
MA1100 Tutorial

MA1100 Tutorial

Xiang Sun12

Department of Mathematics

November 12, 2010

1Email: xiangsun@nus.edu.sg
2Corrections are always welcome.



MA1100 Tutorial
Introduction

Self-Introduction

Self-Introduction

Name Sun Xiang (English) and 孙祥 (Chinese)
Third-year Ph.D. student in Department of Mathematics

Email xiangsun@nus.edu.sg

Mobile 9169 7677

Office S17-06-14, map

Social xiangsun_sunny (twitter),
xiangsun.sunny@hotmail.com (Windows Live Messenger),
xiangsun.sunny@gmail.com (Google Talk, Buzz, Google Reader),
http://www.facebook.com/xiangsun.sunny (facebook),
402197754 (QQ)

http://graduate.math.nus.edu.sg/~g0800878/images/map.jpg


MA1100 Tutorial
Introduction

Tutorial Introduction

Introduction

10 tutorials: 4 before mid-term test, and 6 after it.
Take attendance:

2 points for full attendance, and pro-rated for partial attendance;
Everyone need to print his/her signature, rather than a tick;
If you find some mistakes on the attendance sheet, please let me know.

Presentation: call for volunteers.
My tutorial style:

5–10 mins for reviewing concepts;
25–35 mins for tutorial questions;
0–10 mins for additional material.

Additional material: discuss questions in the past-year papers, some anecdotes
and histories.
Download: Tutorial slides and other material will be uploaded to my SkyDrive.

http://cid-75dd00f1e64cf3dc.office.live.com/browse.aspx/Teaching%20Assistance/2010-2011%5EJ%20Semester%201%5EJ%20MA1100
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Schedule of Tutorial 1

Review concepts:
Sets:

Set, sets relations, sets operations;
Partition of set;
Cartesian product of sets.

Logic:
Statement, open sentence;
Logic operators and their truth tables;
Necessary and sufficient condition.

Tutorial
Additional material:

Question 3 in Mid-term 2009–2010(I);
Resolve Russell’s paradox.
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Review

Sets

Notations {x ∈ U | p(x)}, x is a general element, p(x) is the condition in terms
of x, U is the universal set.

Empty set the set containing no elements, ∅ or { }.
Relations Subsets: A ⊆ B if every element of A is an element of B;

Equality: A = B if A ⊆ B and B ⊆ A;
Proper subsets: A $ B if A ⊆ B and A ̸= B.

Operations Power set: the power set of A is the set of all subsets of A,
P(A) = {S ⊆ U | S ⊆ A} (another notation: 2A);
Intersection: the intersection of A and B is the set of all
elements that are in both A and B,
A ∩ B = {x ∈ U | x ∈ A and x ∈ B};
Union: the union of A and B is the set of all elements that are
in A or in B, A ∪ B = {x ∈ U | x ∈ A or x ∈ B};
Complement: the complement of A is the set of all elements of
U that are not in A, Ā ≡ Ac = {x ∈ U | x /∈ A};
Relative complement: the relative complement of B w.r.t. A is
the set of all elements that are in A but not in B,
A− B = {x ∈ U | x ∈ A, x ̸∈ B}.
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Review

Sets (Cont.)

Cardinality For a finite set S, we use |S| to denote the number of elements in S,
which is called cardinal number or cardinality3.

Indexed Collection of Sets A1,A2,A3, . . . are an indexed collection of sets, N (not N)
is index set

Intersection:
∩

n∈N An = A1 ∩A2 ∩A3 ∩ · · · ;
Union:

∪
n∈N An = A1 ∪A2 ∪A3 ∪ · · · .

Partitions of Sets A is a non-empty set, and S is a collection of subsets of A. S is a
partition of A if

For each X ∈ S, X ̸= ∅, i.e. each part has at least one element;
For every X,Y ∈ S, if X ̸= Y, then X ∩Y = ∅;
The union of all elements in the collection S is equal to A.

Cartesian Products of Sets The Cartesian product4 of A and B:
A× B = {(a, b) | a ∈ A, b ∈ B}, where (a, b) is an ordered pair.

3We will redefine “cardinality” in chapter 10, Chartrand’s book.
4The Cartesian product is named after René Descartes whose adjectival form is “Cartesian”.
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Review

Logic
Statements A statement is a sentence that is either true or false (but not both);

We denote a statement by capital letters, usually P,Q,R, . . .;
Open Sentences An open sentence is a (mathematical) sentence that involves

variables; We denote an open sentence by capital letters with the
variables involved, such as P(n),Q(x, y);

Logic operators Let P and Q be two statements,
Conjunction P ∧Q, it is true only when both P and Q are true;
Disjunction P ∨Q, it is false only when both P and Q are false;

Negating ∼ P, if P is true, then ∼ P is false, and vice versa;
Implication P⇒ Q, the rule is false only when the rule is violated.

Truth tables

P Q ∼ P P ∧Q P ∨Q P⇒ Q
T T F T T T
T F F F T F
F T T F T T
F F T F F T

Some forms of Implication The following sentences are equivalent:
S⇒ T;
If S then T;
T if S;
S only if T;

S implies T;
T whenever S;
S is sufficient for T;
T is necessary for S.
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Tutorial

Exercise (1-1)
The set of even numbers can be described by means of set builder notation
{x ∈ Z | x = 2n where n ∈ Z} and alternative set notation {2n | n ∈ Z}. Describe the
following sets in a similar manner.
(a) A = {. . . ,−18,−13,−8,−3, 2, 7, 12, 17, . . .};
(b) B = {2, 5, 10, 17, 26, . . .};
(c) C = {1, 3, 6, 10, 15, 21, 28, . . .}.

Method
Find the general form of the elements by “Observing” and “Experience”.

Solution of (a).
The sequence “. . . ,−18,−13,−8,−3, 2, 7, 12, 17, . . .” is an arithmetic sequence and
the common difference of successive members is 5, then

A = {x ∈ Z | x = 5n− 3 where n ∈ Z} = {5n− 3 | n ∈ Z}
= {x ∈ Z | x = 5n + 2 where n ∈ Z} = {5n + 2 | n ∈ Z}.
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Tutorial

Solution of (b,c).

(b) In the sequence “2, 5, 10, 17, 26, . . .”, the difference of the (n + 1)-th term and
the n-th term is 2n + 1, hence the n-th term is

2 + 3 + 5 + 7 + · · ·+ (2n− 1)︸ ︷︷ ︸
(n−1) terms

= 2 +
3 + (2n− 1)

2
(n− 1) = n2 + 1.

Therefore, B = {x ∈ Z | x = n2 + 1 where n ∈ N} = {n2 + 1 | n ∈ N};
(c) In the sequence “1, 3, 6, 10, 15, 21, 28, . . .”, the difference of the (n + 1)-th term

and the n-th term is n, hence the n-th term is

1 + 2 + 3 + 4 + · · ·+ n︸ ︷︷ ︸
n terms

=
(1 + n)n

2
.

Therefore, C =
{

x ∈ Z | x =
n(n+1)

2
where n ∈ N

}
=
{

n(n+1)
2
| n ∈ N

}
.
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Tutorial

Exercise (1-2)
Determine the following power sets and their cardinalities:
(a) P(P(∅)); (b) P(P({1})).

Recall

Power set: the set of all subsets of A, P(A) = {S ⊆ U | S ⊆ A};
Cardinality: the number of elements of set S, denoted as |S|;
|P(S)| = 2|S|.

Method
Apply definition.

Solution.

(a) For ∅, there is only one subset, ∅, i.e., P(∅) = {∅}.
For {∅}, its all subsets are ∅ and {∅}, i.e., P({∅}) = {∅, {∅}}. Therefore,

P
(
P(∅)

)
=
{
∅, {∅}

}
,
∣∣P(P(∅))∣∣ = 2(= 22

|∅|
).

(b) For {1}, its all subsets are ∅ and {1}, then P({1}) =
{
∅, {1}

}
;

For
{
∅, {1}

}
, its all subsets are ∅, {∅}, {{1}}, and

{
∅, {1}

}
, therefore

P
(
P({1})

)
=
{
∅, {∅}, {{1}}, {∅, {1}}

}
,
∣∣P(P({1}))∣∣ = 4(= 22

|{1}|
).
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Tutorial

Exercise (1-3)
Let (a, b) be an open interval of real numbers and c ∈ (a, b).

(i) Write down the largest possible open interval I centered at c such that
I ⊂ (a, b). (Give your answer in terms of a, b, c.)

(ii) For the interval I in (i), write down the relative complement (a, b)− I.
(iii) Is it possible to find a partition of (a, b) consisting of exactly two open intervals?

Why?

Recall
Open interval (a, b) is the set (a, b) = {x ∈ R | a < x < b}.

Solution.

a b

c

2c− a

(a, 2c− a)

x a b

c

(a, b)

x a b

c

2c− b

(2c− b, b)

x

(i–ii) (1) If c < b+a
2 , then I = (a, 2c − a) and (a, b) − I = [2c − a, b);

(2) If c = b+a
2 , then I = (a, b) and (a, b) − I = ∅;

(3) If c > b+a
2 , then I = (2c − b, b) and (a, b) − I = (a, 2c − b].

(iii) No. Let {A,B} be a partition of (a, b). If A is an open interval, then
B = (a, b)−A will be (union of) half-open interval(s).
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Tutorial

Exercise (1-4)
Give an example of a partition of N into 3 subsets S1,S2,S3 that satisfy each of the
following conditions (if possible)
(a) S1,S2,S3 finite;
(b) S1,S2 finite, S3 infinite;

(c) S1 finite, S2,S3 infinite;
(d) S1,S2,S3 infinite.

Solution.

(a) Impossible: if N = S1 ∪ S2 ∪ S3, then N is a finite set which is not correct;
(b) S1 = {1}, S2 = {2}, S3 = {3, 4, . . .};
(c) S1 = {1}, S2 = {3, 5, 7, . . .} (all odd numbers greater than 1), S3 = {2, 4, 6, . . .}

(all even numbers greater than 1);
(d) S1 = {3n | n ≥ 1}, S2 = {3n + 1 | n ≥ 0}, and S3 = {3n + 2 | n ≥ 0}.
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Tutorial

Exercise (1-5)
For each n ∈ N, define

An = {(x, y) ∈ R× R | x2 + y2 ≤ n}, Bn = {(x, y) ∈ R× R | x2 + y2 ≥ n}.

By interpreting each of the An and Bn as a geometrical object in the Cartesian plane
R2, determine
(a) ∪k

n=1An, ∩k
n=1An, ∪n∈NAn and ∩n∈NAn;

(b) ∪k
n=1Bn, ∩k

n=1Bn, ∪n∈NBn and ∩n∈NBn.

Recall

A ∩ B is the set of all elements that are in both A and B;
A ∪ B is the set of all elements that are in A or in B;∩

n∈N An = A1 ∩A2 ∩A3 ∩ · · · ;∪
n∈N An = A1 ∪A2 ∪A3 ∪ · · · .
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Tutorial

Solution of (a).

A1

x

y

A2

x

y

A3

x

y

A4

x

y

· · ·
(1) It is obvious that An ⊂ An+1. Hence ∪k

n=1An = Ak, ∩k
n=1An = A1.

(2) For any point p ∈ R2, we can find a circle containing p, say An, hence
∪n∈NAn = R2.

(3) Since A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · , we have ∩n∈NAn = A1.
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Tutorial

Solution of (b).

B1

x

y

B2

x

y

B3

x

y

B4

x

y

. . .

(1) It is obvious that Bn ⊃ Bn+1. Hence ∪k
n=1Bn = B1, ∩k

n=1Bn = Bk.
(2) Since B1 ⊃ B2 ⊃ B3 ⊃ · · · ⊃ Bn ⊃ Bn+1 ⊃ · · · , we have ∪n∈NBn = B1.
(3) For any point p ∈ R2, we can find a circle x2 + y2 = n whose interior contains p,

then Bn does not contain p. Hence ∩n∈NBn = ∅.
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Tutorial

Exercise (1-6)
For the open sentence Q(A) : A is a proper subset of {1, 2, 3, 4} over the domain
S = P({2, 3, 4, 5}), determine
(a) all A ∈ S for which Q(A) is true.
(b) all A ∈ S for which Q(A) is false.
(c) How will the answers above change if we remove the word “proper” from the

sequence Q(A)?

Method
Substitute A with every possible subset of {2, 3, 4, 5}, and see whether it is a (proper)
subset of {1, 2, 3, 4}.

Solution.

(a–b)
S =

{
∅, {2}, {3}, {4}, {5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5},
{4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {2, 3, 4, 5}

}
,

where the red elements of S are the solutions of (a), other elements are the
solutions of (b);

(c) For any subset of {2, 3, 4, 5}, it does not contain {1}. Hence, the answer will still
be the same.
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Tutorial

Exercise (1-7)
Let P(x) stand for “x is an even integer” and let Q(x) stand for “x2 is an even
integer”. Express the implication P⇒ Q in English using
(a) The “if then” form of the implication;
(b) The word “implies”;
(c) The “only if” form of the implication;
(d) The phrase “is necessary for”;
(e) The phrase “is sufficient for”.

Recall
Refer to page 40 of Chartrand’s book.

Solution.

(a) If the integer x is even, then x2 is even;
(b) The integer x is even implies that x2 is even;
(c) The integer x is even only if x2 is even;
(d) The integer x2 is even is necessary for x to be even;
(e) The integer x is even is sufficient for x2 to be even.
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Tutorial

Exercise (1-8)
Suppose that P and Q are statements for which P⇒ Q is false. What conclusion (if
any) can be made about the truth value of each of the following statements?
(a) (∼ P)⇒ Q; (b) Q⇒ P; (c) P ∨Q; (d) P ∧Q.

Recall
Truth tables: figure 2.2, 2.3, 2.4, 2.5 of Chartrand’s book.

Solution.
Using truth table, from P⇒ Q being false, we know that P is true and Q is false. So
we have
(a) (∼ P)⇒ Q is true;
(b) Q⇒ P is true;

(c) P ∨Q is true;
(d) P ∧Q is false.
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Additional material

Exercise (Question 3 in Mid-term 2009–2010(I))
Let An =

{
k ∈ N | (n−1)n

2
+ 1 ≤ k ≤ n(n+1)

2

}
for every n ∈ N. Answer the following

questions:
(i) What is the cardinality |An|?
(ii) What are ∪n∈NAn and ∩n∈NAn?
(iii) Give an example of a set B such that |B ∩An| = 1 for every n ∈ N. Express your

answer using set notation.
(iv) Give a partition S of N such that S is an infinite set and every element of S has a

different cardinality from each other.
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Additional material

Additional material: Russell’s paradox

Exercise
Usually, for any formal criterion, a set exists whose members are those objects (and
only those objects) that satisfy the criterion, i.e. {x ∈ U | p(x)} is a set. Whether
does there exist an object with the form {x ∈ U | p(x)}, which is not a set?

Solution.
This question is disproved by a set containing exactly the sets that are not members of
themselves. If such a set qualifies as a member of itself, it would contradict its own
definition as a set containing sets that are not members of themselves. On the other
hand, if such a set is not a member of itself, it would qualify as a member of itself by
the same definition. This contradiction is Russell5’s paradox.
Let A = {X ∈ U | X /∈ X}, U is the collection of all sets.

If A ∈ A, then A does not satisfy X /∈ X, i.e. A /∈ A, contradiction;
If A /∈ A, then A satisfies X /∈ X, i.e. A ∈ A, contradiction.

Therefore, the definition is not well-defined, and this error is from U (implies that U is
not a set).

5Bertrand Arthur William Russell (May 18, 1872–February 2, 1970), a British philosopher, logician,
mathematician, historian, atheist, socialist, pacifist, and social critic.
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Additional material

Additional material: Russell’s paradox (Cont.)

Exercise
How to resolve this problem?

Solution.

Roughly speaking, the method is giving some restrictions on the definition of set.
Russell’s paradox (also known as Russell’s antinomy), discovered by Russell in
1901.
In 1908, two ways of avoiding the paradox were proposed, Russell’s type theory
and Ernst Zermelo6’s axiomatic set theory, the first constructed axiomatic set
theory.
Zermelo’s axioms evolved into the now-canonical Zermelo-Fraenkel7 set theory
(ZF).
For more information, please wiki: Russell’s paradox.

6Ernst Friedrich Ferdinand Zermelo (July 27, 1871–May 21, 1953), a German mathematician.
7Abraham Halevi (Adolf) Fraenkel (February 17, 1891–October 15, 1965), an Israeli mathematician.

http://en.wikipedia.org/wiki/Russell%27s_paradox
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Change log

Page 7: Add a item “some forms of implication”;
Page 8: Revise typos: “5n + 3” to “5n− 3”, “5n− 2” to “5n + 2”;
Page 11: Revise a typo: “ b−a

2
” to “ b+a

2
”;

Page 16: Give more interpretation for part (c).
Last modified: 20:39, August 26, 2010.



MA1100 Tutorial
Tutorial 2: Logic

Schedule of Tutorial 2

Review concepts: Logic
Converse, contrapositive, inverse, biconditional;
Logical equivalence, operations of logic operators;
Universal quantifier, existential quantifier, 2 quantifiers, negation with quantifier.

Tutorial
Additional material: Relation between 5 logic operators.
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Review

Logic: Concepts
Hypothesis, conclusion In the implication P⇒ Q, P is called hypothesis or premise,

and Q is called conclusion.
Converse The implication Q⇒ P is called the converse of P⇒ Q.

Contrapositive (∼ Q)⇒ (∼ P) is called the contrapositive of P⇒ Q.
Inverse The implication (∼ P)⇒ (∼ Q) is called the inverse of P⇒ Q.

(Exercise 2.34)
Tautology A logical expression that is always true is called a tautology.

Contradiction A logical expression that is always false is called a contradiction.
Logical Equivalence Two logical expressions are said to be logically equivalent to each

other if they have the same truth value. Notation: ≡.
Converse vs Contrapositive vs Inverse

P⇒ Q
not logically equivalent

converse Q⇒ P

contrapositive, logically equivalent

∼ Q⇒∼ P

wwwwwwwww
not logically equivalent

converse ∼ P⇒∼ Q

wwwwwwwww
Biconditional P if and only if Q, that is P⇔ Q.
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Review

Logic: Properties

Commutative Laws: P ∨Q ≡ Q ∨ P, and P ∧Q ≡ Q ∧ P;
Associative Laws:

P∨Q∨R ≡ P∨ (Q∨R) ≡ (P∨Q)∨R, P∧Q∧R ≡ P∧ (Q∧R) ≡ (P∧Q)∧R;

Distributive Laws:

P ∨ (Q ∧ R) ≡ (P ∨Q) ∧ (P ∨ R), P ∧ (Q ∨ R) ≡ (P ∧Q) ∨ (P ∧ R);

De Morgan8’s Laws:

∼ (P ∧Q) ≡ (∼ P) ∨ (∼ Q), ∼ (P ∨Q) ≡ (∼ P) ∧ (∼ Q);

Implication as disjunction (Thm 2.17): P⇒ Q ≡ (∼ P) ∨Q;
Negation of implication (Thm 2.21): ∼ (P⇒ Q) ≡ P ∧ (∼ Q);
Implication with disjunction: P⇒ (Q ∨ R) ≡ (P ∧ (∼ Q))⇒ R.

8Augustus De Morgan (June 27, 1806–March 18, 1871), a British mathematician and logician.
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Review

Logic: Quantifiers

The phrase “for each”, “for every”, “for all”, …is called a universal quantifier.
Notation: ∀, say “for all”.
The phrase “there exists”, “there is”, …is called a existential quantifier. Notation:
∃, say “there exist”.

∀ vs ∃:

P(x) true for (∀x)P(x) (∃x)P(x)
all the x True True

only some x False True
none of the x False False
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Review

Logic: Quantifiers (Cont.)

Two quantifiers:
True False

(∀x)(∀y)P(x, y) P(x, y) is true for all x and all y P(x, y) is false for some x or some y
(∃x)(∃y)P(x, y) P(x, y) is true for some x and some y P(x, y) is false for all x and y
(∀x)(∃y)P(x, y) For any x, P(x, y) is true for some y For some x, P(x, y) is false for all y
(∃x)(∀y)P(x, y) For some x, P(x, y) is true for all y For any x, P(x, y) is false for some y
(∀y)(∃x)P(x, y) For any y, P(x, y) is true for some x For some y, P(x, y) is false for all x
(∃y)(∀x)P(x, y) For some y, P(x, y) is true for all x For any y, P(x, y) is false for some x
Negation with quantifier:

∼ (∀x)P(x) ≡ (∃x)(∼ P(x)),
∼ (∃x)P(x) ≡ (∀x)(∼ P(x)),

∼ (∀x)(∃y)P(x, y) ≡ (∃x)(∀y)(∼ P(x, y)),
∼ (∃x)(∀y)P(x, y) ≡ (∀x)(∃y)(∼ P(x, y)),
∼ (∀x)(∀y)P(x, y) ≡ (∃x)(∃y)(∼ P(x, y)),
∼ (∃x)(∃y)P(x, y) ≡ (∀x)(∀y)(∼ P(x, y)).
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Exercise (2-1)
Consider the implication: For all integers x, if x = 2, then x2 = 4 (S).
(a) Write down the hypothesis P(x) and conclusion Q(x) of S.
(b) Substitute x by 2, −2 and 3. Determine the truth value of P(x)⇒ Q(x)9

respectively.
(c) Is the universal implication S true? Explain your answer briefly.
(d) Write down the converse of S and determine whether it is true or false.
(e) Write down the contrapositive of S and determine whether it is true or false.

