

cVi ≥
∑
i∈N

cAi .
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(5) For all i > 1, define di = cAi − cVi , and let d1 = −
∑N

i=2 di. Consider the mechanism m̄ defined by

m̄i(x) = mA
i (x)− di.

(6) Clearly, m̄ balances the budget, and is incentive compatible, since the payoff to each agent in the mechanism
m̄ differs from the payoff from an incentive compatible mechanism,mA, by an additive constant.

(7) For all i > 1,
Ūi(xi) = UA

i (xi) + di = UA
i (xi) + cAi − cVi = UV

i (xi) ≥ 0.

Since
∑

i di = 0 and
∑

i c
V
i ≥

∑
i c

A
i , we have

d1 = −
∑
i>1

di =
∑
i>1

(cVi − cAi ) ≥ cA1 − cV1 .

Thus
Ū1(x1) = UA

1 (x1) + d1 ≥ UA
1 (x1) + cA1 − cV1 = UV

1 (x1) ≥ 0.

Therefore, m̄ is individually rational.
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Implementation theory
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19.1 Implementation

19.1 The essential part of mechanism design is implementation theory which, given a social goal, characterizes when
we can design a mechanism whose predicted outcomes (e.g. equilibrium outcomes) coincide with the desirable
outcomes, according to that goal.

19.2 An example: Consider a society consisting of two consumers of energy, Alice and Bob. An energy authority is
charged with choosing the type of energy to be used by Alice and Bob. The options—from which the authority
must make a single selection—are gas, oil, nuclear power, and coal.

Let us suppose that there are two possible states of the world. In state 1, the consumers place relatively little weight
on the future, i.e., they have comparatively high temporal discount rates. In state 2, by contrast, they attach a great
deal of importance to the future, meaning that their rates of discount are correspondingly low.

In each state, the consumers’ rankings in the two states are given in Table 19.1.

Assume that the energy authority is interested in selecting an energy source that both consumers are reasonably
happy with. If we interpret “reasonably happy” as getting one’s first or second choice, then oil is the optimal choice
in state 1, whereas gas is the best outcome in state 2. In the language of implementation theory, we say that the
authority’s social choice rule prescribes oil in state 1 and gas in state 2. Thus, if f is the choice rule, it is given in
Table 19.1.

Suppose, however, that the authority does not know the state (although Alice and Bob do). This means that it does
not know which alternative the choice rule prescribes, i.e., whether oil or gas is the optimum.

• Probably the most straightforward mechanism would be for the authority to ask each consumer to announce
τA, τB ∈ {θ1, θ2} respectively. After receiving their reports, the following mechanism will produce the out-

295
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state θ1 =≿ θ2 =≿′

social goal f(θ1) = oil f(θ2) = gas

preference

Alice Bob Alice Bob
gas nuclear nuclear oil
oil oil gas gas
coal coal coal coal

nuclear gas oil nuclear

Table 19.1

comes as follows:

g(τA, τB) =


oil, τA = τB = θ1,

gas, τA = τB = θ2,

1
2 ◦ oil + 1

2 ◦ gas, otherwise.

Note: Alice/Bob would always report states θ2/θ1 (respectively).

– If Alice reports θ1, she may obtain “oil”, and if she reports θ2, she may get “gas”. “gas” is better than “oil”
for Alice no matter the true state is θ1 or θ2.

– If Bob reports θ1, he may obtain “oil”, and if he reports θ2, he may get “gas”. “oil” is better than “gas” for
Bob no matter the true state is θ1 or θ2.

Thus this mechanism implements the social goal only with a 50 percent chance.

• The following mechanism, which specifies set of players, set of actions for each player and outcome function,
can implement the social goal.

Alice

Bob
L R

U oil coal
D nuclear gas

Outcome function

Alice

Bob
L R

U 3, 3 2, 2
D 1, 4 4, 1

Preferences in θ1

Alice

Bob
L R

U 1, 4 2, 2
D 4, 1 3, 3

Preferences in θ2

Figure 19.1

It is clear the Nash equilibrium outcome is “oil” when the true state is θ1 and “gas” when the true state is θ2.

19.3 Definition: An environment ⟨N,C,P,G⟩ consists of

• a finite setN of players, with |N | ≥ 2,

• a set C of outcomes,

• a set P of preference profiles over C , with typical profile≿ ∈ P ,

• a set G of game forms/mechanisms with consequences in C .

– A strategic game form is a tripleG = ⟨N, (Ai), g⟩, where g : A→ C is an outcome function.

– An extensive game form is a tuple ⟨N,H,P, g⟩, where g : Z → C is an outcome function.

A strategic game form G = ⟨N, (Ai), g⟩ with a preference profile ≿ induce a strategic game ⟨N, (Ai),≿′⟩, where
a ≿′

i b if and only if g(a) ≿i g(b).

Similarly, a extensive game form with a preference profile induce a extensive game.

The game form can be regarded as the rules of the game.
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19.4 Definition: A choice rule f : P ↠ C is a function that assigns a subset of C to each preference profile in P .

We refer to a choice rule that is a singleton-valued as a choice function.

19.5 Notation: For a game form G ∈ G and a preference profile ≿ ∈ P , let S(G,≿) denote the set of solutions under
the solution concept S of the game induced byG and≿.

19.6 Definition: Let ⟨N,C,P,G⟩ be an environment and S a solution concept.

The game formG ∈ G with outcome function g is said to S-implement the choice rule f : P ↠ C if

g(S(G,≿)) = f(≿) for all≿ ∈ P .

P C

Solutions

S(G, ·)

f

g

Figure 19.2

We say the choice rule f is S-implementable in ⟨N,C,P,G⟩ if there existsG ∈ G with outcome function g which
S-implements f .

19.7 Definition: Let ⟨N,C,P,G⟩ be an environment in which G is a set of strategic game forms for which the set of
actions of each player i is the set P of preference profiles, and S a solution concept.

The strategic game form G = ⟨N, (Ai), g⟩ ∈ G truthfully S-implements the choice rule f : P ↠ C if for every
preference profile≿ ∈ P we have

• every player reporting the “true” preference profile is a solution of the game:

a∗ ∈ S(G,≿), a∗i =≿ for each i ∈ N .

• the outcome if every player reports the true preference profile is a member of f(≿):

g(a∗) ∈ f(≿), a∗i =≿ for each i ∈ N .

The choice rule f is truthfully S-implementable in ⟨N,C,P,G⟩ if there is a strategic game form G ∈ G with
outcome function g, such thatG truthfully S-implements f .

19.8 Remark: One important aspect of implementation theory is the requirement that all the solution outcomes lie in
the given choice rule.

The mechanism design literature focuses on incentive compatibility issues, asking whether a given outcome can be
induced as an equilibrium of somemechanism and generally ignores whether there are other undesired equilibrium
outcomes.

19.2 Implementation in dominant strategies

19.9 Definition: A profile a∗ ∈ A in strategic game ⟨N, (Ai), (≿i)⟩ is a dominant-strategy equilibrium (abbreviated as
“DSE”) if, for every player i, (a−i, a

∗
i ) ≿i (a−i, ai) for all a ∈ A.
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19.10 Lemma (revelation principle for DSE-implementation): Let ⟨N,C,P,G⟩ be an environment in which G is the set
of strategic game forms. If f : P ↠ C is DSE-implementable, then

• f is truthfully DSE-implementable.

• there is a strategic game form G∗ = ⟨N, (A∗
i ), g

∗⟩ ∈ G in which A∗
i is Pi—the set of all preferences for

player i, such that for all ≿ ∈ P the action profile ≿ is a dominant-strategy equilibrium of ⟨G∗,≿⟩ and
g∗(≿) ∈ f(≿).

19.11 Proof of the second statement. (1) Let the strategic game form G = ⟨N, (Ai), g⟩ DSE-implement f . Then for all
≿ ∈ P , g(DSE(G,≿)) = f(≿).

(2) For each i ∈ N , the set of dominant strategies of player i depends only on ≿i, so that for any ≿ ∈ P we can
define ai(≿i) to be a dominant strategy for player i in the game ⟨G,≿⟩ induced byG and≿.

(3) Clearly,
(
ai(≿i)

)
i∈N

is a dominant-strategy equilibrium in the game ⟨G,≿⟩, and

g
((
ai(≿i)

)
i∈N

)
∈ f(≿).

(4) For each i ∈ N , let A∗
i = Pi and g∗ : A∗ → C ,

g∗(≿) = g
((
ai(≿i)

)
i∈N

)
.

It is clear that g∗(≿) ∈ f(≿).

(≿i)i∈N A∗ = ×i∈NPi C

(ai(≿i))i∈N A

DSE DSE

g∗

g

Figure 19.3

(5) Now suppose that there is a preference profile ≿ for which ≿j is not a dominant strategy for player j in the
game ⟨G∗,≿⟩ induced byG∗ and≿. Then there is a preference profile≿′ such that

g∗(≿′
−j ,≿′

j) ≻j g
∗(≿′

−j ,≿j),

and hence
g
(
a−j(≿′

−j), aj(≿′
j)
)
≻j g

(
a−j(≿′

−j), aj(≿j)
)
.

That is, aj(≿j) is not a dominant strategy of player j in ⟨G,≿⟩, a contradiction.

19.12 Proof of the first statement. (1) Define a new strategic game formG′ = ⟨N, (A′
i), g

′⟩ with A′
i = P and

g′
(
(≿i)i∈N

)
= g∗

(
(≿i

i)i∈N

)
,

where≿i∈ A′
i = P .
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(≿i)i∈N A′ = P |N | C

(≿i
i)i∈N A∗ = P

restriction restriction

g′

g∗

Figure 19.4

(2) Fix a preference profile≿. For any j ∈ N and any strategy profile (≿i)i∈N ∈ A′ = P |N |, since ((≿k
k)k ̸=j ,≿j)

is a dominant-strategy equilibrium of ⟨G∗, ((≿k
k)k ̸=j ,≿j)⟩, we have

g′
(
(≿k)k ̸=j ,≿

)
= g∗

(
(≿k

k)k ̸=j ,≿j

)
≿j g

∗((≿k
k)k ̸=j ,≿j

j

)
= g′

(
(≿k)k ̸=j ,≿j

)
,

that is, (≿, . . . ,≿︸ ︷︷ ︸
|N | terms

) is a dominant-strategy equilibrium of ⟨G′,≿⟩.

(3) Moreover, it is trivial that g′
(
(≿, . . . ,≿︸ ︷︷ ︸

|N | terms

)
)
= g∗

(
(≿i)i∈N

)
∈ f(≿).

(4) Therefore, f is truthfully DSE-implementable.

19.13 Definition: We say that a choice rule f : P ↠ C is dictatorial if there is a player j ∈ N such that for any preference
profile≿ ∈ P and outcome c ∈ f(≿) we have c ≿j c

′ for all c′ ∈ C .

