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Tutorial Introduction

Introduction

11 tutorials: 4 before mid-term test, and 7 after it;
Take attendance:

2 points for full attendance, and pro-rated for partial attendance;
Everyone need to print his/her signature, rather than just a tick;
If you find some mistakes on the attendance sheet, please let me know.

Presentation:
1 point for at least 1 presentation for tutorial problems;
I will call name one-by-one or call for volunteers from next tutorial.

Tutorial style:
5–10 mins for review;
35–45 mins for tutorial questions;
0–10 mins for additional material.

Additional material: discuss questions in the past-year papers, some anecdotes
and histories.
Download: click here to my SkyDrive.

http://cid-75dd00f1e64cf3dc.skydrive.live.com/browse.aspx/Teaching%20Assistance/2009-2010%5EJ%20Semester%202%5EJ%20MA1101R?view=details
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Schedule of Today

Review concepts
Tutorial: 1.9, 1.15, 1.18(c), 1.19, 1.22, 1.23
Additional material



. . . . . .

MA1101R Tutorial
Tutorial 1: Linear Systems and Gaussian Elimination

Review

Linear Algebra

Linear algebra is the branch of mathematics devoted to the theory of linear structure
(vector space, module), representation of the structure (vector space associated linear
transformation) and some relative issue. Matrix theory is one of the most important
tools of linear algebra.

Chapter 1 is an introduction for linear algebra;
In chapter 2,4,6, we will discuss matrix theory;
In chapter 3,5, we will discuss vector space and a special vector space—Euclidean
space;
In chapter 7, we will discuss linear transformation.
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Review

History of Linear System

About 4000 years ago the Babylonians knew how to solve a system of two linear
equations in two unknowns (a 2× 2 system);
In the famous Nine Chapters on the Mathematical Art (九章算术) (c. 200 BC),
the Chinese solved 3× 3 systems by working solely with their (numerical)
coefficients;
The modern study of systems of linear equations can be said to have originated
with Leibniz, who in 1693 invented the notion of a determinant (Def 2.5.2) for
this purpose;
In Introduction to the Analysis of Algebraic Curves of 1750, Cramer published the
rule (Thm 2.5.32) named after him for the solution of an n × n system;
Euler was perhaps the first to observe that a system of n equations in n
unknowns does not necessarily have a unique solution;
About 1800, Gauss introduced a systematic procedure, now called Gaussian
elimination, for the solution of systems of linear equations, though he did not use
the matrix notation.

http://en.wikipedia.org/wiki/The_Nine_Chapters_on_the_Mathematical_Art
http://en.wikipedia.org/wiki/Leibniz
http://en.wikipedia.org/wiki/Gabriel_Cramer
http://en.wikipedia.org/wiki/Euler
http://en.wikipedia.org/wiki/Gauss
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Row-echelon form

Hyper-planes �- Linear Systems

GE(
ERO

) -

Reduced Row-echelon form

GJE(ERO) -
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Review

Linear Systems and Hyper-planes

A linear equation is an (algebraic) equation in which each term is either a constant or
the product of a constant and (the first power of) a single variable.

Dimen Geometric view Algebraic representation
2 points on a line solutions of ax + by = c
3 points on a plane solutions of ax + by + cz = d
n(> 3) points on a hyper-plane solutions of a1x1 + a2x2 + · · · + anxn = b

2 intersection of 2 lines solutions of the system
{

a1x + b1y = c1
a2x + b2y = c2

3 intersection of 2 planes solutions of the system
{

a1x + b1y + c1z = d1
a2x + b2y + c2z = d1

n(> 3) intersection of 2 hyper-planes solutions of the system
{

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

2 intersection of m(>1) lines solutions of the system


a1x + b1y = c1
· · · · · · · · · · · ·
amx + bmy = cm

3 intersection of m(>1) planes solutions of the system


a1x + b1y + c1z = d1
· · · · · · · · · · · ·
amx + bmy + cmz = dm

n(> 3) intersection of m(>1) hyper-planes solutions of the system


a11x1 + a12x2 + · · · + a1nxn = b1
· · · · · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm
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Row-Echelon Form and Reduced Row-Echelon Form

If the augmented matrix of a linear system is in REF or RREF, we can get the solutions easily.

An augmented matrix is said to be in row-echelon form(REF) if it has properties 1, 2:
1 If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of

the matrix.
2 In any two successive non-zero rows, the first nonzero number in the lower row occurs farther to the

right than the first nonzero number in the higher row.

In a REF, every first nonzero number in a row is called the leading entry of the row.
In a REF, the leading entries of nonzero rows are also called pivot points.
A column of a REF is called a pivot column if it contains a pivot point; otherwise, it is called a
non-pivot column.
In a REF, (# of non-zero rows) = (# of leading entries) = (# of pivot columns) = (# of pivot
points).

An augmented matrix is said to be in reduced row-echelon form(RREF) if it is has properties 1, 2, 3, 4:
3 The leading entry of every nonzero row is 1.
4 In each pivot column, except the pivot point, all other entries are zeros.

A linear system has no solution if and only if the last column of its REF of the augmented matrix is a
pivot column, i.e. there is a row with nonzero last entry but zero elsewhere.
A linear system has exactly one solution if except the last column, every column of a REF of the
augmented matrix is a pivot column, i.e. (# of variables) = (# of nonzero rows).
A linear system has infinitely many solutions if apart from the last column, a REF of the augmented
matrix has at least one more non-pivot column, i.e. (# of variables) > (# of nonzero rows).
In this case, its general solution has (# of variables − # of nonzero rows) arbitrary parameter(s).
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Elementary Row Operations


a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b1
· · · · · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm

⇒


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


Elementary row operations(ERO):

Multiply a row by a nonzero constant;
Interchange two rows;
Add a multiple of one row to another row.

Two augmented matrices are said to be row equivalent if one can be obtained from the other by a series of
elementary row operations.
Theorem 1.2.7: If augmented matrices of two systems of linear equations are row equivalent, then the two
systems have the same set of solutions.
Why perform elementary row operations: the augmented matrices will be reduced to be in REF or RREF via
ERO, which is easier to solve.
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Review

Gaussian Elimination

There are some standard procedures to get REF and RREF, which are Gaussian elimination and
Gauss-Jordan elimination, respectively.

Gaussian Elimination:
1 Locate the leftmost column that does not consist entirely of zeros;
2 Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the

column found in Step 1.
3 For each row below the top row, add a suitable multiple of the top row to it so that the entry below

the leading entry of the top row becomes zero.
4 Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix that

remains. Continuous in this way until the entire matrix is in row-echelon form.

Gauss-Jordan Elimination: For a REF of an augmented matrix, use Gauss-Jordan elimination to reduce it to
be in RREF:

5 Multiple a suitable constant to each row so that all the leading entries become 1.
6 Beginning with the last nonzero row and working upward, add suitable multiples of each row to the

rows above to introduce zeros above the leading entries.



. . . . . .

MA1101R Tutorial
Tutorial 1: Linear Systems and Gaussian Elimination

Tutorial

Exercise (1.9)
Each equation in the following linear system represents a plane in the xyz-space{

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

where a1, a2, b1, b2, c1, c2, d1, d2 are constants. Discuss the relative positions of the
two planes when:
(a) has no solution;
(b) has exactly one solution;
(c) has infinitely many solutions and a general solution has one arbitrary parameter;
(d) has infinitely many solutions and a general solution has two arbitrary parameters.
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Tutorial

Solution.

From geometric view, we can see that there are 2 cases of relative positions of
two planes, and 2 subcases of the parallel case:parallel:

{
same—infinitely many solutions and a general solution has two arbitrary parameters
distinct—no solution

nonparallel: intersection is a line—infinitely many solutions and a general solution has one arbitrary parameter

There are 3 variables and 2 equations, so (# of variables) = 3 > 2 ≥ (# of
nonzero rows), i.e., the linear system can not have exactly one solution.

To summarize:
(a) Two planes are parallel but distinct.
(b) Such a situation does not exist.
(c) Two planes are not parallel.
(d) Two planes are identical.
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Tutorial

Exercise (1.15)
In the downtown section of a certain city, two sets of one-way streets intersect as
shown in the following:

The average hourly volume of traffic entering and leaving this section during rush hour
is given in the diagram.
(a) Do we have enough information to find the traffic volumes x1, x2, x3, x4? Explain

your answer.
(b) Given that x4 = 500, find x1, x2, x3.
(The average hourly volume of traffic entering an intersection must be equal to the
volume that leaving.)
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Tutorial

Solution.
(a) At each traffic junction, use the incoming and outgoing arrow to form a linear
equation. Therefore we have:

x1 +310=640+ x2
610+450= x1 + x4
600+ x2 = x3 +330
x3 + x4 =520+480

⇔


x1 − x2 = 330
x1 + x4=1060

x2 − x3 =−270
x3 + x4=1000

(∗)


1 −1 0 0 330
1 0 0 1 1060
0 1 −1 0 −270
0 0 1 1 1000

 Gaussian Elimination−−−−−−−−−−−−→


1 −1 0 0 330
0 1 0 1 730
0 0 −1 −1 −1000
0 0 0 0 0


Therefore, the system has infinitely many solutions. We cannot determine the values
of x1, x2, x3, x4 uniquely.

(b) By solving the equation (∗), we have x1 = 560, x2 = 230, x3 = 500.
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Tutorial

Exercise (1.18(c))
For {

ax + ay = 1

ax − |a|y = 1

determine the values of a such that the system has
(i) no solution;
(ii) exactly one solution;
(iii) infinitely many solutions.

Solution.
There is some difficulty need to deal with: |a|. So we need to consider by cases:

a = 0 It is obvious that there is no solution;

a > 0 The system becomes
{

ax + ay = 1

ax − ay = 1
, so there is unique solution

{
x = 1/a
y = 0

;

a < 0 The system becomes
{

ax + ay = 1

ax + ay = 1
⇔ ax + ay = 1, so the system has infinitely

many solutions and a general solution has one arbitrary parameter;
To summarize: The system has no solution if a = 0, only one solution if a > 0,
infinitely many solutions if a < 0.
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Tutorial

Exercise (1.19)
Determine the values of a and b so that the system

ax + bz = 2

ax + ay + 4z = 4

ay + 2z = b

(a) has no solution;
(b) has exactly one solution;
(c) has infinitely many solutions and a general solution has one arbitrary parameter;
(d) has infinitely many solutions and a general solution has two arbitrary parameters.
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Tutorial

Solution.
Perform elementary row operations on the augmented matrix: a 0 b 2

a a 4 4
0 a 2 b

 R2−R1−−−−−−→

 a 0 b 2
0 a 4 − b 2
0 a 2 b

 R3−R2−−−−−−→

 a 0 b 2
0 a 4 − b 2
0 0 b − 2 b − 2


Consider two cases: a ̸= 0, and a = 0.

a ̸= 0: the first two columns of the last augmented matrix are pivot columns. So, if b − 2 ̸= 0, then the third column will also be
pivotal, and the system has a unique solution. On the other hand, if b − 2 = 0, then the system has infinitely many solutions
with one parameter.

a = 0: the last augmented matrix becomes

 0 0 b 2
0 0 4 − b 2
0 0 b − 2 b − 2

.

In view of row 1 and 2, if b ̸= 4 − b, then these two rows will not be consistent, and hence the system will have no solution. If
b = 4 − b, then b = 2 and we have a consistent system. In this case, since there are only one pivot columns, the system has
infinitely many solutions with two parameters.

To summarize:
(a) no solution: a = 0 and b ̸= 2.
(b) only one solution: a ̸= 0 and b ̸= 2.
(c) infinitely many solutions with one arbitrary parameter: a ̸= 0 and b = 2.
(d) infinitely many solutions with two arbitrary parameters: a = 0 and b = 2.
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Tutorial

Exercise (1.22)

Let

 a 0 0 d
0 b 0 e
0 0 c f

 be the reduced row-echelon form of the augmented matrix of

a linear system, where a, b, c, d, e, f are real numbers. Write down the necessary
conditions on a, b, c, d, e, f so that the solution set of the linear system is a plane in
the three dimensional space that does not contain the original.

Solution.

For the solution set to be a plane, there must be one leading entry in the
reduced-row echelon form and two arbitrary parameters. Thus, we must have
that exactly two of a, b, c are zeros. Since it is given that the matrix is in reduced
row-echelon form, a can not be 0. Therefore a = 1, b = c = 0.
Since the system is consistent (Solution set is a plane.) and b = c = 0, we have
e = f = 0.
Since the plane does not contain the origin, d ̸= 0.

To summarize: the sufficient condition is a = 1, b = c = e = f = 0, d ̸= 0.
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Tutorial

Exercise (1.23)

(a) Does an inconsistent linear system with more unknowns than equation exist?
(b) Does a linear system which has exactly one solution, but more equations than

unknowns, exist?
(c) Does a linear system which has exactly one solution, but more unknowns than

equations, exist?
(d) Does a linear system which has infinitely more solutions, but more equations than

unknowns, exist?

Solution.

(a) Yes. For example:
{

x + y + z = 0

x + y + z = 1
.

(b) Yes. For example:


x + y = 0

x − y = 0

2x + 4y = 0

.

(c) No. A linear system with more unknowns than equations will either have no
solution or infinitely many solutions.

(d) Yes. For example:


x + y = 0

2x + 2y = 0

3x + 3y = 0

.



. . . . . .

MA1101R Tutorial
Tutorial 1: Linear Systems and Gaussian Elimination

Additional material

Necessary and Sufficient condition

The rank of a matrix(pp.119 of textbook) is the dimension of its row space (or
column space). Notation: rank(A). rank(A) is equal to the number of nonzero
pivot columns in a REF of A.
Homogeneous:

Am×n · xn×1 = 0m×1, rank(A) = r ≤ min{m, n};
The system can be always solved;
If r = n, then there is only zero solution;
If r < n, then there are infinite solutions with n − r arbitrary parameter(s).

Inhomogeneous:
Am×n · xn×1 = bm×1, rank(A) = r ≤ min{m, n};
The system can be solved iff rank(A) = rank(A b).
If consistent, and r = n, then there is only one solution;
If consistent, and r < n, then there are infinite solutions with n − r arbitrary
parameter(s).
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Additional material

For a linear system, can all the coefficients be zeros?
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Change log

Page 7 Add a relation diagram;
Page 15 For part (b): “By part (a)”–>“By solving the equation (*)”;
Page 18 The second row: “Perform Gaussian elimination”–>“Perform elementary row

operations”;
Page 22 Add a question which is related with Exercise 1.21.

Last modified: 16:44, January 26, 2010.
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Schedule of Today

Any question about last tutorial
Review concepts
Tutorial: 2.9, 2.14, 2.16, 2.20, 2.22, 2.27
Additional material
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Remarks on Reference books

Hoffman K, Kunze R, Linear Algebra (2nd Edition), Prentice Hall, Inc., New
Jersey, 1971
Roman S, Advanced Linear Algebra (2nd Edition), Springer, New York, 2005
Jacobson N, Lectures in Abstract Algebra II: Linear Algebra, Springer, New York,
1953
李炯生，查建国，线性代数，中国科学技术大学出版社，合肥，1989
许以超，线性代数与矩阵论δㅢӂ版ε，高等教育出版社，北京，2008
张贤科，徐甫华，高等代数学δㅢӂ版ε，清华大学出版社，北京，2004
李尚志，线性代数，高等教育出版社，北京，2006
龚升，线性代数ӊ䇨，中国科学技术大学出版社，合肥，2005
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History of Matrix Theory

Matrices were introduced implicitly as abbreviations of linear transformations by
Gauss;
Arthur Cayley formally introduced m × n matrices in two papers in 1850 and
1858 (the term “matrix”was coined by Sylvester in 1850);
In his 1858 paper ”A memoir on the theory of matrices” Cayley proved the
important Cayley–Hamilton theorem of 2× 2 and 3× 3 matrices, while Hamilton
proved the theorem independently for 4× 4 matrices;
Cayley advanced considerably the important idea of viewing matrices as
constituting a symbolic algebra. But his papers of the 1850s were little noticed
outside England until the 1880s;
During 1820s–1870s, Cauchy, Jacobi, Jordan, Weierstrass, and others created
what may be called the spectral theory of matrices; An important example is the
Jordan canonical form;
In a seminal paper in 1878 titled ”On linear substitutions and bilinear forms”
Frobenius developed substantial elements of the theory of matrices in the
language of bilinear forms.

http://en.wikipedia.org/wiki/Arthur_Cayley
http://en.wikipedia.org/wiki/James_Joseph_Sylvester
http://en.wikipedia.org/wiki/William_Rowan_Hamilton
http://en.wikipedia.org/wiki/Camille_Jordan
http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
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Review

Definitions and Notations

A matrix is a rectangular array of numbers (the numbers here can be in N, Z, Q,
R, or C etc.). The size of a matrix is given by m × n where m is # of rows and n
is # of columns. The (i, j)-entry of a matrix is the number which is in the ith
row and jth column of the matrix.
In general, an m × n matrix can be written as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


or simply A = (aij)m×n where aij is the (i, j)-entry of A.
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Review

Special Matrices I

Row matrix only 1 column;
Column matrix only 1 row;
Square matrix # of rows = # of columns;

Diagonal matrix square matrix, aij = 0 when i ̸= j;
Tridiagonal matrix nonzero elements only in the main diagonal, the first diagonal

below this, and the first diagonal above this;
Upper-tridiagonal matrix nonzero elements only in the main diagonal, the first

diagonal above this;
* Multiplication of two upper-triangular matrices is also an
upper-triangular matrix;

* Inverse of an upper-triangular invertible matrix is upper-triangular;
Lower-tridiagonal matrix nonzero elements only in the main diagonal, the first

diagonal below this;
Identity matrix diagonal matrix where diagonal entries are 1, notation: In;
Scalar matrix diagonal matrix where diagonal entries are c–constant number, cIn;
Zero matrix all entries are 0, notation: 0m×n;
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Review

Addition

Two matrices are said to be equal if they have the same size and their
corresponding entries are equal.
Let A = (aij)m×n and B = (bij)m×n. Define the matrix addition

A + B = (aij + bij)m×n.