Solution of (a).

(a) Hypothesis P(x) : x = 2 and conclusion Q(x) : x2 = 4.

9Q(y) should be Q(x) in tutorial set 2.
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Solution of (b–e).

(b) When x = 2, P(2) and Q(2) are true, hence P(2) ⇒ Q(2) is true;
When x = −2, P(−2) is false, and Q(−2) is true, hence P(−2) ⇒ Q(−2) is true;
When x = 3, P(3) and Q(3) are false, hence P(3) ⇒ Q(3) is true.

(c) Yes.
By part (b), for x = 2, we have P(2) ⇒ Q(2) is true;
For all other value of x, the hypothesis P(x) is false. Whatever the truth value of the
conclusion Q(x) is, we have P(x) ⇒ Q(x) is true.

Hence the universal statement ∀x ∈ Z,P(x)⇒ Q(x) is true.
(d) Converse of S is “For all integers x, if x2 = 4, then x = 2”. This is false.

Counterexample: x = −2.
(e) Contrapositive of S is “For all integers x, if x2 ̸= 4, then x ̸= 2”. This is true,

since contrapositive is equivalent to the original conditional statement S.

Remark
For parts (d) and (e), we do not switch quantifiers when we take the converse or
contrapositive of a quantified implication.
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Tutorial

Exercise (2-2)
Let x be a real number. Consider the following implication:

If x3 − x = 2x2 + 6, then x = −2 or x = 3 (T).

Which of the following statements have the same meaning as T and which ones are
negations of T. Explain your answers briefly.
(a) If x ̸= −2 and x ̸= 3, then x3 − x ̸= 2x2 + 6.
(b) If x = −2 or x = 3 then x3 − x = 2x2 + 6.
(c) If x ̸= −2 or x ̸= 3, then x3 − x ̸= 2x2 + 6.
(d) If x3 − x = 2x2 + 6 and x ̸= −2, then x = 3.
(e) x3 − x = 2x2 + 6, x ̸= −2 and x ̸= 3.
(f) x3 − x ̸= 2x2 + 6 or x = −2 or x = 3.
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Tutorial

Solution (Using truth table).
Let P : x3 − x = 2x2 + 6, Q : x = −2, and R : x = 3, then the given statement T is
P⇒ (Q ∨ R).
(a) This statement is ((∼ Q) ∧ (∼ R))⇒ (∼ P) =∼ (Q ∨ R)⇒ (∼ P). It is the

contrapositive of the given statement T and hence is equivalent to it.
(b) This statement is (Q ∨ R)⇒ P. It is the converse of the given statement T, and

hence is not equivalent to the given statement and not the negation of it.
(c–f) The statements in part (c–f) are ((∼ Q) ∨ (∼ R))⇒ (∼ P), (P ∧ (∼ Q))⇒ R,

P ∧ (∼ Q) ∧ (∼ R), and (∼ P) ∨Q ∨ R, respectively.
P T T T T F F F F
Q T T F F T T F F
R T F T F T F T F

T : P⇒ (Q ∨ R) T T T F T T T T
(c): ((∼ Q) ∨ (∼ R))⇒ (∼ P) T T T T F T T T

(d): (P ∧ (∼ Q))⇒ R T T T F T T T T
(e): P ∧ (∼ Q) ∧ (∼ R) F F F T F F F F

(f): (∼ P) ∨Q ∨ R T T T F T T T T
To summarize: The statements in parts (a), (d) and (f) are equivalent to the given
statement T, and the statement in part (e) is the negation of T.
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Solution (Using algebra).
Let P : x3 − x = 2x2 + 6, Q : x = −2, and R : x = 3, then the given statement T is
P⇒ (Q ∨ R).
(a) This statement is ((∼ Q) ∧ (∼ R))⇒ (∼ P) =∼ (Q ∨ R)⇒ (∼ P). It is the

contrapositive of the given statement T and hence is equivalent to it.
(d)

P⇒ (Q ∨ R) ≡ (P ∧ (∼ Q))⇒ R Implication with disjunction

(e)

∼ (P⇒ (Q ∨ R)) ≡ P ∧ (∼ (Q ∨ R)) Negation of implication
≡ P ∧ (∼ Q∧ ∼ R) De Morgan’s law
≡ P ∧ (∼ Q) ∧ (∼ R) Associative law

(f)

P⇒ (Q ∨ R) ≡ (∼ P) ∨Q ∨ R Implication as disjunction
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Exercise (2-3)
Write in words a meaningful negation of each of the following statements.
(a) If we do not win the first game, then we will not play a second game.
(b) If you graduate from college, then you will get a job or you will go to graduate

school.
(c) If you clean your room or wash the dishes, then you can go to see a movie.

Recall

Negation of implication: ∼ (P⇒ Q) ≡ P ∧ (∼ Q);
De Morgan’s Laws: ∼ (P ∧Q) ≡ (∼ P) ∨ (∼ Q), ∼ (P ∨Q) ≡ (∼ P) ∧ (∼ Q).

Solution.

(a) The negation is “We do not win the first game and we will play a second game”.
(b) The negation is “You graduate from college, and you will not get a job and you

will not go to graduate school”.
(c) The negation is “Clean your room or wash the dishes, and you cannot go to see a

movie”.
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Exercise (2-4)
Lord Hazelton was murdered. A detective was called in to solve the murder mystery.
He determines some facts (true statements) listed below. Is it possible for the
detective to deduce the identity of the murderer from the facts? Explain your
reasoning.

(i) Lord Hazelton was killed by a blow on the head with a brass candlestick.
(ii) Either Lady Hazelton or a maid, Sara, was in the dining room at the time of the

murder.
(iii) If the cook was in the kitchen at the time of the murder, then the butler killed

Lord Hazelton with a fatal dose of strychnine.
(iv) If Lady Hazelton was in the dining room at the time of the murder, then the

Chauffer killed Lord Hazelton.
(v) If the cook was not in the kitchen at the time of the murder, then Sara was not

in the dining room when the murder was committed.
(vi) If Sara was in the dining room at the time the murder was committed, then the

wine steward killed Lord Hazelton.
(vii) There was only one cause of death.
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Solution.
First we represent the following (simple) statements by alphabetical letters:
A Lord Hazelton was killed by a blow on the head with a brass candlestick.
B Lady Hazelton was in the dining room at the time of the murder.
C Maid Sara was in the dining room at the time of the murder.
D The cook was in the kitchen at the time of the murder.
E The butler killed Lord Hazelton with a fatal dose of strychnine.
F The Chauffer killed Lord Hazelton.
G The wine steward killed Lord Hazelton.
H There was only one cause of death.
Then the facts (i) to (vii) can be represented by:

(i) A;
(ii) B ∨ C;

(iii) D⇒ E;
(iv) B⇒ F;

(v) ∼ D⇒∼ C;
(vi) C⇒ G;

(vii) H.

Since (i) and (vii) are true, we deduce that E is false.
Then by (iii), we deduce that D is false.
Then by (v), we deduce that C is false.
Then by (ii), we deduce that B is true.
Then by (iv), we deduce that F is true.

Hence the Chauffer killed Lord Hazelton.
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Exercise (2-5)
Express each of the following statements in symbolic form using quantifiers ∀ or ∃.
(a) Every real number is positive, negative or zero.
(b) The integer 13 is not a square.
(c) There is at least one real number whose square is 13.
(d) No even numbers are prime.
(e) Not all odd numbers are prime.

Solution.

(a) (∀x ∈ R)((x > 0) ∨ (x < 0) ∨ (x = 0));
(b) (∀x ∈ Z)(13 ̸= x2);
(c) (∃x ∈ R)(13 = x2);
(d) ∼ (∃x ∈ Z)((x is even) ∧ (x is a prime)).

Alternative solutions: (∀x ∈ Z)((x is even)⇒ (x is not a prime)), or
(∀x ∈ {2n | n ∈ Z})(x is not a prime);

(e) (∃x ∈ Z)((x is odd) ∧ (x is not a prime)).
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Exercise (2-6)
Write the negation of each of the following quantified statements in symbolic form
without using the negation symbol.
(a) (∀a ∈ Z)(a is even or a is odd)
(b) (∃x ∈ Q)(

√
2 < x <

√
3)

(c) (∀a ∈ Z)(If a2 is odd, then a is odd)
(d) (∀x ∈ R)(∃y ∈ R)(x2 + y2 = 1)

Recall

Roughly speaking, ∼ changes ∀ to ∃, and ∃ to ∀;
Negation of implication: ∼ (P⇒ Q) ≡ P ∧ (∼ Q);
De Morgan’s Laws: ∼ (P ∧Q) ≡ (∼ P) ∨ (∼ Q), ∼ (P ∨Q) ≡ (∼ P) ∧ (∼ Q).

Solution.

(a) (∃a ∈ Z)((a is odd) ∧ (a is even));
(b) (∀x ∈ Q)((x ≤

√
2) ∨ (x ≥

√
3));

(c) (∃a ∈ Z)((a2 is odd) ∧ (a is even));
(d) (∃x ∈ R)(∀y ∈ R)(x2 + y2 ̸= 1).
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Exercise (2-7)
Consider the open sentence P(x, y) : x = 2y where the variables represent integers.
There are six different ways to quantify P(x, y) into a statement. Write down all the
six statements and determine whether each is true or false. Give brief explanations for
your answers.

Recall
Truth tables of 2-quantifier implications.

Solution.
The 6 statements are as follows:

(∀x ∈ Z)(∀y ∈ Z)(x = 2y): False. Counterexample x = 1, y = 2;
(∃x ∈ Z)(∃y ∈ Z)(x = 2y): True. Take x = 2, y = 1;
(∀x ∈ Z)(∃y ∈ Z)(x = 2y): False. Counterexample x = 3. Then 3 ̸= 2y for any
integer y;
(∃x ∈ Z)(∀y ∈ Z)(x = 2y): False. We cannot find any fixed integer x that is
twice of every integer y;
(∀y ∈ Z)(∃x ∈ Z)(x = 2y): True. For any integer y, simple let x = 2y, which is
an integer;
(∃y ∈ Z)(∀x ∈ Z)(x = 2y): False. We cannot find any fixed integer y that is half
of every integer x.



MA1100 Tutorial
Tutorial 2: Logic

Tutorial

Exercise (2-8)
Determine whether each of the following biconditional statements is true or false. If it
is false, “weaken” it to an implication which is true.
(a) An integer is an even square if and only if it is divisible by 4.
(b) A square integer is even if and only if it is divisible by 4.

Solution.
(a) False.

For the “if” part, it is false, and 8 is a counterexample;
For the “only if” part, since x is in the form (2n)2, it will be divisible by 4.

We will weaken the biconditional statement to the “only if” part: An integer is an
even square only if it is divisible by 4.

(b) True.
For the “if” part, it is trivial that a integer is even if it is divisible by 4;
For the “only if” part, since square integer x is even, x will be an even square, and hence
x will be divisible by 4.
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Additional material
Exercise (Question 3 in Mid-term 2009–2010(I))
Let An =

{
k ∈ N | (n−1)n

2
+ 1 ≤ k ≤ n(n+1)

2

}
for every n ∈ N. Answer the following

questions:
(i) What is the cardinality |An|?
(ii) What are ∪n∈NAn and ∩n∈NAn?
(iii) Give an example of a set B such that |B ∩An| = 1 for every n ∈ N. Express your

answer using set notation.
(iv) Give a partition S of N such that S is an infinite set and every element of S has a

different cardinality from each other.

Solution.

(i) |An| = n(n+1)
2
−
(

(n−1)n
2

+ 1
)
+ 1 = n;

(ii) Since there is no common element in An and An+1, ∩n∈NAn = ∅; For any
positive integer x, we can find an integer n, such that (n−1)n

2
+ 1 ≤ x ≤ n(n+1)

2
,

i.e. x ∈ An. Hence ∪n∈NAn = N;

(iii) B =
{

n(n+1)
2
| n ∈ N

}
;

(iv) S = {An | n ∈ N}.
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Additional material: Relation between logic operators

Exercise

(a) Could you use ∼ and ∧ to equivalently represent ∨, ⇒ and ⇔?
(b) Could you use ∼ and ∨ to equivalently represent ∧, ⇒ and ⇔?
(c) Could you use ∼ and ⇒ to equivalently represent ∧, ∨ and ⇔?
(d) Could you use ∼ and ⇔ to equivalently represent ∧, ∨ and ⇒?
(e) Could you use ∨, ∧, ⇒ and ⇔ to equivalently represent ∼?
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Additional material: Relation between logic operators (Cont.)

Solution.
(a) Yes.

P ∨ Q ≡∼ ((∼ P) ∧ (∼ Q));
P ⇒ Q ≡ (∼ P) ∨ Q ≡∼ (P ∧ (∼ Q));
P ⇔ Q ≡ (P ⇒ Q) ∧ (Q ⇒ P) ≡∼ (P ∧ (∼ Q))∧ ∼ (Q ∧ (∼ P));

(b) Yes.
P ∧ Q ≡∼ ((∼ P) ∨ (∼ Q));
P ⇒ Q ≡ (∼ P) ∨ Q;
P ⇔ Q ≡ (P ⇒ Q) ∧ (Q ⇒ P) ≡ ((∼ P) ∨ Q) ∧ ((∼ Q) ∨ P);

(c) Yes.
P ∧ Q ≡∼ (P ⇒ (∼ Q));
P ∨ Q ≡ (∼ P) ⇒ Q;
P ⇔ Q ≡ (P ⇒ Q) ∧ (Q ⇒ P) ≡∼ ((P ⇒ Q) ⇒ (∼ (Q ⇒ P)));

(d) No.
(e) No.

Remark
See Section 1.3.7 in 数理逻辑（汪芳庭，中国科学技术大学出版社，1990）.
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Change log

Page 31: Revise a typo: “the statements in parts (b) and (e) are the negation of
T” to “the statement in part (e) is the negation of T”;
Page 32: Add another solution based on algebra method;
Page 36: Revise the solution for part (d);
Page 39: Give more details for the solutions.

Last modified: 20:39, August 30, 2010.
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Schedule of Tutorial 3

Review concepts: Proof
Definition, axiom, theorem, proposition;
Direct proof, proof by contrapositive, proof by cases, disjunction in conclusion;
Parity, divisibility, congruence;
Abstract value, triangle inequality.

Tutorial
Additional material:

Question 2(a) in Mid-term 2007–2008(I);
Question 4 in Mid-term 2008–2009(I);
Properties of (Z,+, ·).
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Review

Proof: True statements and Proof methods

True statements Definition: Giving the precise meaning of a word or phase that
represents some object, property or other concepts.
Axiom: Basic properties that are regarded as true statement
without needing a proof is called an axiom.
Theorem, lemma, corollary, proposition (need proofs).
Axioms, Definitions ⇒ Theorems, Lemmas, Propositions.

Proof methods Direct proof: Starting from hypothesis P, using some true
statements to get conclusion Q.
Proof by contrapositive: P⇒ Q ≡ (∼ Q)⇒ (∼ P).
Proof by cases: for convenience, we usually split the assumption
to several cases, and then prove every case.
Disjunction in conclusion:
(P⇒ (Q ∨ R)) ≡ ((P ∧ (∼ Q))⇒ R).
Advantage: more conditions.
Proving biconditionals: P⇔ Q ≡ (P⇒ Q) ∧ (Q⇒ P).
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Review

Integers (Closure, Parity)

Basic properties of (Z,+, ·):
Identity: n + 0 = n and n · 1 = n;
Inverse: n+(−n) = 0, but the inverse for multiplication does not exist except n = ±1;
Commutative: n + m = m + n and m · n = n · m;
Associative: (l + m) + n = l + (m + n) and (l · m) · n = l · (m · n);
Distributive: l · (m + n) = l · m + l · n, and (l + m) · n = l · n + m · n.

Closure: Z is closed under
{

addition m + n
multiplication m · n

∈ Z for any m,n ∈ Z.

Parity: n is
{

odd
even

, iff there exists an integer m, such that n =

{
2m + 1

2m
.

There are some facts:
odd ± odd = even, odd ± even = odd, even ± even = even (By definition);
n is even iff n2 is even (Theorem 3.12);
n is odd iff n2 is odd (Contrapositive of Theorem 3.12);
ab is even iff a is even or b is even (Theorem 3.17);
ab is odd iff a is odd and b is odd (Contrapositive of Theorem 3.17).
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Integers (Divisibility)

Divisibility: m divides n if there exists an integer q, such that n = mq. Notation:
m | n, and we say that m is divisor.
Negation: m does not divide n if for any integer q, n ̸= mq. Notation: m - n.
Congruence: Let a, b and n be integers with n ≥ 2. If n divides a− b, we say that
a is congruent to b modulo n. Notation: a ≡ b mod n.
Relation:

a ≡ b mod n, iff n | (a − b), iff a − b = nk for some integer k.
Let a and n be integers with n ≥ 2, then a ≡ 0 mod n iff n | a.

Division Algorithm10: Given two integers a and d, with d ̸= 0. There exist unique
integers q and r such that a = qd + r and 0 ≤ r < |d|, where |d| denotes the
absolute value of d. q is called the quotient, r is called the remainder, d is called
the divisor, and a is called the dividend.
That is, for any integers a and d (here we assume that d is positive), we have
that a can be expressed as a = qd, or a = qd + 1, . . . , or a = qd + (d− 1) for
some integer q.
For example, let d = 3, then every integer x can be expressed as x = 3q, or
x = 3q + 1, or x = 3q + 2 for some integer q.

10See Theorem 11.4 on page 247, Chartrand’s textbook.
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Review

Real Numbers

Absolute value: |x| =
{

x, if x ≥ 0;

−x, if x < 0.

Triangle inequality: |x + y| ≤ |x|+ |y|.

Proof.
By definition, we have −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|.
Combining these inequalities, we obtain −(|x| + |y|) ≤ x + y ≤ |x| + |y|
Also by definition, we have |x + y| ≤ |x| + |y|.

Triangle inequality: |x− y| ≥ |x| − |y|.
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Exercise (3-1)
Let n be an integer. Use the definitions of even and odd integers to prove that
following statements:
(a) If n is even, then n3 is even.
(b) If n3 is even, then n is even.
(c) The integer n is even if and only if n3 is even.
(d) The integer n is odd if and only if n3 is odd.

Proof.

(a) Let n be even. So there exists an integer k such that n = 2k. Then
n3 = (2k)3 = 8k3 = 2(4k3). Since 4k3 is an integer, we obtain that n3 is even.

(b) It suffices to show the contrapositive: If n is odd, then n3 is odd.
Let n be odd. So there exists an integer k such that n = 2k + 1. Then
n3 = (2k + 1)3 = 8k3 + 12k2 + 6k + 1 = 2(4k3 + 6k2 + 3k) + 1. This means that
n3 is odd.
Therefore we have that n is even if n3 is even.

(c) This biconditional statement is the conjunction of the two implications in parts
(a) and (b), which have been proven.

(d) This biconditional statement is the conjunction of the contrapositives of the two
implications in parts (a) and (b), which have been proven.
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Exercise (3-2)
Let a, b and c be nonzero integers. Prove the following statements.
(a) If a divides b and b divides c, then a divides c.
(b) If a divides b, then ac divides bc.
(c) If a divides b, then a2 divides b2.
(d) If a divides b and b divides a, then a = ±b.

Recall
By definition, m | n iff there exists an integer q such that n = mq.

Proof.

(a) Since a | b, there exists an integer p such that b = ap. Since b | c, there exists an
integer q such that c = bq. So c = (ap)q = a(pq). This means a | c since pq is an
integer.

(b) Since a | b, there exists an integer q such that b = aq. So bc = (aq)c = q(ac).
This means ac | bc.

(c) Since a | b, there exists an integer q such that b = aq. So b2 = (aq)2 = a2q2.
This means a2 | b2.

(d) Since a | b and b | a, there exist integers p and q such that b = ap and a = bq. So
b = ap = (bq)p = b(pq) and thus pq = 1 which implies p = ±1 since p and q are
integers. This means a = ±b.
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Exercise (3-3)
Is each of the following statements true or false? Give a proof if it is true, and give a
counter-example if it is false.
(a) For all integers a, b, c, if a divides b + c, then a divides b or a divides c.
(b) For all integers a, b, c, if a divides bc, then a divides b or a divides c.
(c) For all integers a, b, if a divides b2 and a ≤ b, then a divides b.
(d) For all integers a, b, c, if ab divides c, then a divides c and b divides c.

Solution.

(a) False. Counterexample: a = 2, b = 1, c = 3. Then 2 | (1 + 3) but 2 - 1 and 2 - 3.
(b) False. Counterexample: a = 4, b = 2, c = 6. Then 4 | (2× 6) but 4 - 2 and 4 - 6.
(c) False. Counterexample: a = 4, b = 6. Then 4 | 62 and 4 ≤ 6 but 4 - 6.
(d) True. Since ab | c, there exists an integer q such that c = abq. So c = a(bq) and

c = b(aq). Since bq and aq are both integers. This means a | c and b | c.
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Exercise (3-4)
Let a, b be integers and n a positive integer. Prove the following propositions:
(a) If a ≡ b mod n, then ka ≡ kb mod kn for any positive integer k.
(b) If m is a divisor of n, and a ≡ b mod n, then a ≡ b mod m.