19.14 Gibbard-Satterthwaite theorem: Let ⟨N,C,P,G⟩ be an environment in which C contains at least 3 elements, P
is the set of all possible preference profiles, and G is the set of strategic game forms. Let f : P ↠ C be DSE-
implementable and satisfy the condition:

for every c ∈ C, there exists ≿ ∈ P, such that f(≿) = {c}. (19.1)

Then f is dictatorial.

19.15 Lemma (Gibbard-Satterthwaite theorem in social choice theory): LetC be a set that contains at least threemembers
and let P be the set of all possible preference profiles. If a choice function f : P → C satisfies Equation (19.1) and
for every preference profile≿ ∈ P we have f(≿−j ,≿j) ≿j f(≿−j ,≿′

j) for every preference relation≿′
j then f is

dictatorial.

19.16 Proof. Since f is DSE-implementable by the game formG, any selection g∗ of f (i.e., g∗(≿) ∈ f(≿) for all≿∈ P)
has the property that for every preference profile≿ we have

g∗(≿−j ,≿j) ≿j g
∗(≿−j ,≿′

j)

for every preference relation≿′
j .

Since f satisfies Equation (19.1), g∗ does also. Consequently by the lemma above g∗ is dictatorial, so that f is
also.
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19.3 Nash implementation

19.17 Nash-implementable: g(NE(G,≿)) = f(≿) for all≿.

Truthfully Nash-implementable: g∗(a∗) ∈ f(≿) ∩ g∗(NE(G∗,≿)) for all≿, where a∗i =≿ for all i.

19.18 Lemma (revelation principle for Nash implementation): Let ⟨N,C,P,G⟩ be an environment in which G is the set
of strategic game forms. If a choice rule is Nash-implementable then it is truthfully Nash-implementable.

19.19 Proof. (1) LetG = ⟨N, (Ai), g⟩Nash-implement f . Let
(
ai(≿)

)
i∈N

be a Nash equilibrium in the game ⟨G,≿⟩.

(2) DefineG∗ = ⟨N, (A∗
i ), g

∗⟩ in which A∗
i = P and g∗

(
(≿i)i∈N

)
= g
(
(ai(≿i))i∈N

)
where≿i∈ A∗

i .

(≿, · · · ,≿) A∗ = P |N | C

(ai(≿))i∈N A

NE NE

g∗

g

Figure 19.5

(3) Clearly, a∗ = (≿, . . . ,≿) is a Nash equilibrium of the game ⟨G∗,≿⟩:

g∗(≿, . . . ,≿) = g
(
a−i(≿), ai(≿)

)
≿i g

(
a−i(≿), ai(≿′)

)
= g∗(≿−i,≿′) for all ≿′∈ A∗

i = P.

(4) We also have g∗(a∗) = g((ai(≿))i∈N ) ∈ f(≿), and hence f is truthfully Nash-implementable.

19.20 Definition (Maskin’s monotonicity): A choice rule f : P ↠ C is monotonic if whenever c ∈ f(≿) and c ̸∈ f(≿′)

there is some player i ∈ N and some outcome b ∈ C such that c ≿i b but b ≻′
i c. (Compare with the monotonicity

in social choice theory)

In other words, if c ∈ f(≿) does not fall in anyone’s ranking relative to any other alternative in going from≿ to≿′,
monotonicity requires that c ∈ f(≿′).

19.21 Proposition: Let ⟨N,C,P,G⟩ be an environment in which G is the set of strategic game forms. If a choice rule is
Nash-implementable then it is monotonic.

Proof. (1) Let the strategic game formG = ⟨N, (Ai), g⟩ Nash-implement f .

(2) Let c ∈ f(≿) and c ̸∈ f(≿′).

(3) Since g(NE(G,≿)) = f(≿) for all≿, there is a strategy profile a, such that

• g(a) = c,

• a is a Nash equilibrium of the game ⟨G,≿⟩,
• a is not a Nash equilibrium of the game ⟨G,≿′⟩.

(4) Therefore, there are a player i and some strategy a′i such that

b = g(a−i, a
′
i) ≻′

i g(a) = c and c = g(a) ≿i g(a−i, a
′
i) = b.
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state θ1 =≿ θ2 =≿′

social goal f(θ1) = oil f(θ2) = nuclear

preference

Alice Bob Alice Bob
gas nuclear gas nuclear
oil oil oil oil
coal coal nuclear coal

nuclear gas coal gas

Table 19.2

19.22 Example:

This choice rule f does not satisfy Maskin’s monotonicity:

• oil = f(θ1) and oil ̸= f(θ2);

• for player 1, “oil” is always better than “nuclear” and “coal”, and worse than “gas” in both states;

• for player 2, “oil” is always better than “coal” and “gas”, and worse than “nuclear” in both states.

Hence no mechanism NE-implements f .

19.23 Example:

state θ1 =≿ θ2 =≿′

social goal f(θ1) = oil f(θ2) = gas

preference

Alice Bob Alice Bob
gas nuclear nuclear oil
oil oil gas gas
coal coal coal coal

nuclear gas oil nuclear

Table 19.3

This choice rule f satisfies Maskin’s monotonicity.

19.24 Example: Solomon’s predicament

“If it please you, my lord,” one of the women said, “this woman and I live in the same house, and while
she was in the house I gave birth to a child. Now it happened on the third day after my delivery that
this woman also gave birth to a child. We were alone together; there was no one else in the house with
us....Now one night this woman’s son died....And in the middle of the night she got up and took my son
from beside me while I was asleep; she put him to her breast and put her own dead son to mine. While
I got up to suckle my child, there he was, dead. But in the morning I looked at him carefully, and he
was not the child I had borne at all.” Then the other woman spoke. “That is not true! My son is the live
one, yours is the dead one”; and the first retorted, “That is not true! Your son is the dead one, mine is
the live one.” And so they wrangled before the king....“Bring me a sword” said the king; and a sword
was brought into the king’s presence. “Cut the living child in two,” the king said “and give half to one,
half to the other.” At this the woman who was the mother of the living child addressed the king, for she
burned with pity for her son. “If it please you, my lord,” she said “let them give her the child; only do
not let them think of killing it!” But the other said, “He shall belong to neither of us. Cut him up.” Then
the king gave his decision. “Give the child to the first woman,” he said “and do not kill him. She is his
mother.” All Israel came to hear of the judgement the king had pronounced, and held the king in awe,
recognising that he possessed divine wisdom for dispensing justice.
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Each of two women claims a baby; each knows who is the true mother, but neither can prove her motherhood.
Solomon tries to seduce the truth by threatening to cut the baby in two, relying on the fact that the false mother
prefers this outcome to that in which the true mother obtains the baby while the true mother prefers to give the
baby away than to see it cut in two.

Let a, b and d denote the outcomes “the baby is given to mother 1”, “the baby is given to mother 2” and “the baby is
cut in two” respectively.

Let θ1 and θ2 denote states “mother 1 is the true mother” and “mother 2 is the true mother” respectively.

state θ1 =≿ θ2 =≿′

social goal f(θ1) = a f(θ2) = b

preference

mother 1 mother 2 mother 1 mother 2
a b a b
b d d a
d a b d

Table 19.4

This choice rule f does not satisfy Maskin’s monotonicity:

• a = f(θ1) ̸= f(θ2);

• For mother 1, a is always better than b and d no matter the state is θ1 or θ2;

• For mother 2, a is worse than b and d when state is θ1.

19.25 Remark on Solomon’s predicament. In the biblical story Solomon succeeds in assigning the baby to the truemother:
he gives it to the only woman to announce that she prefers that it be given to the other woman than be cut in two
(i.e., one says “don’t cut”). But, Solomon’s idea does not work from a game-theoretic view.

Indeed, the following Solomon’s mechanism g can not Nash implement f .

mother 1

mother 2
cut don’t

cut d b
don’t a d

Figure 19.6

Clearly, g[NE(θ1)] = b ̸= f(θ1) and g[NE(θ2)] = a ̸= f(θ2).

19.26 Definition: A choice rule f : P ↠ C has no veto power (abbreviated as “NVP”) if c ∈ f(≿) whenever for at least
|N | − 1 players we have c ≿i y for all y ∈ C .

19.27 Proposition (sufficient condition for Nash implementation): Let ⟨N,C,P,G⟩ be an environment in which G is the
set of strategic game forms. If |N | ≥ 3 then any choice rule that is monotonic and has no veto power is Nash-
implementable.

19.28 Proof. (1) Let f : P ↠ C be a monotonic choice rule that has no veto power.

(2) Define a game formG = ⟨N, (Ai), g⟩ where Ai = P × C × N and outcome function g
(
(pi, ci,mi)i∈N

)
as

follows:
If for some j ∈ N , we have (pi, ci,mi) = (≿, c,m) with c ∈ f(≿) for all i ̸= j then

g
(
(pi, ci,mi)i∈N

)
=

cj , if c ≿j cj ,

c, otherwise.
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Otherwise g
(
(pi, ci,mi)i∈N

)
= ck where k is such thatmk ≥ mi for all i ∈ N .

(3) Let c ∈ f(≿). Define a∗i = (≿, c, 1) for all i ∈ N . Then a∗ is a Nash equilibrium of ⟨G,≿⟩ with g(a∗) = c:
since any deviation by j, say (≿′, c′,m′), affects the outcome only if the outcome is c ≻j c

′.

Thus f(≿) ⊆ g(NE(G,≿)).

(4) Let a∗ ∈ NE(G,≿). We shall show c∗ = g(a∗) ∈ f(≿).

(5) Case 1: Suppose a∗i = (≿′, c∗,m′) for all i ∈ N and c∗ ∈ f(≿′).

If c∗ /∈ f(≿) then the monotonicity of f implies that there is some player j and some outcome b ∈ C such
that c∗ ≿′

j b and b ≻j c
∗.

Hence, j would have a profitable deviation (≿, b, 1) from the Nash equilibrium a∗:

• j will get c∗ when he chooses a∗j .

• j will get b when he chooses (≿, b, 1) since c∗ ≿′
j b.

• For player j, b ≻j c
∗.

(6) Case 2: Suppose a∗i = (≿′, c∗,m′) for all i ∈ N but c∗ /∈ f(≿′).

If there is some j and b ∈ C such that b ≻j c
∗ then j would like to deviate to (≿, b,m′′) withm′′ > m′:

• j will get c∗ when he chooses a∗j .

• j will get b when he chooses (≿, b,m′′) since c∗ /∈ f(≿) andm′′ > m′.

• For j, b ≻j c
∗.

Thus c∗ ≿i y for all i ∈ N and y ∈ C , and hence by NVP c∗ ∈ f(≿).

(7) Case 3: Suppose a∗i ̸= a∗j for some distinct i and j.

Since |N | ≥ 3, if there is an outcome b such that b ≻k c
∗ for some k ̸= i, then k would have a profitable

deviation (≿′, b,m′′) withm′′ > ml for all l ̸= k:

• k will get c∗ if he chooses a∗k.

• k will get b if he chooses (≿′, b,m′′) sincem′′ > ml for all l ̸= k.

• b ≻k c
∗.