Associated law: Let A = (aij)m×n, B = (bij)m×n and C = (cij)m×n, then
(A + B) + C = A + (B + C);
Commutative law: Let A = (aij)m×n and B = (bij)m×n, then A + B = B + A;
Identity: Let A = (aij)m×n, then A + 0m×n = 0m×n + A = A;
Inverse: For for A = (aij)m×n, there exists a unique matrix B = (bij)m×n, such that
A + B = 0 = B + A; We will denote B as −A;
Based on definition of −A, we can define the matrix subtraction: A − B = A + (−B).
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Review

Scalar Multiplication

Let A = (aij)m×n and µ be a real constant. Define the scalar multiplication
µA = (µaij)m×n, where µ is usually called a scalar.

Let A = (aij)m×n and µ, λ be real constants, then (µλ)A = µ(λA);
1A = A;
1st distributive law: Let A = (aij)m×n and µ, λ be real constants, then
(µ+ λ)A = µA + λA;
2nd distributive law: Let A = (aij)m×n, B = (bij)m×n and µ a be real constant,
then µ(A + B) = µA + µB;
Let A = (aij)m×n and µ be a real constant, if µA = 0, then A = 0 or µ = 0.
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Review

Multiplication
Let A = (aij)m×p and B = (bij)p×n. Define the matrix multiplication
AB = (cij)m×n, where

cij = ai1b1j + ai2b2j + · · ·+ aipbpj =
p∑

k=1

aikbkj

for i = 1, 2, . . . ,m and j = 1, 2, . . . ,n.
Associated law: Let A, B and C be m × p, p × q and q × n matrices respectively,

then (AB)C = A(BC); Moreover, we can define An =


I if n = 0

n times︷ ︸︸ ︷
AA · · ·A if n ≥ 1

.

Commutative law: not always hold.
Identity: Let A = (aij)m×n, then AIn = ImA = A;
Inverse: not invertible for all matrices;
1st-Distributive law: Let A, B1 and B2 be m × p, p × n and p × n matrices
respectively, then A(B1 + B2) = AB1 + AB2;
2nd-Distributive law: Let A, C1 and C2 be p × n, m × p and m × p matrices
respectively, then (C1 + C2)A = C1A + C2A;
Let A = (aij)m×p, B = (bij)p×n and µ be a real constant, then
(µA)B = A(µB) = µ(AB);
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Review

Transpose

The transpose of a matrix A, denoted by AT, is the matrix obtained from A by
changing columns to rows, and rows to columns.

Let A be a matrix, then (AT)T = A;
Let A and B be two m × n matrices, then (A + B)T = AT + BT;
Let A be a matrix, and µ be a scalar, then (µA)T = µAT;
Let A and B be m × n and n × p matrices, respectively, then (AB)T = BTAT;
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Review

Inverse

Let A be a square matrix of order n. Then A is said to be invertible if there exists a
square matrix B of order n such that AB = I and BA = I. Such a matrix B is called
an inverse of A, denoted as A−1. A square matrix is called singular if it has no
inverse.

Uniqueness of Inverses: If B and C are inverses of a square matrix A, then B = C;
A is invertible iff Ax = 0 has trivial solution iff RREF of A is identity matrix iff A
can be expressed as a product of elementary matrices;
Let A be a invertible matrix and µ a nonzero scalar, then (µA)−1 = 1

µ
A−1;

Let A be a invertible matrix, then (AT)−1 = (A−1)T;
Let A be a invertible matrix, then (A−1)−1 = A;
Let A, B be two invertible matrices of the same size, then (AB)−1 = B−1A−1;
Let A be a invertible matrix and n be a positive integer, then we can define
A−n = (A−1)n = A−1A−1 · · ·A−1︸ ︷︷ ︸

n times

.
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Special Matrices II

Symmetric matrix A = AT;
Skew-symmetric matrix A = −AT;
Hermite matrix A = ĀT;

* Let A be a square matrix, then A + AT is a symmetric matrix, and
A − AT is a skew-symmetric matrix;

* Each square matrix A can be uniquely decomposed as an addition of
symmetric matrix S and a skew-symmetric matrix K.

Nilpotent matrix Ak = 0 for some positive integer k;
* Let A be a matrix with Ak = 0, then

(I − A)−1 = I + A + · · ·+ Ak−1.
Idempotent matrix A2 = A;

* Let A be an idempotent matrix, then (I + A)−1 = 1
2
(2I − A).
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Elementary Matrices

1. Multiply a row by a constant:

E =



ith
1

. . . 0
1

ith c
1

0
. . .

1


,E−1 =



ith
1

. . . 0
1

ith 1
c

1

0
. . .

1


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Elementary Matrices

2. Interchange two rows:

E =



ith jth
1

. . . 0
1

ith 0 1
1

. . .
1

jth 1 0
1

0
. . .

1



= E−1
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Elementary Matrices

3. Add a multiple of a row by a constant:

E =



ith jth
1

. . . 0
1

ith 1 c
. . .

jth 1
1

. . .
1



, and E =



jth ith
1

. . . 0
1

jth 1

. . .
ith c 1

1

. . .
1


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Exercise (2.9)
Suppose the homogeneous system Ax = 0 has non-trivial solution. Show that the
linear system Ax = b has either no solution or infinitely many solutions.

Proof.
If Ax = b has a solution x = u, then u + v is also a solution to Ax = b for all solutions
x = v to Ax = 0 since

A(u + v) = Au + Av = b + 0 = b.

Hence Ax = b has either no solutions or infinitely many solutions.

Remark
The structure of the solution set of inhomogeneous system Ax = b:

Solution set = {u + v : v is any solution to Ax = 0},

where u is any specific solution to the linear system Ax = b.
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2nd Method.

Ax = 0 has non-trivial solution, then in a REF of its augmented matrix, # of
variables > # of pivot columns;
For Ax = b, if in its REF, # of pivot columns changes, then the last column must
be a pivot column, i.e. Ax = b can not be solved;
For Ax = b, if in its REF, # of pivot columns does not change, then the last
column is not a pivot column, i.e. Ax = b can be solved; At this time, # of
variables > # of pivot columns, i.e. Ax = b has infinite solutions;
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Exercise (2.14)

Let M be the set of all 2× 2 matrices. Let A =

(
1 1
0 1

)
and

B = {X ∈ M | AX = XA}.
(a) Determine which of the following elements of M lies in B:(

1 1
0 1

)
,

(
0 0
0 0

)
,

(
1 1
1 0

)
,

(
1 0
0 1

)
.

(b) Prove that if P,Q ∈ B, then P + Q ∈ B and PQ ∈ B.

(c) Find conditions on p, q, r, s which determine precisely when
(

p q
r s

)
lies in B.



. . . . . .

MA1101R Tutorial
Tutorial 2: Matrices 1

Tutorial

Solution and Proof.

(a) Substituting each matrix for X in AX = XA, and then we can see whether the
equation is satisfied: All except

(
1 1
1 0

)
lies in B.

(b) Since P,Q ∈ B, we have AP = PA and AQ = QA. Then

A(P + Q) = AP + AQ = PA + QA = (P + Q)A,

A(PQ) = (AP)Q = (PA)Q = P(AQ) = P(QA) = (PQ)A,

where we apply distribution law and associated law in 1st equation and 2nd
equation, respectively.

(c) When
(

p q
r s

)
lies in B, then p, q, r, s must satisfy

(
p + r q + s

r s

)
=

(
1 1
0 1

)(
p q
r s

)
=

(
p q
r s

)(
1 1
0 1

)
=

(
p p + q
r r + s

)
.

Hence we have 4 equations about p, q, r, s. Solving the equations we will get that
p = s, r = 0, and q is arbitrary. That is to say, when p = s and r = 0, the matrix(

p q
r s

)
lies in B.
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Exercise (2.16)
Determine which of the following statements are true. Justify your answer.
(a) If A and B are diagonal matrices of the same size, then AB = BA.
(b) If A is a square matrix, then 1

2
(A + AT) is symmetric.

(c) For all matrices A and B, (A + B)2 = A2 + B2 + 2AB.
(d) If A and B are symmetric matrices for the same size, then A − B is symmetric.
(e) If A and B are symmetric matrices for the same size, then AB is symmetric.
(f) If A is a square matrix such that A2 = 0, then A = 0.
(g) If A is a matrix such that AAT = 0, then A = 0.

(h) There exists a real matrix A, such that A2 =

(
−1 0
0 −1

)
.
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(a) True. Let A = (aij)n×n and B = (bij)n×n. Since aij = bij = 0 when i ̸= j, the
(i, j)-entry of AB is equal to

ai1b1j + ai2b2j + · · ·+ ainbnj =

{
aiibii if i = j
0 if i ̸= j.

Likewise, the (i, j)-entry of BA is equal to

bi1a1j + bi2a2j + · · ·+ binanj =

{
biiaii if i = j
0 if i ̸= j.

Thus, AB = BA.
(b) True.

[
1
2
(A + AT)

]T
= 1

2
(A + AT)T = 1

2
(AT + A).

(c) False. Choose any two matrices A,B which satisfy AB ̸= BA. We will find that
(A + B)2 ̸= A2 + B2 + 2AB.
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(d) True. (A − B)T = AT − BT = A − B
(e) False. Choose any two symmetric matrices A,B which satisfy AB ̸= BA. We will

find that (AB)T = BTAT = BA ̸= AB. For example:

A =

(
0 0
0 1

)
, B =

(
1 −1
−1 1

)
.

(f) False. Example: A =

(
0 1
0 0

)
.

(g) True. Let A = (aij)n×n, then for each i ∈ {1, 2, . . . ,n}, (i, i)-entry of AAT is
equal to

ai1ai1 + ai2ai2 + · · ·+ ainain =
n∑

k=1

a2
ik.

So AAT = 0 implies that aik = 0 for all i and k, i.e. A = 0.

(h) True. Example:
(
0 −1
1 0

)
or

(
0 1
−1 0

)
.

Remark
Compare

(
0 −1
1 0

)
with i ∈ C.
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Exercise (2.20)
Let A be a square matrix.
(a) Show that if A2 = 0, then I − A is invertible and (I − A)−1 = I + A.
(b) Show that if A3 = 0, then I − A is invertible and (I − A)−1 = I + A + A2.
(c) If An = 0 for n ≥ 4, is I − A invertible?

Recall
Based on distributive law, (I − A)(I + A + · · ·+ An−1) = I − An where n ≥ 2 is an
integer.

Proof and Solution.

(a) Since (I − A)(I + A) = I − A2 = I and (I + A)(I − A) = I − A2 = I, we have
that I − A is invertible and its inverse is I + A.

(b) Since (I − A)(I + A + A2) = I − A3 = I and (I + A + A2)(I − A) = I − A3 = I,
we have that I − A is invertible and its inverse is I + A + A2.

(c) Yes. I − A is invertible and its inverse is I + A + · · ·+ An.
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Exercise (2.22)
Let A and B be invertible matrices of the same size.
(a) Give an example of 2× 2 invertible matrices A and B such that A ̸= −B and

A + B is not invertible.
(b) If A + B is invertible, show that A−1 + B−1 is invertible and

(A + B)−1 = A−1(A−1 + B−1)−1B−1.

Solution and Proof.

(a) Let A =

(
1 0
0 1

)
and B =

(
1 0
0 −1

)
, then A,B are invertible, A + B ̸= 0, and

A + B is not invertible.
(b)

A−1 + B−1 = B−1(BA−1 + I)
= B−1(B + A)A−1

Hence, (A−1 + B−1)−1 = A(A + B)−1B, i.e.
A−1(A−1 + B−1)−1B−1 = (A + B)−1.
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Exercise (2.27)
Let A,B be 3× 3 matrices such that A = E1E2E3E4B where

E1 =

1 0 0
0 1 0
0 0 2

 ,

1 0 0
0 1 0
0 2 1

 ,

0 0 1
0 1 0
1 0 0

 ,

1 0 −1
0 1 0
0 0 1

 .

(a) Describe how A is obtained from B by elementary row operations.
(b) If A is invertible, is B invertible? Justify your answer.

Solution.

(a) B R1−R3−−−−−→ R1↔R3−−−−−→ R3+2R2−−−−−−→ 2R3−−−→ A
(b) Since B = E−1

4 E−1
3 E−1

2 E−1
1 A and E−1

1 ,E−1
2 ,E−1

3 ,E−1
4 are invertible, if A is

invertible, then B is invertible.
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Exercise (2.11)
Let A = (aij)n×n be a square matrix. The trace of A, denoted by tr(A), is defined to
be the sum of the entries on the diagonal of A.
(b) Let A and B be any square matrices of the same size, show that

tr(A + B) = tr(A) + tr(B);
(c) Let A be any square matrices and k a scalar, show that tr(kA) = k tr(A);
(d) Let C and D be m × n and n × m matrices respectively, show that

tr(CD) = tr(DC).

Exercise (2.15)
Show that there are no matrices A and B such that AB − BA = I.
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Exercise
Let A be an n × n matrix, and J be an n × n matrix in which the all entries are 1. In
each row of A, there are exactly two entries which are 1, and others are 0. Find all
matrices A which satisfy A2 + 2A = 2J.

Solution.

A

1
...
1

 =

2
...
2

 , A2

1
...
1

 = 2A

1
...
1

 =

4
...
4

 , 2J

1
...
1

 =

2n
...
2n


Hence 4 + 4 = 2n, i.e. n = 4, A is a matrix of order 4.
If B satisfies A2 + 2A = 2J, so does BT.
The task left is simple.
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Exercise (Question 1)
Given an invertible matrix, how to compute its inverse.

Exercise (Question 2)
When a matrix A is not invertible, how to extend the definition of inverse for A.
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For Exercise 1.21, the solution is not correct: there is another RREF 0 0 0 0
0 0 0 0
0 0 0 0

 .
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Page 6 Change “Upper-triangle” and “Lower-triangle” to “Upper-tridiagonal” and
“Lower-tridiagonal”, respectively;

Page 17 Add another method of Exercise 2.9;
Page 22 Add another example for part (f) and a remark;
Page 23 Change “(I − A)(I + A · · ·+ An) = I − An” to

“(I − A)(I + A · · ·+ An−1) = I − An”;
Page 23 Delete a remark;
Page 24 Rewrite the proof of part (b).

Last modified: 10:49, March 21, 2010.
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1st-definition of Determinant (Laplace formula)

Let A = (aij) be an n × n matrix. Let Mij be an matrix obtained from A by
deleting the i-th row and the j-th column. Then the determinant of A is defined
as

det(A) =

{
a11 if n = 1

a11A11 + a12A12 + · · ·+ a1nA1n if n ≥ 2

where Aij = (−1)i+j det(Mij), which is called the (i, j)-cofactor of A.
Let A = (aij) be an n × n matrix. det(A) is usually written as∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ .
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2nd-definition of Determinant (Leibniz formula)

A permutation of a set S is a bijection from S to itself. If S is a finite set of n
elements, then there are n! permutations of S. We use Sn to denote the set of all
permutations of {1, 2, . . . ,n}.
In the following notation, one lists the elements of S in the first row, and for each
one its image under the permutation below it in the second row:

σ =

(
1 2 3 4 5
2 5 4 3 1

)
,

this means that σ satisfies σ(1) = 2, σ(2) = 5, σ(3) = 4, σ(4) = 3 and σ(5) = 1.
If S = {1, 2, . . . ,n}, the parity of a permutation σ of S can be defined as the
parity of the number of inversions for σ, i.e., of pairs of elements x, y of S such
that x < y and σ(x) > σ(y).
The sign or signature of a permutation σ is denoted sgn(σ) and defined as +1 if
the parity of σ is even and -1 otherwise.
Define

det(A) =
∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n).



. . . . . .

MA1101R Tutorial
Tutorial 3: Matrices 2

Review

3rd-definition of Determinant (Axioms)

Let D be a function from n × n matrices to R. We say that D is n-linear if for
each i (1 ≤ i ≤ n), D is a linear function of the ith row when the other (n − 1)
rows are held fixed.
Let D be a function from n × n matrices to R. We say that D is alternating if the
following two conditions are satisfied:

D(A) = 0 whenever two rows of A are equal;
If A′ is a matrix obtained from A by interchanging two rows of A, then
D(A′) = −D(A).

Let D be a function from n × n matrices to R. We say that D is a determinant
function if D is n-linear, alternating, and D(In) = 1.
Existence and uniqueness: Corollary, page 147 and Theorem 2, page 152 of
Hoffman’s “Linear Algebra”. Notation: det.
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Equivalence of the 3 definitions

Def 3 ⇒ Def 1 Theorem 1, page 146 of Hoffman’s “Linear Algebra”;
Def 1 ⇒ Def 3 Trivial;
Def 2 ⇒ Def 1 Section 2.3, 许以超的 “线性代数与矩阵论”; Moreover, we will get

Laplace Expansions (Ref Theorem 2.3.3 of 许以超的 “线性代数与矩
阵论” or section 5.7 of Hoffman’s “Linear Algebra”);

Def 1 ⇒ Def 2 Mathematical Induction.
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Properties of Determinants

If A is a square matrix, then det(A) = det(AT);
The determinant of a square matrix with two identical rows (columns) is zero;
Let A be a square matrix.

If B is obtained from A by multiplying one row of A by a constant k, then
det(B) = k det(A);
If B is obtained from A by interchanging two rows of A, then det(B) = − det(A);
If B is obtained from A by adding a multiple of one row of A to another row, then
det(B) = det(A).

A square matrix A is invertible if and only if det(A) ̸= 0; if A is invertible, then
det(A−1) = 1

det(A)
;
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Properties of Determinants
Let A = (aij) be an m × n matrix. For 1 ≤ i1 < i2 < · · · < ir ≤ m,
1 ≤ j1 < j2 < · · · < js ≤ n, let

A
(i1i2 · · · ir

j1j2 · · · js

)
=


ai1j1 ai1j2 · · · ai1js
ai2j1 ai2j2 · · · ai2js
...

...
. . .

...
airj1 airj2 · · · airjs


Laplace formula (Section 2.3 of Xu Yichao’s book): For
1 ≤ i1 < i2 < · · · < ir ≤ n,

det(A) =
∑

1≤j1<j2<···<jr≤n
det A

(i1 · · · ir
j1 · · · jr

)
sgn

(i1i2 · · · in
j1j2 · · · jn

)
det A

(ir+1 · · · in
jr+1 · · · jn

)
,

where i1i2 · · · in and j1j2 · · · jn are permutations of 1, 2, . . . ,n, and
1 ≤ ir+1 < · · · in ≤ n, 1 ≤ jr+1 < · · · jn ≤ n.
Binet-Cauchy formula (Section 3.2 of Xu Yichao’s book): Let A and B be m × n
and n × m matrices, respectively. Then:

det(AB) =


0 if m > n
det(A) det(B) if m = n∑

1≤j1<···<jm≤n det A
( 1···m

j1···jm

)
det B

(j1···jm
1···m

)
if m < n
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Adjoint

Let A be a square matrix of order n. Then the adjoint of A is the n × n matrix

adj(A) =


A11 A21 · · · An1
A12 A22 · · · An2
...