Recall
a ≡ b mod n iff n | (a− b) iff a− b = nk for some integer k, where n ≥ 2.

Proof.
(a) ...1 Given a ≡ b mod n. Let k be a positive integer. We want to prove that

ka ≡ kb mod kn.
...2 By definition of congruence, we have n | (a − b). This means there exists an integer q

such that a − b = nq.
...3 Multiply this equation by k, we get k(a − b) = k(nq) which gives ka − kb = (kn)q.

This implies kn | (ka − kb).
...4 By definition of congruence, we have ka ≡ kb mod kn.

(b) ...1 Given m | n and a ≡ b mod n. We want to prove that a ≡ b mod m.
...2 By definition of congruence, we have n | (a − b).
...3 Since we have m | n and n | (a− b), we conclude that m | (a− b) (by Exercise 3-2(a)).
...4 By definition of congruence, we have a ≡ b mod m.
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Exercise (3-5)
Show that 3 divides n(n + 1)(2n + 1) for any integer n.

Proof.
We consider three cases:

If n ≡ 0 mod 3: then n = 3k for some integer k, and
n(n + 1)(2n + 1) = 3k(n + 1)(2n + 1), which is divisible by 3.
If n ≡ 1 mod 3: then n = 3k + 1 for some integer k, and
n(n+1)(2n+1) = n(n+1)(2[3k+1]+1) = n(n+1)(6k+3) = 3n(n+1)(2k+1),
which is divisible by 3.
If n ≡ 2 mod 3: then n = 3k + 2 for some integer k, and
n(n+1)(2n+1) = n([3k+2]+1)(2n+1) = n(3k+3)(2n+1) = 3n(k+1)(2n+1),
which is divisible by 3.

We see that, for all the three cases, n(n + 1)(2n + 1) is divisible by 3.
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Exercise (3-6)
Prove the following statement by proving its contrapositive. For all integers a, b, if
ab ≡ 0 mod 3, then a ≡ 0 mod 3 or b ≡ 0 mod 3.

Proof.
...1 The contrapositive is: For all integers a, b, if a ̸≡ 0 mod 3 and b ̸≡ 0 mod 3, then

ab ̸≡ 0 mod 3.
...2 So from the hypothesis, for any integers a, b, we will have the following four

cases:
If a ≡ 1 mod 3 and b ≡ 1 mod 3; so ab ≡ 1 × 1 ≡ 1 mod 3.
If a ≡ 1 mod 3 and b ≡ 2 mod 3; so ab ≡ 1 × 2 ≡ 2 mod 3.
If a ≡ 2 mod 3 and b ≡ 1 mod 3; so ab ≡ 2 × 1 ≡ 2 mod 3.
If a ≡ 2 mod 3 and b ≡ 2 mod 3; so ab ≡ 2 × 2 ≡ 1 mod 3.

...3 In all cases, we have ab ̸≡ 0 mod 3.

...4 Therefore, for all integers a, b, if ab ≡ 0 mod 3, then a ≡ 0 mod 3 or
b ≡ 0 mod 3.
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Exercise (3-7)
Use definition of absolute value to prove the following biconditional: For all real
number x and a with a > 0, |x| < a if and only if −a < x < a.

Recall

Absolute value: |x| =
{

x, if x ≥ 0;

−x, if x < 0.

Proof.
“If” Given −a < x < a (1). From the definition of abstract value, we will consider two

cases: x ≥ 0 and x < 0.
x ≥ 0. Then from (1), |x| = x < a.
x < 0. Then from (1), −a < x implies a > −x = |x|.

Combining the two cases, we conclude that |x| < a.
“Only if” Given |x| < a (2). From the definition of abstract value, we will consider two

cases: x ≥ 0 and x < 0.
x ≥ 0. Then from (2), x < a. Also −a < 0 ≤ x. So we have −a < x < a.
x < 0. Then from (2), −x < a which implies x > −a. Also x < 0 < a. So we have
−a < x < a.

Combining the two cases, we conclude that −a < x < a.
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Exercise (3-8)
Let a and b be positive integers such that a2 = b3. Prove that, if a is even, then 4
divides both a and b.

Proof.
...1 We start with the given condition a2 = b3 (1);
...2 Suppose a is even. Then a = 2k (2) for some integer k. Substitute (2) into (1),

we get b3 = 4k2 = 2(2k2) (3);
...3 So b3 is even, and hence b is even (by Exercise 3-1(d)) and we can write

b = 2h (4) for some integer h;
...4 By substituting (4) into (3), we get 8h3 = 4k2 which simplifies as 2h3 = k2 (5);
...5 This implies k2 is even and hence k is even. So we can write k = 2t (6) for some

integer t;
...6 Substituting (6) into (2), we get a = 4t. This proves 4 divides a.
...7 Now substituting (6) into (5), we get 2h3 = 4t2. This simplifies as h3 = 2t2

which implies h3 is even.
...8 Hence h is even, and we can write h = 2s (7) for some integer s. Substituting (7)

into (4), we get b = 4s. This proves 4 divides b.
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Exercise (Question 2(a) in Mid-term 2007–2008(I))
Prove that, for every integer n, if n2 − 4n + 1 is odd, then n is even.

Direct proof.
...1 For any integer n, assume that n2 − 4n + 1 is odd;
...2 Since −4n + 1 = 2(−2n) + 1 is odd, we obtain that n2 is even;
...3 Since n2 and n have the same parity, we obtain that n is even.

Proof by contrapositive.
...1 Contrapositive: Suppose that n is odd, we want to show that n2 − 4n +1 is even;
...2 Since n is odd, we obtain that n2 is odd. On the other hand, 4n = 2(2n) is even;
...3 So n2 − 4n is odd, and therefore n2 − 4n + 1 is even.
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Additional material

Additional material

Exercise (Question 4 in Mid-term 2008–2009(I))
Let A1 = {m ∈ Z+ | 2 - m}, A2 = {m ∈ Z+ | 3 - m}, . . .. In general,
An = {m ∈ Z+ | (n + 1) - m} for every n ∈ Z+.
(a) Write down the set builders notation of A1 ∩A2 in terms of congruence modulo

6. Briefly justify your answer.
(b) Show that A1 ∩A3 = A1.
(c) What is ∩n∈NAn? Justify your answer.
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Tutorial 4: Proof

Schedule of Tutorial 4

Review concepts: Proof
proof by contradiction, existence proof;
rational number, irrational number.

Tutorial
Additional material:

relation between rational numbers and decimal;
Question 4 in Mid-term 2008–2009(I);
Question 4 in Mid-term 2009–2010(I).
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Review

Proof: Proof by Contradiction

Direct Proof, Proof by Contrapositive, Proof by contradiction;
Prove that R is true:
Assume that ∼ R is true, and try to get a contradiction;
Prove that (∀x)R(x) is true:
Assume that (∃x)(∼ R(x)) is true, and try to get a contradiction;
Prove that (∀x)(P(x) ⇒ Q(x)) is true:
Assume that (∃x)(P(x) ∧ (∼ Q(x))) is true, and try to get a contradiction.

When to use:
When there is no direct proof: “there do not exist...”, “A is an emptyset...”, and “p is
an irrational number...”....
When it is easy to work with the ∼ R.

Notice: to prove (quantified) implication, “proof by contradiction” and “proof by
contrapositive” have the same power.
Advantage: For implication P⇒ Q, we have more assumption11 to work with:

For direct proof, we have one assumption P;
For proof by contradiction, we have more assumption ∼ Q.

11Compare with disjunction in conclusion.
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Review

Proof: Existence Proof

Existence statements are those that involve existential quantifiers.
Three types:

(∃x)P(x).
(∃x)(∀y)P(x, y).
(∀x)(∃y)P(x, y).

Two approaches:
Constructive proof:
(1) Give a specific example of such objects;
(2) Justify that the given examples satisfy the stated conditions.

Non-constructive proof:
(1) Use when specific examples are not easy or not possible to find;
(2) Make arguments why such objects have to exist;
(3) Use definitions, axioms or results that involves existence statements.
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Review

Rational numbers and irrational numbers

A rational number is a real number that can be written as a quotient m
n where m

and n are integers, with n > 0.
An irrational number is a real number that is not a rational number.
A rational number m

n with n > 0 is in lowest term if m and n have no common
factor which is greater than 1. This property is very useful for proof by
contradiction.
(1)

Rational ± Rational = Rational,
Rational ± Irrational = Irrational,

Irrational ± Irrational = ? (it depends).

(2)

Rational · Rational = Rational,
Zero · Irrational = Zero (Rational),

Non-zero Rational · Irrational = Irrational,
Irrational · Irrational = ? (it depends).
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Review

Rational numbers and irrational numbers (Cont.)

(1) Every rational number is either a terminating or non-terminating repeating decimal;
(2) Every irrational number is a non-terminating non-repeating decimal.

Proof for part(1) We will apply long division for rational numbers. Only finitely many
different remainders can occur.

If at any point in the division the remainder is 0, the expansion terminates at that point;
If 0 never occurs as a remainder, then the division process continues forever, and
eventually a remainder must occur that has occurred before. The next step in the
division will yield the same new digit in the quotient, and the same new remainder, as
the previous time the remainder was the same. Therefore the following division will
repeat the same results.

Proof for part(2) We will apply proof by contrapositive: every terminating or non-terminating
repeating decimal is rational.

It is trivial that every terminating decimal is a rational number;
For any non-terminating repeating decimal x, let n be the length of the repetend. Then
10nx − x is a terminating decimal, and hence x is a rational number.

(1) There is a rational number between any two distinct real numbers;
(2) There are infinitely many rational numbers in [0, 1] (any interval).
(1) There is an irrational number between any two distinct real numbers;
(2) There are infinitely many irrational numbers in [0, 1] (any interval).
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Tutorial

Exercise (4-1)
Let a, b, c be integers. Prove that, if 3 divides a, 3 divides b, and c ≡ 1 mod 3, then
the equation ax + by = c has no integer solutions in x and y.

Proof.
...1 A proof by contradiction will be used. We assume that the statement is false.

That is, we assume that there exist integers a, b and c such that 3 | a, 3 | b and
c ≡ 1 mod 3, and that the equation ax + by = c has a solution in which both x
and y are integers.

...2 Let x = m and y = n be the solution for the equation ax + by = c, where m,n
are integers. Then m and n satisfy the equation

am + bn = c.

...3 Notice that 3 | a and 3 | b, and thus 3 | am and 3 | bn which implies
3 | (am + bn), and so 3 | c. But that contradicts c ≡ 1 mod 3.

...4 Consequently, our assumption cannot be true, and we have proven that: If 3 | a,
3 | b and c ≡ 1 mod 3, then the equation ax + by = c has no integer solutions in
x and y.

Remark
We can also apply a proof by contrapositive.
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Tutorial

Exercise (4-2(a))
Is the following statement true or false? Give a proof if it is true, and give a
counterexample if it is false.
(a) For each positive real number x, if x is irrational, then √x is irrational.

Recall
Irrational numbers are difficult to represent, so generally we consider its contradiction
in terms of rational numbers.

Solution.
...1 Assume that the original statement is true first, and try to prove it.
...2 Proof by contradiction: assume that there exists a positive real number x, such

that x is irrational and √x is rational. We want to find a contradiction.
...3 Since √x is rational, there exist integers m ≥ 0 and n > 0 (since √x ≥ 0) such

that √x = m
n .

...4 Squaring both sides, we have x = m2

n2 which is rational (Contradiction).
...5 Hence, the original statement is true.
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Tutorial

Exercise (4-2(b))
Is the following statement true or false? Give a proof if it is true, and give a
counterexample if it is false.
(b) For each pair of real numbers x and y, if x + y is irrational, then x is irrational and
y is irrational.

Recall
Rational ± Irrational = Irrational, Irrational ± Irrational = ? (It depends).

Solution.
False. A counterexample is x =

√
2 and y = 0. Then x + y =

√
2 is irrational but not

both x and y are irrational.
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Tutorial

Exercise (4-2(c))
Is the following statement true or false? Give a proof if it is true, and give a
counterexample if it is false.
(c) For each pair of real numbers x and y, if x + y is irrational, then x is irrational or y
is irrational.

Recall
Rational ± Rational = Rational.

Solution.
...1 We consider its contrapositive: for each pair of real numbers x and y, if x is

rational and y is rational, then x + y is rational.
...2 This statement is true by closure property of rational numbers under addition: let

x = m
n and y = p

q , then x + y = mq+np
nq .

...3 Hence, the original statement is true.
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Tutorial

Exercise (4-2(d))
Is the following statement true or false? Give a proof if it is true, and give a
counterexample if it is false.
(d) For each pair of nonzero real numbers x and y, if x is rational and y is irrational,
then xy is irrational.

Recall
Non-zero Rational · Irrational = Irrational, Zero · Irrational = Zero (Rational).

Solution.
...1 Apply a proof by contradiction. So, we assume that there exist nonzero real

numbers x and y such that x is rational, y is irrational, and xy is rational.
...2 Since the rational numbers are closed under division by nonzero rational numbers,

this implies that xy
x is a rational number.

...3 Since xy
x = y, we conclude that y is a rational number and this contradicts the

assumption that y is irrational.
...4 Hence, the original statement is true.
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Tutorial

Exercise (4-3(a))
Prove that

√
3 is an irrational number. (You may assume the fact that 3 | n if and

only if 3 | n2.)

Recall
3 | n if and only if 3 | n2.

Proof of Recall.

“Only if” Trivial.
“If” Prove by contrapositive: if 3 - n, then 3 - n2. Consider the following two cases:

If n ≡ 1 mod 3, i.e. n = 3k + 1 for some integer k. Then n2 = 3(3k2 + 2k) + 1, and
hence 3 - n2;
If n ≡ 2 mod 3, i.e. n = 3k + 2 for some integer k. Then n2 = 3(3k2 + 4k + 1) + 1,
and hence 3 - n2.

Remark
In the proof of the question, we do not need to prove the hint.
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Proof of 4-3(a).
...1 Proof by contradiction: If we assume that

√
3 is rational, then we can write√

3 = m
n in lowest term, i.e. m,n are integers with no common factor greater

than 1.
...2 By squaring, we have 3n2 = m2 (1).
...3 So 3 | m2, which implies 3 | m. Hence we can write m = 3k for some integer k.
...4 Substituting m in terms of k in (1), we have 3n2 = (3k)2 = 9k2 and hence

n2 = 3k2.
...5 So 3 | n2, which implies 3 | n.
...6 We have shown that m and n have a common factor of 3, which contradicts our

choice of m and n.
...7 Hence we conclude that

√
3 is irrational.
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Exercise (4-3(b))
Prove that there are infinitely many irrational numbers.

Non-constructive proof12.
...1 Assume that there are only finite irrational numbers.
...2 Then we can choose the largest one among them, say r.
...3 Then r + 1 is an irrational number, and r + 1 > r, which contradicts that r is the

largest irrational number.
...4 Hence, there are infinitely many irrational numbers.

12This proof is provided by Mr. Cui Wei.
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Recall
Rational + Irrational = Irrational, nonzero Rational · Irrational = Irrational.

1st construction.
...1 Since

√
2 is irrational, and any integer n is rational, so

√
2 + n is irrational.

...2 For any two integers m ̸= n, we have
√
2 + m ̸=

√
2 + n.

...3 Since there are infinitely many different choices of integers n, this gives us
infinitely many different irrational numbers

√
2 + n.

2nd construction.
...1 Since

√
2 is irrational, and any positive integer n is rational, so

√
2

n is irrational.
...2 For any two integers m ̸= n, we have

√
2

m ̸=
√

2
n .

...3 Since there are infinitely many different choices of positive integers n, this gives
us infinitely many different irrational numbers

√
2

n .

Remark
There are many methods to construct infinitely many irrational numbers.
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Exercise (4-4)
Prove that there are no integers a and n with n ≥ 2 and a2 + 1 = 2n.

Proof.
Use a proof by contradiction. Assume there exist integers a and n with n ≥ 2 and
a2 + 1 = 2n. Consider two cases: a is even and a is odd.

If a is even. Then a2 + 1 is odd, which is a contradiction since 2n is even when
n ≥ 2.
If a is odd. Then there exists an integer k such that a = 2k + 1. Since
a2 + 1 = 2n, we then see that

(2k + 1)2 + 1 = 4k2 + 4k + 2 = 2n. (1)

We now use the assumption that n ≥ 2 and write 2n = 4 · 2n−2, using this and
equation (1), we have

2 = 2n − 4k2 − 4k = 4 · 2n−2 − 4k2 − 4k = 4(2n−2 − k2 − k)

and this implies that 4 divides 2, which is a contradiction.
In view of the two cases, our assumption is false and there are no integers a and n
with n ≥ 2 and a2 + 1 = 2n.
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Exercise (4-5)
Let y1, y2, y3, y4 be real numbers. The mean (average) y of these four numbers is
defined to be the sum of the four numbers divided by 4. That is

ȳ =
y1 + y2 + y3 + y4

4
.

Prove that there exists a yi with 1 ≤ i ≤ 4 such that yi ≥ ȳ.

Non-constructive proof.
Proof by contradiction: Suppose all the four numbers are smaller than ȳ. Then

ȳ =
y1 + y2 + y3 + y4

4
<

ȳ + ȳ + ȳ + ȳ
4

= ȳ.

This is a contradiction. So there must be some yi which is greater than or equal to
ȳ.

Constructive proof.
Suppose y1 is the largest of y1, y2, y3 and y4. Hence,

ȳ =
y1 + y2 + y3 + y4

4
≤

y1 + y1 + y1 + y1
4

= y1.

This proves the existence statement.



MA1100 Tutorial
Tutorial 4: Proof

Tutorial

Exercise (4-6)
Prove that for every pair of rational numbers p and q with p < q, there is an irrational
number r such that p < r < q.

Proof.

0 1

1
√

2

x

p q

p +
q−p
√

2

x

...1 Take r = p + q−p√
2

( q−p√
2

is 1√
2

of the length of the interval [p, q]
)
.

...2 We need to show p < r < q. Since q > p, so q−p√
2

> 0 and hence r > p. On the
other hand, q−p√

2
< q− p. So r < p + (q− p) = q.

...3 We need to show that r is irrational. Suppose r is rational. Then
√
2 = q−p

r−p .
Since p, q, r are all rational, this implies

√
2 is rational, which gives a

contradiction.
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Alternative proof13.
...1 Let ϵ = q− p > 0.
...2 We can choose an integer n which is large enough, so that ϵ >

√
2

2n .
...3 Then r = p +

√
2

2n is an irrational number and p < r < q.

Remark
We have additional result in Question 4 in Mid-term 2009–2010(I), please see
additional material.

13This proof is provided by Mr. Dong Yongsen.
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Exercise (4-7)
Determine whether the following statements are true or false. Justify your answers.
(a) For some positive integer n, both n and n2 + n + 1 are prime numbers.
(b) For every irrational number a, there is an irrational number b such that ab is an

integer.
(c) There exists nonzero real numbers a and b such that (a + b)2 = a2 + b2.

Solution.

(a) True. Constructive proof: Take n = 2, a prime. Then n2 + n + 1 = 7 which is
also a prime.

(b) True. Constructive proof: For any irrational number a, take b = 1
a . Then ab = 1

which is an integer. It remains to show that this b is irrational. Suppose b is
rational, then 1

b = a is also rational, which is a contradiction.
(c) False. Suppose there exists a, b ̸= 0 such that (a + b)2 = a2 + b2. Then

a2 + 2ab + b2 = a2 + b2, which implies 2ab = 0. This means either a or b is 0,
which is a contradiction.



MA1100 Tutorial
Tutorial 4: Proof

Tutorial

Exercise (4-8)
Prove that the equation x5 + 2x− 5 = 0 has a unique solution between x = 1 and
x = 2.

Method
For existence of these questions, we will use Intermediate Value Theorem if we can not
solve the equation directly.

Recall
Intermediate Value Theorem: If the function y = f(x) is continuous on the interval
[a, b], and f(a)f(b) < 0, then there is a c ∈ [a, b] such that f(c) = 0.

Proof of existence part.
Let f(x) = x5 + 2x− 5, which is a continuous function (since f(x) is a polynomial).
Then f(1) = −2 and f(2) = 31. So, there exists a real number c with 1 < c < 2 such
that f(c) = 0. i.e.

c5 + 2c− 5 = 0. (2)
This c is a solution of the equation x5 + 2x− 5.
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Method
For uniqueness, in general, let c and d be the numbers each of which satisfies the
condition, and then prove c = d.

Proof of uniqueness part.
To show that this solution is unique. Suppose d is another solution of the equation
and 1 < d < 2. We may assume c < d. Then

d5 + 2d− 5 = 0. (3)

Since c and d are greater than 1, so c5 < d5. Hence

c5 + 2c− 5 < d5 + 2d− 5.

By (2) and (3), we have 0 < 0 which gives a contradiction.
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Additional material

Exercise (Question 4 in Mid-term 2008–2009(I))
Let A1 = {m ∈ Z+ | 2 - m}, A2 = {m ∈ Z+ | 3 - m}, . . .. In general,
An = {m ∈ Z+ | (n + 1) - m} for every n ∈ Z+.
(a) Write down the set builders notation of A1 ∩A2 in terms of congruence modulo

6. Briefly justify your answer.
(b) Show that A1 ∩A3 = A1.
(c) What is ∩n∈NAn? Justify your answer.

Solution of part(a).
For any positive integer m, since 2 - m iff m ≡ 0 mod 2 iff m ≡ 1, 3 or 5 mod 6, we
have

A1 = {m ∈ Z+ | m ≡ 1, 3, 5 mod 6}.