Thus for all k ̸= i we have c∗ ≿k b for all b ∈ C and, by NVP c∗ ∈ f(≿).
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20.1 Coalitional game

20.1 A coalitional game with transferable payoff (henceforth “coalitional game”) ⟨N, v⟩ consists of�

• a finite setN of players,

• a function v : 2N \ {∅} → R.

Every member in 2N \ {∅} is called a coalition, and v(S) is called the worth of the coalition S. The function is
called the characteristic function.

20.2 In a coalitional game each coalition S is characterized by a single number v(S), with the interpretation that v(S)
is a payoff that may be distributed in any way among the members of S.

There is a more general concept, in which each coalition can not necessarily achieve all distributions of some fixed
payoff; rather, each coalition S is characterized by an arbitrary set V (S) of consequences. This concept is called a
coalitional game without transferable payoff.

20.3 Convention: If {i1, i2, . . . , ij} is a set of players, wewill sometimeswrite v(i1, i2, . . . , ij) rather than v({i1, i2, . . . , ij})
for the worth of {i1, i2, . . . , ij}.

20.4 A coalitional game ⟨N, v⟩ is

• monotonic if T ⊆ S implies v(S) ≥ v(T );

• cohesive if

v(N) ≥
K∑

k=1

v(Sk) for every partition {S1, S2, . . . , SK} ofN ;

305
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• super-additive if S ∩ T = ∅ implies v(S ∪ T ) ≥ v(S) + v(T ).

It is clear that ⟨N, v⟩ is cohesive if it is super-additive.

We will assume that the coalitional games are cohesive or super-additive.

20.5 A coalitional game ⟨N, v⟩ is simple if v(S) is either 0 or 1 for any coalition S.

S is a winning coalition in a simple game if v(S) = 1; a veto player in such a game is a player who is a member of
every winning coalition.

20.6 A coalitional game ⟨N, v⟩ is 0-normalized if v(i) = 0 for all i ∈ N ; it is 0-1 normalized if it is 0-normalized and
v(N) = 1.

20.7 i and j, elements ofN , are substitutes in v if for all S containing neither i nor j, v(S ∪ {i}) = v(S ∪ {j}).

20.8 i ∈ N is called a null player if v(S ∪ {i}) = v(S) for all S ⊆ N .

20.2 Core

20.9 The core is a solution concept for coalitional games that requires that no set of players be able to break away and
take a joint action that makes all of them better off.

20.10 Let ⟨N, v⟩ be a coalitional game.

A vector (xi)i∈S of real numbers is an S-feasible payoff vector if v(S) =
∑

i∈S xi.

We refer to anN -feasible payoff vector as a feasible payoff profile.

20.11 The core of the coalitional game ⟨N, v⟩ is the set of feasible payoff profiles (xi)i∈N for which there is no coalition�

S and S-feasible payoff vector (yi)i∈S for which yi > xi for all i ∈ S.

20.12 If x is in the core, then x satisfies

• (individual rational) xi ≥ v(i) for all i ∈ N ,

• (group rational)
∑

i∈N xi = v(N).

20.13 A definition that is obviously equivalent is that the core is the set of feasible payoff profiles (xi)i∈N for which∑
i∈S x(i) ≥ v(S) for every coalition S.

Proof. “⇐”: Suppose that x = (xi)i∈N satisfies∑
i∈N

xi = v(N), and
∑
i∈S

xi ≥ v(S) for all coalition S.

Assume x is not in the core, that is, there exist a coalition S and y = (yi)i∈S , such that
∑

i∈S yi = v(S) and
yi > xi for all i ∈ S. Then we have

∑
i∈S yi >

∑
i∈S xi ≥ v(S), a contradiction.

“⇒”: Suppose that x = (xi)i∈N does not satisfy∑
i∈N

xi = v(N), and
∑
i∈S

xi ≥ v(S) for all coalition S.

If
∑

i∈N xi ̸= v(N), x can not be in the core.
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Suppose, then, that there is a coalition S such that∑
i∈S

xi = v(S)− ϵ,

where ϵ > 0. For i ∈ S, define
zi = xi +

ϵ

|S|
.

It is easily seen that
∑

i∈S zi = v(S) and zi > xi for all i ∈ S. Hence x is not in the core.

20.14 The core is the set of payoff profiles satisfying a system of weak linear inequalities and hence is closed and convex.

20.15 Example: Two-person bargaining game.

N = {1, 2}, v(N) = 1, and v(1) = v(2) = 0.

Answer. (x1, x2) is in the core if and only if

x1 ≥ 0, x2 ≥ 0, and x1 + x2 = 1.

20.16 Example: Three-person bargaining game.

N = {1, 2, 3}, v(N) = 1 and v(S) = 0 for all S ⫋ N .

Answer. (x1, x2, x3) is in the core if and only if

x1 + x2 + x3 = v(N) = 1, and
∑
i∈S

xi ≥ v(S) = 0 for all S ⫋ N.

The core is therefore the set

{(x1, x2, x3) | x1, x2, x3 ≥ 0, x1 + x2 + x3 = 1}.

20.17 Example: Market with two sellers and a buyer.

N = {1, 2, 3}, v(N) = v(1, 2) = v(1, 3) = 1, and v(S) = 0 for all other S ⊆ N .

Answer. x is in the core if and only if

x1 + x2 + x3 = 1, x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Hence the core is {(1, 0, 0)}.

20.18 Example: Three-person majority game.

Suppose that three players can obtain one unit of payoff, any two of them can obtain 1 independently of the actions
of the third, and each player alone can obtain nothing, independently of the actions of the remaining two players.

N = {1, 2, 3}, v(N) = v(1, 2) = v(1, 3) = v(2, 3) = 1 and v(i) = 0 for all i ∈ N .
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Answer. For x to be in the core, we need x1 + x2 + x3 = 1, xi ≥ 0 for all i ∈ N , x1 + x2 ≥ 1, x1 + x3 ≥ 1 and
x2 + x3 ≥ 1. There exists no x satisfying these condition, so the core is empty.

20.19 Example: Modified three-person majority game.

N = {1, 2, 3}, v(N) = 1, v(S) = α whenever |S| = 2 and v(i) = 0 for all i ∈ N .

Answer. The core of this game is the set of all non-negative payoff profiles x for which x1 + x2 + x3 = 1 and∑
i∈S xi ≥ α for every two-person coalition S. Hence the core is non-empty if and only if α ≤ 2

3 .

20.20 Example: A majority game.

A group of n players, where n ≥ 3 is odd, has one unit to divide among its members. A coalition consisting of
a majority of the players can divide the unit among its members as it wishes. This situation is modeled by the
coalitional game ⟨N, v⟩ in which |N | = n and

v(S) =

1, if |S| ≥ n
2 ,

0, otherwise.

Answer. The game has an empty core by the following argument. Assume that x is in the core. If |S| = n− 1 then
v(S) = 1 so that

∑
i∈S xi ≥ 1. Since there are n coalitions of size n− 1 we thus have∑

{S : |S|=n−1}

∑
s∈S

xi ≥ n.

On the other hand, we have∑
{S : |S|=n−1}

∑
i∈S

xi =
∑
i∈N

∑
{S : |S|=n−1,S∋i}

xi =
∑
i∈N

(n− 1)xi = n− 1,

a contradiction.

20.21 Example: The drug game.

Joe Willie has invented a new drug. Joe can not manufacture the drug itself. He can sell the drug formula to
company 2 or company 3, but can not sell it to both companies. Company 2 can make a profit of 2 millions if it
buys the formula. Company 3 can make a profit of 3 millions if it buys the formula.

Let Joe, companies 2 and 3 be players 1, 2 and 3. Characteristic function v can be defined as

v(1) = v(2) = v(3) = 0, v(1, 2) = 2, v(1, 3) = 3, v(2, 3) = 0, v(1, 2, 3) = 3.

Answer. x = (x1, x2, x3) is in the core if and only if x satisfies

x1 ≥ 0 (1), x2 ≥ 0 (2), x3 ≥ 0 (3), x1 + x3 ≥ 2 (4), x1 + x2 ≥ 3 (5), x2 + x3 ≥ 0 (6), x1 + x2 + x3 = 3 (7).

(2), (5) and (7) imply
x2 = 0 (8), x1 + x3 = 3 (9).

(4), (8) and (9) imply
2 ≤ x1 ≤ 3, x3 = 3− x1.
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Conversely, any x ∈ X = {(x1, x2, x3) | x2 = 0, x3 = 3 − x1, 2 ≤ x1 ≤ 3} satisfies (1)–(7). Hence X is the
core.

20.22 Example: An expedition of n people has discovered treasure in the mountains; each pair of them can carry out one
piece. A coalitional game that models this situation is ⟨N, v⟩, where

v(S) =


|S|
2 , if |S| is even,
|S|−1

2 , if |S| is odd.

Answer. If |N | ≥ 4 is even then the core consists of the single payoff profile ( 12 ,
1
2 , . . . ,

1
2 ).

If |N | ≥ 3 is odd then the core is empty.

20.23 Proposition: Let δi = v(N)− v(N \ {i}), i = 1, 2, . . . , n, for a coalitional game ⟨N, v⟩, Then the core is empty if∑n
i=1 δi < v(N).

Proof.

v(N) >
n∑

i=1

δi ≥
n∑

i=1

v(i),

which is impossible.

20.24 Denote by C the set of all coalitions, and for any coalition S denote byR|S| the |S|-dimensional Euclidian space in
which the dimensions are indexed by the members of S.

20.25 Denote by 1S ∈ R|N | the characteristic vector of S given by

(1S)i =

1, if i ∈ S,

0, otherwise.

20.26 A collection (λS)S∈C of numbers in [0, 1] is a balanced collection of weights if for every player i the sum of λS over
all the coalitions that contain i is 1: ∑

S∈C

λS1S = 1N .

Example 1: the collection (λS) in which λN = 1 and λS = 0 for all other S is a balanced collection of weights.

Example 2: let |N | = 3. Then the collection (λS) in which λS = 1
2 if |S| = 2 and λS = 0 otherwise is a balanced

collection of weights; so too is the collection (λS) in which λS = 1 if |S| = 1 and λS = 0 otherwise.

20.27 A game ⟨N, v⟩ is balanced if� ∑
S∈C

λSv(S) ≤ v(N) for every balanced collection of weights.

20.28 One interpretation of the notion of a balanced game is the following. Each player has one unit of time, which he
must distribute among all the coalitions of which he is a member. In order for a coalition S to be active for the
fraction of time λS , all its members must be active in S for this fraction of time, in which case the coalition yields
the payoff λSv(S). In this interpretation the condition that the collection of weights be balanced is a feasibility
condition on the players’ allocation of time, and a game is balanced if there is no feasible allocation of time that
yields the players more than v(N).
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Each player is endowed with one unit of time that he allocates among the coalitions S; λS is the fraction of his time
that each member of S allocates to the coalition S; the condition

∑
S∈C λS1S = 1N is a feasibility condition (for

every individual the sum of its amounts of his time he spends with each coalition must equal exactly the amount of
time he is endowed with).