...
. . .

...
A1n A2n · · · Ann

 ,

where Aij is the (i, j)-cofactor of A.
A adj(A) = det(A)In;
If A is invertible, then A−1 = 1

det(A)
adj(A);
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Cramer’s Rule

Let Ax = b be a linear system where A is an n × n matrix. Let Ai be the matrix
obtained from A by replacing the ith column of A by b. If A is invertible, then the
system has only solution

x =
1

det(A)


det(A1)
det(A2)

...
det(An)

 .
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Exercise (2.36)
Let A be an m × n matrix and B an n × m matrix.

(a) Suppose A is row equivalent to the following matrix:
(

R
0 · · · 0

)
, where the last

row is a zero and R is an (m − 1)× n matrix. Show that AB is singular.
(b) If m > n, can AB be invertible? Justify your answer.
(c) When m = 2 and n = 3, give an example of A and B such that AB is invertible.

Proof and Solution.

(a) Since A is row equivalent to
(

R
0 · · · 0

)
, there exist some elementary matrices

E1, . . . ,Ek, such that A = Ek · · ·E1

(
R

0 · · · 0

)
. Hence AB = Ek · · ·E1

(
RB

0 · · · 0

)
,

and AB can not be row equivalent to the identity matrix, i.e. AB is singular.
(b) Since a row-echelon form of A can have at most n non-zero rows and m > n, a

row-echelon form of A must have a zero row. By part (a), AB cannot be
invertible.

(c) For example, let A =

(
1 0 0
0 1 0

)
and B =

1 0
0 1
0 0

, then AB =

(
1 0
0 1

)
is

invertible.
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Exercise (2.37first)
Determine which of the following statements are true. Justify your answer.
(a) If A and B are invertible matrices of the same size, then A + B is also invertible.
(b) If A and B are invertible matrices of the same size, then AB is also invertible.
(c) If AB is invertible where A and B are square matrices of the same size, then both

A and B are invertible.

Solution.

(a) False. For example, let A =

(
1 0
0 1

)
and B =

(
−1 0
0 −1

)
.

(b) True. See Theorem 2.3.10.
(c) True. Let C be the inverse of AB. Then A(BC) = (AB)C = I which implies that

A is invertible. Likewise, (CA)B = C(AB) = I which implies that B is invertible.
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Exercise (2.40(b))

Let A =


1 0 2 0
0 1 3 −1
−2 1 0 −2
0 0 2 1

, C =


−1 3 4 −2
0 0 1 1
0 0 0 5
0 0 0 1

, b =


2
4
6
8

, x =


x1
x2
x3
x4

.

Without computing the matrix AC, explain why the homogeneous linear system
ACx = 0 has infinitely many solutions.

Solution.

The determinant of C is the product of its diagonal entries, which is zero.
Since det(AC) = det(A) det(C) = 0, the homogeneous system ACx = 0 has
infinitely many solutions.
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Exercise (2.46)

Let A =

a b c
d e f
g h i

 where a, b, c, d, e, f, g, h, i are either 0 or 1. Find the largest

possible value and the smallest possible value of det(A).

Solution.
det(A) = aei + bfg + cdh − afh − bdi − ceg.

If all a, b, c, d, e, f, g, h, i are 1, then det(A) = 0.
Suppose at least one of a, b, c, d, e, f, g, h, i is 0, say a = 0 (other cases are
similar). Then det(A) = bfg + cdh − bdi − ceg. As b, c, d, e, f, g, h, i can only be 0
and 1, −2 ≤ det(A) ≤ 2.

Note that

∣∣∣∣∣∣
1 1 0
0 1 1
1 0 1

∣∣∣∣∣∣ = 2 and

∣∣∣∣∣∣
0 1 1
1 1 0
1 0 1

∣∣∣∣∣∣ = −2.

The maximum possible value of det(A) is 2 and the minimum is -2.



. . . . . .

MA1101R Tutorial
Tutorial 3: Matrices 2

Tutorial

Exercise (2.48)
Let A be an n × n invertible matrix.
(a) Show that adj(A) is invertible.
(b) Find det(adj(A)) and adj(A)−1.
(c) If det(A) = 1, show that adj(adj(A)) = A.

Proof and solution.

(a) Since A adj(A) = det(A)In and det(A) ̸= 0, we have that adj(A) is invertible.
(b) Since A adj(A) = det(A)In, we have

det(A) det(adj(A)) = det(A adj(A)) = det(det(A)In) = det(A)n.

Hence we have det(adj(A)) = det(A)n−1. Also by A adj(A) = det(A)In, we
have that adj(A)−1 = 1

det(A)
A.

(c) First we have

A · adj(A) = det(A)In, adj(A) · adj(adj(A)) = det(adj(A))In.

By part (b), we know that det(adj(A)) = 1. By definition, both A and
adj(adj(A)) are the inverse of A, hence they are the same.
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Exercise (2.49)
Determine which of the following statements are true. Justify your answer.
(a) If A and B are square matrices of the same size, then

det(A + B) = det(A) + det(B).
(b) If A and B are square matrices of the same size, then det(AB) = det(A)det(B).
(c) If A and B are square matrices of the same size such that A = PBP−1 for some

invertible matrix P, then det(A) = det(B).
(d) If A,B and C are invertible matrices of the same size such that det(A) = det(B),

then det(A + C) = det(B + C).
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Solution.

(a) False. For example, let A = I2 and B = −I2.
(b) True. See Theorem 2.5.27.
(c) True. Because det(A) = det(P)det(B) det(P−1) and det(P) det(P−1) = 1.
(d) False. For example, let A = I2 and B = C = −I2.
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Tutorial: 3.3, 3.4, 3.7, 3.11, 3.12, 3.14
Additional material
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n-vector: (u1, u2, . . . , ui, . . . , un), where u1, u2, . . ., un are real numbers, and ui
is the i-th coordinate.
The set of all n-vectors of real numbers space is called the Euclidean n-space and
is denoted by Rn.
Set notation for subsets of Rn:

Implicit form: {(u1, u2, . . . , un) | conditions satisfied by u1, u2, . . . , un};
Explicit form: {n-tuples in terms of some parameters | range of the parameters}.

Examples:

Lines in xy-plane:
{
Implicit form: {(x, y)|ax + by = c}
Explicit form: {(general solution)|1 parameter}

Planes in xyz-space:
{
Implicit form: {(x, y, z)|ax + by + cz = d}
Explicit form: {(general solution)|2 parameters}

Lines in xyz-space:
{
Implicit form: {(x, y, z)|eqn of the line}
Explicit form: {(general solution)|1 parameter}
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u1, u2, . . . , uk are fixed vectors in Rn, and c1, c2, . . . , ck are real numbers.
c1u1 + c2u2 + · · ·+ ckuk is called a linear combination of u1, u2, . . . , uk.
S = {u1, u2, . . . , uk}: a (finite) subset of Rn. The set of all linear combinations
of u1, u2, . . . , uk

{c1u1 + c2u2 + · · ·+ ckuk|c1, c2, . . . , ck ∈ R}

is called the linear span of u1, u2, . . . , uk, or the linear span of S. Natation:
span{u1, u2, . . . , uk} or span(S).
Let V be a subset of Rn. V is called a subspace of Rn provided there is a set
S = {u1, u2, . . . , uk} of Rn such that V = span(S). V has a “basis”
u1, u2, . . . , uk.

If V is a subspace of Rn, then the zero vector 0 ∈ V.
Let V be a subspace of Rn. If u1, u2, . . . , uk ∈ V, and c1, c2, . . . , ck ∈ R, then
c1u1 + c2u2 + · · · + ckuk ∈ V.

By Axiom of Choice, we can prove that every “linear space” has a “basis”, i.e. if
a subset has the 2 properties above, then it is a subspace. Ref Exercise 3.21.
The solution set of every homogeneous linear system is a subspace of Rn; while
the solution set of every inhomogeneous linear system is not a subspace of Rn.
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Methods for proving subspace

We have 3 methods for showing a subset to be a subspace:
Definition: If we can find the span set, then we have done;
As we know, the 2 necessary conditions are also sufficient, thus if we have that
the subset satisfies that 2 conditions, then we have done;
If we know the subset is a solution set of some homogeneous linear system, we
have done, too;
First 2 methods are general, while the last one is special.
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Exercise (3.3)
Express each of the following by the set notation in both implicit and explicit form:
(a) the line in R2 passing through the points (1, 2) and (2,−1).
(b) the plane in R3 containing the points (0, 1,−2), (1,−1, 0) and (0, 2, 0).
(c) the line in R3 passing through the points (0, 1,−1) and (1,−1, 0).

Recall

To get implicit form: solving some linear system.
To get explicit form: using implicit form, or other methods.
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Solution.

(a) Substituting (x, y) = (1, 2) and (2,−1) into the equation ax + by = c, we has a
system of linear equations {

a + 2b − c = 0

2a − b − c = 0

which implies a = 3
5

c and b = 1
5

c. In set notation, the line is {(x, y) | 3x + y = 5}
(implicit) and {( 5−t

3
, t) | t ∈ R} (explicit).

(b) By similar method of part (a), we have {(x, y, z) | 3x + y − z = 2} (implicit) and
{( 2−s+t

3
, s, t) | t ∈ R} (explicit).

(c) In explicit form, the line is
{(1,−1, 0) + t(−1, 2,−1)|t ∈ R} = {(1− t,−1 + 2t,−t)|t ∈ R}.
To find the implicit form, we need to find two non-parallel planes containing the
two points (0, 1,−1) and (1,−1, 0). The intersection of the two planes will give
us the required line. Substituting (0, 1,−1) and (1,−1, 0) into ax + by + cz = d
we has a system of linear equations{

b − c − d = 0

a − b − d = 0

We obtain a = c + 2d and b = c + d. There are infinitely many such planes, for
example: we can write the line implicitly as {(x, y, z)|x + y + z = 0, 2x + y = 1}.
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Exercise (3.4)
Consider the following subsets of R3:

A = a line passes through the origin and (9, 9, 9),

B = {(k, k, k)|k ∈ R},
C = {(x1, x2, x3)|x1 = x2 = x3},
D = {(x, y, z)|2x − y − z = 0},
E = {(a, b, c)|2a − b − c = 0 and a + b + c = 0},
F = {(u, v,w)|2u − v − w = 0 and 3u − 2v − w = 0}.

Which of these subsets are the same?

Solution.

It is obvious that A = B = C;
By solving the linear system, we have F = C = B = A;
Since D = {( s+t

2
, s, t)|s, t ∈ R} and E = {(0, s,−s)|s ∈ R}, A,D,E are different.
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Exercise (3.7)
Determine which of the following are subspaces of R4. Justify your answers.
(a) {(w, x, y, z)|w + x = y + z}.
(b) {(w, x, y, z)|wx = yz}.
(c) {(w, x, y, z)|w + x + y = z2}.
(d) {(w, x, y, z)|w = 0 and y = 0}.
(e) {(w, x, y, z)|w = 0 or y = 0}.
(f) {(w, x, y, z)|w = 1 and y = 0}.
(g) {(w, x, y, z)|w = x and y = z}.
(h) {(w, x, y, z)|w = x or y = z}.
(i) {(w, x, y, z)|w + z = 0 and x + y − 4z = 0 and 4w + y − z = 0}.
(j) {(w, x, y, z)|w + z = 0 or x + y − 4z = 0 or 4w + y − z = 0}.

Recall
How to determine a subset to be a subspace? Check whether the subset satisfies the 2
properties (zero and closure).
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Solution.

(a) Yes. It is a solution set of a homogeneous linear system.
(b) No. w1x1 = y1z1,w2x2 = y2z2 ̸⇒ (w1 + w2)(x1 + x2) = (y1 + y2)(z1 + z2), e.g.

(1, 0, 0, 1) and (0, 1, 0, 1).
(c) No. w1 + x1 + y1 + z1 = z21,w2 + x2 + y2 + z2 = z22 ̸⇒

(w1 + w2) + (x1 + x2) + (y1 + y2) + (z1 + z2) = (z1 + z2)2, e.g. (1, 1,−1,−1)
and (0, 4, 0, 2).

(d) Yes. It is span{(0, 1, 0, 0), (0, 0, 0, 1)}.
(e) No. (1, 0, 0, 0) and (0, 0, 1, 0) belong to the set but

(1, 0, 0, 0) + (0, 0, 1, 0) = (1, 0, 1, 0) does not.
(f) No. It does not contain the zero vector.
(g) Yes. It is a solution set of a homogeneous linear system.
(h) No. (1, 1, 1, 2) and (1, 2, 1, 1) belong to the set but

(1, 1, 1, 2) + (1, 2, 1, 1) = (2, 3, 2, 3) does not.
(i) Yes. It is a solution set of a homogeneous linear system.
(j) No. (1, 0, 0,−1) and (0, 0, 4, 1) belong to the set but

(1, 0, 0,−1) + (0, 0, 4, 1) = (1, 0, 4, 0) does not.
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Exercise (3.11)
Let A be an m × n matrix. Define V = {Au|u ∈ Rn}.
(a) Show that V is a subspace of Rm.
(b) Write down the subspace V explicitly if

(i)A =

(
1 2 3
0 1 1

)
, (ii)A =

1 0
2 1
3 1

 .

Proof and Solution.

(a) Let A = (c1 · · · cn) where c1, . . . , cn are columns of A. For any
u = (u1, . . . , un)T ∈ Rn, Au = u1c1 + · · ·+ uncn. Thus V = span{c1, . . . , cn} is
a subspace of Rm.

(b) (i) V = R2. (ii) V = {s(1, 2, 3)T + t(0, 1, 1)T | s, t ∈ R}.
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Exercise (3.12)
Let A be an m × n matrix. Define V = {u ∈ Rn|Au = u}.
(a) Show that V is a subspace of Rn.

(b) Let A =

1 0 −1
0 1 0
0 0 −1

. Write down the subspace V explicitly.

Proof and Solution.

(a) Since Au = u ⇔ (A − I)u = 0, V is the solution set of the homogeneous system
(A − I)u = 0. By Theorem 3.2.9, V is a subspace of Rn.

(b) A − I =

0 0 −1
0 0 0
0 0 −2

. A general solution of

0 0 −1
0 0 0
0 0 −2

x
y
z

 =

0
0
0

 is

x = s, y = t, z = 0, where s, t ∈ R. So V = {(s, t, 0) | s, t ∈ R}, i.e. V is the
xy-plane in R3.
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Exercise (3.14)
Let V = {(x, y, z)|x − y − z = 0} be a subset of R3.
(a) Show that V is a subspace of R3.
(b) Let S = {(1, 1, 0), (5, 2, 3)}. Show that span(S) = V.
(c) Let S′ = {(1, 1, 0), (5, 2, 3), (0, 0, 1)}. Show that span(S′) = R3.

Proof.

(a) Since V is a solution set of the homogeneous system, it is a subspace of R3.
Moreover, we have that a general solution of x − y − z = 0 is x = s + t, y = s,
z = t, where s, t ∈ R.
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Proof.
(b) Since (1, 1, 0) and (5, 2, 3) satisfy the equation x − y − z = 0, (1, 1, 0), (5, 2, 3) ∈ V

and hence span(S) ⊂ V.
Let (s + t, s, t) be any vector in V. We want to verify whether
a(1, 1, 0) + b(5, 2, 3) = (s + t, s, t) in terms of a, b can be solved.

a(1, 1, 0) + b(5, 2, 3) = (s + t, s, t) ⇔


a + 5b = s + t
a + 2b = s
3b = t 1 5 s + t

1 2 s
0 3 t

 Gaussian Elimination−−−−−−−−−−→

 1 5 s + t
0 3 t
0 0 0

. The system is

consistent for all s, t ∈ R. So V ⊂ span(S).
Therefore V = span(S).
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Proof.
(c) It is obvious that span(S′) ⊂ R3.

Let (x, y, z) be any vector in R3. We want to verify whether
a(1, 1, 0) + b(5, 2, 3) + c(0, 0, 1) = (x, y, z), in terms of a, b, c, can be solved.

a(1, 1, 0) + b(5, 2, 3) + c(0, 0, 1) = (x, y, z) ⇔


a + 5b = x
a + 2b = y
3b + c = z 1 5 0 x

1 2 0 y
0 3 1 z

 Gaussian Elimination−−−−−−−−−−→

 1 5 0 x
0 −3 0 y − x
0 0 1 z + y − x

. The system

is consistent for all x, y, z ∈ R. So R3 ⊂ span(S′).
Therefore R3 = span(S′).
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2nd method for part (c).

(c) It is obvious that span(S′) ⊂ R3;
We know that R3 = span{(1, 0, 0), (0, 1, 0), (0, 0, 1)}; It suffices to show that
(1, 0, 0), (0, 1, 0), (0, 0, 1) are linear combination of S′ (It is easy);
Therefore R3 = span(S′).



. . . . . .

MA1101R Tutorial
Tutorial 4: Vector Spaces

Change log

Page 4 Add “Ref Exercise 3.21” for 5th item;
Page 5 Add a slide for “Methods for proving subspace”;
Page 9 Change “w + x + y + z = z2” to “w + x + y = z2”;
Page 16 Add another method for Exercise 3.14 part(c).
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Any question about last tutorial
Review concepts
Tutorial: 3.18, 3.20, 3.23, 3.24(adef), 3.28, 3.37(a)
Additional material: 3.10(a), 3.22, 3.24(g), 3.35, 3.36
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Linearly independent

Let S = {u1, u2, . . . , uk} ⊂ Rn. S is called a linearly independent set and
u1, u2, . . . , uk are said to be linearly independent if the equation

c1u1 + c2u2 + · · ·+ ckuk = 0

has only trivial solution, where c1, c2, . . . , ck are variables. Otherwise, S is called
a linearly dependent set and u1, u2, . . . , uk are said to be linearly dependent, i.e.
there exist real numbers a1, a2, . . . , ak, not all of them are zero, such that
a1u1 + a2u2 + · · ·+ akuk = 0.
Let 0 ∈ S ⊂ Rn, then S is linearly dependent;
Let u1, u2, . . . , uk be linearly independent vectors in Rn. Suppose uk+1 is a
vector in Rn, and not a linear combination of u1, u2, . . . , uk. Then
u1, u2, . . . , uk, uk+1 are linearly independent.