Similarly, we have

A2 = {m ∈ Z+ | m ≡ 1, 2, 4 or 5 mod 6}.

Hence
A1 ∩A2 = {m ∈ Z+ | m ≡ 1 or 5 mod 6}.
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Solution and proof of part(b) and part(c).

(b) It is equivalent to show A1 ∩A3 ⊂ A1 and A1 ∩A3 ⊃ A1.
For any sets A and B, it is trivial A ∩ B ⊂ A. Hence A1 ∩ A3 ⊂ A1;
It is equivalent to show A1 ⊂ A3: for any element n ∈ A1, 2 - n. Then 4 - n, i.e.,
n ∈ A3 = {m ∈ Z+ | 4 - m}.

Therefore, A1 ∩A3 = A1.
(c) By observing, we have the following fact:

for any integer n ≥ 2, n ̸∈ An−1 = {m ∈ Z+ | n - m}.
Hence there is only one common element 1 among {An}∞n=1.
Claim: ∩∞n=1An = {1}. We need to show ∩∞n=1An ⊂ {1} and ∩∞n=1An ⊃ {1}:

For any positive integer n, since (n + 1) - 1, we have 1 ∈ An. Hence 1 ∈ ∩∞
n=1An;

Let m ∈ ∩∞
n=1An. Then m ∈ An for all n ∈ Z+. In particular, if m ≥ 2, then

m ∈ Am−1 which means m - m (Contradiction). So m ≤ 1. Hence ∩∞
n=1An ⊂ {1}.

Therefore we have proven the claim: ∩∞n=1An = {1}.
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Exercise (Question 4 in Mid-term 2009–2010(I))
Prove that for any two rational numbers p and q with p < q, there are infinitely many
irrational numbers r such that p < r < q.

Proof.
...1 In Exercise 4-6, we have found an irrational number r = p + q−p√

2
with p < r < q.

...2 Since the multiplication of a non-zero rational number and an irrational number
is an irrational number, we have that rn = p + 1

n
q−p√

2
is an irrational number for

every positive integer n. It is trivial that p < rn < q, and rn ̸= rm if n ̸= m.
...3 Since there are infinitely many different choices of positive integers n, this gives

us infinitely many different irrational numbers rn = p + 1
n

q−p√
2

.

p q

r1 = p +
q−p
√

2

r2 = p+
1

2

q−p
√

2

r3 = p+
1

3

q−p
√

2

rn = p+
1

n

q−p
√

2

x
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Alternative proof14.

Let ϵ = q− p > 0.
We can choose an integer n which is large enough, so that ϵ >

√
2

2n .

Then r1 = p +
√

2
2n is an irrational number and p < r1 < q.

Let rn =
p+rn−1

2
be the mean of p and rn−1, then r1, r2, r3, . . . is a sequence of

irrational numbers in (p, q).

14This proof is provided by Mr. Dong Yongsen.
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Page 62: Add a notice: “to prove (quantified) implication, ‘proof by
contradiction’ is equivalent to ‘proof by contrapositive’.”;
Page 65: Revise a mistake: “an integer” to “a terminating decimal”;
Page 65: Add “(any interval)”;
Page 65: Revise a typo: “There is a irrational number” to “There is an irrational
number”;
Page 66: Add a remark “We can also apply a proof by contrapositive.”;
Page 67: Revise the solution;
Page 73: Add a non-constructive proof (Thanks Mr. Cui Wei);
Page 74: Add a remark;
Page 78: Add an alternative proof (Thanks Mr. Dong Yongsen);
Page 85: Add an alternative proof (Thanks Mr. Dong Yongsen).

Last modified: 13:10, September 28, 2010.
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Schedule of Tutorial 5

Review concepts:
Proof

Element-chasing method;
Set operations and algebra of sets;

Mathematical Induction
The Axiom of induction, and the Well-ordering principle;
The (strong) Principle of Mathematical Induction, and its generalization.

Tutorial
Additional material:

The Well-ordering theorem;
Fibonacci sequence;
Euclid’s Theorem;
Upper bounds on the nth prime.
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Review

Proof: Element-chasing method

Procedure of element-chasing method:
(1) Choose an arbitrary element;
(2) Show that the element satisfies the given property.

Using this method, we can prove some relations between two sets: A ⊆ B,
A ̸⊆ B, A = B, A ̸= B, etc.
For example, to prove A ⊆ B, where A = {x ∈ U :| (x)}, and B = {x ∈ U | q(x)},
we will apply the element-chasing method as follows:
(1) Choose an arbitrary element x0 ∈ A, then p(x0) holds;
(2) Based on some results we have, try to prove q(x0) holds;
(3) Since q(x0) holds, we will have x0 ∈ B;
(4) Hence we obtain A ⊆ B.
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Proof: Algebra of sets

Set operations: P : x ∈ A, Q : x ∈ B,
Set Meaning Logic

A ∩ B x ∈ A and x ∈ B P ∧Q
A ∪ B x ∈ A or x ∈ B P ∨Q

Ac x /∈ A ∼ P
A− B a ∈ A and x /∈ B P ∧ (∼ Q)

Algebra of Sets:
Idempotent A ∩ A = A, A ∪ A = A;

Commutative A ∩ B = B ∩ A, A ∪ B = B ∪ A;
Associative A ∩ B ∩ C ≡ (A ∩ B) ∩ C = A ∩ (B ∩ C),

A ∪ B ∪ C ≡ (A ∪ B) ∪ C = A ∪ (B ∪ C);
Distributive A∩ (B∪C) = (A∩B)∪ (A∩C), A∪ (B∩C) = (A∪B)∩ (A∪C);

Double Complement (Ac)c = A;
De Morgan (A ∩ B)c = Ac ∪ Bc, (A ∪ B)c = Ac ∩ Bc.
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Foundation for the Principle of Mathematical Induction

Axiom of Induction: If T is a subset of N, such that:
1 ∈ T;
For every k ∈ N, if k ∈ T, then k + 1 ∈ T.

Then T = N.
We may rewrite the “Axiom of induction” in logical symbols:

(∀P)
[[

P(1)︸ ︷︷ ︸
Base case

∧ (∀k ∈ N)[P(k)⇒ P(k + 1)]︸ ︷︷ ︸
Inductive step

]
⇒ (∀n ∈ N)[P(n)]

]
.

Let ∅ ̸= S ⊂ R, S is well-ordered if every nonempty subset of S has smallest
element.
The Well-ordering principle: The set N is well-ordered.
It is a theorem and hence can be proven.
The Well-ordering theorem: Every set can be well-ordered.
It is an axiom, which is equivalent to “the Axiom of Choice” and “Zorn’s lemma”,
and a foundation for generalization from N to any universal set U (which is
always well-ordered.).
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The Principle of Mathematical Induction

PMI: Let P(n) be an open sentence, such that
If P(1) is true;
For all k ∈ N, if P(k) is true, then P(k + 1) is true.

Then P(n) is true for all n ∈ N.
SPMI: Let P(n) be an open sentence, such that

If P(1) is true;
For all k ∈ N, if P(1),P(2), . . . , P(k) are true, then P(k + 1) is true.

Then P(n) is true for all n ∈ N.
The procedure of using (S)PMI to prove that (∀n ∈ N)P(n) is true:
(1) Identify the open sentence P(n) (For general universal set, we need to identify it at

first.);
(2) Base case: prove that P(1) is true;
(3) Inductive step: for all k ∈ N, assume that P(k) (or P(1) ∧ P(2) ∧ · · · ∧ P(k)) is true,

and prove that P(k + 1) is true;
(4) Summarize the conclusion you get.



MA1100 Tutorial
Tutorial 5: Mathematical Induction

Review

Generalizations
(S)PMI can be generalized from N to general universal sets (well-ordered sets).

{n | n ∈ Z,n ≥ M} (M is an integer) with the order:

P(M)→ P(M + 1)→ P(M + 2)→ · · · → P(M + n)→ P(M + n + 1)→ · · · ;

Z with the order:

· · · ← P(−n)← · · · ← P(−2)← P(−1)← P(0)→ P(1)→ P(2)→ · · · → P(n)→ · · · ;

Q+:

{n ∈ N | n = 3p + 1, p ∈ Z, p ≥ 0} with the natural order:

P(1)→ P(4)→ P(7)→ · · · → P(3p + 1)→ P(3p + 4)→ · · · .
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Exercise (5-1(a))
Use Element-Chasing Method to prove
(a) For all subsets A and B of some universal set U, A ⊆ B if and only if A ∪ B = B.

Proof of part(a).
We want to show that

the quantified biconditional (∀A,B ⊆ U)
[
A ⊆ B⇔ A ∪ B = B

]
is true.

For all subsets A and B of U,
“If” Given A ∪ B = B, we want to prove A ⊆ B.

Let x ∈ A. It follows that x ∈ A ∪ B. Since A ∪ B = B, we have x ∈ B. This
implies A ⊆ B.

“Only if” Given A ⊆ B, we want to prove A ∪ B = B. We need to show the following two
parts:

A ∪ B ⊆ B: Let x ∈ A ∪ B, then either x ∈ A or x ∈ B.
If x ∈ B, then we have done;
If x ∈ A, since A ⊆ B, we have x ∈ B.

In either case, we have x ∈ B. Hence, A ∪ B ⊆ B.
A ∪ B ⊇ B: Let x ∈ B, then x ∈ A ∪ B. Hence B ⊆ A ∪ B.

Combining these two parts, we have proven that for all subsets A and B of some
universal set U, A ⊆ B if and only if A ∪ B = B.
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Exercise (5-1(b))
Use Element-Chasing Method to prove
(b) For all subsets A, B and C of some universal set U, A ⊆ B ∩ C if and only if
A ⊆ B and A ⊆ C.

Proof of part(b).
We want to show that

the quantified biconditional (∀A,B,C ⊆ U)
[
A ⊆ B∩C⇔ A ⊆ B and A ⊆ C

]
is true.

For all subsets A, B and C of U,
“If” Given A ⊆ B and A ⊆ C, we want to prove A ⊆ B ∩ C.

(1) Let x ∈ A.
(2) Since A ⊆ B and A ⊆ C, we have x ∈ B and x ∈ C.
(3) Then x ∈ B ∩ C, and hence A ⊆ B ∩ C.

“Only if” Given A ⊆ B ∩ C, we want to prove A ⊆ B and A ⊆ C.
(1) Let x ∈ A.
(2) Since A ⊆ B ∩ C, we have x ∈ B ∩ C.
(3) Then x ∈ B and x ∈ C, and hence A ⊆ B and A ⊆ C.

Combining these two parts, we have proven that for all subsets A, B and C of some
universal set U, A ⊆ B ∩ C if and only if A ⊆ B and A ⊆ C.
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Exercise (5-2(a))
Let A, B, C be subsets of some universal set U. Use Algebra of Sets to establish the
following equality:
(a) (A ∩ B)− C = (A− C) ∩ (B− C);

Method
When applying the algebra of sets to establish some equalities, we may start from the
more complicated side, because simplification is always easier.

Proof.

RHS =(A− C) ∩ (B− C)

=(A ∩ Cc) ∩ (B ∩ Cc) Def of complimentary
=A ∩ Cc ∩ B ∩ Cc Associative law
=A ∩ B ∩ (Cc ∩ Cc) Commutative law
=A ∩ B ∩ Cc Idempotent law
=(A ∩ B) ∩ Cc Associative law
=(A ∩ B)− C = LHS Def of complimentary
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Exercise (5-2(b))
Let A, B, C be subsets of some universal set U. Use Algebra of Sets to establish the
following equality:
(b) (A ∪ B)− (A ∩ B) = (A− B) ∪ (B−A);

Proof.

LHS =(A ∪ B)− (A ∩ B)

=(A ∪ B) ∩ (A ∩ B)c Def of complimentary
=(A ∪ B) ∩ (Ac ∪ Bc) De Morgan’s law
=[A ∩ (Ac ∪ Bc)] ∪ [B ∩ (Ac ∩ Bc)] Distributive law
=[(A ∩Ac) ∪ (A ∩ Bc)] ∪ [(B ∩Ac) ∪ (B ∩ Bc)] Distributive law
=[A ∩ Bc] ∪ [B ∩Ac]

=(A− B) ∪ (B−A) = RHS Def of complimentary
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Exercise (5-2(c))
Let A, B, C be subsets of some universal set U. Use Algebra of Sets to establish the
following equality:
(c) (A ∪ B)− B = A− (A ∩ B).

Proof.

LHS =(A ∪ B)− B
=(A ∪ B) ∩ Bc Def of complimentary
=(A ∩ Bc) ∪ (B ∩ Bc) Distributive law
=A− B Def of complimentary

RHS =A− (A ∩ B)

=A ∩ (A ∩ B)c Def of complimentary
=A ∩ (Ac ∪ Bc) De Morgan’s law
=(A ∩Ac) ∪ (A ∩ Bc) Distributive law
=A− B Def of complimentary
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Exercise (5-3)
Let A, B, C, D be subsets of some universal set U. Are the following statements true
or false? Justify your answers.
(a) If A ⊆ B, C ⊆ D and A ∩ C = ∅, then B ∩D = ∅.
(b) If A ⊆ B, C ⊆ D and B ∩D = ∅, then A ∩ C = ∅.
Method
We may apply Venn diagrams for such questions.

Solution.

(a) False. Idea:

AB C D

Let U be a nonempty set, A = C = ∅, and B = D = U. Then A ∩ C = ∅, but
B ∩D = U ̸= ∅.

(b) True.
(1) Assume that there exist A, B, C, D ⊆ U, such that A ⊆ B, C ⊆ D, B ∩ D = ∅, and

A ∩ C ̸= ∅.
(2) Then let x ∈ A ∩ C. So x ∈ A and x ∈ C.
(3) Since A ⊆ B, we have x ∈ B. Since C ⊆ D, we have x ∈ D.
(4) So x ∈ B ∩ D. This contradict that B ∩ D = ∅.
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Exercise (5-4)
Let A and B be subsets of some universal set U.
(a) Prove that P(A) ∪ P(B) ⊂ P(A ∪ B).
(b) Give a counterexample to show that it is not necessarily true that
P(A) ∪ P(B) = P(A ∪ B).

Recall
The power set of A is the set of all subsets of A.

Proof and Solution.
(a) Apply element-chasing method:

(1) Let X ∈ P(A) ∪ P(B). Then X ∈ P(A) or X ∈ P(B).
(2) This means X ⊆ A or X ⊆ B. So X ⊆ A ∪ B.
(3) That is, X ∈ P(A ∪ B).
(4) This proves P(A) ∪ P(B) ⊆ P(A ∪ B).

(b) Take U = {1, 2}, A = {1} and B = {2}. So A ∪ B = {1, 2}, P(A) = {∅,A},
P(B) = {∅,B}, and P(A ∪B) = {∅,A,B,A ∪B}. So P(A) ∪P(B) ̸= P(A ∪B).

Remark
The equation P(A) ∪ P(B) = P(A ∪ B) holds only when A ⊆ B or B ⊆ A.
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Exercise (5-5)
Let An =

{
x ∈ R | − 1

n < x < 1
n
}

for n ∈ N. Show that ∩nAn = {0}.

Proof.
To show ∩nAn = {0}, we need to prove two parts:

{0} ⊆ ∩nAn:
(1) This is the same as showing 0 ∈ ∩nAn.
(2) Since − 1

n < 0 < 1
n for every positive integer n, we have 0 ∈ An for every n ∈ N, and

hence 0 ∈ ∩nAn.
(3) This proves {0} ⊆ ∩nAn.

{0} ⊇ ∩nAn:
(1) It suffices to show that every nonzero number does not belong to ∩nAn.
(2) Prove by contradiction: Suppose that there exists a nonzero number x ∈ ∩nAn. Then

− 1
n < x < 1

n for every positive integer n.
(3) So |x| < 1

n for every positive integer n. Since x ̸= 0, we have 1
|x| > n for every

positive integer n.
(4) This is impossible:

[
1
|x|

]
+ 1 is an integer which is greater than 1

|x| , where [y] denotes
the integer part of the real number y.

(5) Therefore {0} ⊇ ∩nAn.

Combining these two parts, we have ∪nAn = {0}.
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Exercise (5-6(a))
Use Mathematical Induction to prove
(a) For each positive integer n, 13 + 23 + 33 + · · ·+ n3 =

[
n(n+1)

2

]2
.

Proof.

(1) The universal set is N. Let P(n) : 13 + 23 + 33 + · · ·+ n3 =
[

n(n+1)
2

]2
.

(2) Base case: Let n = 1. LHS = 13 = 1 =
[
1(1+1)

2

]2
= RHS, so P(1) is true.

(3) Inductive step: For all k ∈ N, assume that P(k) is true, i.e.
13 + 23 + · · ·+ k3 =

[
k(k+1)

2

]2
(∗). We want to show that P(k + 1) is true:

13 + 23 + · · ·+ k3︸ ︷︷ ︸
Apply the Equation (∗)

+(k + 1)3 =

[
k(k + 1)

2

]2
+ (k + 1)3 = (k + 1)2

[
k2

4
+ (k + 1)

]
= (k + 1)2

k2 + 4k + 4

4
=

[
(k + 1)(k + 2)

2

]2
(4) Hence by the Principle of Mathematical Induction, we have proven: For each

positive integer n, 13 + 23 + 33 + · · ·+ n3 =
[

n(n+1)
2

]2
.
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Exercise (5-6(b))
Use Mathematical Induction to prove
(b) For each positive integer n, n3

3
+ n2

2
+ 7n

6
is a positive integer.

Proof.

(1) The universal set is N. Let P(n) : n3

3
+ n2

2
+ 7n

6
is a positive integer.

(2) Base case: Let n = 1. n3

3
+ n2

2
+ 7n

6
= 2 is a positive integer, so P(1) is true.

(3) Inductive step: For all k ∈ N, assume that P(k) is true, i.e. k3
3

+ k2
2

+ 7k
6

is a
positive integer (∗). We want to show P(k + 1) is true:

(k + 1)3

3
+

(k + 1)2

2
+

7(k + 1)

6
=

k3 + 3k3 + 3k + 1

3
+

k2 + 2k + 1

2
+

7k + 7

6

=

[
k3

3
+

k2

2
+

7k
6

]
︸ ︷︷ ︸

Apply the Statement (∗)

+(k2 + k + k) + 2

is a positive integer.
(4) Hence by the Principle of Mathematical Induction, we have proven: For each

positive integer n, n3

3
+ n2

2
+ 7n

6
is a positive integer.
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Exercise (5-6(c))
Use Mathematical Induction to prove
(c) For each positive integer n with n ≥ 3,

(
1 + 1

n
)n

< n.

Proof.

(1) The universal set U is {n ∈ N | n ≥ 3}. Let P(n) :
(
1 + 1

n
)n

< n.

(2) Base case: Let n = 3.
(
1 + 1

3

)3
= 64

27
< 3, so P(3) is true.

(3) Inductive step: For all k ∈ U, assume that P(k) is true, i.e.
(
1 + 1

k
)k

< k (∗). We
want to show that P(k + 1) is true:(

1 +
1

k + 1

)k+1

<

(
1 +

1

k

)k+1

=

(
1 +

1

k

)k

︸ ︷︷ ︸
Apply the Inequality (∗)

(
1 +

1

k

)

< k
(
1 +

1

k

)
= k + 1

(4) Hence by the Principle of Mathematical Induction, we have proven: For each
positive integer n with n ≥ 3,

(
1 + 1

n
)n

< n.
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Exercise (5-7(a))
Let f1, f2, . . . , fn be the Fibonacci sequence. i.e. The sequence is defined recursively by

f1 = 1 and f2 = 1, fn = fn−1 + fn−2 for all n ≥ 3.

(a) Prove that for each positive integer n, f5n is a multiple of 5.

Proof.

(1) The universal set is N. Let P(n) : f5n is a multiple of 5.
(2) Base case: Let n = 1. f5 = f4 + f3 = (f3 + f2) + (f2 + f1) = f2 + f1 + 3 = 5, so

P(1) is true.
(3) Inductive step: For all k ∈ N, assume that P(k) is true, i.e. f5k is a multiple of 5.

We want to show that P(k + 1) is true:

f5(k+1) = f5k+4 + f5k+3 = (f5k+3 + f5k+2) + (f5k+2 + f5k+1)

= (f5k+2 + f5k+1) + 2(f5k+1 + f5k) + f5k+1

= (f5k+1 + f5k) + 4f5k+1 + 2f5k = 5f5k+1 + 3f5k

is a multiple of 5, since f5k is a multiple of 5.
(4) Hence by the Principle of Mathematical Induction, we have proven: For each

positive integer n, f5n is a multiple of 5.



MA1100 Tutorial
Tutorial 5: Mathematical Induction

Tutorial

Exercise (5-7(b))
Let f1, f2, . . . , fn be the Fibonacci sequence. i.e. The sequence is defined recursively by

f1 = 1 and f2 = 1, fn = fn−1 + fn−2 for all n ≥ 3.

(b) Prove that for each positive integer n, f1 + f3 + · · ·+ f2n−1 = f2n.

Proof.