20.29 Bondareva-Shapley theorem: A coalitional game has a non-empty core if and only if it is balanced.�

Proof. Let ⟨N, v⟩ be a coalitional game.

“⇒”: Let x be a payoff profile in the core of ⟨N, v⟩ and (λS)S∈C a balanced collection of weights. Then∑
S∈C

λSv(S) ≤
∑
S∈C

λS
∑
i∈S

xi =
∑
i∈N

xi
∑
S∋i

λS =
∑
i∈N

xi = v(N),

so that ⟨N, v⟩ is balanced.

“⇐”: Assume that ⟨N, v⟩ is balanced. Then there is no balanced collection (λS)S∈C of weights for which∑
S∈C

λSv(S) > v(N).

Therefore the convex set
{(1N , v(N) + ϵ) ∈ R|N |+1 : ϵ > 0}

is disjoint from the convex cone{
y ∈ R|N |+1

∣∣∣∣∣ y =
∑
S∈C

λS(1S , v(S)) where λS ≥ 0 for all S ∈ C

}
,

since if not then 1N =
∑

S∈C λS1S , so that (λS)S∈C is a balanced collection of weights and
∑

S∈C λSv(S) >

v(N). Thus by hyperplane separating theorem there is a non-zero vector (αN , α) ∈ R|N | × R such that

(αN , α) · y ≥ 0 > (αN , α) · (1N , v(N) + ϵ)

for all y in the cone and all ϵ > 0. Since (1N , v(N)) is in the cone, we have α < 0.

Now let x = αN/(−α). Since (1S , v(S)) is in the cone for all S ∈ C, we have x(S) = x ·1S ≥ v(S) for all S ∈ C,
and v(N) ≥ 1Nx =

∑
i∈N xi. Thus v(N) =

∑
i∈N xi, so that x is in the core of ⟨N, v⟩.

20.30 Example: n-person weighted majority game with weights (wi)i∈N and quota q is defined by

v(S) =

1, if
∑

i∈S wi ≥ q,

0, if
∑

i∈S wi < q.

A 0-1-normalized weighted majority game has a non-empty core if and only if there is at least one veto player.

Answer. “⇒”: Number the players in such a way that w1 ≥ w2 ≥ · · · ≥ wn. Then if there is at least one veto
player, player 1 is such a player, i.e., v(S) = 0 if 1 ̸∈ S. Hence x = (1, 0, . . . , 0) is in the core:

∑
i∈N xi ≥ 1,

xi ≥ 0 for all i ∈ N , and ∑
i∈S

xi =

1, if 1 ∈ S, in which case v(S) ≤ 1,

0, if 1 ̸∈ S, in which case v(S) = 0.
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This establishes sufficiency.

“⇐”: Suppose there are no veto players. Consider the collection of coalitionsS = {N \{1}, N \{2}, . . . , N \{n}}
with balancing weights λS = 1

n−1 for all S ∈ S . We have

∑
S∈S

λS1S =
1

n− 1

∑
S∈S

1S =
1

n− 1


n− 1

n− 1
...

n− 1

 = 1N ,

so S is a balanced collection. Since there are no veto players v(S) = 1 for all S ∈ S , so
∑

S∈S λSv(S) =
n−1
n >

1 = v(N). Hence by the Bondareva-Shapley theorem the core is empty. This establishes necessity.

20.31 The core of a 0-1-normalized weighted majority game with veto players 1, 2, . . . , p is{
x = (a1, a2, . . . , ap, 0, . . . , 0)

∣∣∣∣∣ ai ≥ 0 for all i ∈ N and
p∑

i=1

ai = 1

}
.

Let S be such that v(S) = 1, then {1, 2, . . . , p} ⊆ S, so
∑

i∈S xi = 1 = v(S). Let S be such that v(S) = 0, then∑
i∈S xi ≥ 0 = v(S). Hence any x = (a1, a2, . . . , ap, 0, . . . , 0) with ai ≥ 0 for all i ∈ N and

∑p
i=1 ai = 1 is in

the core of the game, and the core consists of solely such points.

20.32 Proposition: Suppose player 1 is a null player, and (x1, x2, . . . , xn) is in the core. Then x1 = 0.

Proof. By definition of core, we have

n∑
i=2

xi ≥ v({2, 3, . . . , n}) = v({1, 2, . . . , n}) =
n∑

i=1

xi,

that is, x1 ≤ 0.

On the other hand, we also have
x1 ≥ v({1}) = v(∅) = 0, 1

and hence x1 = 0.

20.3 Shapley value

20.33 Given a coalitional game ⟨N, v⟩ where N = {1, 2, . . . , n}, the Shapley value is an n-vector, denoted by ϕ(v) =� (
ϕ1(v), ϕ2(v), . . . , ϕn(v)

)
, satisfying the following conditions:

S1. Symmetry condition: if i and j are substitutes in v, then ϕi(v) = ϕj(v).

S2. Null player condition: if i is a null player, then ϕi(v) = 0.

S3. Efficiency condition:
∑

i∈N ϕi(v) = v(N).

S4. Additivity condition: ϕi(v + w) = ϕi(v) + ϕi(w).

20.34 ϕi(v) is interpreted as the power of player i in the coalitional game ⟨N, v⟩, or what it is worth to i to participate in
the game ⟨N, v⟩.

1Technically, we should assume that coalition could be empty.
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20.35 Conditions S1, S2 and S4 are weak restrictions which are easy to accept as “reasonable”, while S3 is much stronger.

20.36 Shapley theorem: Shapley value is uniquely determined:�

ϕi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)] =

1

n

n−1∑
s=0

1(
n−1
s

) ∑
S⊆N\{i},|S|=s

[v(S ∪ {i})− v(S)].

Proof. It suffices to prove the uniqueness. Let ϕ be a Shapley value of ⟨N, v⟩. For each coalition S, define a char-
acteristic function vS by

vS(T ) =

1, if S ⊆ T,

0, otherwise.

Note that for any real number α, members ofN \ S are null players in the game ⟨N,αvS⟩, and members of S are
substitutes for each other in the game ⟨N,αvS⟩.

Hence by the null player condition, ϕi(αvS) = 0when i ̸∈ S, and by the symmetry condition ϕi(αvS) = ϕj(αvS)

when i, j ∈ S. Hence, by the efficiency condition∑
i∈N

ϕi(αvS) = αvS(N) = α.

Thus α =
∑

i∈S ϕi(αvS) = |S|ϕi(αvS) for any i ∈ S. Hence,

ϕi(αvS) =

 α
|S| , if i ∈ S,

0, if i ̸∈ S.

Now, each characteristic function can be regarded as a (2|N | − 1)-vector, and there are 2|N | − 1 coalitions. We
know ϕ(αvS) for all α and S, so by additivity we know ϕ(

∑k
i=1 αivSi) for all linear combinations

∑k
i=1 αivSi of

the vS ’s. Hence if we prove that the vS ’s are linearly independent, we will have shown that ϕ is uniquely determined
by vS ’s.

Suppose they are no linearly independent; then we may write

vS =

j∑
i=1

βivSi ,

where |S| ≤ |Si| for all i and Si’s are different from each other and from S. Then

1 = vS(S) =

j∑
i=1

βivSi(S) =

j∑
i=1

βi · 0 = 0,

a contradiction.

20.37 Notation: Let γ(s) = s!(n−s−1)!
n! . Then we have

ϕi(v) =
∑

S⊆N\{i}

γ(|S|)[v(S ∪ {i})− v(S)].

20.38 Example: Two-person bargaining game.
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N = {1, 2}, v(1, 2) = 1, v(1) = v(2) = 0.

Since n = 2, we have γ(0) = γ(1) = 1
2 .

For player 1, we have

S ∅ {2}
v(S ∪ {1})− v(S) 0 1

Table 20.1

Hence, ϕ1(v) = 0 1
2 + 1 1

2 = 1
2 .

For player 2, we have

S ∅ {1}
v(S ∪ {1})− v(S) 0 1

Table 20.2

Hence, ϕ2(v) = 0 1
2 + 1 1

2 = 1
2 .

For player 2, we can get ϕ2(v) = 1
2 by efficiency condition directly.

20.39 Example: Three-person majority game.

N = {1, 2, 3}, v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) = v(2, 3) = v(N) = 1

Since n = 3, we have γ(0) = γ(2) = 1
3 , and γ(1) =

1
6 .

For player 1, we have

S ∅ {2} {3} {2,3}
v(S ∪ {1})− v(S) 0 1 1 0

Table 20.3

Hence, ϕ1(v) = 0 1
3 + 1 1

6 + 1 1
6 + 0 1

3 = 1
3 .

For player 2, we have
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S ∅ {1} {3} {1,3}
v(S ∪ {2})− v(S) 0 1 1 0

Table 20.4

Hence, ϕ2(v) = 0 1
3 + 1 1

6 + 1 1
6 + 0 1

3 = 1
3 .

For player 3, we can get ϕ3(v) = 1
3 by efficiency condition directly.

20.40 Example: Market with two sellers and one buyer.

N = {1, 2, 3}, v(1, 2, 3) = v(1, 2) = v(1, 3) = 1, and v(S) = 0 for all other S ⊆ N .

Since n = 3, we have γ(0) = γ(2) = 1
3 , and γ(1) =

1
6 .

For player 1, we have

S ∅ {2} {3} {2,3}
v(S ∪ {1})− v(S) 0 1 1 1

Table 20.5

Hence, ϕ1(v) = 0 1
3 + 1 1

6 + 1 1
6 + 1 1

3 = 2
3 .

For player 2, we have

S ∅ {1} {3} {1,3}
v(S ∪ {2})− v(S) 0 1 0 0

Table 20.6

Hence, ϕ2(v) = 0 1
3 + 1 1

6 + 0 1
6 + 0 1

3 = 1
6 .

For player 3, we can get ϕ3(v) = 1
6 by efficiency condition directly.

20.41 Note that the core allocation in the example above (1, 0, 0) differs considerably from the Shapley value ( 23 ,
1
6 ,

1
6 ).

One can interpret that zero payoff to players 2 and 3 in the core allocation as the result of cutthroat competition
between them.

20.42 Example: Consider an n-person game in which the only winning coalitions are those coalitions containing player
1 and at least one other player. If a winning coalition receives a reward of $1, find the core and the Shapley value of
the game.

Answer. When n = 2, the solution is quite easy. (Exercise)

In the following, we assume n ≥ 3. The characteristic function is

v(S) =

1, if |S| ≥ 2, player 1 belongs to S,

0, otherwise.

(i) Core: Suppose (x1, x2, . . . , xn) is in the core. Then we have

n∑
i=1

xi = 1, xi ≥ 0,

x1 +
∑
i∈S

xi ≥ 1, for all S ⊂ {2, 3, . . . , n} and S is non-empty.
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It is easy to see that the only solution is x1 = 1, x2 = · · · = xn = 0: take S = {3, 4, . . . , n}, we have
x1 + x3 + · · · + xn ≥ 1, and hence x2 = 0. Similarly x3 = x4 = · · · = xn = 0. Therefore the core is
{(1, 0, 0, . . . , 0)}.