. . . . . .

MA1101R Tutorial
Tutorial 5: Vector Spaces

Review

Linearly independent

How to determine whether a subset is linearly independent?
Let S′ ⊂ S ⊂ Rn,

if S′ is linearly dependent, then S is linearly dependent;
if S is linearly independent, then S′ is linearly independent;

Let S = {u} ⊂ Rn, then S is linearly dependent iff u = 0;
Let S = {u, v} ⊂ Rn, then S is linearly dependent iff u = av for some a ∈ R or
v = bu for some b ∈ R;
Let S = {u1, u2, . . . , uk} ⊂ Rn where k ≥ 2, then

S is linearly dependent iff at least one vector ui in S can be written as a linear
combination of the other vectors in S;
S is linearly independent iff no vector ui in S can be written as a linear combination of
the other vectors in S.

Let S = {u1, u2, . . . , uk} ⊂ Rn. If k > n, then S is linearly dependent.
In Rn, 2 vectors u, v are linearly dependent iff they lie on the same line.
In Rn, 3 vectors u, v,w are linearly dependent iff they lie on the same plane.
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Bases

Let S = {u1, u2, . . . , uk} be a subset of a vector space V. Then S is called a
basis for V if

S is linearly independent;
S spans V.

Let S = {u1, u2, . . . , uk} be a basis for a vector space V, then every vector v ∈ V
can be expressed in the form v = c1u1 + c2u2 + · · ·+ ckuk in exactly one way,
where c1, c2, . . . , ck ∈ R.
Let S = {u1, u2, . . . , uk} be a basis for a vector space V and v ∈ V. If
v = c1u1 + c2u2 + · · ·+ ckuk, then the coefficients c1, c2, . . . , ck are called the
coordinates of v relative to the basis S. The vector (v)S = (c1, c2, . . . , ck) ∈ Rk is
called the coordinate vector of v relative to the basis S.
S = {e1, e2, . . . , en}, where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, is the standard basis
for Rn, and (u)S = (u1, u2, . . . , un) = u.

Suppose S ⊂ V and span(S) = V, then there exists S′ ⊂ S, such that S′ is a basis
for V;
Suppose T is a set of linearly independent vectors in V. Then there exists a basis T′

for V such that T ⊂ T′.
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Dimension

Let V be a vector space which has a basis with k vectors. Then
any subset of V with more than k vectors is always linearly dependent;
any subset of V with less than k vectors can not span V.

The dimension of a vector space V, denoted by dim(V), is defined to be the
number of vectors in a basis for V. In addition, we define the dimension of the
zero space to be zero.
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Exercise (3.18)
Let u, v,w be the vectors and let

S1 = {u, v},S2 = {u − v, v − w,w − u},S3 = {u − v, v − w, u + w},

S4 = {u, u + v, u + v + w},S5 = {u + v, v + w, u + w, u + v + w}.

(a) Suppose u, v,w are vectors in R3 such that span{u, v,w} = R3. Determine which
of the sets above span R3.

(b) Suppose u, v,w are linearly independent vectors in Rn. Determine which of the
sets above are linearly independent.
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Solution of (a).

Note that span(S1) is a plane in R3. So S1 does not span R3.
Since w − u = −(u − v)− (v − w), span(S2) = span{u − v, v − w} which is also a
plane in R3. So S2 does not span R3.
Note that span(S3) ⊂ R3, and

u =
1

2
[(u − v) + (v − w) + (u + w)],

v =
1

2
[−(u − v) + (v − w) + (u + w)],

w =
1

2
[−(u − v)− (v − w) + (u + w)].

Hence S3 spans R3.
Using the same argument as for S3, we can show that both S4 and S5 also span
R3.
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Solution of (b).

If there exist a, b ∈ R, which are not both 0, such that au + bv = 0, then
au + bv + 0w = 0, i.e. u, v,w are linearly dependent, contradiction.
Since (u − v) + (v − w) + (w − u) = 0, they are linearly dependent.
Suppose a(u − v) + b(v − w) + c(w + u) = 0, it is equivalent to
(a + c)u + (−a + b)v + (−b + c)w = 0. Since u, v,w are linearly independent, we

have


a + c = 0

−a + b = 0

−b + c = 0

. It is obvious that this system has only trivial solution, i.e.

u − v, v − w,w + u are linearly independent.
By similarly method, we have that S4 and S5 are linearly independent.
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Exercise (3.20)
Let u, v,w be vectors in R3 such that V = span{u, v} and W = span{u,w} are planes
in R3. Find V ∩ W if
(a) u, v,w are linearly independent.
(b) u, v,w are not linearly independent.

Solution.

(a) If {u, v,w} are linearly independent, then the two planes V and W intersect at the
line spanned by u and hence V ∩ W = span{u}.

(b) V and W are planes in R3. So u, v are linearly independent and u,w are linearly
independent. If u, v,w are linearly dependent, then u, v,w must lie on the same
plane and hence V = W = V ∩ W.
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Exercise (3.23)
(All vectors in this question are column vectors.) Let u1, u2, . . . , uk be vectors in Rn

and A an n × n matrix.
(a) Show that if Au1,Au2, . . . ,Auk are linearly independent, then u1, u2, . . . , uk are

linearly independent.
(b) Suppose u1, u2, . . . , uk are linearly independent.

Show that if A is invertible, then Au1, Au2, . . . , Auk are linearly independent.
If A is not invertible, are Au1, Au2, . . . ,Auk linearly independent?

Proof of (a).
Suppose c1u1 + c2u2 + · · ·+ ckuk = 0, then

c1Au1 + c2Au2 + · · ·+ ckAuk = A(c1u1 + c2u2 + · · ·+ ckuk) = 0.

Hence c1 = c2 = · · · = ck = 0, i.e. u1, u2, . . . , uk are linearly independent.
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Proof of (b).

Suppose c1Au1 + c2Au2 + · · · + ckAuk = 0, then
A(c1u1 + c2u2 + · · · + ckuk) = 0.
Since A is invertible, c1u1 + c2u2 + · · · + ckuk = 0.
Since u1, u2, . . . , uk are linearly independent, we have c1 = c2 = · · · = ck = 0, i.e.
Au1, Au2, . . . ,Auk are linearly independent.

No conclusion. For example,
let u1 = (1, 0, 0)T and u2 = (0, 1, 0)T: It is obvious that u1 and u2 are linearly
independent.

If A =

1 0 0
0 1 0
0 0 0

, then Au1 and Au2 are linearly independent.

If A =

1 1 0
1 1 0
0 0 0

, then Au1 and Au2 are linearly dependent.
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Exercise (3.24(adef))
Determine which of the following statements are true. Justify your answer.
(a) R2 is a subspace of R3.
(d) If u, v are nonzero vectors in R2 such that u ̸= v, then span{u, v} = R2.
(e) If S1 and S2 are two subsets of a vector space, then

span(S1 ∩ S2) = span(S1) ∩ span(S2).
(f) If S1 and S2 are two subsets of a vector space, then

span(S1 ∪ S2) = span(S1) ∪ span(S2).

Proof.

(a) False. R2 is not even a subset of R3. (We can only say that the xy-plane
{(x, y, 0)|x, y ∈ R} is a subspace of R3.)

(d) False. For example, let u = (1, 1), v = (2, 2).
(e) False. For example, let S1 = {(1, 0), (0, 1)},S2 = {(1, 0), (0, 2)}.
(f) False. For example, let S1 = {(1, 0)},S2 = {(0, 1)}.
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Exercise (3.28)
Let V = {(a + b, a + c, c + d, b + d)|a, b, c, d ∈ R} and
S = {(1, 1, 0, 0), (1, 0,−1, 0), (0,−1, 0, 1)}.
(a) Show that V is a subspace of R4 and S is a basis for V.
(b) Find the coordinate vector of u = (1, 2, 3, 2) relative to S.
(c) Find a vector v such that (v)S = (1, 3,−1).

Proof.

(a) V = {a(1, 1, 0, 0) + b(1, 0, 0, 1) + c(0, 1, 1, 0) + d(0, 0, 1, 1)|a, b, c, d ∈ R} =
span{(1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1)} and hence is a sub-space of R4.
It is obvious that S is linearly independent and
span(S) = span{(1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1)} = V. So S is a basis
for V.

(b) Let (1, 2, 3, 2) = c1(1, 1, 0, 0) + c2(1, 0,−1, 0) + c3(0,−1, 0, 1). Then we will get
c1 = 4, c2 = −3, c3 = 2, i.e. the coordinate vector of u relative to S is (4,−3, 2).

(c) v = 1(1, 1, 0, 0) + 3(1, 0,−1, 0)− 1(0,−1, 0, 1) = (4, 2,−3,−1).
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Exercise (3.37(a))
Determine which of the following statements are true. Justify your answer.
(a) If S1 and S2 are basis for V and W respectively, where V and W are subspaces of

a vector space, then S1 ∩ S2 is a basis for V ∩ W.

Proof.

(a) False. For example, let S1 = {(1, 0), (0, 1)} and S2 = {(1, 0), (0, 2)} where
V = W = R2.
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Exercise (3.10(a))
Let V and W be subspaces of Rn. Define V + W = {v + w|v ∈ V,w ∈ W}. Then
V + W is a subspace of Rn.

Proof.
It is obvious that V + W satisfies these conditions, i.e. it is a subspace of Rn.

Exercise (3.22)
Let V and W be subspaces of Rn.
(a) Show that V ∩ W is a subspace of Rn.
(b) Give an example of V and W in R2 such that V ∪ W is not a subspace.
(c) Show that V ∪ W is a subspace of Rn iff V ⊂ W or W ⊂ V.
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Proof and Solution.

(a) It is obvious that V ∩ W satisfies these conditions, i.e. it is a subspace of Rn.
(b) Let V = {(x, 0)|x ∈ R} and W = {(0, y)|y ∈ R}. Then both V and W are lines

through the origin and hence are subspaces of Rn. But V ∩ W is a union of two
lines which is not a subspace of Rn.

(c) Suppose V ̸⊂ W. We want to show that W ⊂ V. Take any vector x ∈ W, we
want to show x ∈ V. Since V ̸⊂ W, there exists a vector y ∈ V but y ̸∈ W. Then
since V ∪ W is a subspace of Rn and x, y ∈ V ∪ W, we have x + y ∈ V ∪ W, i.e.
either x + y ∈ V or x + y ∈ W.

Assume x + y ∈ W. As W is a subspace of Rn, we have y = (x + y) − x ∈ W which
contradict that y ̸∈ W as mentioned above.
Now we know that x+ y ∈ V. As V is a subspace of Rn, we have x = (x+ y)− y ∈ V.

Since every vector in W must be contained in V, W ⊂ V.
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Exercise (3.24(g))
Determine which of the following statements are true. Justify your answer.
(g) If S1 and S2 are two subsets of a vector space, then

span(S1 ∪ S2) = span(S1) + span(S2).

Solution.
True.

For any element u of span(S1 ∪ S2), it can be expressed as a linear combination
of S1 ∪ S2. Hence, u = u1 + u2 where u1 ∈ span(S1) and u2 ∈ span(S2).
For any elements u1 ∈ span(S1) and u2 ∈ span(S2), u1 + u2 is a linear
combination of S1 ∪ S2.
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Exercise (3.35)
Let V be a vector space of dimension of n. Show that there exists n + 1 vectors
u1, u2, . . . , un, un+1 such that every vector in V can be expressed as a linear
combination of u1, u2, . . . , un+1 with non-negative coefficients.

Proof.

Take a basis {u1, u2, . . . , un} for V. Define un+1 = −u1 − u2 − · · · − un.
For any v ∈ V, v = a1u1 + a2u2 + · · ·+ anun for some a1, a2, . . . , an ∈ R.
Let a = min{0, a1, a2, . . . , an}. Then
v = (a1 − a)u1 + (a2 − a)u2 + · · ·+ (an − a)un + (−a)un+1 where ai − a ≥ 0,
for i = 1, 2, . . . ,n, and −a ≥ 0.
So every vector in V can be expressed as a linear combination of
u1, u2, . . . , un, un+1 with non-negative coefficients.
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Exercise (3.36)
Let V and W be subspaces of Rn. Show that
dim(V + W) = dim(V) + dim(W)− dim(V ∩ W).

Proof.

Let {u1, . . . , uk} be a basis for V ∩ W. By Problem 3.4.8.2, there exists vectors
v1, . . . , vm ∈ V such that {u1, . . . , uk, v1, . . . , vm} is a basis for V and there
exists vectors w1, . . . ,wn ∈ W such that {u1, . . . , uk,w1, . . . ,wn} is a basis for
W. It is easy to see that V + W = span{u1, . . . , uk, v1, . . . , vm,w1, . . . ,wn}.
Consider a1u1 + · · ·+ akuk + b1v1 + · · ·+ bmvm + c1w1 + · · ·+ cnwn = 0(∗).
Since c1w1 + · · ·+ cnwn = −(a1u1 + · · ·+ akuk + b1v1 + · · ·+ bmvm) ∈ V ∩ W,
there exists d1, . . . , dk ∈ R such that c1w1 + · · ·+ cnwn = d1u1 + · · ·+ dkuk, i.e.
c1w1 + · · ·+ cnwn − d1u1 − · · · − dkuk = 0. As {u1, . . . , uk,w1, . . . ,wn} is
linearly independent, c1 = · · · = cn = d1 = · · · = dk = 0.
Substituting c1 = · · · = cn = 0 into (∗), we have
a1u1 + · · ·+ akuk + b1v1 + · · ·+ bmvm = 0. As {u1, . . . , uk, v1, . . . , vm} is
linearly independent, a1 = · · · = ak = b1 = · · · = bm = 0.
So (∗) has only the trivial solution and hence
{u1, . . . , uk, v1, . . . , vm,w1, . . . ,wn} is linearly independent. We have shown that
{u1, . . . , uk, v1, . . . , vm,w1, . . . ,wn} is a basis for V + W.
Thus dim(V + W) = k + m + n = dim(V) + dim(W)− dim(V ∩ W).
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Exercise (3.37(bcd))
Determine which of the following statements are true. Justify your answer.
(b) If S1 and S2 are basis for V and W respectively, where V and W are subspaces of

a vector space, then S1 ∪ S2 is a basis for V + W.
(c) If V and W are subspace of a vector space, then there exists a basis S1 for V and

a basis S2 for W such that S1 ∩ S2 is a basis for V ∩ W.
(d) If V and W are subspace of a vector space, then there exists a basis S1 for V and

a basis S2 for W such that S1 ∪ S2 is a basis for V + W.

Solution.

(b) False. For example, let S1 = {(1, 0)} and S2 = {(1, 1), (0, 1)} where
V = span(S1) and W = V + W = R2. Note that S1 ∪ S2 is linearly dependent.

(c) True. See the proof of Exercise 3.36.
(d) True. See the proof of Exercise 3.36.
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Page 4 Change “Let S = {u, v} ⊂ R2” to “Let S = {u, v} ⊂ Rn”;
Page 5 Change “T ⊂ V′” to “T ⊂ T′”;
Page 11 Change “Au1,Au2, . . . ,Auk are linearly independent” in the Proof of (a) to

“u1, u2, . . . , uk are linearly independent”;
Last modified: 09:15, March 1st, 2010.
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Review

Dimension

Thm Let V be a vector space which has a basis with k vectors. Then
any subset of V with more than k vectors is always linearly dependent;
any subset of V with less than k vectors can not span V.

Def The dimension of a vector space V, denoted by dim(V), is defined to be the
number of vectors in a basis for V. In addition, we define the dimension of the
zero space to be zero.

Thm Let V be a vector space of dimension k and S a subset of V. The following are
equivalent:
(1) S is a basis for V;
(2) S is linearly independent, and |S| = k = dim(V);
(3) S spans V, and |S| = k = dim(V).

Thm Let A be an n × n matrix. The following statements are equivalent:
(1) A is invertible;
(2) The linear system Ax = 0 has only trivial solution;
(3) The RREF of A is an identity matrix;
(4) A can be expressed as a product of elementary matrices;
(5) det(A) ̸= 0;
(6) The rows of A form a basis for Rn;
(7) The columns of A form a basis for Rn.



. . . . . .

MA1101R Tutorial
Tutorial 6: Vector Spaces and Vector Spaces associated Matrices

Review

Transition matrices

Let S = {u1, u2, . . . , uk} be a basis for a vector space V and v be a vector in V.
If v = c1u1 + c2u2 + · · ·+ ckuk, then the vectors

(v)S = (c1, c2, . . . , ck), [v]S =


c1
c2
...

ck


are called the coordinate vector of v relative to S.
Let S = {u1, u2, . . . , uk} and T = {v1, v2, . . . , vk} be two bases for a vector
space V. Then matrix

P =
(
[u1]T, [u2]T, . . . , [uk]T

)
is called the transition matrix from S to T.
Let S and T be two bases of a vector space and let P be the transition matrix
from S to T. Then

P is invertible;
P−1 is the transition matrix from T to S.
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Row spaces and Column spaces

Let A be an m × n matrix. The row space of A is the subspace of Rn spanned by
the rows of A. The column space of A is the subspace of Rm spanned by the
columns of A.
Let A and B be row equivalent matrices, then the row space of A = the row
space of B.
Let A and B be row equivalent matrices. Then the following statements hold:

A given set of columns of A is linearly independent iff the set of corresponding columns
of B is linearly independent;
A given set of columns of A forms a basis for the column space of A iff the set of
corresponding columns of B forms a basis for the column space of B.
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Exercise (3.31)
Let {u1, u2, u3} be a basis for a vector space V. Determine whether {v1, v2, v3} is a
basis for V if
(a) v1 = u1, v2 = u1 + u2, v3 = u1 + u2 + u3.
(b) v1 = u1 − u2, v2 = u2 − u3, v3 = u3 − u1.

Solution.
(a) Suppose c1v1 + c2v2 + c3v3 = 0. Then

(c1 + c2 + c3)u1 + (c2 + c3)u2 + c3u3 = 0.

Since u1, u2, u3 are linearly independent, c1 + c2 + c3 = c2 + c3 = c3 = 0, i.e.
c1 = c2 = c3 = 0.
Hence, v1, v2, v3 are linearly independent.
Since dim(V) = 3, {v1, v2, v3} is a basis for V.