(1) The universal set is N. Let P(n) : f1 + f3 + · · ·+ f2n−1 = f2n.
(2) Base case: Let n = 1. LHS = f1 = f2 = RHS, so P(1) is true.
(3) Inductive step: For all k ∈ N, assume that P(k) is true, i.e.

f1 + f3 + · · ·+ f2k−1 = f2k (∗). We want to show that P(k + 1) is true:

f1 + · · ·+ f2k−1︸ ︷︷ ︸
Apply the Equation (∗)

+f2(k+1)−1 = f2k + f2k+1 = f2(k+1).

(4) Hence by the Principle of Mathematical Induction, we have proven: For each
positive integer n, f1 + f3 + · · ·+ f2n−1 = f2n.
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Exercise (5-7(c))
Let f1, f2, . . . , fn be the Fibonacci sequence. i.e. The sequence is defined recursively by

f1 = 1 and f2 = 1, fn = fn−1 + fn−2 for all n ≥ 3.

(c) Prove that for each positive integer n such that n ̸≡ 0 mod 3, fn is an odd number.

Proof.
We have the following subquestions:

For each positive integer n such that n ≡ 1 mod 3, fn is an odd number.
(1) It suffices to show that for all nonnegative integer n, f3n+1 is an odd number.
(2) The universal set U is {n ∈ Z | n ≥ 0}. Let P(n) : f3n+1 is an odd number.
(3) Base case: Let n = 0. Then f1 = 1 which is odd, so P(0) is true.
(4) Inductive step: For all k ∈ U, assume that P(k) is true, i.e. f3k+1 is odd. We want to

show that P(k + 1) is true:

f3(k+1)+1 = f3k+4 = f3k+3 + f3k+2 = f3k+2 + f3k+1 + f3k+2 = 2f3k+2 + f3k+1

is odd, since f3k+1 is odd.
(5) Hence by the Principle of Mathematical Induction, we have proven: For each positive

integer n such that n ≡ 1 mod 3, fn is an odd number.

For each positive integer n such that n ≡ 2 mod 3, fn is an odd number. We will
prove it similarly.

Combine these two parts, we have that for each positive integer n such that
n ̸≡ 0 mod 3, fn is an odd number.
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Fibonacci sequence

The sequence was studied by Leonardo of Pisa15, known as Fibonacci, in his
“Liber Abaci” (1202).
He considers the growth of an idealised rabbit population, assuming that:

a newly-born pair of rabbits, one male, one female, are put in a field;
rabbits are able to mate at the age of one month so that at the end of its second month
a female can produce another pair of rabbits;
rabbits never die and a mating pair always produces one new pair (one male, one
female) every month from the second month on.

The puzzle that Fibonacci posed was: how many pairs will there be in one year?
At the end of the 1st month, they mate, but there is still only 1 pair.
At the end of the 2nd month the female produces a new pair, so now there are 2 pairs
of rabbits in the field.
At the end of the 3rd month, the original female produces a second pair, making 3 pairs
in all in the field.
At the end of the 4th month, the original female has produced yet another new pair,
the female born two months ago produces her first pair also, making 5 pairs.
At the end of the nth month, the number of pairs of rabbits is equal to the number of
new pairs (which is the number of pairs in month n − 2) plus the number of pairs alive
last month. This is the nth Fibonacci number.

15Leonardo Pisano Bigollo (c. 1170–c. 1250), an Italian mathematician.
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Fibonacci sequence (Cont.)

Actually, we can get the explicit expression of fn via matrices diagonalization in Linear
Algebra:

fn =
1
√
5

(
1 +
√
5

2

)n

−
1
√
5

(
1−
√
5

2

)n

.
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Exercise (5-8)
Let pn be the nth prime number, i.e. p1 = 2, p2 = 3, p3 = 5, . . . etc. Show that
pn < 22

n for all n ∈ N.

Proof.

(1) The universal set is N. Let P(n) : pn < 22
n .

(2) Base case: Let n = 1. We have p1 = 2 < 4 = 22
1 . So P(1) is true.

(3) Inductive step: For all k ∈ N, assume that P(1),P(2), . . . ,P(k) are true. That is,
pi < 22

i for all i = 1, 2, . . . , k. We want to prove that P(k + 1) is true: Let
N = p1p2 · · · pk + 1, then we have

N = p1p2 · · · pk + 1 < (p1 + 1)(p2 + 1) · · · (pk + 1)

≤ 22
1
22

2
· · · 22

k
= 22

1+22+···+2k
= 22

k+1−2 < 22
k+1

.

If N is prime then pk+1 ≤ N < 22
k+1 .

If N is not prime then some prime factor p divides N. Then p ̸= pi for i = 1, 2, . . . , k.
Otherwise, p | N and p | (N − 1). This implies p | 1 which is impossible. So p is a
prime bigger than pk. i.e. pk+1 ≤ p < N < 22

k+1 .

(4) Hence by the Strong Principle of Mathematical Induction, we have proven that
pn < 22

n for all positive integers n.
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Euclid’s Theorem

The idea of considering the number N = p1p2 · · · pk + 1 comes from the proof of
Euclid16’s Theorem: There are infinitely many prime numbers.

Proof.
Take any finite list of prime numbers p1, p2, . . . , pn. It will be shown that some
additional prime numbers not in this list exist. Let N = p1p2 · · · pn + 1. Then, N is
either prime or not:

If N is prime then there is at least one more prime than is listed.
If N is not prime then some prime factor p divides N. This factor p is not on our
list: if it were, then it would divide N− 1 (since N− 1 is the product of every
number on the list); but as we know, p divides N. Then p would have to divide
the difference of the two numbers, which is N− (N− 1) = 1. But no prime
number divides 1 so there would be a contradiction, and therefore p cannot be on
the list. This means at least one more prime number exists beyond those in the
list.

16Euclid (fl. 300 BC), a Greek mathematician, often referred to as the “Father of Geometry”.
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Upper bounds on the nth prime

Bertrand’s postulate (actually a theorem) states that if n > 3 is an integer, then
there always exists at least one prime number p with n < p < 2n− 2. This
statement was first conjectured in 1845 by Joseph Bertrand17. Bertrand himself
verified his statement for all numbers in the interval [2, 3× 106]. His conjecture
was completely proved by Chebyshev18 in 1850.
If we let pn denote the nth prime, then it is not difficult to show by Bertrand’s
postulate and mathematical induction that pn < 2n for n ≥ 2.
There exists at least one prime number between n and 6

5
n for n ≥ 25. This

theorem was proven by J. Nagura19 at 1952.
pn ≤ n log n + n(log log n− 0.9385) for n ≥ 7022. This theorem was proven by
G. Robin20 at 1983.

17Joseph Louis Frano�is Bertrand (March 11, 1822–April 5, 1900), a French mathematician.
18Pafnuty Lvovich Chebyshev (May 16, 1821–December 8, 1894), a Russian mathematician.
19Refer to: J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad., 28 (1952)

177–181.
20Refer to: G. Robin, Estimation de la fonction de Tschebychef θ sue le k-ième nombre premier et grandes valeurs

de la fonction ω(n), nombre de diviseurs de n, Acta Arith., 42 (1983) 367–389.
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Additional material

.. The Well-ordering theorem on the page 90.

.. Fibonacci sequence on the page 107.

.. Euclid’s Theorem on the page 110.

.. Upper bounds on the nth prime on the page 111.



MA1100 Tutorial
Tutorial 5: Mathematical Induction

Change log

Change log

Page 92: Revise a typo: “p ∈ N” to “p ∈ Z, p ≥ 0”;
Page 109: Revise a typo: “p ≤ N” to “p < N”.

Last modified: 13:20, October 11, 2010.
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Review

Relations

Let A,B be sets. A relation R from A to B is a subset of A× B, i.e.
R = {(a, b) ∈ A× B | conditions on a and b}.
Let R be a relation from A to B. If (x, y) ∈ R, then x is related to y. Notation:
(x, y) ∈ R, x ∼ y, x ∼R y, xRy.
Let R be a relation from A to B. The domain of R (domain(R)) is the collection
of all the first coordinates of the ordered pairs in R. The range of R (range(R))
is the collection of all the second coordinates of the ordered pairs in R.
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Review

Relations (Cont.)

Let A be a set. A relation R on A is the subset of A×A, i.e.
R = {(a, a′) ∈ A×A | condition on a and a′}.
Let R be a relation on A:

R is reflexive on A if “for every x ∈ A, xRx”;
R is symmetric on A if “for every x, y ∈ A, if xRy, then yRx”;
R is transitive on A if “for every x, y, z ∈ A, if xRy and yRz, then xRz”.

Let R be a relation on A. R is an equivalence relation if it is a reflexive,
symmetric, transitive relation on A.
Let R be an equivalence relation on A. For each n ∈ A, let
[n]R = {x ∈ A | (x,n) ∈ R} = {x ∈ A | (n, x) ∈ R}. We call this an equivalence
class of n determined by the relation R.
Theorem 8.3: Let R be an equivalence relation on A, then the collection C of all
equivalence classes determined by R is a partition of the set A.
Theorem 8.4: Let P = {Aα | α ∈ I} be a partition of a nonempty set A. Then
there exists an equivalence relation R on A such that P is the set of equivalence
classes determined by R.
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Relations (Cont.)

Relation from A to B

Relation on a set A

when B = A

?
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Symmetric
Transitive- Equiv. Relation R -� Collection of Equiv. Classes C

Partition P

Thm 8.3
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Thm 8.4
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Exercise (6-1)
Let A = {a, b, c}. Consider the following relations on A. Determine whether each
relation is reflexive, symmetric or transitive? Justify your answers.
(a) R1 = {(a, a), (a, b), (b, a)}
(b) R2 = {(a, b), (b, c), (a, c), (c, b)}
(c) R3 = {(a, a), (b, b), (c, c), (a, c), (c, a)}

Method
Check through the ordered pairs in each Ri.

For reflexive, check (x, x) for every x ∈ A.
For symmetric, only need to check the pairs (x, y) and (y, x) for every x ̸= y.
For transitive, only need to check the triplets (x, y), (y, z) and (x, z) for every
distinct x, y, z.

Remark
The definitions of reflexive, symmetric and transitive are given by some universal
statements (refer to notes).

To show each of these properties holds, we need to give a proof to the respective
universal statement.
To show that each of these properties does not hold, we need to give a
counter-example.
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Solution.

(a) Not reflexive: (b, b), (c, c) ̸∈ R1;
Symmetric: for every (x, y) ∈ R1, we have (y, x) ∈ R1;
Not transitive: (b, a), (a, b) ∈ R1, but (b, b) ̸∈ R1.

(b) Not reflexive: (a, a), (b, b), (c, c) ̸∈ R2;
Not symmetric: (a, b) ∈ R2, but (b, a) ̸∈ R2;
Not transitive: (b, c), (c, b) ∈ R2, but (b, b) ̸∈ R2.

(c) Reflexive: (a, a), (b, b), (c, c) ∈ R3;
Symmetric: for every (x, y) ∈ R3, we have (y, x) ∈ R3;
Transitive: for every (x, y), (y, z) ∈ R3, we have (x, z) ∈ R3.
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Exercise (6-2)
For each of the following relations, determine whether it is an equivalence relation? If
not, determine whether it is reflexive, symmetric or transitive. Justify your answers.
(a) R is the relation on R given by R = {(x, y) ∈ R× R | |x|+ |y| = 4}.
(b) S is the relation on Z given by S = {(a, b) ∈ Z× Z | |a− b| ≤ 3}.

Solution.
(a) Not reflexive: for example, (0, 0) ̸∈ R;

Symmetric: for every (x, y) ∈ R, then |x| + |y| = 4. Therefore |y| + |x| = 4, and
hence (y, x) ∈ R;
Not transitive: for example, (4, 0), (0, 4) ∈ R, but (4, 4) ̸∈ R.

(b) Reflexive: for every x ∈ Z, we have |x − x| = 0 ≤ 3, hence (x, x) ∈ S;
Symmetric: for every (x, y) ∈ S, then |x − y| ≤ 3. Therefore |y − x| ≤ 3, and hence
(y, x) ∈ S;
Not transitive: for example, (0, 3), (3, 6) ∈ S, but (0, 6) ̸∈ S.
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Exercise (6-3)
Let U be a finite, nonempty set and let P(U) be the power set of U. Define the
relations R on P(U) as follows:
For A,B ∈ P(U), A ∼ B if and only if |A| = |B| (i.e. A and B have the same
cardinality).
(a) Show that R is an equivalence relation on P(U).
(b) Describe the equivalence classes of R. (You may describe them using set builder

notation or otherwise.)

Proof and Solution.
(a) Reflexive: for every X ∈ P(U), since |X| = |X|, we have XRX;

Symmetric: for every pair (X, Y) ∈ R, then |X| = |Y|. Therefore |Y| = |X|, and
hence (Y,X) ∈ R;
Transitive: for every pairs (X, Y), (Y, Z) ∈ R, then |X| = |Y| and |Y| = |Z|.
Therefore |X| = |Z|, and hence (X,Z) ∈ R.

(b) For every A ∈ P(U), we have [A]R = {S ∈ P(U) | |S| = |A|}, that is, [A]R is the
set of all subsets of U that has the same cardinality as A.
Suppose |U| = n, then all the distinct equivalence classes of R are:

{∅},S1,S2, . . . ,Sn,

where Sk = {A ∈ P(U) | |A| = k} for k = 1, 2, . . . ,n.
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Exercise (6-4)
Let R be the relation on R defined by

x ∼ y if and only if, either xy > 0 or (x = 0 and y = 0).

(a) Show that R is an equivalence relation on R.
(b) Determine all the equivalence classes of this equivalence relation.

Proof and Solution.
(a) Reflexive: for every x ∈ R,

if x = 0, then xRx by definition of the relation R;
if x ̸= 0, then x2 > 0, and hence xRx.

Symmetric: for every (x, y) ∈ R, then either xy > 0 or (x = 0 and y = 0). Therefore
either yx > 0 or (y = 0 and x = 0), and hence (y, x) ∈ R;
Transitive: for every (x, y), (y, z) ∈ R, then we have the following cases:

xy > 0 and yz > 0: then x, y have the same parity, y, z also have the same parity. Therefore
x, z have the same parity, i.e. xz > 0 and (x, z) ∈ R;
x = y = z = 0: then (x, z) ∈ R by the definition of R.

(b) There are 3 distinct equivalence classes of R:

[0]R = {0}, [1]R = {x ∈ R | x > 0}, [−1]R = {x ∈ R | x < 0}.
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Exercise (6-5)
Let A be a non-empty set and R a relation on A.
(a) Show that if R is reflexive, then domain(R) = A = range(R).
(b) Is the converse of (a) true? Justify your answer.

Proof and Solution.
(a) To show domain(R) = A, we need domain(R) ⊆ A (by default) and

A ⊆ domain(R): for every a ∈ A, given the reflexive condition, we have (a, a) ∈ R.
This implies a ∈ domain(R). By element-chasing, we have proven A ⊆ domain(R);
To show range(R) = A, we need range(R) ⊆ A (by default) and A ⊆ range(R): for
every a ∈ A, given the reflexive condition, we have (a, a) ∈ R. This implies
a ∈ range(R). By element-chasing, we have proven A ⊆ range(R);

(b) Converse: If domain(R) = A = range(R), then R is reflexive.
It is false, and the counter-example is: take A = {1, 2}, and R = {(1, 2), (2, 1)}.
Then domain(R) = range(R) = {1, 2} = A, but R is not reflexive since
(1, 1), (2, 2) ̸∈ R.
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Exercise (6-6)
A relation R on a set A is a circular relation provided that for all a, b, c ∈ A, if aRb
and bRc, then cRa. Prove that:
A relation R on a set A is an equivalence relation if and only if it is reflexive and
circular.

Proof.
There are two directions to prove:

“Only if” (1) Assume that R is an equivalence relation: it suffices to show that R is circular.
(2) For all x, y, z ∈ A such that xRy and yRz, then xRz (by transitive condition).
(3) Then zRx (by symmetric condition), therefore R is circular.

“If” Assume that R is reflexive and circular: it suffices to show that R is symmetric
and transitive.

For all x, y ∈ A such that xRy, since xRx, we have yRx (by circular condition),
therefore R is symmetric;
For all x, y, z ∈ A such that xRy and yRz, then zRx (by circular condition), then xRz
(by symmetric condition), therefore R is transitive.
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Exercise (6-7)
Construct an equivalence relation R on N such that for any positive integer k, there is
an equivalence class [a]R for some a ∈ N such that [a]R has exactly k elements.

Solution.
21 Define

C =
{
{1}, {2, 3}, {4, 5, 6}, {7, 8, 9, 10}, . . .

}
,

which gives a partition of N.
More rigourously, C = {S1,S2, . . . ,Sk, . . .}, where

Sk =

{
n ∈ N |

(k− 1)k
2

+ 1 ≤ n ≤ k(k + 1)

2

}
for every k ∈ N.

Then |Sk| = k. We use this partition to construct an equivalence relation R on N with
each element of C as an equivalence class.
That is, we have [1]R = S1 = {1}, [2]R = S2 = {2, 3}, [4]R = S3 = {4, 5, 6} and so
on. In general,

[
(k−1)k

2
+ 1
]

R
= Sk for every k ∈ N. So there is an equivalence class

with exactly k elements for every k ∈ N.

21Refer to “Question 3 in Mid-term 2009–2010(I)”.
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Schedule of Tutorial 7

Review concepts:
Relations:

Congruence modulo n relation, congruence classes modulo n, integers modulo n;
Modular arithmetic.

Functions:
Definitions and notations;
Representation of functions;
Composition of functions.

Tutorial
Additional material:

Well-defined;
Question 2(b) in Final 2009–2010(I);
Question 5 in Final 2008–2009(I);
Question 8(a) in Final 2009–2010(I).



MA1100 Tutorial
Tutorial 7: Relations and Functions

Review

Relations: congruence classes, integers modulo n

Let n ≥ 2 be a positive integer.
a ≡ b mod n⇔ n | (a− b)⇔ n | (b− a)⇔ a− b = nk for some integer k.
Congruence modulo n relation:

a ∼ b if and only if a ≡ b mod n

is an equivalence relation on Z.
For each a ∈ Z, we have an equivalence class [a]n = {x ∈ Z | x ≡ a mod n}. We
call [a]n the congruence class of a modulo n.
The set of congruence classes modulo n

Zn =
{
[0]n, [1]n, . . . , [n− 1]n

}
is called the integers modulo n.
|Zn| = n.
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Relations: modular arithmetic

Let n ≥ 2 be a positive integer.
For all integers a, b, c, and d. If a ≡ b mod n and c ≡ d mod n, then

...1 a + c ≡ b + d mod n

...2 ac ≡ bd mod n

...3 a + k ≡ b + k mod n for every k ∈ Z

...4 ka ≡ kb mod n for every k ∈ Z

...5 am ≡ bm mod n for every m ∈ N

...6 ma ≡ mb mod n may not hold for some a, b, m, n: 1 ≡ 4 mod 3, but
21 = 2 ̸≡ 16 = 24 mod 3.

Arithmetic on Zn: For [a]n, [c]n ∈ Zn, define

[a]n + [c]n = [a + c]n, [a]n · [c]n = [ac]n.

If [a]n = [b]n and [c]n = [d]n, then
...1 [a + c]n = [b + d]n...2 [ac]n = [bc]n...3 [am]n = [bm]n for every m ∈ N
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Functions: definitions and notations

A function from a set A to a set B is a rule that associate with every element x
of A exactly one element of the set B. A function is also called a mapping.
Notation: f : A→ B.
The function f : A→ B is a special type of relation from A to B. In this relation,

...1 every element x of A is associated with exactly one element of the set B;

...2 the domain of this relation is the whole of set A itself.

If a function f satisfies the following condition, it is called well-defined:

If (a, b), (a, c) ∈ f, then b = c.

Maybe we are confused here since every function must be well-defined by the
definition of function. However, there are some situations though when the
definition of a function f may make it unclear whether f is well-defined or not.
This can often occur when a function is defined on the set of equivalence classes
of an equivalence relation.
In conclusion, when a question ask us to prove that a function f is well-defined, it
ask us to prove that this “rule” is well-defined. That is to say, we need to show
“if (a, b), (a, c) ∈ f, then b = c”, while we can not use the fact that every
function is always well-defined here.
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Functions: definitions and notations (Cont.)

Let f : A→ B be a function. The set A is called the domain of f, and the set B is
called the codomain of f.
Let f : A→ B be a function. If a ∈ A, then the element of B that is associated
with a is denoted f(a). f(a) is called the image of a under f, and a is called a
preimage of f(a) under f.
Let f : A→ B be a function. The set

range(f) = {b ∈ B | b is an image under f of some element of A} = {f(x) | x ∈ A}

is the range of f.
Relation between codomain and range:

Codomain: what may possibly come out from the function;
Range: what actually comes out from the function;
For any function f, the range of f is always a subset of the codomain of f.

The function f : A→ B can be represented by arrow diagram or graph.
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Functions: equality, composition

Equality of functions: two functions f and g are equal provided
...1 The domain of f equals the domain of g;
...2 The codomain of f equals the codomain of g;
...3 For each x in the domain of f, f(x) = g(x);

Notation: f = g.
Composition: Let f : A→ B and g : B→ C be functions. The composition of f
and g is the function g ◦ f : A f−→ B g−→ C defined by (g ◦ f)(x) = g(f(x)).

f ◦ g may not be defined if A ̸= C.
g ◦ f may not be equal to f ◦ g.
Associated law: h ◦ (g ◦ f) = (h ◦ g) ◦ f.
f ◦ IA = f, IB ◦f = f.
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Functions: examples

Figure: |x| and sin x.
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Functions: examples (Cont.)