(ii) Shapley value: For player i ̸= 1, v(S ∪ {i}) − v(S) = 1 if and only if S = {1}. Otherwise it is zero. Since
γ(1) = 1

n(n−1) , player i’s Shapley value is

ϕi(v) =
1

n(n− 1)
.

For player 1, we have

ϕ1(v) = 1−
n∑

i=2

ϕi(v) =
n− 1

n
.

Therefore, the Shapley value is (
n− 1

n
,

1

n(n− 1)
, . . . ,

1

n(n− 1)

)
.

20.43 Consider the following cost allocation problem. Building an airfield will benefit n players. Player j requires an
airfield that costs cj to build, so to accommodate all the players, the field will be built at a cost of max1≤j≤n cj .
How should this cost be split among the players? Suppose all the costs are distinct and let 0 < c1 < c2 < · · · < cn.
Take the characteristic function of the game to be v(S) = −maxj∈S cj for S ⊂ {1, 2, . . . , n}.

(i) LetRk = {k, k+1, . . . , n} for k = 1, 2, . . . , n, and define the characteristic function vk through the equation

vk(S) =

−(ck − ck−1), if S ∩Rk ̸= ∅

0, if S ∩Rk = ∅

For convenience, let c0 = 0. Show that v =
∑n

k=1 vk.

(ii) Find the Shapley value of the game v in the form of ϕi(v) =
∑i

k=1 αik(ck − ck−1), i = 1, 2, . . . , n, where
the coefficients αik are independent of c1, c2, . . . , cn.

Answer. (i) For every coalition S, we have

n∑
k=1

vk(S) =

max(S)∑
k=1

vk(S) +

n∑
k=max(S)+1

vk(S) =

max(S)∑
k=1

vk(S) = −
max(S)∑
k=1

(ck − ck−1) = −cmax(S) = v(S).

(ii) Since

vk(S) =

−(ck − ck−1), if max(S) ≥ k

0, if max(S) < k

we have

vk(S ∪ {i})− vk(S) =

−(ck − ck−1), if max(S) < k ≤ i

0, otherwise

and hence ϕ1(vk) = · · · = ϕk−1(vk) = 0, and

ϕk(vk) = · · · = ϕn(vk)
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=
1

n

n−1∑
s=0

1(
n−1
s

) ∑
|S|=s

[vk(S ∪ {i})− vk(S)]

=
1

n

n−1∑
s=0

1(
n−1
s

)
 ∑

|S|=s,max(S)<k

[vk(S ∪ {i})− vk(S)] +
∑

|S|=s,max(S)≥k

[vk(S ∪ {i})− vk(S)]


=

1

n

n−1∑
s=0

1(
n−1
s

)(k − 1

s

)
[−(ck − ck−1)]

Therefore, we have

ϕi(v) =

n∑
k=1

ϕi(vk) =

i∑
k=1

ϕi(vk) = − 1

n

i∑
k=1

k−1∑
s=0

(
k−1
s

)(
n−1
s

) (ck − ck−1).

20.4 Nash bargaining solution

20.44 A two-person bargaining problem, denoted by ⟨U, d⟩, consists of�

• U is the set of possible agreements in terms of utilities that they yield to 1 and 2. An element of U is a pair
u = (u1, u2).

• d is a pair (d1, d2), called the disagreement point or threat point.

If agreement u = (u1, u2) ∈ U is reached, then 1 gets utility u1 and 2 gets utility u2. If no agreement is reached
then 1 gets utility d1 and 2 gets utility d2.

The set of two-person bargaining games is denoted byW .

20.45 Convention: Assume that

• U is compact and convex.

• U contains a point y for which yi > di for i = 1, 2, that is, bargaining is worthwhile for both the players.

20.46 The Nash bargaining solution is a mapping f : W → R2 that associates a unique element f(U, d) with the game�

⟨U, d⟩, satisfying the following axioms:

N1. Feasibility: f(U, d) ∈ U .

N2. Individual rationality: f(U, d) ≥ d for all ⟨U, d⟩ ∈W .

N3. Pareto optimality: f(U, d) is Pareto optimal. That is, there does not exist a point (u1, u2) ∈ U such that

u1 ≥ f1(U, d), u2 ≥ f2(U, d), (u1, u2) ̸= f(U, d).

N4. Symmetry: If ⟨U, d⟩ ∈W satisfies d1 = d2 and (x1, x2) ∈ U implies (x2, x1) ∈ U , then f1(U, d) = f2(U, d).

N5. Invariance under linear transformations: Let a1, a2 > 0, b1, b2 ∈ R, and ⟨U, d⟩, ⟨U ′, d′⟩ ∈ W where d′i =
aidi+ bi, i = 1, 2, and U ′ = {x ∈ R2 | xi = aiyi + bi, i = 1, 2, y ∈ U}. Then fi(U ′

i , d
′
i) = aifi(U, d)+ bi,

i = 1, 2.
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N6. Independence of irrelevant alternatives: If ⟨U, d⟩, ⟨U ′, d′⟩ ∈ W , d = d′, U ⊆ U ′, and f(U ′, d′) ∈ U , then
f(U, d) = f(U ′, d′).

The interpretation is that, given any bargaining problem ⟨U, d⟩, the solution function tells us that the agreement
u = f(U, d) will be reached.

20.47 Pareto optimality: there are no points in U that are “North-East” of f(U, d). See Figure 20.1.

O

d

U

f(U, d)

u1

u2

Figure 20.1: Pareto optimality.

20.48 Symmetry: suppose that ⟨U, d⟩ is such that U is symmetric around the 45◦ line and d1 = d2, then f1(U, d) =

f2(U, d), that is, when everything in ⟨U, d⟩ is symmetric, the point f(U, d) is itself on the 45◦ line. See Figure 20.2.

45◦

O

d

U

f(U, d)

u1

u2

Figure 20.2: Symmetry.

20.49 Invariance under linear transformations: suppose we have two bargaining problems ⟨U, d⟩ and ⟨U ′, d′⟩ with the
following property. For some vector b = (b1, b2),

d′ = d+ b, U ′ = U + b.
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Then invariance under linear transformations imposes that

f(U ′, d′) = f(U, d) + b,

see Figure 20.3.

O

d

d′

U

U ′f(U, d)

f(U ′, d′)

b
b

u1

u2

Figure 20.3: Independence of utility origins.

Suppose we have two bargaining problems ⟨U, d⟩ and ⟨U ′, d′⟩ with d = (0, 0) and the following property.

U ′
1 = k1U1, U ′

2 = k2U2.

Then invariance under linear transformations imposes that

f1(U
′, d) = k1f1(U, d), f2(U

′, d) = k2f2(U, d).

In Figure 20.4, we depict a change for u2 only with k2 = 2.

O

d = d′
U

U ′

f(U ′, d)

f(U, d)
f2(U, d)

f2(U
′, d) = 2f2(U, d)

f1(U, d) = f1(U
′, d) u1

u2

Figure 20.4: Independence of utility units.

20.50 Independence of irrelevant alternatives:
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O

d = d′

U

U ′

f(U, d) = f(U ′, d′)

u1

u2

Figure 20.5: Independence of irrelevant alternatives.

20.51 Theorem: A game ⟨U, d⟩ ∈W has a unique Nash solution u∗ = f(U, d) satisfying Conditions N1 to N6. Further-�

more, the solution u∗ satisfies Conditions N1 to N6 if and only if

(u∗1 − d1)(u
∗
2 − d2) > (u1 − d1)(u2 − d2)

for all u ∈ U , u ≥ d, and u ̸= u∗.

20.52 Remark:

• Existence of an optimal solution: Since the set U is compact and the objective function is continuous, there
exists an optimal solution.

• Uniqueness of the optimal solution: The objective function is strictly quasi-concave. Therefore, maximization
problem has a unique optimal solution.

20.53 Part 1. Wefirst prove thatNash bargaining solution satisfies the six axioms. Thefirst two are automatically satisfied,
and we focus on other four.

N3. Pareto optimality: This follows immediately from the fact that the objective function (u1 − d1)(u2 − d2) is
increasing in u1 and u2.

N4. Symmetry: Assume d1 = d2. Let u∗ = (u∗1, u
∗
2) be the Nash bargaining solution. Then, it can be seen that

(u∗2, u
∗
1) is also an optimal solution. By the uniqueness of the optimal solution, we must have (u∗1, u

∗
2) =

(u∗2, u
∗
1), that is, u∗1 = u∗2.

N5. Invariance under linear transformation: By definition, f(U ′, d′) is an optimal solution of the problem

maximize (u1 − a1d1 − b1)(u2 − a2d2 − b2)

subject to (u1, u2) ∈ U ′

Performing the change of variables u′1 = a1u1+ b1, u′2 = a2u2+ b2, it follows immediately that fi(U ′, d′) =

aifi(U, d) + bi for i = 1, 2.

N6. Independence of irrelevant alternatives: Let U ⊆ U ′. From the optimization problem characterization of the
Nash bargaining solution, it follows that the objective function value at the solution f(U ′, d) is greater than



20.4. Nash bargaining solution 320

or equal to that at f(U, d). If f(U ′, d) ∈ U , then the objective function values must be equal, i.e., f(U ′, d) is
optimal for U and by uniqueness of the solution f(U, d) = f(U ′, d).

20.54 Part 2. We then show that if a bargaining solution satisfies the six axioms, it must be equal to f .

(1) Let g be a bargaining solution satisfying the six axioms. We prove that g(U, d) = f(U, d) for every bargaining
problem ⟨U, d⟩.

(2) Given a bargaining problem ⟨U, d⟩, let z = f(U, d), and define the set

U ′ = {(au+ b) | u ∈ U, az + b = ( 12 ,
1
2 ), ad+ b = (0, 0)},

that is, we map the point z to ( 12 ,
1
2 ) and the point d to (0, 0).

(3) Since g(U, d) and f(U, d) both satisfy axiom N5 (invariance under linear transformation), we have g(U, d) =
f(U, d) if and only if g(U ′,0) = f(U ′,0) = ( 12 ,

1
2 ). Hence, to establish the desired claim, it is sufficient to

prove g(U ′,0) = ( 12 ,
1
2 ).

(4) Let us show that there is nou ∈ U ′ such thatu1+u2 > 1: Assume that there is au ∈ U ′ such thatu1+u2 > 1.
Let t = (1− λ)(12 ,

1
2 ) + λ(u1, u2) for some λ ∈ (0, 1). Since U ′ is convex, we have t ∈ U ′. We can choose λ

sufficiently small so that t1t2 > 1
4 = f(U ′,0), but this contradicts the optimality of f(U ′,0), showing that

for all u ∈ U ′, we have u1 + u2 ≤ 1.

(5) Let U ′′ = {(u1, u2) | u1 + u2 ≤ 1, u1 ≥ 0, u2 ≥ 0}. Then U ′ ⊆ U ′′ and ( 12 ,
1
2 ) is on the boundary of U ′′.