(b) Since v1 + v2 + v3 = 0, they are linearly dependent. Hence, {v1, v2, v3} is not a
basis for V.
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Exercise (3.33)
Let V = {(x, y, z)|2x − y + z = 0}, S = {(0, 1, 1), (1, 2, 0)},
T = {(1, 1,−1), (1, 0,−2)}.
(a) Show that both S and T are basis for V.
(b) Find the transition matrix from T to S and the transition matrix from S to T.
(c) Show that S′ = S ∪ {(2,−1, 1)} is a basis for R3.

Proof.
(a) Since V = {(x, y, z)|2x − y + z = 0} = {(x, 2x + z, z)|x, z ∈ R} =

span{(1, 2, 0), (0, 1, 1)} = span(S), S spans V.
It is obvious that S is linearly independent. Hence, S is a basis for V.
Similarly, we have that T is linearly independent. Since dim(V) = |S| = 2, T is also a
basis for V.

(c) Since (2,−1, 1) does not satisfy the equation 2x − y + z = 0, it can not be
expressed as a linear combination of S, i.e. S′ is linearly independent. As
dim(R3) = 3, S′ is a basis for R3.
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Solution of (b). 0 1 1 1
1 2 1 0
1 0 −1 −2

 GJ Elimination−−−−−−−−→

 1 0 −1 −2
0 1 1 1
0 0 0 0

 Thus

[(1, 1,−1)]S =

(
−1
1

)
and [(1, 0,−2)]S =

(
−2
1

)
. The transition matrix from T to S

is
(
−1 −2
1 1

)
. The transition matrix from S to T is(

−1 −2
1 1

)−1

=

(
1 2
−1 −1

)
.
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Exercise (3.34)
Let S = {u1, u2, u3} be a basis for R3 and T = {v1, v2, v3} where
v1 = u1 + u2 + u3, v2 = u2 + u3, v3 = u2 − u3.
(a) Show that T is a basis for R3.
(b) Find the transition matrix from S to T.

Proof and Solution.
(a) Suppose c1v1 + c2v2 + c3v3 = 0, then

c1u1 + (c1 + c2 + c3)u2 + (c1 + c2 − c3)u3 = 0.
Since u1, u2, u3 are linearly independent, we have
c1 = c1 + c2 + c3 = c1 + c2 − c3 = 0, i.e. c1 = c2 = c3 = 0. Hence, v1, v2, v3 are
linearly independent.
Since dim(R3) = 3 = |T|, T is a basis for V.

(b) We know that [v1]S =

1
1
1

, [v2]S =

0
1
1

, [v3]S =

 0
1
−1

. The transition

matrix from T to S is P =

1 0 0
1 1 1
1 1 −1

, and the transition matrix from S to T

is P−1 =

 1 0 0
−1 1/2 1/2
0 1/2 −1/2

.
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Exercise (4.7)
Let V = span{u1, u2, u3, u4} where

u1 = (1, 1, 1, 1, 1), u2 = (1, x, x, x, x), u3 = (1, x, x2, x, x2), u4 = (1, x3, x, 2x − x3, x)

for some constant x. Find a basis for V and determine the dimension of V.

Solution.
1 1 1 1 1
1 x x x x
1 x x2 x x2
1 x3 x 2x − x3 x

 GE−−→


1 1 1 1 1
0 x − 1 x − 1 x − 1 x − 1
0 0 x2 − x 0 x2 − x
0 0 0 2x − 2x3 0


If x = 1, then {u1} is a basis for V and dim(V) = 1.
If x = 0, then {u1, (0, 1, 1, 1, 1)} is a basis for V and dim(V) = 2.
If x = −1, then {u1, (0,−2,−2,−2,−2), (0, 0, 2, 0, 2)} is a basis for V and
dim(V) = 3.
If x ̸∈ {0, 1,−1}, then {u1, u2, u3, u4} is a basis for V and dim(V) = 4.
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Exercise (4.8)
For each of the following cases, write down a matrix with the required property or
explain why no such matrix exists.
(a) Column space contains vectors (1, 0, 0)T, (0, 0, 1)T and row space contains vectors

(1, 1), (1, 2).
(b) Column space = R4, row space = R3.

Solution.

(a) Yes, for example:

1 0
0 0
0 1

.

(b) No. By Theorem 4.2.1, the dimensions of the row space and column space of a
matrix must be the same.
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Exercise (4.18)
Let A = (a1a2a3a4a5) be a 4× 5 matrix such that the columns a1, a2, a3 are linearly
independent while a4 = a1 − 2a2 + a3 and a5 = a2 + a3.
(a) Determine the RREF of A.
(b) Find a basis for the row space of A and a basis for the column space of A.

Solution.

(a) Let R be the RREF of A. Since a1, a2, a3 are linearly independent, the first three
columns of R are linearly independent. Thus the first three columns of R must be
1 0 0
0 1 0
0 0 1
0 0 0

. Since
{

a4 = a1 − 2a2 + a3

a5 = a2 + a3
, R =


1 0 0 1 0
0 1 0 −2 1
0 0 1 1 1
0 0 0 0 0

.

(b) It is obvious that {a1, a2, a3} is a basis for the column space of A, and both the
dimensions of column space and row spaces are 3. Hence
{(1, 0, 0, 1, 0), (0, 1, 0,−2, 1), (0, 0, 1, 1, 1)} is a basis for the row space of A.
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Review

Rank and Nullity

For simpleness, we use Rm×n to denote the sets of all m × n matrices.
For a matrix A, dim(row space of A) = dim(column space of A).

Def The rank of matrix A is the dimension of its row space (or column space),
denoted by rank(A).
If R is a REF of A, then

rank(A) = # non-zero rows of R = # leading entries of R = # pivot columns of R
= largest # of L.I. rows in A = largest # of L.I. columns in A
= largest size of invertible submatrices of A (See later)

A ∈ Rm×n, then rank(A) ≤ min{m,n}.
A ∈ Rm×n, then rank(A) = rank(AT).

Def A ∈ Rm×n. The solution space of the homogeneous system of linear equations
Ax = 0 is called nullspace of A, and dim(nullspace of A) is called the nullity of
A, denoted by nullity(A).
A ∈ Rm×n, then rank(A) + nullity(A) = (# columns of A) = n.
B is a submatrix of A, then rank(B) ≤ rank(A).
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(1) rank(AB) ≤ min{rank(A), rank(B)}. See Exercise 4.23.
(2) A ∈ Rm×n, P ∈ Rm×m and Q ∈ Rn×n are invertible, then

rank(A) = rank(PA) = rank(AQ) = rank(PAQ). By (1) or see Exercise 4.22.
(2a) A ∈ Rm×n, rank(A) = r ≤ min{m,n}, then there exist invertible matrices

P ∈ Rm×m and Q ∈ Rn×n, such that PAQ =

(
Ir 0
0 0

)
. By (2).

(2b) A =

(
B 0
0 C

)
, then rank(A) = rank(B) + rank(C). By (2a).

(2c) A ∈ Rm×n, rank(A) = r, then there exist B ∈ Rm×r and C ∈ Rr×n, such that
A = BC. By(2a).

(3) A ∈ Rm×n, B ∈ Rp×q, C ∈ Rm×p, then rank
(

A C
0 B

)
≥ rank

(
A 0
0 B

)
. Def.

(3a) A ∈ Rm×p, B ∈ Rp×n, then rank(AB) ≥ rank(A) + rank(B)− p. By (2), (3).
(3b) Frobenius’s inequality: A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×q, then

rank(AB) + rank(BC)− rank(B) ≥ rank(ABC). By (2), (3).
(4) rank(A ± B) ≤ rank(A) + rank(B). By (2), (2b) and Def.

(4a) rank
(
A,B

)
≤ rank(A) + rank(B), rank

(
A
B

)
≤ rank(A) + rank(B). By (4).

(4b) rank(A − B) ≥ | rank(A)− rank(B)|. By (4).
(4c) A ∈ Rn×n, then rank(A) + rank(In + A) ≥ n. By (4).
(5) A ∈ Rm×n, then rank(AAT) = rank(ATA) = rank(A). Def.
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Exercise (4.13)
Determine the possible rank and nullity of each of the following matrices:

(a) A =

1 1 a
1 a 1
a 1 1

 , (b) B =

0 0 b
0 0 c
d e f

 ,

where a, b, c, d, e, f are real numbers.

Solution.

(a) By Gauss Elimination:1 1 a
1 a 1
a 1 1

 →

1 1 a
0 a − 1 1− a
0 1− a 1− a2

 →

1 1 a
0 a − 1 1− a
0 0 −(a − 1)(a + 2)

 .

when a = 1, there is only 1 non-zero row, i.e., rank(A) = 1, nullity(A) = 2;
when a = −2, there are 2 non-zero rows, i.e., rank(A) = 2, nullity(A) = 1;
For other cases, all of the rows are non-zero rows, i.e., rank(A) = 3, nullity(A) = 0.
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Solution for (b).
For

B =

0 0 b
0 0 c
d e f

 ,

the first 2 rows are linearly independent, then rank(B) ≤ 2.
if b = c = d = e = f = 0, rank(B) = 0,nullity(B) = 3;
if either (i) b = c = 0 and not all d, e, f are zero or (ii) d = e = 0 and not all
b, c, f are zero, rank(B) = 1,nullity(B) = 2.
if not all b, c are zero and not all d, e are zero, rank(B) = 2,nullity(B) = 1.

Exercise (Question 2 in Final of 2001-2002(II), Question 4 in Final of 2005-2006(II))
Determine the possible rank of each of the following matrices: 1 1 x2

1 x2 1
x2 1 1

 ,

 1 1 1
a b c
a2 b2 c2

 ,

where x, a, b, c are real numbers.
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Exercise (4.16)
Let V = {a(1, 2, 0, 0) + b(0,−1, 1, 0) + c(0, 0, 0, 1)|a, b, c ∈ R}.
(a) Find a 4× 4 matrix A such that the row space of A is V.
(b) Find a 4× 4 matrix B such that the column space of B is V.
(c) Find a 4× 4 matrix C such that the nullspace of C is V.

Solution.

(a,b) A =


1 2 0 0
0 −1 1 0
0 0 0 1
0 0 0 0

, and B =


1 0 0 0
2 −1 0 0
0 1 0 0
0 0 1 0

.

(c) Since (1, 2, 0, 0), (0,−1, 1, 0), (0, 0, 0, 1) are linearly independent, then dim(V) = 3,
i.e. the rank of C = (ci,j)4×4 which need to find is 1. So we can let the last 3 rows of
C be zero rows. Now it suffices to find c11, c12, c13, c14.
Since C(1, 2, 0, 0)T = C(0,−1, 1, 0)T = C(0, 0, 0, 1)T = 0⃗, then c11 + 2c12 = 0,
c12 − c13 = 0, c14 = 0. Then we can choose

C =

−2 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
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Exercise (4.17)
Let A be a 3× 4 matrix. Suppose that x1 = 1, x2 = 0, x3 = −1, x4 = 0 is a solution
to a non-homogeneous linear system Ax = b and that the homogeneous system
Ax = 0 has a general solution x1 = t − 2s, x2 = s + t, x3 = s, x4 = t where s, t are
arbitrary parameters.
(a) Find a basis for the nullspace of A and determine the nullity of A.
(b) Find a general solution for the system Ax = b.
(c) Write down the RREF of A.
(d) Find a basis for the row space of A and determine the rank of A.
(e) Do we have enough information for us to find the column space of A?

Solution.

(a) Since (x1, x2, x3, x4)T = (t − 2s, s + t, s, t)T = s(−2, 1, 1, 0)T + t(1, 1, 0, 1)T,
{(−2, 1, 1, 0)T, (1, 1, 0, 1)T} is a basis for the nullspace of A. The nullity of A is 2.

(b) A general solution of Ax = b is x1 = t − 2s + 1, x2 = s + t, x3 = s − 1, x4 = t
where s, t are arbitrary parameters.
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Solution of (cde).

(c) It is obvious that nullity(A) = 2, and rank(A) = 1. So we have that the last row in
the RREF of A is a zero row.

A general solution of Ax = 0 is


x1 = −2s + t
x2 = s + t
x3 = s
x4 = t

. Now we want to find 2 (since

rank(A) = 2) equations for x1, x2, x3, x4:
{

x1 = −2x3 + x4

x2 = x3 + x4
.

Hence, the entries in the i-th row of RREF are the coefficients in the i-th condition

(i = 1, 2), i.e. RREF is

1 0 2 −1
0 1 −1 −1
0 0 0 0

.

(d) {(1, 0, 2,−1), (0, 1,−1,−1)} is a basis for the row space of A. The rank of A is 2.
(e) No, we cannot find the column space of A with the given information.
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Exercise (4.20)
Suppose A and B are two matrices such that AB = 0. Show that the column space of
B is contained in the nullspace of A.

Proof.

Let B = (b⃗1, . . . , b⃗n) where b⃗j is the j-th column of B.

AB = 0 ⇒ (Ab⃗1, . . . ,Ab⃗n) = 0 ⇒ Ab⃗j = 0⃗ for all j,

b⃗1, . . . , b⃗n are contained in the nullspace of A.
So the column space of B = span{b⃗1, . . . , b⃗n} the nullspace of A.
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Exercise (4.21)
Show that there is no matrix whose row space and nullspace both contain the vector
(1, 1, 1).

Proof.

Let A =

a⃗1

...
a⃗n

 be a matrix where a⃗i is the i-th row of A. Let u⃗ be any column

vector in the nullspace of A. Then

Au⃗ = 0⃗ ⇒

a⃗1u⃗
...

a⃗nu⃗

 = 0 ⇒ a⃗iu⃗ = 0 for all i.

Let b⃗ be any vector in the row space of A, i.e. b⃗ = c1a⃗1 + · · ·+ cna⃗n where
c1, . . . , cn are scalars. We have b⃗u⃗ = c1a⃗1u⃗ + · · ·+ cna⃗nu⃗ = 0.

Since
(
1 1 1

)1
1
1

 ̸= 0, it is impossible to have a matrix whose row space

and nullspace both contain the vector (1, 1, 1).
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Exercise (4.23)
Let A and B be m × p and p × n matrices respectively.
(a) Show that the nullspace of B is a subset of the nullspace of AB. Hence prove

that rank(AB) ≤ rank(B).
(b) Show that every column of the matrix AB lies in the column space of A. Hence,

or otherwise, prove that rank(AB) ≤ rank(A).

Proof.

(a) Let u⃗ be any vector in the nullspace of B, i.e. Bu⃗ = 0. Since ABu⃗ = A0 = 0, u⃗ is
also a vector in the nullspace of AB. So we have shown that the nullspace of B is
a subset of the nullspace of AB. Since nullity(B) ≤ nullity(AB),

rank(AB) = n − nullity(AB) ≤ n − nullity(B) = rank(B).

(b) By (a), rank(BTAT) ≤ rank(AT). Since rank(AT) = rank(A) and
rank(AB) = rank(BTAT), rank(AB) ≤ rank(A).
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Exercise (4.22)
Let A be an m × n matrix and P an m × m matrix.
(a) If P is invertible, show that rank(PA) = rank(A).
(b) Given an example such that rank(PA) < rank(A).
(c) Suppose rank(PA) = rank(A). Is it true that P must be invertible? Justify your

answer.

Proof.

(a) rank(A) = rank(P−1PA) ≤ rank(PA) ≤ rank(A).

(b) P =

(
0 0
0 0

)
, A = I2, then rank(PA) = 0 ̸= 2 = rank(A).

(c) No. For example, let P = A =

(
1 0
0 0

)
, then rank(PA) = 1 = rank(A).
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Exercise (4.24)
Let A and B be two matrices of the same size. Show that

rank(A + B) ≤ rank(A) + rank(B).

Proof.

rank(A) + rank(B) = rank
(

A 0
0 B

)
= rank

(
I I
0 I

)(
A 0
0 B

)(
I I
0 I

)
= rank

(
A A + B
0 B

)
≥ rank

(
0 A + B
0 0

)
= rank(A + B).
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Exercise (4.25)
Let A be an m × n matrix.
(a) Show that the nullspace of A is equal to the nullspace of ATA.
(b) Show that nullity(A) = nullity(ATA) and rank(A) = rank(ATA).
(c) Is it true that nullity(A) = nullity(AAT)? Justify your answer.
(d) Is it true that rank(A) = rank(AAT)? Justify your answer.

(a) Proved in lecture;
(b) By (a);

(c) No. For example, A =

(
1 0 0
0 1 0

)
.

(d) Yes. By (b), rank(A) = rank(AT) = rank((AT)TAT) = rank(AAT).
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Exercise (4.26)
Let A be an m × n matrix. Suppose the linear system Ax⃗ = b⃗ is consistent for any
b⃗ ∈ Rm. Show that the linear system ATy⃗ = 0⃗ has only the trivial solution.

Proof.

ATy⃗ = 0⃗ ⇒ x⃗TATy⃗ = 0 ⇔ bTy⃗ = 0⃗ for any b⃗ ∈ Rm.
For any 1 ≤ i ≤ m, b⃗ = e⃗i whose components are zeros except i-th component,
then i-th component of y⃗ is 0, i.e., y⃗ = 0⃗.
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Exercise (4.27)
Determine which of the following statements are true. Justify your answer.
(a) If A and B are two row equivalent matrices, then the row space of AT and the

row space of BT are the same.
(b) If A and B are two row equivalent matrices, then the column space of AT and the

column space of BT are the same.
(c) If A and B are two row equivalent matrices, then the nullspace of AT and the

nullspace of BT are the same.
(d) If A and B are two matrices of the same size, then

rank(A + B) = rank(A) + rank(B).
(e) If A and B are two matrices of the same size, then

nullity(A + B) = nullity(A) + nullity(B).
(f) If A is an n × m matrix and B is an m × n matrix, then rank(AB) = rank(BA).
(g) If A is an n × m matrix and B is an m × n matrix, then

nullity(AB) = nullity(BA).



. . . . . .

MA1101R Tutorial
Tutorial 7: Vector Spaces associated Matrices

Additional material

Proof.

(ac) False. For example, let A =

(
1 0
0 0

)
and B =

(
0 0
1 0

)
.

(b) True. Since the row space of A and the the row space of B are the same. Hence
the column space of AT and the column space of BT are the same.

(d) False. For example, let A = B = I1.
(e) False. For example, let A = B = 01.

(fg) False. For example, let A =

(
0 1
0 0

)
and B =

(
0 0
0 1

)
.



. . . . . .