Figure: floor function ⌊x⌋, and ceiling function ⌈x⌉.

Since 3 < π
.
= 3.14 < 4, we have

⌊π⌋ = 3, ⌈π⌉ = 4; ⌊−π⌋ = −4, ⌈−π⌉ = −3.
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Exercise (7-1)

(a) Determine the congruence class in Z5 that is equal to [4]35 · [2]5 + [3]5.
(b) Determine the congruence class in Z6 that is equal to [4]36 · [2]6 + [3]6.
(c) Find all congruence classes [x]5 in Z5 such that [3]5 · [x]5 + [2]5 = [0]5.
(d) Find all congruence classes [x]6 in Z6 such that [x]26 + ([3]6 · [x]6) = [3]6.

Recall
[a]n + [c]n = [a + c]n, [a]n · [c]n = [ac]n.

Remark
Similar question: .. Question 2(b) in Final 2009–2010(I) .

Solution of (a-b).

(a) [4]35 · [2]5 + [3]5 = [43 × 2 + 3]5 = [131]5 = [1]5.
(b) [4]36 · [2]6 + [3]6 = [43 × 2 + 3]6 = [131]6 = [5]6.
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Solution of (c-d).

(c) It suffices to resolve the Equation

[3x + 2]5 = [0]5.

By substituting every element in Z5 into the Equation, we find the only solution
is [x]5 = [1]5:

[3 · 0 + 2]5 = [2]5 ̸= [0]5, [3 · 1 + 2]5 = [0]5, [3 · 2 + 2]5 = [8]5 = [3]5 ̸= [0]5,

[3 · 3 + 2]5 = [11]5 = [1]5 ̸= [0]5, [3 · 4 + 2]5 = [14]5 = [4]5 ̸= [0]5.

(d) It suffices to resolve the Equation

[x2 + 3x]6 = [3]6.

By substituting every element in Z6 into the Equation, we find the Equation has
no solution:

[02 + 3 · 0]6 = [0]6 ̸= [3]6, [12 + 3 · 1]6 = [4]6 ̸= [3]6,

[22 + 3 · 2]6 = [10]6 = [4]6 ̸= [3]6, [32 + 3 · 3]6 = [18]6 = [0]6 ̸= [3]6,

[42 + 3 · 4]6 = [28]6 = [4]6 ̸= [3]6, [52 + 3 · 5]6 = [40]6 = [4]6 ̸= [3]6.
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Exercise (7-2)
Let R be the relation on Z defined by

For a, b ∈ Z, a ∼ b if and only if 2a + 3b ≡ 0 mod 5.

(a) Is R an equivalence relation on Z? If not, is it reflexive, symmetric, or transitive?
Justify your answers.

(b) If R is an equivalence relation, describe its equivalence classes.

Solution of (a).

For any a ∈ Z, since 2a + 3a = 5a is divisible by 5, we have a ∼ a, and hence the
relation R is reflexive.
For any a, b ∈ Z, if a ∼ b, we want to check whether b ∼ a or not. By definition
we have 2a + 3b ≡ 0 mod 5. Then 3a + 2b = (5a + 5b)− (2a + 3b) is divisible by
5. That is, b ∼ a, and hence the relation R is symmetric.
For any a, b, c ∈ Z, if a ∼ b, b ∼ c, we want to check whether a ∼ c or not. By
definition we have 5 | (2a+3b), and 5 | (2b+3c), then 5 | [(2a+3b)+ (2b+3c)],
and hence 5 | (2a + 3c). That is, a ∼ c, and hence the relation R is transitive.

Therefore, the relation R is an equivalence relation.
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Solution of (b).
...1 First consider a = 0, we want to find all integers each of which is related with a.

It suffices to resolve the Equation 2 · 0 + 3b ≡ 0 mod 5. Then 3b ≡ 0 mod 5 iff
5 | 3b, and iff 5 | b, since 5 is a prime number. Hence
[0]R = {n ∈ Z | n = 5k, k ∈ Z};

...2 Then Z− [0]R = {. . . ,�0, 1, 2, 3, 4,�5, 6, 7, 8, 9, . . .}. So next consider a = 1, we
want to find all integers each of which is related with a. It suffices to resolve the
Equation 2 · 1 + 3b ≡ 0 mod 5. Then 3(b− 1) ≡ 0 mod 5, and if and only if
5 | (b− 1). Hence [1]R = {n ∈ Z | n = 5k + 1, k ∈ Z};

...3 Then Z− [0]R − [1]R = {. . . ,�0,A1, 2, 3, 4,�5,A6, 7, 8, 9, . . .}. So next consider a = 2.
By similar method we obtain [2]R = {n ∈ Z | n = 5k + 2, k ∈ Z};

...4 Then Z− [0]R − [1]R − [2]R = {. . . ,�0,A1,�A2, 3, 4,�5,A6,�A7, 8, 9, . . .}. So next consider
a = 3. By similar method we obtain [3]R = {n ∈ Z | n = 5k + 3, k ∈ Z};

...5 Then Z− [0]R − [1]R − [2]R − [3]R = {. . . ,�0,A1,�A2,�3, 4,�5,A6,�A7,�8, 9, . . .}. So next
consider a = 4. By similar method we obtain [4]R = {n ∈ Z | n = 5k + 4, k ∈ Z},
and Z− [0]R − [1]R − [2]R − [3]R − [4]R = {. . . ,�0,A1,�A2,�3,A4,�5,A6,�A7,�8,A9, . . .} = ∅.

Therefore there is no other equivalence class. That is, there are 5 distinct equivalence
classes: [0]R, [1]R, [2]R, [3]R, [4]R.
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Alternative Solution.
We shall prove that, given any a, b ∈ Z,

2a + 3b ≡ 0 mod 5 if and only if a ≡ b mod 5. (4)

For any a, b ∈ Z.
“If” Given a ≡ b mod 5. Then 2a + 3b ≡ 2a + 3a ≡ 5a ≡ 0 mod 5.

“Only if” Given 2a + 3b ≡ 0 mod 5. We have 2a + 3b + 2b ≡ 2b mod 5, hence
2a ≡ 2b mod 5. Then 6a ≡ 3(2a) ≡ 3(2b) ≡ 6b mod 5, hence a ≡ b mod 5.

(a) The Claim (4) implies R is the regular congruence modulo 5 relation, and hence is
an equivalence relation.

(b) The equivalence class [a]R is the same as the congruence class [a]5. So the
distinct equivalence classes of R are:

[0]R = [0]5, [1]R = [1]5, [2]R = [2]5, [3]R = [3]5, [4]R = [4]5.
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Exercise (7-3)
Let R be the relation on Z defined by

For a, b ∈ Z, a ∼ b if and only if a3 ≡ b3 mod 9.

(a) Show that R is an equivalence relation on Z.
(b) Determine all the equivalence classes of this equivalence relation.

Proof of (a).

For any a ∈ Z, since a3 ≡ a3 mod 9, we see that a ∼ a and R is reflexive.
For any a, b ∈ Z, if a ∼ b, we want to prove b ∼ a. Since a ∼ b, then
a3 ≡ b3 mod 9, and hence by the symmetric property of congruence, b3 ≡ a3. So
b ∼ a. This proves that R is symmetric.
For any a, b, c ∈ Z, if a ∼ b, b ∼ c, we want to prove a ∼ c. Then a3 ≡ b3 mod 9
and b3 ≡ c3 mod 9. By the transitive property of congruence, we conclude that
a3 ≡ c3 mod 9 and hence a ∼ c. This proves that R is transitive.

By definition, R is an equivalence relation.
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Solution of (b).
Compute the cube of all elements in Z9:

[0]39 = [0]9, [1]39 = [1]9, [2]39 = [8]9,

[3]39 = [0]9, [4]39 = [1]9, [5]39 = [8]9,

[6]39 = [0]9, [7]39 = [1]9, [8]39 = [8]9.

This means
03 ≡ 33 ≡ 63 mod 9, so 0 ∼ 3 and 0 ∼ 6.
13 ≡ 43 ≡ 73 mod 9, so 1 ∼ 4 and 1 ∼ 7.
23 ≡ 53 ≡ 83 mod 9, so 2 ∼ 5 and 2 ∼ 8.

Thus, the equivalence classes of R are:

[0]R = [0]9 ∪ [3]9 ∪ [6]9, [1]R = [1]9 ∪ [4]9 ∪ [7]9, [2]R = [2]9 ∪ [5]9 ∪ [8]9.
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Exercise (7-4)

(a) Complete the addition and multiplication tables for Z8.
(b) From the multiplication table, determine all possible congruence classes in Z8 that

are squares of some congruence class [n]8 in Z8.
(c) Use (b) to prove that, if n ≡ 7 mod 8, then n is not a sum of three squares.

Solution of (a).

+ [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [1] [2] [3] [4] [5] [6] [7]
[1] [1] [2] [3] [4] [5] [6] [7] [0]
[2] [2] [3] [4] [5] [6] [7] [0] [1]
[3] [3] [4] [5] [6] [7] [0] [1] [2]
[4] [4] [5] [6] [7] [0] [1] [2] [3]
[5] [5] [6] [7] [0] [1] [2] [3] [4]
[6] [6] [7] [0] [1] [2] [3] [4] [5]
[7] [7] [0] [1] [2] [3] [4] [5] [6]

· [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6] [7]
[2] [0] [2] [4] [6] [0] [2] [4] [6]
[3] [0] [3] [6] [1] [4] [7] [2] [5]
[4] [0] [4] [0] [4] [0] [4] [0] [4]
[5] [0] [5] [2] [7] [4] [1] [6] [3]
[6] [0] [6] [4] [2] [0] [6] [4] [2]
[7] [0] [7] [6] [5] [4] [3] [2] [1]
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Solution of (b) and Proof of (c).

(b) From the multiplication table, the possible values of the diagonal entries are [0]8,
[1]8, [4]8.

(c) Rephrase the statement in terms of congruence classes: if [n]8 = [7]8, then
[n]8 ̸= [a]28 + [b]28 + [c]28 for any [a]8, [b]8, [c]8 ∈ Z8.
Prove by cases:

[a]28 [0]8 [0]8 [0]8 [0]8 [0]8 [0]8 [1]8 [1]8 [1]8 [4]8
[b]28 [0]8 [0]8 [0]8 [1]8 [1]8 [4]8 [1]8 [1]8 [4]8 [4]8
[c]28 [0]8 [1]8 [4]8 [1]8 [4]8 [4]8 [1]8 [4]8 [4]8 [4]8

Sum [0]8 [1]8 [4]8 [2]8 [5]8 [0]8 [3]8 [6]8 [1]8 [4]8

Hence, we have proved that if n ≡ 7 mod 8, then n is not a sum of three squares.

Remark
Similar question: .. Question 5 in Final 2008–2009(I) .
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Exercise (7-5(a–c))
Let A = {a, b, c, d}, B = {a, b, c} and C = {s, t, u, v}. In each of the following parts,
construct a function with the required property if possible. You may draw an arrow
diagram to represent your function. Give a brief explanation when it is not possible to
construct such a function.
(a) f : A→ C with range(f) = {u, v}.
(b) f : B→ C with range(f) = C.
(c) f : A→ C such that the set of preimage of s has cardinality equal to 3.

Solution.

a

b

c

d

u

v

s

t

f: A à C

a

b

c

u

v

s

t

f: B à C

a

b

c

d

u

v

s

t

f: A à C
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Exercise (7-5(d–e))
Let A = {a, b, c, d}, B = {a, b, c} and C = {s, t, u, v}. In each of the following parts,
construct a function with the required property if possible. You may draw an arrow
diagram to represent your function. Give a brief explanation when it is not possible to
construct such a function.
(d) f : A→ C such that, for all x, y ∈ A, if x ̸= y, then f(x) ̸= f(y).
(e) f : A→ {s, t, u} such that, for all x, y ∈ A, if x ̸= y, then f(x) ̸= f(y).

a

b

c

d

u

v

s

t

f: A à C

a

b

c

d

u

s

t

f: A à {s,t,u}
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Exercise (7-6)
Let g : Z× Z→ Z× Z be defined by g(m,n) = (2m,m− n).
(a) Calculate g(3, 5) and g(−1, 4).
(b) Determine all the preimages of (0, 0). That is, find all (m,n) ∈ Z× Z such that

g(m,n) = (0, 0).
(c) Determine all the preimages of (2, 2).
(d) Is the following statement true or false? Justify your answer. For each

(s, t) ∈ Z× Z, there exists an (m,n) ∈ Z× Z such that g(m,n) = (s, t).

Solution.

(a) g(3, 5) = (2× 3, 3− 5) = (6,−2), and g(−1, 4) = (2× (−1),−1− 4) = (−2,−5).
(b) Let (m,n) be a preimage of (0, 0), then (2m,m− n) = (0, 0). Hence m = n = 0.

So (0, 0) is the only preimage.
(c) Let (m,n) be a preimage of (2, 2), then (2m,m− n) = (2, 2). Hence m = 1,

n = −1. So (1,−1) is the only preimage.
(d) False. Consider (2m,m− n) = (1, 1) which has no integer solution for m and n.

So there does not exist an (m,n) ∈ Z× Z such that g(m,n) = (1, 1).
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Exercise (7-7)
Let Z3 = {[0]3, [1]3, [2]3}. Define

f : Z3 → Z3 by f([x]3) = [x]23 + [1]3, g : Z3 → Z3 by g([x]3) = [x]43 + [1]3.

(a) Calculate f([0]3), f([1]3), f([2]3).
(b) Calculate g([0]3), g([1]3), g([2]3).
(c) Is the function f equal to the function g?

Solution.

(a,b) f([0]3) = [0]23 + [1]3 = [1]3, g([0]3) = [0]43 + [1]3 = [1]3,

f([1]3) = [1]23 + [1]3 = [2]3, g([1]3) = [1]43 + [1]3 = [2]3,

f([2]3) = [2]23 + [1]3 = [5]3 = [2]3. g([2]3) = [2]43 + [1]3 = [17]3 = [2]3.

(c) Yes.
The domain of f equals the domain of g, Z3.
The codomain of f equals the codomain of g, Z3.
Next from (a) and (b), we have f([x]3) = g([x]3) for all [x]3 ∈ Z3.

We conclude that f and g are equal.
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Exercise (7-8(a-b))
Find the largest possible subset of R for the domain of each of the following functions.
State the corresponding range of the function.
(a) k(x) =

√
x− 3;

(b) f(x) = 3 sin(2x);

Recall
To determine the domains, look for the values in R such that each function is not
defined.

Solution of (a-b).

(a) Since √a is defined only when a ≥ 0, we have domain(k) = {x ∈ R | x ≥ 3}. As
we known, every non-negative real number a has a unique non-negative square
root, hence range(k) = {y ∈ R | y ≥ 0}.

(b) Since the domain of sin(x) is R, we have domain(f) = R. Since the range of
sin(x) is [−1, 1], we have range(f) = {y ∈ R | −3 ≤ y ≤ 3} = [−3, 3].
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Exercise (7-8(c))
Find the largest possible subset of R for the domain and the corresponding range of
the function: g(x) = ⌈x⌉

⌊x⌋ .

Solution of (c).
A fraction a

b is defined only when b ̸= 0. Hence

domain(g) = R− {x ∈ R | ⌊x⌋ = 0} = R− [0, 1).

From the graphs of floor function and ceiling function, we obtain:

g(x) =



· · · · · ·
1, when x = −2;
−1
−2

when x ∈ (−2,−1);
1, when x = −1;
0
−1

when x ∈ (−1, 0);

g(x) =



1, when x = 1;
2
1

when x ∈ (1, 2);

1, when x = 2;
3
2

when x ∈ (2, 3);

· · · · · ·

Hence we have

range(g) =
{
. . . ,
−2
−3

,
−1
−2

,
0

−1
, 1

}
∪
{
1,

2

1
,
3

2
,
4

3
, . . .

}
=

{
y ∈ Q | y = 1 or y =

n + 1

n
for some n ∈ Z− {0}

}
.
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.. Well-defined on the page 130.

Exercise (Question 2(b) in Final 2009–2010(I))
List all possible pairs of classes [a]12 and [b]12 in Z12 such that [a]12 · [b]12 = [0]12.

Solution.

[a]12 · [b]12 = [0]12 ⇔ [ab]12 = [0]12 ⇔ 12 | (ab).

Hence all possible pairs of classes [a]12 and [b]12 are as follows:
[a]12 [b]12 [a]12 [b]12
[0]12 every element in Z12 [1]12 [0]12
[2]12 [0]12, [6]12 [3]12 [0]12, [4]12, [8]12
[4]12 [0]12, [3]12, [6]12, [9]12 [5]12 [0]12
[6]12 [0]12, [2]12, [4]12, [6]12, [8]12, [10]12 [7]12 [0]12
[8]12 [0]12, [3]12, [6]12, [9]12 [9]12 [0]12
[10]12 [0]12, [6]12 [11]12 [0]12
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Exercise (Question 5 in Final 2008–2009(I))

(a) Determine all possible congruence classes in Z7 that are squares [n]27 of some
congruence class [n]7 in Z7.

(b) Use part (a) to prove that, for all n,m ∈ Z, if n2 + m2 ≡ 0 mod 7, then n and m
are both divisible by 7.

(c) Is it true that, for all a, b, c ∈ Z, if a2 + b2 + c2 ≡ 0 mod 7, then a, b, c are all
divisible by 7? Justify your answer.

Solution and Proof.

(a) [0]27 = [0]7, [1]27 = [1]7, [2]27 = [4]7, [3]27 = [2]7, [4]27 = [2]7, [5]27 = [4]7,
[6]27 = [1]7. So the possible classes are [0]7, [1]7, [2]7 and [4]7.

(b) Let n,m ∈ Z. If n2 + m2 ≡ 0 mod 7, so [n]27 + [m]27 = [0]7. From part (a), we see
that among the square classes, the only pair of [n]27, [m]27 that give a sum of [0]7
is [n]27 = [0]7 and [m]27 = [0]7. This in turn means [n]7 = [0]7 and [m]7 = [0]7,
which implies 7 | n and 7 | m.

(c) False. From (a), we can find integers a, b, c such that

[a]27 = [1]7, [b]27 = [2]7, [c]27 = [4]7, and [a]27 + [b]27 + [c]27 = [0]7.

That is, 7 - a, b, c but a2 + b2 + c2 ≡ 0 mod 7.
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Exercise (Question 8(a) in Final 2009–2010(I))
Is it possible to find a partition C of N such that C is infinite and S is infinite for every
S ∈ C? Justify your answer.
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Schedule of Tutorial 8

Review concepts: Functions:
Injection, surjection;
Bijection, inverse functions.

Tutorial
Additional material:

Question 10 in Final 2007–2008(I);
Question 7 in Final 2008–2009(I).
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Functions: injection

Let f : A→ B be an injective function (or an injection, a one-to-one function).
Original definition: ∀x, y ∈ A, if x ̸= y, then f(x) ̸= f(y).
Working definition: ∀x, y ∈ A, if f(x) = f(y), then x = y.
For real functions (A = B = R), we may apply “visualization”:

...1 Plot the graph of the real function;

...2 Check whether every horizontal line intersects with the graph at most one point or not;

...3 If yes, this function is injective; otherwise, it is not.

In additional, if A and B are finite sets, then |A| ≤ |B|.
Negation: ∃x, y ∈ A such that x ̸= y and f(x) = f(y).
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Functions: surjection

Let f : A→ B be a surjective function (or a surjection, a onto function).
Original definition: ∀y ∈ B, ∃x ∈ A such that y = f(x).
Alternative definition: range(f) = codomain(f). (In general, we only have
range(f) ⊆ codomain(f).)
For real functions (A = B = R), we may apply “visualization”:

...1 Plot the graph of the real function and project the graph onto the y-axis;

...2 Check whether the projection is the whole of y-axis or not;

...3 If yes, this function is surjective; otherwise, it is not.

In additional, if A and B are finite sets, then |A| ≥ |B|.
Negation: ∃y ∈ B such that ∀x ∈ A, y ̸= f(x). Or range(f) ̸= codomain(f).
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Functions: some results of injections and surjections

Let f : A→ B, g : B→ C be two functions.
If f and g are injective, then g ◦ f is injective.
If f and g are surjective, then g ◦ f is surjective.
If f and g are bijective, then g ◦ f is bijective.
If g ◦ f is injective, then f is injective, and g may be not.
If g ◦ f is surjective, then g is surjective, and f may be not.
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Functions: bijection and inverse functions

f : A→ B is bijective, if f is both an injective and surjective function.
Let f : A→ B be a bijection. For a ∈ A and b ∈ B, we define the inverse function
by f−1(b) = a if f(a) = b. (bijection ⇒ inverse functions)
If the inverse function of f exists, then f is a bijection. (inverse functions ⇒
bijection)
If f : A→ B is a bijection, then f−1 ◦ f = IA and f ◦ f−1 = IB.
If f : A→ B and g : B→ C are bijections, then (g ◦ f)−1 = (f−1) ◦ (g−1).
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Exercise (8-1)
Show that the function below is an injection but not a surjection.

g : [0, 1]→ (0, 1) by g(x) =


0.8, if x = 0

0.5x, if 0 < x < 1

0.6, if x = 1

Method
Draw graph:

y

x
(0, 0)

(1, 0.5)

(0, 0.8)
(1, 0.6)

Figure: Graph of the function g.
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Proof.
To prove the function g is an injection, let a, b ∈ [0, 1] and assume that
g(a) = g(b), we want to show a = b. Since g is a function by cases, we need
consider the following three cases:

If a = 0, then g(a) = 0.8. If b ̸= 0, which is not possible since g(b) = g(a) = 0.8.
Therefore, b = 0 and hence, a = b.
If a = 1, then g(a) = 0.6. If b ̸= 1, which is not possible since g(b) = g(a) = 0.6.
Therefore, b = 1 and hence, a = b.
If 0 < a < 1, then 0 < g(a) < 0.5. Since g(0) = 0.8 and g(1) = 0.6, in order for
g(b) to equal g(a), we must have 0 < b < 1. Hence, 0.5a = 0.5b and hence, a = b.