(6) By axiom N3 (Pareto optimality) and N4 (symmetry), g(U ′′,0) = ( 12 ,
1
2 ).

(7) By axiom N6 (Invariance under linear transformation), since U ′ ⊆ U ′′, we have g(U ′,0) = ( 12 ,
1
2 ), complet-

ing the proof.

20.55 Example: Find the Nash bargaining solution of the following problem.

U = {(u1, u2) | u1 + u2 ≤ 10, u1 ≥ 0, u2 ≥ 0},

d = (2, 4).

We need to maximize (u1 − d1) · (u2 − d2) = (u1 − 2) · (u2 − 4).

The Nash bargaining solution lies on the frontier, so, we can assume that u1+u2 = 10. Hence, it suffices maximize

(u1 − 2)(10− u1 − 4) = (u1 − 2)(6− u1).

By first order condition, u∗1 = 4 and u∗2 = 6.

20.56 Example: Two bargaining problems have identical threat points d = (0, 0). In one case, the U1 = {(u1, u2) |
u1 + u2 ≤ 6, u1 ≥ 0, u2 ≥ 0}. In the other case, the U2 = {(u1, u2) | u1 + u2 ≤ 6, u1 ≥ 0, 0 ≤ u2 ≤ 4}. Are
the Nash solution to these two bargaining problems the same?

20.57 Example: Dividing one dollar.
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Two individuals can divide a dollar in any way they wish. If they fail to agree on a division, the dollar is forfeited.
The individuals may, if they wish, discard some of the dollar. Thus, the set of outcomes is all possible divisions of
the dollar.

X = {(x1, x2) | x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}.

Neither player receives anything in the event of disagreement. So, the disagreement outcome is (0, 0). Each player
is concerned only about his/her share of the dollar and prefers more to less.

The utility functions of the two players are u1 and u2.

U =
{(
u1(x1), u2(x2)

)
| x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0

}
,

d =
(
u1(0), u2(0)

)
.

Players are either risk neutral or risk averse, then U is convex.

• First suppose that the players’ preferences are the same, so that they can be represented by the same utility
function, u. Then we have a symmetric bargaining problem. In this case, we know that the Nash solution is
the unique symmetric efficient utility pair

(
u(1/2), u(1/2)

)
, which corresponds to the physical outcome in

which the dollar is shared equally between the players.

• If the players have different preferences, then equal division of the dollar may no longer be the agreement
given by the Nash solution. Rather, the solution depends on the nature of the players’ preferences.
To investigate this dependence, consider a simple example. Suppose that player 1 is risk neutral so that her
payoff function is u1(x1) = x1 and player 2 is risk averse so that his payoff function is u2(x2) =

√
x2.

Maximize [u1(x1)− u1(0)] · [u2(x2)− u2(0)] subject to x1 + x2 ≤ 1.
u1(x1) = x1 and u2(x2) =

√
x2 give: maximize x1

√
x2 subject to x1 + x2 ≤ 1.

When this is maximized, it must be the case that x1 + x2 = 1. So, we need to maximize

(1− x2)
√
x2.

The solution is x∗1 = 2
3 and x∗2 = 1

3 .
So, player 2’s share goes down. More generally, we can have the following intuition. If player 2 becomes more
risk averse, then player 1’s share of the dollar in the Nash solution increases. If player 2 is more risk averse
than player 1, then player 1’s share of the dollar in the Nash solution exceeds 1/2.

20.58 Example: Dividing one dollar. (cont.)

General analysis. • u1 = u2 = u, and u is concave and u(0) = 0. It is a symmetric bargaining problem, and
hence f(U, d) = ( 12 ,

1
2 ), that is, the dollar is shared equally.

The bargaining problem is the optimal solution of the following problem

max
0≤z≤1

u1(z)u2(1− z) = max
0≤z≤1

u(z)u(1− z).

We denote the optimal solution of this problem by zu. By first order condition, we have

u′(z)u(1− z) = u(z)u′(1− z),

implying that u′(zu)
u(zu)

= u′(1−zu)
u(1−zu)

.
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• Player 2 is more risk averse, i.e., u1 = u and u2 = h ◦ u, where h : R → R is an increasing concave function
with h(0) = 0. The Nash bargaining solution is the optimal solution of the following problem

max
0≤z≤1

u1(z)u2(1− z) = max
0≤z≤1

u(z)h(u(1− z)).

We denote the optimal solution of this problem by zv . By the first order condition, we have

u′(z)h(z(1− z)) = u(z)h′(u(1− z))u′(1− z),

implying u′(zv)
u(zv)

= h′(u(1−zv))u
′(1−zv)

h(u(1−zv))
.

Since h is an increasing concave function and h(0) = 0, we have

h′(t) ≤ h(t)

t
for all t ≥ 0.

This implies that
u′(zv)

u(zv)
≤ u′(1− zv)

u(1− zv)
,

and therefore zu ≤ zv . This shows that when player 2 is more risk averse, player 1’s share increases.

20.59 Example: Imagine a firm that is a monopolist in the market for its output and in the labor market (hiring) as well.
At the same time, a labor union is a monopolist in the labor market (supplying). Letting L denote the level of
employment and w, the wage rate, suppose the union has a utility function u(L,w) =

√
Lw. The firm’s utility is

its profit π = L(100− L)− wL.

In this situation, the payoff set

U = {(u, π) | u =
√
Lw, π = L(100− L)− wL, L ≥ 0, w ≥ 0}.

The most natural threat on the part of the firm is to cease production, which means the union members will all
be without jobs. Similarly, the union can refuse to supply any labor to the firm, and, again, there will be neither
production nor jobs. That is, (0, 0) is the disagreement point.

The Nash bargaining solution maximizes the function

(u− d1)(π − d2) =
√
Lw(L(100− L)− wL)

for L ≥ 0 and w ≥ 0. Optimality conditions are both partial derivatives with respect to L and w being 0:

300− 5L− 3w = 0, 100− L− 3w = 0

which results in
L = 50, w =

50

3
.

Thus, the Nash bargaining solution is
u∗ =

50√
3
, π∗ =

5000

3
.

20.60 Example: Suppose the set U consists of the points lying on and within a circle of radius 2, having a center at (2, 2).



20.4. Nash bargaining solution 323

If the threat point, d, is at (2, 2), what is the Nash bargaining solution? If the threat point, d, is at (0, 2), what is the
Nash bargaining solution?

Answer. U = {(u1, u2) : (u1 − 2)2 + (u2 − 2)2 ≤ 4}.

(i) d = (2, 2). Consider the following problem:

maximize (u1 − 2)(u2 − 2) (20.1)

subject to (u1 − 2)2 + (u2 − 2)2 ≤ 4 (20.2)

u1 ≥ 2, u2 ≥ 2 (20.3)

Consider Equations (20.1) and (20.2), and apply the method of Lagrange multipliers, we will have

f(u1, u2, λ) = (u1 − 2)(u2 − 2)− λ[(u1 − 2)2 + (u2 − 2)2 − 4]

∂f

∂u1
= 0 ⇒ (u2 − 2) = 2λ(u1 − 2)

∂f

∂u2
= 0 ⇒ (u1 − 2) = 2λ(u2 − 2)

∂f

∂λ
= 0 ⇒ (u1 − 2)2 + (u2 − 2)2 = 4

The solutions are: (2+
√
2, 2+

√
2) and (2−

√
2, 2−

√
2). Note that only (2+

√
2, 2+

√
2) satisfies (20.3).

Therefore, (2 +
√
2, 2 +

√
2) is the unique Nash bargaining solution.

(ii) d = (0, 2). Consider the following problem:

maximize (u1 − 0)(u2 − 2) (20.4)

subject to (u1 − 2)2 + (u2 − 2)2 ≤ 4 (20.5)

u1 ≥ 0, u2 ≥ 2 (20.6)

Consider Equations (20.4) and (20.5), and apply the method of Lagrange multipliers, we will have

f(u1, u2, λ) = u1(u2 − 2)− λ[(u1 − 2)2 + (u2 − 2)2 − 4]

∂f

∂u1
= 0 ⇒ (u2 − 2) = 2λ(u1 − 2)

∂f

∂u2
= 0 ⇒ u1 = 2λ(u2 − 2)

∂f

∂λ
= 0 ⇒ (u1 − 2)2 + (u2 − 2)2 = 4

The solutions are: (0, 2) and (3, 2 +
√
3), where the former is not Pareto optimal. (3, 2 +

√
3) is the unique

Nash bargaining solution.

20.61 Example: Player 1 and player 2 have been willed equal shares of an estate consisting of $200,000 cash and 100 acres
of farmland. Player 1 has a sentimental attachment to the land and values it at v1 = $3, 000 per acre, whereas
player 2 has no such attachment and values it at v2 = $1, 000 per acre. Assume that their payoff functions are
linear in money and land at these rates: ui = xi + viyi if player i receives xi dollars of cash and yi acres of land.
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The players may reach an agreement on dividing the land and money so as to maximize their payoffs. If they fail to
reach agreement they divide the land and money equally.

(i) Carefully draw the bargaining set and label the disagreement point.

(ii) Find the Nash bargaining solution.

Answer. (i) Assume in an agreement, the outcome is (x1, x2) and (y1, y2), where

x1 + x2 = 200000, y1 + y2 = 100, x1, x2, y1, y2 ≥ 0,

and corresponding payoffs are

u1 = x1 + 3000y1, u2 = x2 + 1000y2.

Hence, we have
u1 + u2 = 300000 + 2000y1, u1 + 3u2 = 500000 + 2000x1,

and hence
300000 ≤ u1 + u2 ≤ 500000, 500000 ≤ u1 + 3u2 ≤ 900000.

Disagreement outcome is x1 = x2 = 100000, and y1 = y2 = 50, and hence u1 = 250000 and u2 = 150000,
which is a threat point in

U = {(u1, u2) : 300000 ≤ u1 + u2 ≤ 500000, 500000 ≤ u1 + 3u2 ≤ 900000}.

(ii) Consider the following problem:

maximize (u1 − 250000)(u2 − 150000) (20.7)

subject to u1 + u2 ≤ 500000 (20.8)

u1 + 3u2 ≤ 900000 (20.9)

300000 ≤ u1 + u2 (20.10)

500000 ≤ u1 + 3u2 (20.11)

u1 ≥ 0, u2 ≥ 0 (20.12)

Consider Equations (20.7), (20.8) and (20.9), and apply the method of Lagrange multipliers, we will have

f(u1, u2, λ) = (u1 − 250000)(u2 − 150000)− λ1[u1 + u2 − 500000]− λ2[u1 + 3u2 − 900000]

∂f

∂u1
= 0 ⇒ u2 − 150000 = λ1 + λ2

∂f

∂u2
= 0 ⇒ u1 − 250000 = λ1 + 3λ2

∂f

∂λ1
= 0 ⇒ u1 + u2 = 500000

∂f

∂λ2
= 0 ⇒ u1 + 3u2 = 900000

The solution is: (300000, 200000). Note it satisfies Equations (20.10), (20.11) and (20.12). Therefore, it is the
unique Nash bargaining solution.
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S ∅ {j}
v(S ∪ {i})− v(S) vi v − vj

Table 20.7

20.62 Find the Shapley values of the gamewithN = {1, 2} and the characteristic function v. Now consider the bargaining
game where U = {(u1, u2) | u1 + u2 = v(N), u1 ≥ v({1}), u2 ≥ v({2})} and d = (v({1}), v({2})). Find the
bargaining solution of the game (U, d).