MA1101R Tutorial
Tutorial 7: Vector Spaces associated Matrices

Additional material

Exercise (Question 8 in Final of 2006-2007(I))

(a) Let A be a square matrix such that rank(A) = rank(A2).
(i) Show that the nullspace of A is equal to the nullspace of A2.
(ii) Show that the nullspace of A and the column space of A intersect trivially.

(b) Suppose there exist n × n matrices X,Y,Z such that XY = Z. Show that the
column space of Z is a subset of the column space of X.

(c) Let B =

0 0 0
1 0 0
0 1 0


(i) Find the nullspace of B2.
(ii) Show that there does not exist any 3 × 3 matrix C such that C2 = B.
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Exercise (7a)
A ∈ Rn×n, then
(a) rank(adj(A)) = n iff rank(A) = n;
(b) rank(adj(A)) = 1 iff rank(A) = n − 1;
(c) rank(adj(A)) = 0 iff rank(A) < n − 1;

Exercise (7b)
A ∈ Rn×n, and A2 = A, then rank(A) = tr(A).

Exercise (7c)
A ∈ Rn×n,

if there exists an integer k, such that rank(Ak) = rank(Ak+1), then
rank(Ak) = rank(Ak+1) = rank(Ak+2) = · · · .
there exists an integer k, such that rank(Ak) = rank(Ak+1).

Exercise (7d)
A ∈ Rn×n, does rank(I − AAT) = rank(I − ATA) hold?
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Change log

Page 1 Change “rank(A) + nullity(A) = n” to
“rank(A) + nullity(A) = (# columns of A) = n”. Add 1 property “B is a
submatrix of A, then rank(B) ≤ rank(A).”;

Page 6 Add 2 additional questions;
Page 7 Revise the solution for part (c);
Page 9 Revise the solution for part (c);
Page 19 Add 1 additional question;
Page 20 Add 1 part for Exercise (7c).

Last modified: 13:12, March 16st, 2010.
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Any question about last tutorial
Review concepts
Tutorial: 6.3, 6.7(c), 6.11, 6.12, 6.14(a), 6.17(b)
Additional material: the algebraic multiplicity, the geometric multiplicity
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Review

Eigenvalue

Here we only consider real case. Let A be a square matrix of order n.
If there exist a nonzero column vector x ∈ Rn and a (real) scalar λ such that
Ax = λx, then λ is called an eigenvalue of A, and x is said to be an eigenvector
of A associated with the eigenvalue λ.
The equation det(λI − A) = 0 is called the characteristic equation of A and the
polynomial φ(λ) = det(λI − A) is called the characteristic polynomial of A.
λ is an eigenvalue iff det(λI − A) = 0. Hence, # eigenvalues ≤ n.
If B = P−1AP, where P is some invertible matrix, then A and B have same
eigenvalues. While the converse is not necessarily true. (Exercise 6.13)
λ1 and λ2 are 2 distinct eigenvalues, x1 and x2 are 2 eigenvectors associated
with λ1 and λ2, respectively. Then x1 and x2 are linearly independent.
If A has n eigenvalues {λi}n

i=1, then tr(A) =
∑n

i=1 λi, det(A) =
∏n

i=1 λi.
(Exercise 6.2(a))
AB and BA have same eigenvalues.
Cayley-Hamilton’s Theorem: If φ(λ) is the characteristic polynomial, then
φ(A) = 0. (Exercise 6.2(b))
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Algebraic multiplicity, Geometric multiplicity

Let A be a square matrix of order n, the characteristic polynomial be
φA(λ) = (λ− λ1)r1 (λ− λ2)r2 · · · (λ− λk)rk (λ2 + a1λ+ b1)s1 · · · (λ2 + alλ+ bl)sl .

Let λ be an eigenvalue of A. Then the solution space of the linear system
(λI − A)x = 0 is called the eigenspace of A associated with the eigenvalue λ and
is denoted by Eλ = {x ∈ Rn | (λI − A)x = 0}. The geometric multiplicity of an
eigenvalue is defined as the dimension of the associated eigenspace.
The algebraic multiplicity of an eigenvalue is defined as the multiplicity of the
corresponding root of the characteristic polynomial. That is, the algebraic
multiplicity of λi is ri for i = 1, 2, . . . , k.
For any eigenvalue λ of A,

the algebraic multiplicity of λ ≥ the geometric multiplicity of λ ≥ 1.
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A square matrix A is called diagonalizable if there exists an invertible matrix P
such that P−1AP is a diagonal matrix.
Let A be a square matrix of order n. Then A is diagonalizable iff A has n linearly
independent eigenvectors.
How to determine whether a square matrix is diagonalizable?
(1) Decompose the characteristic polynomial as

φA(λ) = (λ−λ1)
r1 (λ−λ2)

r2 · · · (λ−λk)
rk (λ2+a1λ+b1)

s1 · · · (λ2+alλ+bl)
sl ,

where λ1, . . . , λk are pairwise distinct, (λ2 + ajλ + bj) can not do more
decomposition. If k = n, then A is diagonalizable; otherwise do next step.

(2) If s1 = · · · = sl = 0, then do next step; otherwise A is not diagonalizable.
(3) For each eigenvalue λi whose ri > 1, find the dimension of the eigenspace Eλi . If for

each i, ri = dim(Eλi ), then A is diagonalizable; otherwise A is not diagonalizable.

Let A be an complex matrix, then there exists an invertible matrix P, such that
P−1AP is an upper-triangle matrix.
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Review

Conditions for diagonalizability

The square matrix A of order n is diagonalizable iff A has n linearly independent
eigenvectors.
If the square matrix A of order n has n distinct eigenvalues, then A is
diagonalizable; while the converse is not necessarily true. That is, if A is
diagonalizable, A may have some same eigenvalues (e.g. I2).
A is diagonalizable iff for each eigenvalue λ0 of matrix A, the algebraic
multiplicity is equal to the geometric multiplicity.
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Exercise (6.3)
Let A be a square matrix and λ an eigenvalue of A. Show that λ is an eigenvalue of
AT.

Proof.

λ is an eigenvalue of A
⇒ det(λI − A) = 0

⇒ det
(
(λI − A)T

)
= 0

⇒ det(λI − AT) = 0

⇒λ is an eigenvalue of AT

Exercise (Question 6(b) in Final of 2006-2007(II))
If λ is an eigenvalue of a matrix A, then Eλ(A) and Eλ(AT) of A and AT have the
same dimension.
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Exercise (6.7(c))

Let A =

4 −1 6
2 1 6
2 −1 8

. If B is another 3× 3 matrix with an eigenvalue λ such that

the dimension of the eigenspace associated with λ is 2, prove that 2 + λ is an
eigenvalue of the matrix A + B.

Proof.

(a) Suppose det(λI − A) = (λ− 2)2(λ− 9) = 0, then the eigenvalues are 2,2,9.

(b) Suppose (2I − A)x = 0, i.e.

−2 1 −6
−2 1 −6
−2 1 −6

x1
x2
x3

 = 0. A general solution is

t(1, 2, 0)T + s(−3, 0, 1)T, i.e. {(1, 2, 0)T, (−3, 0, 1)T} is a basis for the eigenspace
associated with 2.
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Proof.
(c) Let E2 be the eigenspace of A associated with 2 and let E′

λ be the eigenspace of B
associated with λ.
Since E2 and E′

λ are subspaces of R3 and have dimension 2, they are two planes in R3

that contain the origin. So E2 ∩ E′
λ is either a line through the origin or a plane

containing the origin.
In both cases, we can find a nonzero vector u ∈ E2 ∩ E′

λ, i.e. Au = 2u and Bu = λu,
such that

(A + B)u = Au + Bu = 2u + λu = (2 + λ)u.
So 2 + λ is an eigenvalue of A + B.
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Exercise (6.11)
Find a 3× 3 matrix which has eigenvalue 1, 0, and -1 with corresponding eigenvectors
(0, 1, 1)T, (1,−1, 1)T and (1, 0, 0)T respectively.

Proof.

Let P =

0 1 1
1 −1 0
1 1 0

, and D =

1 0 0
0 0 0
0 0 −1

. Then

A = PDP−1 =

−1 − 1
2

1
2

0 1
2

1
2

0 1
2

1
2


satisfies the requirement.

Remark
P−1AP = D True
PAP−1 = D False
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Exercise (6.12)

Determine the values of a and b so that the matrix
(

a 1
0 b

)
is diagonalizable.

Proof.
Claim: The matrix is diagonalizable if and only if a ̸= b.

If a ̸= b, then there are 2 distinct eigenvalues, so the matrix is diagonalizable.

If a = b, then consider the linear system
(
0 1
0 0

)(
x1
x2

)
= 0. A general solution

is t(1, 0)T, where t is a parameter. That is, the dimension of the eigenspace
associated with a is 1. Hence, the matrix cannot be diagonalizable.
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Exercise (6.14(a))
A square matrix (aij)n×n is called a stochastic matrix if all the entries are
non-negative and the sum of entries of each column is 1, i.e. a1i + a2i + · · ·+ ani = 1
for i = 1, 2, . . . ,n. Let A be a stochastic matrix.
(i) Show that 1 is an eigenvalue of A.
(ii) If λ is an eigenvalue of A, then |λ| ≤ 1.

Proof for (i).

AT


1
1
...
1

 =


a11 + a21 + · · ·+ an1
a12 + a22 + · · ·+ an2

...
a1n + a2n + · · ·+ ann

 =


1
1
...
1

 .

Thus 1 is an eigenvalue of AT. By Question 6.3, 1 is also an eigenvalue of A.
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Proof for (ii).
By Question 6.3, λ is an eigenvalue of AT. Let x = (x1, x2, . . . , xn)T be a eigenvector
of AT associated with the eigenvalue λ, i.e. ATx = λx. Choose k ∈ {1, 2, . . . ,n}
such that |xk| = max{|xi| : i = 1, 2, , . . . ,n}, i.e. |xk| ≥ |xi| for i = 1, 2, . . . ,n. Since x
is a nonzero vector, |xk| > 0.
By comparing the k-th coordinate of both sides of ATx = λx, we have

a1kx1 + a2kx2 + · · ·+ ankxn = λxk.

Hence,

|λ||xk| = |a1kx1 + a2kx2 + · · ·+ ankxn|
≤ |a1kx1|+ |a2kx2|+ · · ·+ |ankxn|
≤ a1k|x1|+ a2k|x2|+ · · ·+ ank|xn| (aij ≥ 0)

≤ (a1k + a2k + · · ·+ ank)|xk|

So |λ| ≤ 1.
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Exercise (6.17(b))
Following the procedure discussed in Example 6.2.9.2 or Example 6.2.12, solve the
following recurrence relation an = an−1 + 2an−2 with a0 = 1 and a1 = 0.

Solution.

Since
(

an
an+1

)
=

(
0 1
2 1

)(
an−1

an

)
, let A =

(
0 1
2 1

)
. It is easy to get that A

has 2 distinct eigenvalues 2 and −1. Hence there exists an invertible matrix P
such that P−1AP =

(
2 0
0 −1

)
.

Thus (
an

an+1

)
= P

(
2 0
0 −1

)n
P−1

(
a0

a1

)
=

(
b2n + c(−1)n

d2n + e(−1)n

)
for some constants b, c, d, e.
In fact, an = b2n + c(−1)n. Since a0 = 1 and a1 = 0, we obtain b = 1

3
and

c = 2
3
. Thus an = 1

3
[2n + 2(−1)n].
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Exercise (Remak 6.2.5(2))
Let λ0 be an eigenvalue of matrix A. Then the algebraic multiplicity of λ0 is greater
than or equal to the geometric multiplicity of λ0.

Proof.

Assume dim(Eλ0
) = m, then we can take a basis of Eλ0

: {α1,α2, . . . ,αm}.
Then we will get a basis for Rn: {α1,α2, . . . ,αm,αm+1, . . . ,αn}.

A(α1,α2, . . . ,αm, . . . ,αn) = (α1,α2, . . . ,αm, . . . ,αn)

(
λ0Im B
0 C

)
Then det(λI − A) = (λ− λ0)m det(λIn−m − C).
Hence, the algebraic multiplicity of some eigenvalue λ0 is greater then or equal to
the geometric multiplicity of λ.
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Exercise (Remark 6.2.5(3))
Let λ1, λ2, . . . , λt, t ≥ 2 be distinct eigenvalues of matrix A, and xi be the
eigenvectors associated with λi, respectively. Then x1, x2, . . . , xt are linearly
independent.

1st Method.

First consider the case t = 2: if x1 and x2 are linearly dependent, then there exist
a, b, such that ax1 + bx2 = 0, where not both of a, b are zero.
Then aλ1x1 + bλ2x2 = Aax1 + Abx2 = A0 = 0, and aλ1x1 + bλ1x2 = 0.
Then we will get b(λ1 − λ2)x2 = 0, i.e., b = 0. Similarly, a = 0. Contradiction.
For general case, we can apply mathematical induction, left it for you.



. . . . . .

MA1101R Tutorial
Tutorial 8: Diagonalization

Additional material

2nd Method.

If x1, x2, . . . , xt are linearly dependent, then there exist some constant numbers
a1, a2, . . . , at, such that a1x1 + a2x2 + · · ·+ atxt = 0, where not all of a1, . . . , at
are zero.
Then
0 = A · 0 = A(a1x1 + a2x2 + · · ·+ atxt) = a1λ1x1 + a2λ2x2 + · · ·+ atλtxt.
Similarly, we have a1λ2

1x1 + a2λ2
2x2 + · · ·+ atλ2

t xt = 0.
By induction, we have a1λ

j
1x1 + a2λ

j
2x2 + · · ·+ atλ

j
txt = 0 for j = 1, 2, . . . , t.

Consider the linear system:


a1λ1y1 + a2λ2y2 + · · ·+ atλtyt = 0

a1λ2
1y1 + a2λ2

2y2 + · · ·+ atλ2
t yt = 0

...
a1λt

1y1 + a2λt
2y2 + · · ·+ atλt

tyt = 0
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(Cont.) 2nd Method.

Let xi =


xi1
xi2
...

xit

 for i = 1, 2, . . . , t.

Then (a1x1i, a2x2i, . . . , atxti)T satisfies that linear system, for all i = 1, 2, . . . , t.

While det


λ1 λ2 . . . λt
λ2
1 λ2

2 . . . λ2
t

...
...

. . .
...

λt
1 λt

2 . . . λt
t

 =
∏t

i=1 λi
∏

1≤i<j≤t(λi − λj) ̸= 0. That is,

that linear system has only trivial zero solution.
Since x1, x2, . . . , xt are nonzero vectors, a1 = a2 = · · · = at = 0. Contradiction.
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Exercise
Try to solve Exercise 6.2, 6.4, 6.5, 6.13.

Exercise (Question 5 in Final of 2004-2005(II))
Let A and B be 2 n × n diagonalizable matrices such that AB = BA. Prove that
there exists an invertible matrix P such that PAP−1 and PBP−1 are both diagonal
matrices.

Exercise (Question 1(a) in Final of 2005-2006(I))

Let A =


1 1 0 0
0 1 1 0
0 0 2 2
0 0 0 2

.

(i) Write down the characteristic polynomial and eigenvalues of A.
(ii) Write down the characteristic polynomial and eigenvalues of A5.
(iii) Is A diagonalizable?
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Exercise (Question 4(b) in Final of 2006-2007(II))
Let B be a 4× 4 matrix and {u1,u2,u3,u4} a basis for R4. Suppose Bu1 = 2u1,
Bu2 = 0, Bu3 = u4, Bu4 = u3.
(i) Find the eigenvalues of B.
(ii) Find an eigenvalue that corresponds to each eigenvalue of B.
(iii) Is B a diagonalizable matrix? Why?

Exercise (Question 3(b-iii) in Final of 2009-2010(I))
For n ≥ 2, let Bn = (bij) be a square matrix of order n such that

bij =


0, i > j or j > i + 1;

1, j = i + 1

k, i = j

where k is a real number. Prove that Bn is not diagonalizable for all n ≥ 2.
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Change log

Page 3 Add 3 remarks for understanding some concepts and properties;
Page 6 Add 1 slide for “Conditions for diagonalizability”;
Page 7 Add 1 additional question;
Page 11 Revise the solution for 2nd case;
Page 15 Revise the proof for Remark 6.2.5(2);

Page 16–18 Add 2 proofs for Remark 6.2.5(3);
Page 19 Add 3 additional questions;
Page 20 Add 2 additional questions.

Last modified: 15:28, March 23st, 2010.
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Schedule of Today

Any question about last tutorial
Review concepts: Inner product, orthogonal, Gram-Schmidt process,
projection,least squares solution, orthogonal matrix
Tutorial: 5.9, 5.11, 5.15, 5.18, 5.24, 5.33(ab)
Additional material: Orthogonal diagonalization
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Concepts

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be two vectors in Rn.
The inner product of u and v: u · v = u1v1 + u2v2 + · · ·+ unvn.

The norm of u: ∥u∥ =
√

u · u =
√

u2
1 + u2

2 + · · ·+ u2
n. Vectors of norm 1 are

called unit vectors.
The distance between u and v is d(u, v) = ∥u − v∥.

The angle between u and v is cos−1
(

u·v
∥u∥∥v∥

)
.

u and v in Rn are called orthogonal if u · v = 0.
A set S of vectors in Rn is called orthogonal if every pair of distinct vectors in S
are orthogonal. (Orthogonal basis)
If S is an orthogonal set of nonzero vectors in a vector space, then S is linearly
independent. (By contrapositive)
A set S of vectors in Rn is called orthonormal if S is orthogonal and every vector
in S is a unit vector. (Orthonormal basis)
Let V be a subspace of Rn. A vector u ∈ Rn is said to be orthogonal to V if u is
orthogonal to all vectors in V.
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Gram-Schmidt process

Let {u1,u2, . . . ,uk} be a basis for a vector space V. Let

v1 = u1

v2 = u2 −
u2 · v1
∥v1∥2

v1

v3 = u3 −
u3 · v1
∥v1∥2

v1 −
u3 · v2
∥v2∥2

v2

...

vk = uk −
uk · v1
∥v1∥2

v1 −
uk · v2
∥v2∥2

v2 − · · · −
uk · vk−1

∥vk−1∥2
vk−1

Then {v1, v2, . . . , vk} is an orthogonal basis for V. Furthermore, let wi =
vi

∥vi∥
for

i = 1, 2, . . . , k. Then {w1,w2, . . . ,wk} is an orthogonal basis for V.



. . . . . .