Therefore, g is an injection.
To prove the function g is not a surjection: The function g is not a surjection
since the range of g is (0, 0.5) ∪ {0.6, 0.8}, which does not equal to (0, 1), the
codomain of g.
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Exercise (8-2)
Let A = {(m,n) ∈ Z× Z | n ̸= 0}. Define f : A→ Q as follows: For each (m,n) ∈ A,
f(m,n) = m+n

n .
(i) Is f an injection? (ii) Is f a surjection? Justify your answers.

Solution.
(i) ...1 Recall that there are many different fractions that represent the same rational number.

...2 For example, 1 can be represented by 1
1 and 2

2 , which are the images of (0, 1) and
(0, 2), respectively.

...3 Therefore, f is not an injection.
(ii) ...1 We need to check whether it is possible to express every rational number in the form

m+n
n .

...2 Let x ba a rational number, then it can be rewritten as a
b , where b ̸= 0. Then we need

to check whether there exists (m, n) ∈ A such that f(m, n) = a
b .

...3 By observing, the equation m+n
n = a

b has solution: n = b and m = a − b.
...4 This proves f is a surjection.
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Exercise (8-3)
Let f : Z→ Z× Z be a function. Is it possible that f is a surjection? Justify your
answer.

Solution.
Yes.

...1 In lecture, we have seen an example of injection g : Z× Z→ Z. By ordering all
the integer ordered pairs on the Cartesian plane in an anticlockwise “spiralling”
direction starting from the origin, we define the function g by

g(0, 0) = 0, g(1, 0) = 1, g(1, 1) = 2, g(0, 1) = 3, g(−1, 1) = 4,

g(−1, 0) = 5, g(−1,−1) = 6, g(0,−1) = 7, g(1,−1) = 8, . . . .

The range of g is Z∗ = {n ∈ Z | n ≥ 0}.
...2 We have a bijection: g′ : Z× Z→ Z∗, where g′(m,n) = g(m,n) when m,n ∈ Z.
...3 Then (g′)−1 : Z∗ → Z× Z exists, denoted as f′.
...4 Then we can extend f′ : Z∗ → Z× Z to f : Z→ Z× Z in the following way:

For all non-negative integers n, we define f(n) = f′(n).
For all negative integers −n, we define f(−n) = (0, 0).

We have a function f whose range is the whole of Z× Z. i.e. f is a surjection.



MA1100 Tutorial
Tutorial 8: Functions

Tutorial

Alternative Solution.
Similar with the method in the lecture, by ordering all the integer ordered pairs on the
Cartesian plane in an anticlockwise “spiralling” direction starting from the origin, we
define the function f by

f(0, 0) = 0, f(1, 0) = 1, f(1, 1) = −1, f(0, 1) = 2, f(−1, 1) = −2,
f(−1, 0) = 3, f(−1,−1) = −3, f(0,−1) = 4, f(1,−1) = −4, . . . .

It is easy to see that f : Z→ Z× Z is bijective.

Remark
Actually, there is a nonconstructive proof for the existence of the bijection from Z× Z
to Z, using some results of “Cardinality”.
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Exercise (8-4)
The following functions are not bijections. In each case, replace the domain or
codomain of the function by suitable subsets if necessary to make it a bijection.
(a) f : R→ R defined by f(x) = e−x2 .
(b) f : R→ R defined by f(x) = sin(x).
(c) f : R→ R defined by f(x) = |x− 1|.
(d) f : Z→ Z defined by f(x) = 2x + 1.

Solution of (a).
From the graph of f(x) = e−x2 , we will see that f is not injective or surjective.

y

xO

(0, 1)

The graph of f is symmetric with respect to the y-axis, so the modified domain can
not contain both x and −x for every x ∈ R. Then we may take the modified domain
to be [0,+∞). From the graph, the range of f is (0, 1], so we may take the modified
codomain as (0, 1].
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Solution of (b).
From the graph of f(x) = sin(x), we will see that f is not injective or surjective.

f is a periodic function with period 2π, so we may take the modified domain as[
−π

2
, π
2

]
(half period). From the graph, the range of f is [−1, 1], so we may take the

modified codomain as [−1, 1].
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Solution of (c).
From the graph of f(x) = |x− 1|, we will see that f is not injective or surjective.

y

xO (1, 0)

f(x) = |x− 1|

The graph of f is symmetric with respect to the line x = 1, so we may take right
region of the point (1, 0): [1,+∞). From the graph, the range of f is [0,∞), so we
may take the modified codomain as [0,+∞).
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Solution of (d).
...1 For the function f : Z→ Z defined by f(x) = 2x + 1, note that the domain and

codomain are Z, we may not apply “visualization”.
...2 This function is injective but not surjective:
...3 For any x, y ∈ Z, if f(x) = f(y), then 2x + 1 = 2y + 1. Hence x = y. Therefore, f

is injective, and hence we do not need modify the domain.
...4 The range of f is the set of all odd integers. Hence we may take the modified

codomain as the set of all odd integers.
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Exercise (8-5)

(a) Define f : R→ R by f(x) = x2 − 4 for all x ∈ R. Explain why f−1 is not defined.
(b) Let R∗ = {x ∈ R | x ≥ 0} and let T = {y ∈ R | y ≥ −4}. Define F : R∗ → T by

F(x) = x2 − 4 for all x ∈ R∗. Explain why F−1 is defined and determine a formula
for F−1(y).

Method
To show the inverse exists is equivalent to show the function is bijection.

Solution.

(a) Since f(−2) = 0 = f(2), we have that f is not an injection. So the inverse of f is
not defined.

(b) We first prove that F is an injection. Let a, b ∈ R∗ and assume that F(a) = F(b).
Then a2 − 4 = b2 − 4, which implies that a2 = b2. Since both a and b are
nonnegative, we can take the square root of both sides of this equation to prove that
a = b. Therefore, F is an injection.
Now we prove that F is a surjection. Let y ∈ T. Then y ∈ R and y ≥ −4. We can
then conclude that y + 4 ≥ 0 and hence, √y + 4 ∈ R∗. So if x =

√
y + 4, then

F(x) = x2 − 4 = (y + 4) − 4 = y. This shows that F is a surjection.
Since F is a bijection, hence the inverse of F is a function. From the discussion above,
we have for each y ∈ T, x =

√
y + 4. Hence the formula for F−1 is given by

F−1(y) =
√

y + 4.
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Exercise (8-6)

(a) Define g : Z5 → Z5 by g([x]5) = [x]35 + [4]5 for all [x]5 ∈ Z5. Explain why g−1 is
defined.

(b) Use the fact that [x]55 = [x]5 for all [x]5 ∈ Z5 to determine a formula for the
inverse g−1 for g in part (a) in the form of g−1(x) = [x + n]k5 for some k,n ∈ Z+.

Solution.

(a) We check directly:

g([0]4) = [4]5, g([1]5) = [0]5, g([2]5) = [2]5, g([3]5) = [1]5, g([4]5) = [3]5.

So g is a bijection. Hence the inverse of g is defined.
(b) Let [y]5 = [x]35 + [4]5. We want to solve [x]5 in terms of [y]5. At first, we have

[y + 1]5 = [x]35. Now, we need reduce the power 3 of [x]5 to 1. We will use the
result

[x]55 = [x]5 for all [x]5 ∈ Z5

twice in the following:

([y− 4]5)
3 = ([x]35)3 = [x]45 · [x]55 = [x]45 · [x]5 = [x]55 = [x]5.

Hence we get a formula g−1([y]5) = [y− 4]35 = [y + 1]35.
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Exercise (8-7)
Let A, B and C be nonempty sets and let f : A→ B and g : B→ C.
(a) Prove: If g ◦ f : A→ C is a surjection, then g is a surjection.
(b) Disprove: If g ◦ f : A→ C is a surjection, then f is a surjection.

Proof and solution.
(a) ...1 To prove that g is a surjection, for any z ∈ C, we want to find y ∈ B, such that

g(y) = z.
...2 Now, since g ◦ f : A → C is a surjection, there exists an x ∈ A such that

g(f(x)) = (g ◦ f)(x) = z.
...3 Take y = f(x) ∈ B, and this y satisfies the requirement.

We have proven that there exists an element y ∈ B such that g(y) = z. Therefore,
g is a surjection.

(b) From the following graph, we have a counterexample:

a
a

b
a

A B C
f g
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Exercise (8-8(a,b))
For each of the following, give examples of functions f : A→ B and g : B→ C that
satisfy the stated conditions, or explain why no such examples exist.
(a) f is an injection but g ◦ f is not an injection.
(b) f is not an injection but g ◦ f is a injection.

Solution of (a,b).

a a

b
a

A B C
f g

b

a a

b

a

A B C
f g

b b

Figure: Example for (a). Figure: Counter-example for (b).

Statement in (b) is not possible. We have proven that if g ◦ f is a injection, then f has
to be an injection.
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Exercise (8-8(c,d))
For each of the following, give examples of functions f : A→ B and g : B→ C that
satisfy the stated conditions, or explain why no such examples exist.
(c) g is an injection but g ◦ f is not an injection.
(d) g is not an injection but g ◦ f is an injection.

Solution of (c,d).

a a

b

a

A B C
f g

b b
a

a

b
a

A B C
f g

b b
c

Figure: Example for (c) Figure: Example for (d)
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Additional material

Exercise (Question 10 in Final 2007–2008(I))

(i) Let f : S→ T be a function such that f−1(f(A)) = A for all subsets A of S.
Prove that f is an injection.

(ii) Let g : S→ T be a surjection and P a partition of T. Show that the collection
{g−1(C) | C ∈ P} is a partition of S.

Proof.

(i) For any a, b ∈ S, if f(a) = f(b). Then we have

{a} = f−1 ◦ f({a}) = f−1 ◦ f({b}) = {b}.

Hence a = b. Therefore f is an injection.
(ii) Apply the definition of partition.
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Additional material
Exercise (Question 7 in Final 2008–2009(I))
Let A and B be two non-empty subsets of some universal set U. Let f : A→ A and
g : B→ B be two functions such that f(x) = g(x) for all x ∈ A ∩ B.
Define the function h : (A ∪ B)→ (A ∪ B) by h(a) = f(a) for all a ∈ A and
h(b) = g(b) for all b ∈ B.
(a) Suppose f and g are surjections. Is it necessary that h is a surjection?
(b) Suppose f and g are injections. Is it necessary that h is a injection?

Solution.
(a) ...1 For all x ∈ A ∪ B, we have x ∈ A or x ∈ B.

...2 If x ∈ A, then there exists a ∈ A, such that f(a) = x which implies that h(a) = x.

...3 If x ∈ B, then there exists b ∈ B, such that g(b) = x which implies that h(b) = x.

...4 Hence, for all x ∈ A ∪ B, there exists c ∈ A ∪ B, such that h(c) = x.
(b) h is not necessarily injective: let

A = {0, 1, 2, 3, . . .}, f(n) = n + 1 for all n ∈ A;

B = {−1, 1, 2, 3, . . .}, g(n) = n + 1 for all n ∈ N, g(−1) = 1.

Then f and g are injective, but h is not since h(0) = h(−1) = 1.
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Change log

Page 162: Revise the solution;
Page 163: Add an alternative solution.

Last modified: 12:00, October 25, 2010.
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Schedule of Tutorial 9

Review concepts: Number Theory:
Common divisor, greatest common divisor;
Division Algorithm, Euclidean Algorithm;
Prime, composite number, Euclid’s Theorem;
Relatively prime, Euclid’s Lemma;
Prime factorization, Fundamental Theorem of Arithmetic, canonical factorization;
Perfect square.

Tutorial
Question 8(b) in Final 2008–2009(I);
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Review

Number Theory: Summary

Division
Division 

Algorithm
Prime

gcd

Congruence modulo 
n relation

Prime 
Factorization

Fundamental Theorem 
of Arithmetic

Relatively 
Prime

Euclidean 
Algorithm

Linear Combination

Integers 
modulo n

Canonical 
Factorization

Part 1

Part 2

Part 3
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Review

Number Theory: Greatest Common Divisor

Let a, b be integers and d a nonzero integer. d is a common divisor of a and b if
d | a and d | b. � Notice: 0 can not be a common divisor of any a and b.
Original definition: Let a, b be integers, not both 0. The largest integer that
divides both a and b is called the greatest common divisor of a and b. Notation:
gcd(a, b). � Notice: gcd(0, 0) is not defined.
Working definition: Let a, b be integers, not both 0, and d ∈ N.

d = gcd(a, b)⇔
{

d | a and d | b;
for all k ∈ N, if k | a, k | b, then k ≤ d.

Theorem 11.8: Let a, b be integers, not both 0, and d ∈ N.

d = gcd(a, b)⇔
{

d | a and d | b;
for all k ∈ N, if k | a, k | b, then k | d.

An integer n is called a linear combination of a and b if n can be written in the
form ax + by by some integers x and y.
Theorem 11.7: Let a, b be integers, not both 0, then gcd(a, b) is the smallest
positive linear combination of a and b. Therefore, gcd(a, b) = ax + by for some
integers x and y.
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Review

Number Theory: Greatest Common Divisor (Cont.)

Basic propositions:
0 ̸= a ∈ Z, gcd(a, 0) = |a|, gcd(a, a) = |a|, gcd(a, an) = |a| for all n ∈ Z.
gcd(a, b) > 0.
gcd(a, b) = gcd(b, a).
gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).
gcd(a, b) = gcd(a, b + an) for all n ∈ Z.

p is a prime, gcd(p, a) =
{

p, if p | a;
1, if p - a.

If 0 < c | gcd(a, b), then gcd( a
c ,

b
c ) =

gcd(a,b)
c . Specially, we have

gcd( a
gcd(a,b) ,

b
gcd(a,b) ) = 1.

gcd(ca, cb) = c gcd(a, b) if c ∈ N.
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Review

Number Theory: Greatest Common Divisor (Cont.)

Theorems:
Theorem 11.7: gcd(a, b) is the smallest positive linear combination of a and b.
If c | a and c | b, then c | gcd(a, b).

Theorem 11.8: d = gcd(a, b)⇔
{

d | a and d | b;
for all k ∈ N, if k | a, k | b, then k | d.

If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).
Theorem 11.13: If gcd(a, b) = 1 and a | (bc), then a | c.
Corollary 11.14: p a prime number. If p | (ab), then p | a or p | b.
Corollary 11.15: p be a prime number. If p | a1a2 · · · an, then p | ak for some k
(1 ≤ k ≤ n).

If gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.
Theorem 11.16: If gcd(a, b) = 1, a | c, b | c, then (ab) | c.
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Review

Number Theory: Greatest Common Divisor (Cont.)
Division Algorithm:

Original case: for all positive integers a and b, there exist unique integers q and r, such
that b = aq + r, where 0 ≤ r < a.
Generalization: for all integers a and b, there exist unique integers q and r, such that
b = aq + r, where 0 ≤ r < |a|. Here allow a and b to be negative.
Let a and b be positive integers. If b = aq + r for some integers q and r, then
gcd(b, a) = gcd(a, r).

Euclidean Algorithm: let a, b be integers, where b ≥ a > 0.
b = a · q1 + r1 gcd(b, a) = gcd(a, r1) 0 ≤ r1 < |a|
a = r1 · q2 + r2 gcd(a, r1) = gcd(r1, r2) 0 ≤ r2 < r1

r1 = r2 · q3 + r3 gcd(r1, r2) = gcd(r2, r3) 0 ≤ r3 < r2
· · · · · · · · · · · · · · · · · · · · · · · ·

rn−3 = rn−2 · qn−1 + rn−1 gcd(rn−3, rn−2) = gcd(rn−2, rn−1) 0 ≤ rn−1 < rn−2

rn−2 = rn−1 · qn + rn gcd(rn−2, rn−1) = gcd(rn−1, rn) 0 ≤ rn < rn−1

rn−1 = rn · qn+1 + 0 gcd(rn−1, rn) = gcd(rn, 0) = rn

The sequence ri will go to 0 eventually since |a| is finite and
|a| > r1 > r2 > · · · > rn−1 > rn > rn+1 = 0. Then gcd(a, b) = rn.
Working backwards, we can find the integers x and y, so that gcd(a, b) = ax+ by.� Notice: when a or b is negative, we can not apply Euclidean Algorithm to get
gcd(a, b) directly. Apply gcd(a, b) = gcd(a,−b) = gcd(−a, b) = gcd(−a,−b).
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Review

Number Theory: Prime
A prime is an integer p ≥ 2 whose only positive integer divisors are 1 and p. An
integer n ≥ 2 that is not prime is called a composite number.
Let a and b be integers, not both 0.

If gcd(a, b) = 1, then a and b are relatively prime.
Theorem 11.12: a and b are relatively prime iff 1 is a linear combination of a and b.
Theorem 11.16: Let a, b, c ∈ Z, where a and b are relatively prime nonzero integers. If
a | c and b | c, then ab | c.

Euclid’s Lemma
Let a, b be integers, and p be a prime number. If p | ab, then p | a or p | b.
Let a1, a2, . . . , an be integers, and p be a prime number. If p | a1 · · · an, then p | ak
for some 1 ≤ k ≤ n.

If n = p1p2 · · · pr with primes p1 ≤ p2 ≤ . . . ≤ pr, we will call this a prime
factorization of n.
Fundamental Theorem of Arithmetic:

Existence of prime factorization: Every integer greater than 1 is either a prime number
or a product of prime numbers.
Uniqueness of prime factorization: For any integer greater than 1, the prime
factorization is unique except possibly for the order in which the factors occur.

Canonical factorization: Given any integer n > 1. Suppose p1 < p2 < · · · < pr
are the distinct prime divisors of n. Then we can write n = pk1

1 pk2
2 · · · p

krr for
ki ≥ 1.
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Review

Number Theory: Misc

Euclid’s Theorem: There are infinitely many prime numbers.
A positive integer n is a perfect square if there exists an integer m such that
n = m2.
Let n > 1 be an integer. n is a perfect square iff every prime number in the
canonical factorization of n = pk1

1 pk2
2 · · · p

krr appears an even number of time.
Let n be a positive integer. If n is not a perfect square, then √n is irrational.
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Tutorial

Exercise (9-1)
Use the Euclidean Algorithm to find gcd(12628, 21361) and find integers m and n
such that gcd(12628, 21361) = 12628m + 21361n.

Solution.

By Euclidean Algorithm:

21361 = 12628 ∗ 1 + 8733

12628 = 8733 ∗ 1 + 3895

8733 = 3895 ∗ 2 + 943

3895 = 943 ∗ 4 + 123

943 = 123 ∗ 7 + 82

123 = 82 ∗ 1 + 41

82 = 41 ∗ 2 + 0

Thus, gcd(12628, 21361) = 41.

Working backwards, we will obtain:

41 = 123− 82 ∗ 1
= 123− (943− 123 ∗ 7)
= 943 ∗ (−1) + 123 ∗ 8
= 943 ∗ (−1) + (3895− 943 ∗ 4) ∗ 8
= 3895 ∗ 8− 943 ∗ 33
= 3895 ∗ 8− (8733− 3895 ∗ 2) ∗ 33
= 12628 ∗ 181 + 21361 ∗ (−107)

Thus, m = 181, n = −107.



MA1100 Tutorial
Tutorial 9: Number Theory

Tutorial

Exercise (9-2)
Let a ∈ Z.
(a) Show that the possible values of gcd(a, a + 2) are 1 and 2.
(b) If p is a prime, find the possible values of gcd(a, a + p).
(c) Find a necessary and sufficient condition for gcd(a, a + p) = 1 where p is a prime.

Justify your answer.

Recall
...1 gcd(a, b) = gcd(a, b + an) for all n ∈ N.

...2 p is a prime number, then gcd(p, a) =
{

p, if p | a;
1, if p - a.

Solution.

(a) By Recall 1, we have gcd(a, a + 2) = gcd(a, 2). Then by Recall 2, since 2 is a
prime number, the possible values of gcd(a, a + 2) are 1 and 2.

(b) By Recall 1, we have gcd(a, a + p) = gcd(a, p). Then by Recall 2, the possible
values of gcd(a, a + p) are 1 and p.

(c) By Recall 1, we have gcd(a, a + p) = gcd(a, p). Then by Recall 2, we have
gcd(a, a + p) = 1 if and only if p - a.
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Tutorial

Exercise (9-3)
Let a, b, c ∈ Z, with a not zero. Show that:
(a) gcd(a, b) = gcd(a, a + b);
(b) If a | bc, then a | gcd(a, b)× c;
(c) If gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1;
(d) If gcd(a, b) = d, then gcd(a/d, b/d) = 1;
(e) If gcd(a, b) = 1, then gcd(a + b, a− b) = 1 or 2;
(f) If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).