Answer. Since n = 2, we have γ(0) = γ(1) = 1
2 . Denote v = v(N), v1 = v({1}) and v2 = v({2}).

(i) Shapley value. For player i, Hence the Shapley value for player i is vi+v−vj
2 .

(ii) To get the Nash bargaining solution, we solve the following problem

max
u1+u2=v,u1≥v1,u2≥v2

(u1 − v1)(u2 − v2).

The solution is u∗i =
vi+v−vj

2 . Note that we need to check whether u∗i ≥ vi.

Hence, both Nash bargaining solution and the Shapley value give the same result.

20.63 Relation of Nash bargaining model to Rubinstein bargaining model:

Consider the variant of the bargaining game with alternating offers with exogenous probabilistic breakdown. As-
sume there is an exogenous probability α of breaking down.

We can assume without loss of generality that δ → 1, since the possibility of a breakdown puts pressure to reach an
agreement.

It can be seen that this game has a unique subgame perfect equilibrium in which,

• Player 1 proposes x∗ and accepts an offer y if and only if y1 ≥ y∗1 ,

• Player 2 proposes y∗ and accepts an offer x if and only if x1 ≥ x∗1,

where
x∗1 =

1− d2 + (1− α)d1
2− α

, y∗1 =
(1− α)(1− d2) + d1

2− α
.

Letting α→ 0, we have x∗1 → 1
2 + 1

2 (d1 − d2).

The optimization problem
max(x− d1)(1− x− d2),

gives Nash bargaining solution ( 12 + 1
2 (d1 − d2),

1
2 − 1

2 (d1 − d2)), which coincides with the subgame perfect
equilibrium payoffs.

That is, the variant of the bargaining game with alternating offers with exogenous probabilistic breakdown and
Nash’s axiomatic model, though built entirely of different components, yield the same outcome.
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Chapter 21
Supermodular games
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21.1 Lattice

21.1 Definition: A partial order is a binary relation ≥ over a nonempty set S which is reflexive, transitive and antisym-
metric, i.e., for all x, y and z in S, we have that:

• x ≥ x;

• if x ≥ y and y ≥ z, then x ≥ z;

• if x ≥ y and y ≥ x, then x = y.

A set S with a partial order ≥ is called a partially ordered set, abbreviated as poset, denoted by (S,≥).

21.2 Definition: Let (S,≥) be a poset, T a nonempty subset of S, and x0 an element of S, then

• x0 is a maximal element of T if x0 ∈ T and (∀x ∈ T ) x ≯ x0;

• x0 is a minimal element of T if x0 ∈ T and (∀x ∈ T ) x0 ≯ x;

• x0 is a largest element of T if x0 ∈ T and (∀x ∈ T ) x0 ≥ x;

• x0 is a smallest element of T if x0 ∈ T and (∀x ∈ T ) x ≥ x0;

• x0 is a upper bound of T if (∀x ∈ T ) x0 ≥ x;

• x0 is a lower bound of T if (∀x ∈ T ) x ≥ x0;

• x0 is a supremum of T if x0 is the smallest upper bound of T ;

• x0 is a infimum of T if x0 is the largest lower bound of T .

327
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21.3 Definition: Let (S,≥) be a poset. (S,≥) is a lattice if for each two-point set {x, y} ⊂ S, there is a supremum for�

{x, y} (denoted by x ∨S y and called the join of x and y) in S and an infimum (denoted by x ∧S y and called the
meet of x and y) in S.

The lattice (S,≥) is complete if every nonempty subset T of S has both infimum (denoted by infS T or∧S
t∈T t) and

supremum (denoted by supS T or ∨S
t∈T t) in S.

21.4 Definition: A sublattice (T,≥) of a lattice (S,≥) is a nonempty subset of (S,≥) such that for every pair of elements�

x and y in T , both x ∨S y and x ∧S y are in T .

A sublattice T of a complete lattice (S,≥) is called a closed sublattice if for every subsetU of T the elements ∨S
t∈U t

and ∧S
t∈U t, as defined in S, are in T . (The term “closed” is used here in the lattice theoretical sense)

21.5 Remark: A subset that is a lattice in its own right may not be a sublattice of a larger lattice. An example is as follows:

T = {(0, 0), (1, 0), (0, 1), (2, 2)} and S = R2 with the product order.

21.6 Remark: A subset that is a complete lattice in its own right may not be a closed sublattice of a larger lattice. An
example is as follows:

T = [0, 1) ∪ {2} and S = [0, 2] with the natural order.

21.7 Lemma: Let (S,≥) be a complete lattice, and T a closed sublattice of S. Then T is a complete lattice.

Proof. For any nonempty subset U of T , let x = ∨S
t∈U , then x ∈ T .

• x is an upper bound of U in T .

• For any y ∈ T , if for every t ∈ U , t ≤ y, then x ≤ y.

Based on the above discussion, x is smallest upper bound of U in T , i.e., ∨T
t∈U = x ∈ T . Similarly, we have

∧T
t∈U ∈ T .

21.8 Lemma: Let (S,≥) be a complete lattice, S′ a closed sublattice of S, and T a closed sublattice of S. If T is a subset
of S′, then T is a closed sublattice of S′.

Proof. (1) For any nonempty subset U of T , we would like to show ∨S′

t∈U t ∈ T and ∧S′

t∈U t ∈ T .

(2) By Proposition 21.7, we know that S′ is a complete lattice, and hence y ≜ ∨S′

t∈U t ∈ S′.

(3) Since T is a closed sublattice of S, we have x ≜ ∨S
t∈U t ∈ T ⊆ S′.

(4) Since S′ ⊆ S, we have y ≥ x.

(5) On the other hand, since x ∈ S′ is an upper bound of U , and y ∈ S′ is the smallest upper bound of U in S′,
we have x ≥ y.

(6) Therefore, ∨S′

t∈U = y = x = ∨S
t∈U t ∈ T .

(7) Similarly, we have ∧S′

t∈U t ∈ T .

21.9 Definition: Let (S,≥) be a lattice. For subsetsX and Y of S, we haveX ≥+ Y if for any x ∈ X , y ∈ Y , it follows
that x ∧ y ∈ Y and x ∨ y ∈ X . We call ≥+ the strong set order.
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21.10 Lemma: If S is a complete lattice,X and Y are in 2S (the power set of S), andX ≥+ Y , then infX ≥ infY and
supX ≥ supY .

Proof. For any x ∈ X and y ∈ Y , x ∧S y ∈ Y and x ∨S y ∈ X sinceX ≥+ Y . Therefore, x ≥ x ∧S y ≥ infY
and supX ≥ x ∨S y ≥ y, and hance infX ≥ infY and supX ≥ supY .

21.11 Tarski’s fixed-point Theorem (Theorem 1 in Tarski (1955)): Let (S,≥) be a nonempty complete lattice and f : S →
S an increasing function, ifE be the set of all fixed points of f , thenE is nonempty and (E,≥) is a complete lattice.

Step 1. Let u = sup{x ∈ S | f(x) ≥ x}.

(1) For every x with f(x) ≥ x, we have u ≥ x.

(2) Since f is increasing, we have f(u) ≥ f(x) ≥ x.

(3) Since u is the supremum, we have f(u) ≥ u.

(4) Since f is increasing, we have f(f(u)) ≥ f(u), and hence f(u) ∈ {x ∈ S | f(x) ≥ x}.

(5) Since u is supremum, we have u ≥ f(u), and hence f(u) = u. That is, u is a fixed point of f , and E is
nonempty.

(6) Since E ⊆ {x ∈ S | f(x) ≥ x}, and u = sup{x ∈ S | f(x) ≥ x}, we have u is the largest element of E.

Similarly we have inf{x ∈ S | f(x) ≤ x} is the smallest element of E.

Step 2. Let Y be any subset of E, and denote {x ∈ S : supS ≥ x ≥ supY } by [supY, supS].

(1) Since (S,≥) is a complete lattice, we have ([supY, supS],≥) is a complete lattice.

(2) For any x ∈ Y , we have supY ≥ x and hence f(supY ) ≥ f(x) = x. Therefore f(supY ) ≥ supY .

(3) For any z with z ≥ supY implies f(z) ≥ f(supY ) ≥ supY .

(4) Consider the restriction of f on [supY, supS]:

f ′ : [supY, supS] → [supY, supS],

which is an increasing function on the complete lattice ([supY, supS],≥).

(5) Then the infimum v of all fixed points of f ′ is itself a fixed point of f ′.

(6) Obviously, v is a fixed point of f and in fact the smallest fixed point of f which is an upper bound of all
elements of Y ; in other words, v is the supremum of Y in (E,≥).

Similarly the infimum of Y in (E,≥) exists in S.

21.12 Theorem (Theorem 1 in Zhou (1994)): Let (S,≥) be a complete lattice, Ψ is a correspondence from S to S, andE
the set of fixed points of Ψ. If Ψ(s) is a nonempty closed sublattice of S for every s ∈ S, and Ψ is increasing in s,
then E is a nonempty complete lattice.

Step 1. To show E is nonempty.

(1) Consider the set
C = {c ∈ S | there exists xc ∈ Ψ(c) such that xc ≤ c}.

C is nonempty since supS ∈ C . Let a = ∧S
c∈Cc.
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(2) For any c ∈ C , there exists xc ∈ Ψ(c) such that xc ≤ c.

(3) Since Ψ is increasing and a ≤ c, we have Ψ(a) ≤+ Ψ(c), and hence there exists yc ∈ Ψ(a) such that
yc ≤ xc(≤ c).

(4) Let y = ∧S
c∈Cyc. Since Ψ(a) is a subcomplete sublattice of S, we have y ∈ Ψ(a).

(5) Clearly y = ∧S
c∈Cyc ≤ ∧S

c∈Cc = a. Since Ψ is increasing and y ∈ Ψ(a), there is z ∈ Ψ(y), such that z ≤ y.
Hence y ∈ C .

(6) Since a = ∧S
c∈Cc, a ≤ y. Therefore, a = y ∈ Ψ(a), i.e., a ∈ E.

Step 2: To show ∨S
e∈Ee ∈ E and ∧S

e∈Ee ∈ E.

Since E ⊆ C , based on Step 1, ∨S
e∈Ee = a ∈ E. Similarly, we can show that ∧S

e∈Ee ∈ E.

Step 3: To show E is complete lattice.

It suffices to show that ∨E
e∈Ue and ∧E

e∈Ue exist for any U ⊆ E. Note that ∨E
e∈Ue and ∧E

e∈Ue are respectively the
largest and smallest elements of U in E instead of S.