MA1101R Tutorial
Tutorial 9: Orthogonality

Review

Projection
Let V be a subspace of Rn, and u an arbitrary vector of Rn.

u can be written uniquely (by contrapositive) as u = n + p such that n is a
vector orthogonal to V and p is a vector in V. The vector p is called the
projection of u onto V.
If u1,u2, . . . ,uk is an orthogonal basis for V, then

u · u1

∥u1∥2
u1 +

u · u2

∥u2∥2
u2 + · · ·+

u · uk
∥uk∥2

uk

is the projection of u onto V.
Let p be the projection of u onto V, then ∥u − p∥ ≤ ∥u − v∥ for any vector
v ∈ V, i.e. p is the best approximation of u in V.

Let Ax = b be a linear system where A is an m × n matrix. A vector x ∈ Rn is called
the least squares solution to the linear system if it minimizes the value of ∥b − Ax∥.

x is the least squares solution to Ax = b, iff x is the solution Ax = p where p is
the projection of b onto the column space of A, iff ATAx = ATb.
ATAx = ATb is always consistent:

rank(ATA|ATb) = rank(AT(A|b)) ≤ min{rank(AT), rank(A|b)}
= min{rank(A), rank(A|b)} = rank(A) = rank(ATA)
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Orthogonal Matrices

A square matrix A is called orthogonal if A−1 = AT.
A is a square matrix, then the following statements are equivalent:

A is orthogonal;
AAT = I;
ATA = I;
the rows of A form an orthonormal basis for Rn;
the columns of A form an orthonormal basis for Rn;
∥Ax∥ = ∥x∥ for any vector x ∈ Rn;
Au · Av = u · v for any vectors u, v ∈ Rn.

If λ is an eigenvalue of A which is an orthogonal matrix, then |λ| = 1: Since
Ax = λx and ∥Ax∥ = ∥x∥, we have |λ| = 1.
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Orthogonal diagonalization

Let A be a real matrix.
If ATA = AAT, then A is called normal matrix.
A is called orthogonally diagonalizable if there exists an orthogonal matrix P
(real matrix) such that PTAP is a diagonal matrix.
Let A be a normal matrix, and a1 ±

√
−1b1, . . . , at ±

√
−1bt, λ2t+1, . . . , λn be

all eigenvalues of A, where b1, . . . , bt > 0. Then A is orthogonally similar with

B = diag
((

a1 b1
−b1 a1

)
, · · · ,

(
at bt
−bt at

)
, λ2t+1, · · · , λn

)
.

If A is an orthogonal matrix, then A is orthogonally similar with

B = diag
((

cos θ1 sin θ1
− sin θ1 cos θ1

)
, · · · ,

(
cos θt sin θt
− sin θt cos θt

)
, Iu,−Iv

)
,

where 2t + u + v = n, 0 < θ1 ≤ · · · ≤ θt < π.
If A is a symmetric matrix, then A is orthogonally similar with
diag(λ1, λ2, · · · , λn), where λ1 ≥ λ2 ≥ · · · ≥ λn are all eigenvalues of A.
Furthermore, every symmetric matrix has n real eigenvalues.
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Exercise (5.9)
Let {u1,u2, . . . ,un} be an orthogonal set of vectors in a vector space. Show that

∥u1 + u2 + · · ·+ un∥2 = ∥u1∥2 + ∥u2∥2 + · · ·+ ∥un∥2.

For n = 2, interpret the result geometrically in R2.

Proof.

∥u1 + u2 + · · ·+ un∥2 = (u1 + u2 + · · ·+ un) · (u1 + u2 + · · ·+ un)

= (u1 · u1) + · · ·+ (un · un) Since ui · uj = 0 for i ̸= j
= ∥u1∥2 + ∥u2∥2 + · · ·+ ∥un∥2

For n = 2, it is Pythagoras’ Theorem or 勾股定理.
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Exercise (5.11)
Let u1 = (1, 2, 2,−1), u2 = (1, 1,−1, 1), u3 = (−1, 1,−1,−1), u4 = (−2, 1, 1, 2).
(a) Show that S = {u1,u2,u3,u4} is an orthogonal set.
(b) Obtain an orthonormal set S′ by normalizing u1,u2,u3,u4.
(c) Is S′ an orthonormal basis for R4?
(d) If w = (0, 1, 2, 3), find (w)S and (w)S′ .
(e) Let V = span{u1,u2,u3}. Find all vectors that are orthogonal to V.
(f) Find the projection of w onto V.

Proof and Solution.

(a) It is easy to check that ui · uj = 0 for i ̸= j.

(b) S′ =
{

1√
10

(1, 2, 2,−1), 1
2
(1, 1,−1, 1), 1

2
(−1, 1,−1,−1), 1√

10
(−2, 1, 1, 2)

}
.

(c) Yes, since |S′| = 4 = dim(R4) and S′ is orthonormal.
(d) (w)S = (w · u1,w · u2,w · u3,w · u4) =

(
3
10

, 1
2
,−1, 9

10

)
and

(w)S′ =
(

3√
10

, 1,−2, 9√
10

)
.

(e) A vector v is orthogonal to V if and only if v = t(−2, 1, 1, 2) for some t ∈ R, i.e.
v ∈ span{(−2, 1, 1, 2)}.

(f) w − w·u4
∥u4∥

u4
∥u4∥

=
(
9
5
, 1
10

, 11
10

, 6
5

)
.
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Exercise (5.15)

(a) Find an orthonormal basis for the solution space of the equation x + y − z = 0.
(b) Find the projection of (1, 0,−1) onto the plane x + y − z = 0.
(c) Extend the set obtained in Part (a) to an orthonormal basis for R3.

Solution.

(a) A general solution to x + y − z = 0 is


x = t − s
y = s
z = t

where t, s ∈ R. So

{(−1, 1, 0), (1, 0, 1)} is a basis for the solution space. Using Gram-Schmidt
process, we transform this basis into an orthonormal basis{

1√
2
(−1, 1, 0), 1√

6
(1, 1, 2)

}
.

(b) (1,0,−1)·(−1,1,0)
2

(−1, 1, 0) +
(1,0,−1)·(1,1,2)

6
(1, 1, 2) = ( 1

3
,− 2

3
,− 1

3
).

(c) Since (1, 1,−1) is orthogonal to the plane x + y − z = 0, it is orthogonal to the
vectors in the basis obtained in (a). So

{
1√
2
(−1, 1, 0), 1√

6
(1, 1, 2), 1√

3
(1, 1,−1)

}
is an orthonormal basis for R3.

Remark
For a plane ax + by + cz = d in R3, the vector (a, b, c) is called the normal vector of
the plane, which is orthogonal to it. For more see Wikipedia.

http://en.wikipedia.org/wiki/Normal_vector


. . . . . .

MA1101R Tutorial
Tutorial 9: Orthogonality

Tutorial

Exercise (5.18)
Let V = span{(1, 1, 1), (1, p, p)} where p is a real number. Find an orthonormal basis
for V and compute the projection of (5, 3, 1) onto V.

Solution.

When p = 1, V = span{(1, 1, 1)} and hence
{(

1√
3
, 1√

3
, 1√

3

)}
is an orthonormal

basis for V. The projection of (5, 3, 1) onto V is (5,3,1)·(1,1,1)
3

(1, 1, 1) = (3, 3, 3).
When p ̸= 1. It is easy to show V = span{(1, 0, 0), (0, 1, 1)}. Hence{
(1, 0, 0),

(
0, 1√

2
, 1√

2

)}
is an orthonormal basis for V. The projection of (5, 3, 1)

onto V is
(
(5, 3, 1) · (1, 0, 0)

)
(1, 0, 0) +

(5,3,1)·(0,1,1)
2

(0, 1, 1) = (5, 2, 2).
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Exercise (5.24)

Let A =


1 −1 0
0 1 −1
−1 0 1
1 1 1

, x =

x
y
z

 and b =


1
1
1
1

.

(a) Find the least squares solution to the linear system Ax = b.
(b) By the result in (a), compute the projection of b onto the column space of A.

Proof.

(a) By solving

3 0 0
0 3 0
0 0 3

x1
x2
x3

 = ATAx = ATb =

1
1
1

, we get the least

squares solution is x1 = x2 = x3 = 1
3
.

(b) Ax =


1 −1 0
0 1 −1
−1 0 1
1 1 1


 1

3
1
3
1
3

 =


0
0
0
1

 is the projection of b onto V, since x is

the least squares solution to Ax = b.
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Exercise (5.33(ab))
Determine which of the following statements are true. Justify your answer.
(a) If u, v,w are vectors in Rn such that u, v are orthogonal and v,w are orthogonal,

then u,w are orthogonal.
(b) If u, v,w are vectors in Rn such that u, v are orthogonal and u,w are orthogonal,

then u is orthogonal to span{v,w}.
(c) If A = (c1 c2 · · · ck) is an n × k matrix such that c1, . . . , ck are orthonormal,

then ATA = Ik.
(d) If A = (c1 c2 · · · ck) is an n × k matrix such that c1, . . . , ck are orthonormal,

then AAT = In.
(e) If A and B are orthogonal matrices, then A + B is an orthogonal matrix.
(f) If A and B are orthogonal matrices, then AB is an orthogonal matrix.
(g) If p1 and p2 are the projections of u and v onto a vector space V, then p1 + p2 is

the projection of u + v onto V.
(h) If the columns of a square matrix A form an orthogonal set, then the rows of A

also form an orthogonal set.
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Solution.

(a) False. For example: u = w = (1, 0) and v = (0, 1).
(b) True. Let av + bw be any vector in span{v,w}. Then

u · (av + bw) = a(u · v) + b(u · w) = 0.
(c) True. By definition.

(d) False. For example, let A =

1 0
0 1
0 0

.

(e) False. For example, let A = I2 = −B.
(f) True. AB(AB)T = ABBTAT = AAT = I.
(g) True. By definition.

(h) False. For example, let A =

1 0 0
0 1 0
0 1 0

.
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Exercise
Let A be a square matrix of order n. Then the following statements are equivalent:
(a) A is an orthogonal matrix;
(b) ∥x∥ = ∥Ax∥ for any vector x ∈ Rn;
(c) u · v = Au · Av for any vectors u, v ∈ Rn.

Proof.

(a)⇒(b) ∥Ax∥2 = (Ax)TAx = xTATAx = xTx = ∥x∥2.
(b)⇒(c) Since ∥u + v∥ = ∥A(u + v)∥ and ∥u − v∥ = ∥A(u − v)∥, we will get

uTv + vTu = uTATAv + vTATAu.

Since uTv = vTu and uTATAv = vTATAu, we have

u · v = uTv = uTATAv = Au · Av.

(c)⇒(a) Choose u = ei, v = ej, left is easy.
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Exercise (Problem 6.3.8)
Let A be a symmetric matrix. If u and v are two eigenvectors of A associated with
eigenvalues λ and µ, respectively, where λ ̸= µ, show that u · v = 0.

Exercise (4.25(b))
Suppose a linear system Ax = b is consistent. Show that the solution set of Ax = b
is equal to the solution set of ATAx = ATb.

Proof.
Let v be a solution of Ax = b, i.e. Av = b. Since ATAv = ATb, v is also a solution
of ATAx = ATb. Then

The solution set of (Ax = b) = {u + v|u ∈ nullspace of (A)}

= {u + v|u ∈ nullspace of (ATA)}

= The solution set of (ATAx = ATb)

Exercise
Try to solve Exercise 5.30, 5.31, 5.32, 6.21, 6.27.
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Exercise (Question 4 in Final of 2003-2004(II))
Let W be a subspace of Rn and let W⊥ = {u ∈ Rn : u is orthogonal to W}. Then
(i) W⊥ is a subspace of Rn;
(ii) dim(W) + dim(W⊥) = n.

Exercise (Question 5(3-6) in Final 2005-2006(I))
Let A be an n × n matrix.
(3) If A is diagonalizable and x · Ax = 0 for every eigenvector x of A, show that A is

the zero matrix.
(4) Show that BBT + cI is a symmetric matrix for any scalar c.
(5) Using the fact that any symmetric matrix is diagonalizable, prove that if

∥Bx∥ = ∥x∥ for every x ∈ Rn, then B is an orthogonal matrix.
(6) We say that C preserves orthogonality if, for any x, y ∈ Rn,

x · y = 0 ⇒ Cx · Cy = 0.

Prove that if C preserves orthogonality, then C is a scalar multiple of an
orthogonal matrix.
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Page 5 Add the proof for “Consistence of ATAx = ATb”;
Page 10 Add 1 remark for “Normal vector”;
Page 13 Change “orthogonal” to “orthonormal” for part(cd);
Page 14 Revise the solution of part(h).

Last modified: 15:28, March 29th, 2010.
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Schedule of Today

Any question about last tutorial
Review concepts
Tutorial: 5.27, 5.33(cdef), 7.5, 7.11, 7.12, 7.14
Additional material: 7.3, 7.13
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Review

Transition matrix

Let S = {u1, . . . , un} and T = {v1, . . . , vn} be two bases for the n dimensional
vector space V. Then the transition matrix P from S to T is uniquely determined
by the equation

(u1, . . . , un) = (v1, . . . , vn)P = (v1, . . . , vn)([u1]T, . . . , [un]T).

For any vector w, [w]S and [w]T are the coordinates in S and T coordinate
systems, respectively. Then

(v1, . . . , vn)[w]T = w = (u1, . . . , un)[w]S = (v1, . . . , vn)P[w]S,

hence
[w]T = P[w]S.
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Linear transformation

A linear transformation is a mapping T : Rn → Rm of the form

T




x1
x2
...

xn


 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




x1
x2
...

xn

 for all


x1
x2
...

xn

 ∈ Rn

where aij is a real number for 1 ≤ i ≤ m, 1 ≤ j ≤ n. The matrix (aij)m×n is
called the standard matrix for T.
How to find the standard matrix for T: solving the equation

T(e1, e2, . . . , en) = (e1, e2, . . . , em)A.

A mapping T : Rn → Rm is a linear transformation if and only if

T(au + bv) = aT(u) + bT(v) for all u, v ∈ Rn, a, b ∈ R.

This result can be used in the Final Exam.
If n = m, T is also called a linear operator on Rn.
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Properties

Let T : Rn → Rm be a linear transformation, then
(1) T(0) = 0;
(2) If u1, u2, . . . , uk ∈ Rn and c1, c2, . . . , ck ∈ R, then

T(c1u1 + c2u2 + · · · + ckuk) = c1T(u1) + c2T(u2) + · · · + ckT(uk).

Let S : Rn → Rm and T : Rm → Rk be linear transformations. The composition
of T with S, denoted by T ◦ S, is a mapping from Rn to Rk such that

(T ◦ S)(u) = T(S(u)) for all u ∈ Rn.

If S : Rn → Rm and T : Rm → Rk are linear transformations, then T ◦ S is again
a linear transformation. If A and B are the standard matrices for the linear
transformations S and T respectively, then the standard matrix for T ◦ S is again
by BA.



. . . . . .

MA1101R Tutorial
Tutorial 10: Orthogonality and Linear Transformations

Review

Rank and Kernal

Let T : Rn → Rm be a linear transformation and A the standard matrix for T.
Def: The range of T is the set of images of T, i.e.

R(T) = {T(u)|u ∈ Rn} ⊂ Rm.

Thm: R(T) = the column space of A.
Def: The dimension of R(T) is called the rank of T and is denoted by rank(T).

Thm: rank(T) = rank(A).
Def: The kernal of T is the set of vectors in Rn whose image is the zero vector in Rm,

i.e.
Ker(T) = {u|T(u) = 0} ⊂ Rn.

Thm: Ker(T) = the nullspace of A.
Def: The dimension of Ker(T) is called the nullity of T and is denoted by nullity(T).

Thm: rank(T) + nullity(T) = rank(A) + nullity(A) = n.
For general linear transformation T : Rn → Rm, Ker(T) ∈ Rn and R(T) ∈ Rm

are not necessarily in the same space.
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Exercise (5.27)
Suppose an x′y′-coordinate system is obtained from the xy-coordinate system by an
anti-clockwise rotation through an angle θ = π

3
.

(a) Let P be the point such that its xy-coordinates are (2, 1). Find the
x′y′-coordinates of P.

(b) Let Q be the point such that its x′y′-coordinates are (2, 1). Find the
xy-coordinates of Q.

(c) Let l be the line x + y = 1. Write down the equation of l using the
x′y′-coordinates.

Solution.
Let e1 and e2 be the unit vectors such that e1 is in the direction of the x-axis and e2
is in the direction of the y-axis. Also let u1 and u2 be the unit vectors such that u1 is
in the direction of the x′-axis and u2 is in the direction of the y′-axis.
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x-axis

y-axis

xಬ-axis

yಬ-axis

Pi/3

e1

e2

u1

u2

x

y

xಬ

yಬ
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Solution.
The transition matrix from {u1, u2} to {e1, e2} is:

P = ([u1]{e1,e2}, [u2]{e1,e2}) =

(
cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

)
=

(
1/2 −

√
3/2√

3/2 1/2

)
.

Since (u1, u2) = (e1, e2)P and [w]{e1,e2} = P[w]{u1,u2}, we have:

(a)
(

x′
y′
)

= [w]{u1,u2} = P−1[w]{e1,e2} = P−1

(
2
1

)
=

(
1 +

√
3/2

1/2−
√
3

)
.

(b)
(

x
y

)
= [w]{e1,e2} = P[w]{u1,u2} = P

(
2
1

)
=

(
1−

√
3/2

1/2 +
√
3

)
.

(c) Since
(

x
y

)
= P

(
x′
y′
)

=

(
x′/2−

√
3y′/2√

3x′/2 + y′/2

)
, and x + y = 1, we have

x′/2−
√
3y′/2 +

√
3x′/2 + y′/2 = 1, i.e.

(1 +
√
3)x′ + (1−

√
3)y′ = 2.

Remark
There are some differences on the concept “transition matrix” between the textbook
and some reference books, you have better to remember the definition of textbook.
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Exercise (5.33(cdef))
Determine which of the following statements are true. Justify your answer.
(c) If A = (c1 c2 · · · ck) is an n × k matrix such that c1, . . . , ck are orthonormal,

then ATA = Ik.
(c’) If A = (c1 c2 · · · ck) is an n × k matrix such that c1, . . . , ck are orthogonal,

then ATA is a diagonal matrix each of whose diagonal entries is not zero.
(d) If A = (c1 c2 · · · ck) is an n × k matrix such that c1, . . . , ck are orthonormal,

then AAT = In.
(e) If A and B are orthogonal matrices, then A + B is an orthogonal matrix.
(f) If A and B are orthogonal matrices, then AB is an orthogonal matrix.
(g) If the columns of a square matrix A form an orthonormal set, then the rows of A

also form an orthonormal set.
(g)’ If the columns of a square matrix A form an orthogonal set, then the rows of A

also form an orthogonal set.
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Solution.