Proof.

(a,c,d,f) For (a), (c), (d), and (f), please refer to Proposition 3.3 (3), Proposition 3.11
(1), Proposition 3.5 and Theorem 3.10 (1) in “Summary”, respectively.

(b) ...1 By Theorem 11.7, we have gcd(a, b) = ax + by for some integers x, y.
...2 Multiply c, we obtain gcd(a, b) × c = axc + byc.
...3 Since a | bc, we have ak = bc for some integer k. Hence the Equation becomes

gcd(a, b) × c = axc + aky = a(xc + ky).
...4 So we have a | [gcd(a, b) × c].

(e) ...1 Let d = gcd(a + b, a − b). Then d | (a + b) and d | (a − b). This implies d | (2a)
and d | (2b). Hence 2a = dp and 2b = dq for some integers p, q.

...2 Since gcd(a, b) = 1, so ax + by = 1 for some integers x, y. Multiplying 2, we have
2ax + 2by = 2.

...3 Then we have (dp)x + (dq)y = 2 which gives d(px + qy) = 2. Hence d | 2. This
implies d = 1 or 2.
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Tutorial

Exercise (9-4)

(a) Show that if the integers r1, r2, . . . , rn are all of the form 4k + 1 for some integer
k, then their product r1r2 · · · rn is also of the form 4k + 1.

(b) Prove that there are infinitely many primes that are congruent to 3 modulo 4.

Proof of (a).
...1 Since ri = 4ki + 1 for some integer ki for all i ∈ {1, 2, . . . ,n}, we have

ri ≡ 1 mod 4 for all i = 1, 2, . . . ,n.

...2 Then we have
r1r2 · · · rn ≡ 1× 1× · · · × 1 ≡ 1 mod 4.

...3 That is, r1r2 · · · rn = 4k + 1 for some integer k.
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Tutorial

Proof of (b).
The idea also comes from Euclid’s proof for the existence of infinitely many prime
numbers.

...1 Prove by contradiction: Suppose there are only finitely many prime numbers that
are congruent to 3 modulo 4.

...2 Let p1, p2, . . . , pm be all the primes that are congruent to 3 modulo 4. Construct
the integer M = 4p1p2 · · · pm − 1.

...3 Then we have the following facts:
(i) M > pi for all i = 1, 2, . . . , m.
(ii) M ≡ −1 ≡ 3 mod 4.
(iii) M is not a prime number. Otherwise, by Fact (i) and (ii), we find another 4k + 3-form

prime number M, which is a contradiction.
(iv) pi - M for all i. Otherwise, we have pi | 1 since pi | M + 1, which is also a

contradiction.
...4 By Fact (iii), M is a composite number, and has a prime factorization

M = q1q2 · · · qk.
...5 Since M is odd, qj is odd for all j, and hence is congruent to 1 or 3 modulo 4.
...6 By Fact (iv), qj can not be any of the pi. So all qj must be congruent to 1

modulo 4.
...7 Then by part (a), M is also congruent to 1 modulo 4, which is a contradiction.
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Tutorial

Exercise (9-5)

(a) Find the largest perfect square that divides 25!. (You may present your answer as
a prime factorization.)

(b) Find the largest square free integer that divides 25!.
(c) Find the number of digits of 0 at the end of the 25!.

Solution.
We first express 25! as prime factorization:
25! =2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 × 11 × 12 × 13 × 14 × 15

× 16 × 17 × 18 × 19 × 20 × 21 × 22 × 23 × 24 × 25

=2 × 3 × (2
2
) × 5 × (2 · 3) × 7 × (2

3
) × (3

2
) × (2 · 5) × 11 × (2

2 · 3) × 13 × (2 · 7) × (3 · 5)

× (2
4
) × 17 × (2 · 32) × 19 × (2

2 · 5) × (3 · 7) × (2 · 11) × 23 × (2
3 · 3) × (5

2
)

=2
22 × 3

10 × 5
6 × 7

3 × 11
2 × 13 × 17 × 19 × 23

(a) The largest perfect square that divides 25! is the product of all the prime factors
of 25! to their largest possible even powers, i.e. 222 × 310 × 56 × 72 × 112.

(b) The largest square-free number that divides 25! is the product of all the prime
factors of 25! to the power 1, i.e. 2× 3× 5× 7× 11× 13× 17× 19× 23.

(c) Each pair of prime factor 2 and 5 will give a product of 10 and hence contributes
to a 0 at the end of 25!. Since there are twenty-two 2’s and six 5’s, so there are
six 0’s at the end of 25!.
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Tutorial

Exercise (9-6)
Show that every natural number n can be written as n = mk2 where m, k ∈ N and m
is square free.

Proof.
...1 Let the canonical factorization of n be ph1

1 ph2
2 · · · p

hk
k .

...2 Rearrange the primes in n so that p1, . . . , pt have even powers hi = 2ai and
pt+1, . . . , pk have odd powers hi = 2ai + 1.

...3 Then

n = (p2a1
1 · · · p2at

t )(p2at+1+1
t+1 · · · p2ak+1

k )

= (p2a1
1 · · · p2at

t )(p2at+1
t+1 · · · p2ak

k )(pt+1 · · · pk)

= (p2a1
1 · · · p2ak

t p2at+1
t+1 · · · p2ak

k )(pt+1 · · · pk)

= (pa1
1 · · · p

ak
k )2(pt+1 · · · pk)

...4 By letting
k = pa1

1 pa2
2 · · · p

ak
k , m = pt+1pt+2 · · · pk,

we have n = mk2, where m is square free.
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Additional material
Exercise (Question 8(b) in Final 2008–2009(I))
For any positive integer n, let d(n) be the number of positive divisors of n. Show that
d(n) ≤ 2

√
n for all n ∈ Z+.

Proof.
Let d(n) = k, and 1 = d1 < d2 < · · · < dk = n be all the positive divisors of n. Then

didk+1−i = n, for all 1 ≤ i ≤ k.

If n is a square, then k is odd and d k+1
2

=
√

n ∈ N. Since

1 = d1 < d2 < · · · < d k+1
2

=
√

n,

we have k+1
2
≤
√

n. Hence d(n) = k ≤ 2
√

n− 1 < 2
√

n.
If n is not a square, then k is even and d k

2
d k

2
+1

= n. Since d k
2
< d k

2
+1

, we have
d k

2
<
√

n. Now
1 = d1 < d2 < · · · < d k

2
<
√

n,

then we have k
2
<
√

n. Hence d(n) = k < 2
√

n.
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Page 189: Revise a typo: “23” to “2× 3”.
Last modified: 12:00, October 31 2010.



MA1100 Tutorial
Final Exam

Final Exam Information

Time: November 23th (Tuesday), 09:00–11:00;
Venue: MPSH 5;
Results available in final exam (from VT, last year):

Short answer: you can use all of them (that we have discussed and proven)
Longer answer: you can use the results relative to the question asked. If an exam
question can be answered in one or two lines by quoting a result, then you should know
that you need to elaborate more.

Consultation:
Time: Any time from November 15th to November 23th
Venue: S17-06-14
Email: xiangsun@nus.edu.sg
Mobile: 9169 7677

Be careful, and do not make any stupid mistakes.
Good Luck.
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Schedule of Tutorial 10

Review concepts: Cardinality:
Numerically equivalence;
Denumerable set, countable set, uncountable set.

Tutorial
Additional material:

Question 4(b) in Final 2006–2007(I);
Advanced results in cardinality;
Question 8(b) in Final 2009–2010(I).
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Review

Cardinality: Concepts

A set A is finite, if |A| = n for some nonnegative integer n.
If A is a nonempty finite set, we can write A = {a1, a2, . . . , an} for some n ∈ N.
If there exists a bijection f : A→ B, we say that A is numerically equivalent to B.

If A and B finite, then A is numerically equivalent to B if and only if |A| = |B|.
If A and B infinite, we define |A| = |B| if A is numerically equivalent to B.

Therefore, for any sets A and B,

|A| = |B| ⇔ there is a bijection f : A→ B.

A set A is called a denumerable (or countably infinite) set, if |A| = |N|.
If A is a nonempty denumerable set, we can write A = {a1, a2, a3, . . .}.
A set A is called a countable set, if it is either finite or a denumerable set.
A set A is called an uncountable set, if it is not countable.
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Review

Cardinality: General Results

Theorem 10.3: Every infinite subset of a denumerable set is denumerable.
Result 10.5: If A and B are denumerable sets, then A× B is denumerable.� Generalization: If Ai is denumerable for all i ∈ N, then ×i∈NAi is also
denumerable.
If A and B are denumerable sets, then A ∪ B is denumerable. Refer to Exercise
10-3.� Generalization: If Ai is denumerable for all i ∈ N, then ∪i∈NAi is also
denumerable.
Theorem 10.9: Let A and B be sets, A ⊆ B. If A is uncountable, then B is
uncountable.
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Review

Cardinality: Examples

Z∗,Z,Q+,Q are denumerable.
Theorem 10.8: (0, 1) is uncountable, i.e. |(0, 1)| ̸= N: Cantor’s diagonal
argument.
Theorem 10.13: |(0, 1)| = |R|: f(x) = tan

(
(x− 1

2
)π
)

is a bijection (0, 1)→ R.

|(0, 1)| = |(0, 1]| = |[0, 1)| = |[0, 1]|. Refer to .. |(0, 1)| = |[0, 1]|

sets


finite

infinite


denumerable (ℵ0) : N,Z∗,Z,Q+,Q

uncountable
{

equivalent to (0, 1) (ℵ1, c) : (a, b), [0, 1], [a, b],R, I
not equivalent to (0, 1) (ℵ2,ℵ3, . . .) : P(R), . . .
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Exercise (10-1)
State whether each of the following statements is true or false. Justify your answers.
(a) If a set A is countable, then A is infinite.
(b) If a set A is denumerable, then A is countable.
(c) If a set A is uncountable, then A is infinite.
(d) If a set A is equivalent to a finite set, then A is not countable.
(e) If a set A is equivalent to an infinite set, then A is denumerable.

Solution.

(a) False. By definition, a countable set is either finite or denumerable.
(b) True. This follows from definition of countable set.
(c) True. “Uncountable” means not countable. So an uncountable set cannot be

finite.
(d) False. If A is equivalent to a finite set, then A itself is finite, and hence is

countable.
(e) False. Counter-example: Take A to be R, which is equivalent to the infinite set

(0, 1). But R is not denumerable.
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Exercise (10-2(a))
Prove that the set of all positive integers that are multiples of 5 is denumerable by
constructing a bijection from N to the set.

Proof.
...1 Let A = {m ∈ N | m = 5n for some n ∈ Z} = {5, 10, 15, 20, 25, . . .}.
...2 Define

f : N→ A, by f(n) = 5n.
...3 f is an injection: Let m,n ∈ N. If f(m) = f(n), then 5m = 5n. So m = n.
...4 f is a surjection: Let a ∈ A. Then a = 5n for some positive integer n. So

a = f(n) with n ∈ N.
...5 Thus f is a bijection, and hence A is denumerable.
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Tutorial

Exercise (10-2(b))
Prove that {n ∈ Z | n ≥ −10} is denumerable by constructing a bijection from N to
the set.

Proof.
...1 Let B = {n ∈ Z | n ≥ −10} = {−10,−9,−8, . . . , 1, 2, 3, . . .}.
...2 Define

g : N→ B, by g(n) = n− 11.

...3 g is an injection: Let m,n ∈ N. If g(m) = g(n), then m− 11 = n− 11. So m = n.

...4 g is a surjection: Let b ∈ B. Then b ≥ −10. So b + 11 ≥ 1. That is, b + 11 = n
for some positive integer n. So b = n− 11 = g(n) with n ∈ N.

...5 Thus g is a bijection, and hence B is denumerable.
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Exercise (10-2(c))
Prove that N− {4, 5, 6} is denumerable by constructing a bijection from N to the set.

Proof.
...1 Let C = N− {4, 5, 6} = {1, 2, 3, 7, 8, 9, . . .}.

...2 Define h : N→ C by h(n) =
{

n, if n ≤ 3;

n + 3, if n > 3.

...3 h is an injection: Let m,n ∈ N. If h(m) = h(n), we consider 4 cases:
m,n ≤ 3. Then h(m) = h(n) ⇒ m = n.
m,n > 3. Then h(m) = h(n) ⇒ m + 3 = n + 3 ⇒ m = n.
m ≤ 3, n > 3. Then h(m) = m ≤ 3, h(n) = n + 3 > 6 which contradicts that
h(m) = h(n).
m > 3, n ≤ 3. Similar to case 3, which is impossible.

...4 h is a surjection: Let c ∈ C. Consider 2 cases:
c = 1, 2 or 3. Then c = h(c) with c ∈ N.
c > 6. Then c − 3 > 3. Then c = (c − 3) + 3 = h(c − 3) with c − 3 ∈ N.

...5 Thus h is a bijection, and hence C is denumerable.
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Exercise (10-3)
Let A and B be two disjoint denumerable sets. Show that A ∪ B is denumerable.
(Note: The result still holds without the disjoint condition.)

Method
...1 Since A and B are two denumerable sets, we can write

A = {a1, a2, a3, . . .}, B = {b1, b2, b3, . . .}.

...2 Then we can write A ∪ B as

{a1, b1, a2, b2, a3, b3, . . . , an, bn, an+1, bn+1, . . .}.

...3 Then it is easy to construct the bijection from N to A ∪ B.
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Proof.
...1 Since A and B are denumerable, there are bijections f : N→ A and g : N→ B.

...2 Define h : N→ A ∪ B, by h(n) =
{

f(k), if n = 2k− 1 for some k ∈ N;
g(k), if n = 2k for some k ∈ N

...3 h is injective: Let m,n ∈ N. Suppose h(m) = h(n).
If both m and n are odd, then m = 2k − 1 and n = 2l − 1. So h(m) = f(k) and
h(n) = f(l). Now f(k) = f(l) implies k = l as f is injective. So m = n.
If both m and n are even, then m = 2k and n = 2l. So h(m) = g(k) and
h(n) = g(l). Now g(k) = g(l) implies k = l as g is injective. So m = n.
If m is even and n is odd, then m = 2k and n = 2l − 1. So h(m) = g(k) and
h(n) = f(l). Now g(k) ∈ B and h(l) ∈ A. So it is impossible that g(k) = f(l).

...4 h is surjective: Let c ∈ A ∪ B.
If c ∈ A, then c = f(k) for some k ∈ N. So c = h(2k − 1).
If c ∈ B, then c = g(k) for some k ∈ N. So c = h(2k).

...5 Thus h is a bijection, and hence A ∪ B is denumerable.
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Exercise (10-4)
State whether each of the following statements is true or false. Justify your answers.
(a) If A is denumerable and B is finite, then A− B is denumerable.
(b) If A and B are denumerable, then A ∩ B is denumerable.
(c) If A,B,C are sets such that A ⊆ B ⊆ C, and A and C are denumerable, then B is

denumerable.

Proof.
(a) ...1 Since A − B is a subset of A, A − B is countable.

...2 A − B cannot be finite: Otherwise B and A − B are finite will imply A is finite
(contradiction).

...3 Hence A − B is denumerable. True.
(b) False. Take A = {n ∈ Z | n ≥ 0} and B = {n ∈ Z | n ≤ 0}. Both are

denumerable. But A ∩ B = {0} is finite, and hence not denumerable.
(c) ...1 A is denumerable so it is infinite. Hence B is also infinite.

...2 C is denumerable so it is countable. Hence B is also countable.

...3 Since B is infinite and countable, it is denumerable. True.
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Exercise (10-5)
Show that the set I of irrational numbers is uncountable.

Proof.
...1 We have R = Q ∪ I, Q and I are disjoint.
...2 If I is countable. Since Q is denumerable, by Question 10-3, we have that R

would be denumerable, which is a contradiction.
...3 Therefore, I is uncountable.
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Exercise (10-6)

(a) Is it possible to find a denumerable subset of R that does not contain any rational
number?

(b) Is it possible to find an uncountable subset of R that does not contain any
irrational number?

Justify your answers.

Solution.

(a) Possible. Example: A = {n +
√
2 | n ∈ N}. All the elements in A are irrational.

The function f : N→ A defined by f(n) = n +
√
2 is a bijection.

(b) Impossible. A subset of R which does not contain any irrational number is a
subset of Q, which is countable. So such a subset must be countable.
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Exercise (10-7(a))
Show that the cardinality of (1,∞) is the same as |R| by constructing an appropriate
bijection from R to the respective set.

Proof.
...1 Define

f : R→ (1,∞), by f(x) = ex + 1.

...2 f is an injection: Let x, y ∈ R. If f(x) = f(y), then ex + 1 = ey + 1. So ex = ey.
Since ex is an injection, so x = y.

...3 f is a surjection: Let z ∈ (1,∞). Then z− 1 > 0, which is in the range of the
exponential function. So z− 1 = ex for some real number x. So z = ex + 1 = f(x)
with x ∈ R.

...4 Hence |(1,∞)| = |R|.
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Exercise (10-7(b))
Show that the cardinality of R− {0} is the same as |R| by constructing an appropriate
bijection from R to the respective set.

Proof.

...1 Define g : R→ R− {0}, by g(x) =
{

x + 1, if x ∈ Z∗ (nonnegative integer)
x, otherwise

...2 Note that in this function, every real number will be mapped to itself, except for
the nonnegative integers: g(0) = 1, g(1) = 2, g(2) = 3 etc. So no integer will
map to 0, which makes g a well-defined function.

...3 g is an injection: Let x, y ∈ R. If g(x) = g(y), we consider 4 cases:
x, y ∈ Z∗. Then g(x) = g(y) ⇒ x + 1 = y + 1 ⇒ x = y.
x, y ̸∈ Z∗. Then g(x) = g(y) ⇒ x = y.
x ∈ Z∗, y ̸∈ Z∗. Impossible.
x ̸∈ Z∗, y ∈ Z∗. Impossible.

...4 g is a surjection: Let y ∈ R− {0}. Consider 2 cases:
y ∈ N. Then y − 1 ∈ Z∗. So y = (y − 1) + 1 = g(y − 1) with y − 1 ∈ R.
y ̸∈ Z∗. Then y = g(y) with y ∈ R.

...5 Hence |R− {0}| = |R|.
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Exercise (Question 4(b) in Final 2006–2007(I))
Construct a bijection f : [0, 1]→ (0, 1).

Solution.
...1 To map [0, 1] to (0, 1), we realize that there are 2 extra points in [0, 1] and we

will need to find a way to squeeze them into (0, 1).
...2 So, the intuitive way to map [0, 1] to (0, 1) is to map 0 7→ 1

2
, 1 7→ 1

3
, 1

2
7→ 1

4
,

· · · , 1
k 7→

1
k+2

, etc., and everything else remains the same.
...3

f =


1
2
, when x = 0;
1

n+2
, when x = 1

n ,n ∈ N;
x, when x ̸= 0 and is not reciprocal of some positive integer.

...4 It direct to check that f is bijective.
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If A ⊆ B ⊆ C, and |A| = |C|, then |A| = |B| = |C|.� Using this fact, it is easy to obtain |(0, 1)| = |[0, 1]|.
Cantor22-Bernstein23-Schröder24 Theorem (Theorem 10.18): If A and B are sets
such that |A| ≤ |B| and |A| ≥ |B|, then |A| = |B|.� Using this fact, it is easy to obtain |N| = |Q|.
Based |(0, 1)| = |[0, 1]| and Cantor-Bernstein-Schröder Theorem, we have:

|[0, 1]| = |(0, 1)| = |[0, 1)| = |(0, 1]| = |[a, b]| = |(a, b)| = |[a, b)| = |(a, b]| = R.

Theorem 11.19: |P(N)| = |R|.

|N|︸︷︷︸
ℵ0

< |P(N)| = |R|︸ ︷︷ ︸
ℵ1=c

< |P(R)|︸ ︷︷ ︸
ℵ2

< · · · .

The Continuum Hypothesis25: There exist no set S such that

ℵ0 < |S| < ℵ1 = c.

22Georg Ferdinand Ludwig Philipp Cantor (March 3, 1845–January 6, 1918), a German mathematician.
23Felix Bernstein (February 24, 1978–December 3, 1956), a German mathematician.
24Ernst Schröder (November 25, 1941–June 16, 1902), a German mathematician.
25It is advanced by Georg Cantor in 1877.
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Exercise
...1 Question 8(b) in Final 2009–2010(I): Let A = {f | f : {0, 1} → N}. Is A a

countable set? Justify your answer.
...2 Let B = {f | f : N→ {0, 1}}. Is B a countable set? Justify your answer.

Solution.
(a) Yes.

...1 Define a function g : A → N × N by g(f) = (a, b) if f(0) = a and f(1) = b.

...2 Let f1, f2 ∈ A. Suppose g(f1) = g(f2) = (a, b), then f1(0) = a = f2(a) and
f1(1) = b = f2(1). Therefore f1 = f2, and hence g is injective.

...3 Let (a, b) ∈ N × N. Define f0 ∈ A by f0(0) = a and f0(1) = b. Then g(f0) = (a, b).
Hence g is surjective.

...4 Therefore |A| = |N × N| = |N|, and A is countable.

(b) No. |2N| = |P(N)| > |N|.
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Page 203: Revise typos: “2k + 1” to “2k− 1”, and “2l + 1” to “2l-1”.
Last modified: 12:00, November 12, 2010.
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