(1) Let b = ∨S
e∈Ue, the largest element of U in S.

(2) For any e ∈ U ⊆ E, since e ≤ b and Ψ is increasing, we have Ψ(e) ≤+ Ψ(b). Moreover, since e ∈ Ψ(e),
there is xe ∈ Ψ(b), such that e ≤ xe.

(3) Let x = ∨S
e∈Uxe, then x ≥ ∨S

e∈Ue = b. Since Ψ(b) is a subcomplete sublattice, x ∈ Ψ(b).

(4) Let S′ = [b, supS], Φ a correspondence from S′ to S′ defined by Φ(s) = Ψ(s) ∩ S′ for all s ∈ S′.
For any s ≥ b, since Ψ is increasing and x ∈ Ψ(b), there is xs ∈ Ψ(s) with xs ≥ x ≥ b, and hence Φ(s) is
nonempty for every s ∈ S′.
Since both Ψ(s) and S′ are subcomplete sublattices of S for every s ∈ S′, Φ(s) must be a subcomplete
sublattice of S′.
Since both Ψ and Ω, which assigns each s ∈ S′ the constant interval S′, are increasing on S, Φ = Ψ ∩ Ω is
increasing on S′.
Hence, S′ and Φ satisfy the assumptions of the theorem. Therefore, if we let b′ = ∧S′

e∈E′e, where E′ is the
set of fixed points of Φ on S′, then b′ ∈ E′ according to Steps 1 and 2. Since E′ = E ∩ S′, b′ is indeed the
smallest fixed point that is larger than or equal to b.

(5) Since b = ∨S
e∈Ue, for any e ∈ U , b ≥ e and hence b′ ≥ b ≥ e. That is, b′ is an upper bound of U in E.

For any upper bound b′′ of U inE, b′′ is also an upper bound of U is S, and hence we have b′′ ≥ b. Note that
b′ is the smallest fixed point that is larger than or equal to b, then b′′ ≥ b′.
Therefore b′ is the smallest upper bound of U in E, i.e., ∨E

t∈U t = b′ ∈ E.

21.13 Let (S,≥) be a lattice. An interval is a set of the form [x, y] ≜ {z ∈ S | x ≤ z ≤ y}.�

By the interval topology of a lattice (S,≥), we mean that defined by takeing the sets of the type (−∞, z] and [z,∞)

to form a sub-basis for closed sets.

21.14 Theorem: A lattice is complete if and only if it is compact in its interval topology.�

Proof. See Theorem 20 in Birkhoff (1967).

A sublattice of a complete lattice is closed in the lattice theoretical sense if and only if it is topologically closed in
the interval topology.
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21.2 Supermodular function

21.15 Suppose f is a real-valued function on a lattice (S,≥).

• If
f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y)

for all x and y in S, then f is called to be supermodular on S.

• If
f(x ∨ y) + f(x ∧ y) > f(x) + f(y)

for all noncomparable elements x and y in S, then f is called to be strictly supermodular on S.

21.16 Let S and T be two posets.

• A function f(x, t) : S × T → R has increasing differences in (x, t) if for all x ≥ x′, the difference f(x, t)−
f(x′, t) is increasing in t.

• A function f(x, t) : S × T → R has strictly increasing differences in (x, t) if for all x ≥ x′, the difference
f(x, t)− f(x′, t) is strictly increasing in t.

21.17 Proposition:

(a) (Theorem 4.1 in Topkis (1978)) Let (S,≥) be a nonempty lattice, and f : S → R a supermodular function on
S. Then argmaxx∈S f(x) is a sublattice of S.

(b) (Corollary 4.1 in Topkis (1978)) Let (S,≥) be a nonempty complete lattice, and f : S → R a supermodular
function on S which is upper semi-continuous. Then argmaxx∈S f(x) is a nonempty closed sublattice of S.

Proof. (a) For any y and z in argmaxx∈S f(x), since f is supermodular and y and z are in argmaxx∈S f(x), we
have 0 ≥ f(y∧ z)−f(z) ≥ f(y)−f(y∨ z) ≥ 0. Hence, y∧ z and y∨ z are in argmaxx∈S f(x). Therefore,
argmaxx∈S f(x) is a sublattice of S. (Hence itself a lattice)

(b) By the previous part, argmaxx∈S f(x) is a sublattice of S.

By Theorem 21.14, S is compact with the interval topology. Since f is upper semi-continuous, we have that
argmaxx∈S f(x) is nonempty and compact. By Theorem 21.14 again, argmaxx∈S f(x) is closed.

21.18 Topkis’smonotonicity theorem: Let (S,≥) be a lattice, andT a poset. Suppose f(x, t) : S×T → R is supermodular
in x ∈ S for fixed t ∈ T and has increasing differences in (x, t).

(a) (Lemma6.1 inTopkis (1978)) Suppose that t ≥ t′ andX ≥+ X ′, then argmaxx∈X f(x, t) ≥+ argmaxx∈X′ f(x, t′).

(b) (Theorem 6.1 in Topkis (1978), Theorem 5 in Milgrom and Shannon (1994)) In particular (when t = t′ and
X =+ X ′), the set of maximizers of f is a sublattice.

Proof. (a) By Theorem 21.17, argmaxx∈X f(x, t) is a sublattice for any sublattice X and t ∈ T . Choose y ∈
argmaxx∈X f(x, t) and z ∈ argmaxx∈X′ f(x, t′). SinceX ≥+ X ′, we have y ∧ z ∈ X ′ and y ∨ z ∈ X .

Since f(x, t) is supermodular in x ∈ S for fixed t ∈ T , we have

0 ≥ f(y ∨ z, t)− f(y, t) ≥ f(z, t)− f(y ∧ z, t).
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Since f(x, t) has increasing differences in (x, t),

f(z, t)− f(y ∧ z, t) ≥ f(z, t′)− f(y ∧ z, t′) ≥ 0.

Hence, f(y ∨ z, t) = f(y, t) and f(z, t′) = f(y ∧ z, t′), i.e., y ∨ z ∈ argmaxx∈X f(x, t) and y ∧ z ∈
argmaxx∈X′ f(x, t′). Therefore, argmaxx∈X f(x, t) ≥+ argmaxx∈X′ f(x, t′).

(b) Trivial.

21.19 Theorem: Let (S,≥) be a complete lattice, and T a poset. Suppose f(x, t) : S × T → R is supermodular in x ∈ S

for fixed t ∈ T and upper semi-continuous, and has increasing differences in (x, t). Then argmaxx∈S f(x, t) has
a smallest element s(t) ≜ inf argmaxx∈S f(x, t), and a largest element s̄(t) ≜ sup argmaxx∈S f(x, t), and s(t)
and s̄(t) are both increasing in t ∈ T .

Proof. By Theorem 21.17, for each t ∈ T , argmaxx∈S f(x, t) is a nonempty complete lattice, and hence has a
smallest element s(t) and a largest element s̄(t).

If t ≥ t′, then argmaxx∈S f(x, t) ≥+ argmaxx∈S f(x, t
′) by Theorem 21.18. By Lemma 21.10, s(t) and s̄(t) are

increasing.

21.3 Supermodular games

21.20 Model:

• N = {1, 2, . . . , n} is the set of players.

• Each player i ∈ N has a strategy set Si with typical element xi. Each strategy set Si comes with a partial
order ≥i.

• S = ×iSi endowed with product order, i.e., x ≥ x′ if and only if xi ≥i x
′
i for all i ∈ N .

• Player i’s payoff function is fi(xi, x−i).

• Player i’s best-response correspondence Ψi : S−i ↠ Si,

Ψi(x−i) = argmax
xi∈Si

fi(xi, x−i).

Ψ = ×iΨi : S ↠ S.

• The set of Nash equilibria E = {x ∈ S | x ∈ Ψ(x)}.

21.21 Theorem (Theorem 3.1 in Topkis (1979)): Suppose n is finite, and for each i ∈ N ,

• (Si,≥i) is a complete lattice;

• fi is supermodular in xi for fixed x−i;

• fi has increasing differences in (xi, x−i);

• fi is upper semi-continuous in xi for fixed x−i.
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Then the set of pure-strategy Nash equilibria of the game

Γ = ⟨N, (Si,≥i)i∈N , (fi)i∈N ⟩

is nonempty and has a largest equilibrium x̄ and a smallest equilibrium x.

Proof. ByTheorem21.19, supΨi and infΨi are increasing selections ofΨi, and therefore infΨ = (infΨ1, . . . , infΨn)

is an increasing selection of Ψ. From Tarski’s fixed-point theorem (Theorem 21.11), we have that x ≜ inf{x ∈ A |
infΨ(x) ≤ x} is a fixed point of infΨi, i.e., x = infΨ(x) ∈ Ψ(x), and hence x is a fixed point of Ψ.

In the following, we will show x = infE: for any y ∈ E, we have y ∈ Ψ(y) and y ≥ infΨ(y), and hence
y ≥ inf{x ∈ S | x ≥ infΨ(x)} = x.

21.22 Theorem (Theorem 2 in Zhou (1994)): Suppose n is finite, and for each i ∈ N ,

• (Si,≥i) is a complete lattice;

• fi is supermodular in xi ∈ Si;

• fi has increasing differences in (xi, x−i);

• fi is upper semi-continuous in xi for fixed x−i.

Then the set of pure-strategy equilibrium of the game

Γ = ⟨N, (Si,≥i)i∈N , (fi)i∈N ⟩

is nonempty complete lattice.

Proof. By Theorem 21.17, we have Ψi(x) is a closed sublattice in Si for every x ∈ S.

By Theorem 21.18, we have Ψi(x) is an increasing correspondence.

Then apply Theorem 21.12.
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Chapter 22
Large games 1: large strategic games

22.1 Example (Example 1 in Noguchi and Zame (2006)): We consider a large number of agents living on the banks of a
long river. We identify locations with the interval T = [0, 1], and assume the population is uniformly distributed
along the river, so the population measure τ is the Lebesgue measure.

There are two commodities, each perfectly divisible. Each agent is endowed with one unit of each good: e(t) ≡
(1, 1). Agents derive utility from their own consumption, but suffer a pollution externality from the consumption
of others who live upstream from them. If we choose directions so that upstream from smeans to the left of s, and
write f(t) = (f1(t), f2(t)) for the consumption of an agent located at t, then the externality experienced by an
agent located at s is

η(s, f) =

∫ s

0

f(t) dt.

Note that η is two-dimensional; write η = (η1, η2) for the components of η. The utility of an agent located at swho
consumes the bundle (x1, x2) when the consumption of all agents is described by f is

us(x1, x2, f) =
(
2− η1(s, f)

)
x21 +

(
2− η2(s, f)

)
x22.

In the individualistic framework, an equilibrium consists of prices p1, p2 (without loss, normalize so that p1+p2 =

1) and a consumption allocation f = (f1, f2) : T → R2
+ so that almost every agent optimizes in his/her budget set

and the market clears.

We claim that no such equilibrium exists.
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Chapter 23
Large games 2: large distributional games
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Chapter 24
Stochastic games
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