(c) True. By definition.
(c’) False. Choose c = 0

(d) False. For example, let A =

(
1
0

)
.

(e) False. For example, let A = I2 = −B.
(f) True. AB(AB)T = ABBTAT = AAT = I.
(g) True. By definition.

(g’) False. For example, let A =

1 0 0
0 1 0
0 1 0

.
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Exercise (7.5)
Let T : Rn → Rn be a linear operator. If there exists a linear operator S : Rn → Rn

such that S ◦ T is the identity transformation, i.e.

(S ◦ T)(u) = u for all u ∈ Rn,

then T is said to be the invertible and S is called the inverse of T.
(a) For each of the following, determine whether T is invertible and find the inverse of

T if possible.

(i) T : R2 → R2 such that T
((

x
y

))
=

(
x
y

)
for all

(
x
y

)
∈ R2.

(ii) T : R2 → R2 such that T
((

x
y

))
=

(
x + y
0

)
for all

(
x
y

)
∈ R2.

(b) Suppose T is invertible and A is the standard matrix for T. Find the standard
matrix for the inverse of T.
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Proof.

(a) (i) Since T(u) = u for all u ∈ R, T(T(u)) = T(u) = u. That is, T is invertible,
and its inverse is T itself.

(ii) Assume there exists an inverse S : R2 → R2. Then
(1, 0)T = S ◦ T((1, 0)T) = S((1, 0)T) = S ◦ T((0, 1)T) = (0, 1)T, a
contradiction.

(b) The standard matrix of S ◦ T which is the product of the standard matrix of S and
the standard matrix of T is identity matrix. That is

BA = In

where B is the standard matrix of S. Hence the standard matrix of S is A−1.

Remark

A linear operator T is invertible if and only if the standard matrix A of T is
invertible. For part (a-ii), the standard matrix of T is

(
1 1
0 0

)
, which is not

invertible. Thus T is not invertible.
A linear operator T is invertible if and only if it is bijective.
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Exercise (7.11)
Let S : Rn → Rm and T : Rm → Rk be linear transformations.
(a) Show that Ker(S) ⊂ Ker(T ◦ S).
(b) Show that R(T ◦ S) ⊂ R(T).

Proof.

(a) Let u ∈ Ker(S), i.e. S(u) = 0.
Then T ◦ S(u) = T(S(u)) = T(0) = 0 and hence u ∈ Ker(T ◦ S).
Thus Ker(S) ⊂ Ker(T ◦ S).

(b) Let v ∈ R(T ◦ S), i.e. there exists u ∈ Rn such that v = T ◦ S(u).
Put w = S(u) ∈ Rm. Then v = T(S(u)) = T(w).
This means that v ∈ R(T). Thus R(T ◦ S) ⊂ R(T).
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Exercise (7.12)
Let n be a unit vector in Rn. Define P : Rn → Rn such that

P(x) = x − (n · x)n for all x ∈ Rn.

(a) Show that P is a linear transformation and find the standard matrix for P.
(b) Prove that P ◦ P = P.

Proof.

(a) For any x ∈ Rn, P(x) = x − (n · x)n = Inx − nnTx = (In − nnT)x. So P is a
linear transformation and the standard matrix for P is I − nnT.

(b) Since for all x ∈ Rn,

(P ◦ P)(x) = P(x − (n · x)n)
= x − (n · x)n − {n · [x − (n · x)n]}n
= x − (n · x)n − {(n · x)− (n · x)(n · n)}n
= x − (n · x)n
= P(x)

P ◦ P = P.

Remark
The linear operator P is called projection, whose standard matrix is idempotent.
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Exercise (7.14)
Let T : Rn → Rn be a linear transformation such that T ◦ T = T.
(a) If T is not the zero transformation, show that there exists a nonzero vector

u ∈ Rn such that T(u) = u.
(b) If T is not the identity transformation, show that there exists a nonzero vector

v ∈ Rn such that T(v) = 0.
(c) Find all linear transformation T : R2 → R2 such that T ◦ T = T.

Proof.

(a) Suppose T is not the zero transformation. So there exists x ∈ Rn such that
T(x) ̸= 0. Define u = T(x). Then u is a nonzero vector and

T(u) = T(T(x)) = (T ◦ T)(x) = T(x) = u.

(b) Suppose T is not the identity transformation. So there exists y ∈ Rn such that
T(y) ̸= y. Define v = T(y)− y. Then v is a nonzero vector and

T(v) = T(T(y)− y) = (T ◦ T)(y)− T(y) = T(y)− T(y) = 0.
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Solution of part(c).

Let A be the standard matrix for T. Then it is equivalent to find all 2× 2
matrices A, such that A2 = A.
Let λ be an eigenvalue of A, and x a eigenvector associated with λ, then
λ2x = A2x = Ax = λx. Since x is nonzero vector, λ2 = λ. Hence λ can only be
0 or 1.
Case 1: λ1 = λ2 = 0. By (a), we cannot find a nonzero vector u, such that
T(u) = u; Otherwise T has a eigenvalue 1. Then T is the zero transformation.
Case 2: λ1 = λ2 = 1. By (b), we cannot find a nonzero vector v, such that
T(v) = 0; Otherwise T has a eigenvalue 0. Then T is the identity transformation.
Case 3: λ1 = 0, λ2 = 1. Then A can be diagonalizable. Then
A = P−1

(
1 0
0 0

)
P for some invertible matrix P. Let P =

(
1 b
c d

)
, then

A = 1
ad−bc

(
ad bd
−ac −bc

)
where ad − bc ̸= 0. We can simplify the expression to(

r s
t 1− r

)
where st = r(1− r).

Therefore
A = 02, I2,

(
r s
t 1− r

)
where st = r(1− r).
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Exercise (7.3)
Show that a mapping T : Rn → Rm is a linear transformation if and only if

T(au + bv) = aT(u) + bT(v) for all u, v ∈ Rn, a, b ∈ R.

Proof.

“⇒”: It is a particular case of Theorem 7.1.3.2.
“⇐”: Suppose

T(au + bv) = aT(u) + bT(v) for all u, v ∈ Rn, a, b ∈ R.

Let {e1, e2, . . . , en} be the canonical basis for Rn and let A be the m × n matrix(
T(e1) T(e2) · · · T(en)

)
. For any u = (u1, u2, . . . , un)T ∈ Rn,

u = u1e1 + u2e2 + · · ·+ unen. Then we have

T(u) = u1T(e1) + u2T(e2) + · · ·+ unT(en)

=
(
T(e1) T(e2) · · · T(en)

)


u1

u2

...
un

 = Au

Thus T is a linear transformation.
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Exercise (7.13)
Let n be a unit vector in Rn. Define F : Rn → Rn such that

F(x) = x − 2(n · x)n for all x ∈ Rn.

(a) Show that F is a linear transformation and find the standard matrix for F.
(b) Show that F ◦ F is the identity transformation.
(c) Show that the standard matrix for F is an orthogonal matrix.

Proof.

(a) Similar to Exercise 7.12, for any x ∈ Rn, F(x) = Inx − 2(n · x)n = (I − 2nnT)x.
So F is a linear transformation and the standard matrix for F is I − 2nnT.
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Proof of part (bc).

(b) Since for all x ∈ Rn,

(F ◦ F)(x) = F(F(x)) = F(x − 2(n · x)n)
= x − 2(n · x)n − 2{n · [x − 2(n · x)n]}n
= x − 2(n · x)n − 2{(n · x)− 2(n · x)(n · n)}n
= x − 2(n · x)n − 2{−(n · x)} · n = x,

F ◦ F is the identity transformation.
(b’) Alternatively, (I− 2nnT)2 = (I− 2nnT)(I− 2nnT) = I− 4nnT +4nnTnnT = I

since n is a unit vector.
(c) Note that (I − 2nnT)T = I − 2(nnT)T = I − 2nnT. Thus

(I − 2nnT)(I − 2nnT)T = (I − 2nnT)2 = I

by (b). The standard matrix is an orthogonal matrix.

Remark
F is a reflection about the hyperplane which is orthogonal to n.



. . . . . .

MA1101R Tutorial
Tutorial 10: Orthogonality and Linear Transformations

Additional material

Exercise (Question 6 in Final 2001-2002(II))
Let {v1, v2, . . . , vn} be a basis of Rn and let A be an n × n matrix. Prove that
{Av1,Av2, . . . ,Avn} is a basis of Rn if and only if the nullspace of A is {0}.

Exercise (Question 3 in Final 2004-2005(II))
Let {e1, e2, . . . , en} be the basis of Rn and let T be a linear transformation from Rn

to Rn such that T(ei) = ei+1 for i = 1, 2, . . . ,n − 1 and T(en) = 0. Find all the
eigenvalues and eigenvectors of A, where A is the standard matrix for T.

Solution.

T(e1, . . . , en) = (e2, . . . , en,0) = (e1, . . . , en)



0 · · · · · · · · · · · · 0
1 0 · · · · · · · · · 0
0 1 0 · · · · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...
0 0 · · · · · · 1 0


.
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Exercise (Question 3(b) in Final 2005-2006(I))
Let T : Rn → Rn be a linear transformation. If T ◦ T = T, show that

Ker(T) ∩ R(T) = {0}.
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Change log

Page 4 Add 1 remark that “Exercise 7.3 can be used in the Final Exam”;
Page 6 Add 1 remark that “For general linear transformation T : Rn → Rm,

Ker(T) ∈ Rn and R(T) ∈ Rm are not necessarily in the same space”;
Page 9 Add 1 remark that “There are some differences on the concept “transition

matrix” between the textbook and some reference books, you have better to
remember the definition of textbook”;

Page 17 Revise the solution of Exercise 7.14(c);
Page 18 Revise 1 typo.

Last modified: 13:35, April 06th, 2010.
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Office: S17-06-14.
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Good luck!
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Matrix

Definition: A matrix is a rectangular array of numbers. A number can be
regarded as a 1× 1 matrix, and a 1× 1 matrix also be can regarded as a number
as you want;
Notation: A = (aij)m×n; for simpleness, we use Rm×n to denote the sets of all
m × n matrices.
Matrix operations:

addition: A + B = (aij + bij)m×n;
scalar multiplication: λA = (λaij)m×n;
matrix multiplication: Am×nBn×p = Cm×p, where cij =

∑n
k=1 aikbkj;

transpose: AT = (aji)n×m;
trace: tr(A) = a11 + a22 + · · · + ann.

Block matrix: 
A11 A12 · · · A1q
A21 A22 · · · A2q
...

...
. . .

...
Ap1 Ap2 · · · Apq


the operations of block matrices are similar to the matrix operations. See block
matrix@Wiki.

http://en.wikipedia.org/wiki/Block_matrix
http://en.wikipedia.org/wiki/Block_matrix
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Determinant

Definition: Let A = (aij) ∈ Rn×n. Let Mij be an matrix obtained from A by
deleting the i-th row and the j-th column. Then the determinant of A is defined
as

det(A) =

{
a11 if n = 1

a11A11 + a12A12 + · · ·+ a1nA1n if n ≥ 2

where Aij = (−1)i+j det(Mij), which is called the (i, j)-cofactor of A;
General properties;
det(AT) = det(A); (AB)T = BTAT;

det


A11 A12 · · · A1p

0 A22

. . .
...

...
. . .

. . . Ap−1,p
0 · · · 0 App

 = det(A11)det(A22) · · · det(App);

Cofactor expansion: det(A) =
∑n

i=1 aijAij =
∑n

j=1 aijAij;
Computation:

Using elementary operations;
Using cofactor expansion;
Decompose the matrix as a product of some simple matrices.
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Adjoint matrix

Let A = (aij) ∈ Rn×n. Then the adjoint of A is the n × n matrix

adj(A) =


A11 A21 · · · An1
A12 A22 · · · An2
...

...
. . .

...
A1n A2n · · · Ann

 ,

where Aij is the (i, j)-cofactor of A.
A adj(A) = adj(A)A = det(A)In, this equation holds for any invertible matrix
A and any singular matrix A;
adj(AB) = adj(B) adj(A).
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Inverse
Definition: Let A = (aij) ∈ Rn×n matrix. Then A is said to be invertible if there
exists a square matrix B of order n such that AB = I and BA = I. Such a
matrix B is called an inverse of A, denoted as A−1. A square matrix is called
singular if it has no inverse.
Uniqueness;
A matrix A is invertible iff det(A) ̸= 0; moreover, if det(A) ̸= 0, then
A−1 = 1

det(A)
adj(A).

(AT)−1 = (A−1)T, (AB)−1 = B−1A−1;
For block matrix:

A11 ∗ · · · ∗

0 A22

. . .
...

...
. . .

. . . ∗
0 · · · 0 App


−1

=


A−1

11 ∗ · · · ∗

0 A−1
22

. . .
...

...
. . .

. . . ∗
0 · · · 0 A−1

pp

;

Computation:
Elementary row operations: (A|I) → (I|A−1);
Adjoint: A−1 = 1

det(A)
adj(A);

Solving the linear system: AX = I;
Decompose the matrix as a product of some simple matrices.
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Rank

The rank of matrix A is the dimension of its row space (or column space),
denoted by rank(A).
If R is a REF of A, then

rank(A) = # non-zero rows of R = # leading entries of R = # pivot columns of R
= largest # of L.I. rows in A = largest # of L.I. columns in A
= largest size of invertible submatrices of A

A ∈ Rm×n. The solution space of the homogeneous system of linear equations
Ax = 0 is called nullspace of A, and dim(nullspace of A) is called the nullity of
A, denoted by nullity(A).
A ∈ Rm×n, then rank(A) + nullity(A) = (# columns of A) = n.
A ∈ Rm×n, then rank(A) ≤ min{m,n}.
A ∈ Rm×n, then rank(A) = rank(AT).
B is a submatrix of A, then rank(B) ≤ rank(A).
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(1) rank(AB) ≤ min{rank(A), rank(B)}. See Exercise 4.23.
(2) A ∈ Rm×n, P ∈ Rm×m and Q ∈ Rn×n are invertible, then

rank(A) = rank(PA) = rank(AQ) = rank(PAQ). By (1) or see Exercise 4.22.
(2a) A ∈ Rm×n, rank(A) = r ≤ min{m,n}, then there exist invertible matrices

P ∈ Rm×m and Q ∈ Rn×n, such that PAQ =

(
Ir 0
0 0

)
. By (2).

(2b) A =

(
B 0
0 C

)
, then rank(A) = rank(B) + rank(C). By (2a).

(2c) A ∈ Rm×n, rank(A) = r, then there exist B ∈ Rm×r and C ∈ Rr×n, such that
A = BC. By(2a).

(3) A ∈ Rm×n, B ∈ Rp×q, C ∈ Rm×p, then rank
(

A C
0 B

)
≥ rank

(
A 0
0 B

)
. Def.

(3a) A ∈ Rm×p, B ∈ Rp×n, then rank(AB) ≥ rank(A) + rank(B)− p. By (2), (3).
(4) rank(A ± B) ≤ rank(A) + rank(B). By (2), (2b) and Def.
(4a) max{rank(A), rank(B)} ≤ rank(A|B) ≤ rank(A) + rank(B),

rank
(

A
B

)
≤ rank(A) + rank(B). By (4).

(4c) A ∈ Rn×n, then rank(A) + rank(In + A) ≥ n. By (4).
(5) A ∈ Rm×n, then rank(AAT) = rank(ATA) = rank(A). Def.
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Vector space

Vector space: 8 axioms; Subspace: closed under addition and scalar
multiplication;
Linear independent: Let S = {u1, u2, . . . , uk} ⊂ Rn. S is called a linearly
independent set and u1, u2, . . . , uk are said to be linearly independent if the
equation

c1u1 + c2u2 + · · ·+ ckuk = 0

has only trivial solution, where c1, c2, . . . , ck are variables. Otherwise, S is called
a linearly dependent set and u1, u2, . . . , uk are said to be linearly dependent, i.e.
there exist real numbers a1, a2, . . . , ak, not all of them are zero, such that
a1u1 + a2u2 + · · ·+ akuk = 0.
Let S = {u1, u2, . . . , uk} be a subset of a vector space V. Then S is called a
basis for V if

S is linearly independent;
S spans V.

The dimension of a vector space V, denoted by dim(V), is defined to be the
number of vectors in a basis for V. In addition, we define the dimension of the
zero space to be zero.
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Transition matrix

Let S = {u1, . . . , un} and T = {v1, . . . , vn} be two bases for the n dimensional
vector space V. Then the transition matrix P from S to T is uniquely determined
by the equation

(u1, . . . , un) = (v1, . . . , vn)P = (v1, . . . , vn)([u1]T, . . . , [un]T).

For any vector w, [w]S and [w]T are the coordinates in S and T coordinate
systems, respectively. Then

(v1, . . . , vn)[w]T = w = (u1, . . . , un)[w]S = (v1, . . . , vn)P[w]S,

hence
[w]T = P[w]S.
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Linear transformation
A mapping T : Rn → Rm is a linear transformation if and only if

T(au + bv) = aT(u) + bT(v) for all u, v ∈ Rn, a, b ∈ R.

Standard matrix:
A = T(e1, e2, . . . , en).

If n = m, T is also called a linear operator on Rn.
Operations:

addition: (T + S)(u) = T(u) + S(u);
scalar multiplication: (λT)(u = λ · T(u);
composition: (S ◦ T)(u) = S(T(u)).

Def: The range of T is the set of images of T, i.e. R(T) = {T(u)|u ∈ Rn} ⊂ Rm.
Thm: R(T) = the column space of A.
Def: The dimension of R(T) is called the rank of T and is denoted by rank(T).

Thm: rank(T) = rank(A).
Def: The kernal of T is the set of vectors in Rn whose image is the zero vector in Rm,

i.e. Ker(T) = {u|T(u) = 0} ⊂ Rn.
Thm: Ker(T) = the nullspace of A.
Def: The dimension of Ker(T) is called the nullity of T and is denoted by nullity(T).

Thm: rank(T) + nullity(T) = rank(A) + nullity(A) = n.
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Inner product space

Inner product;
Orthogonal, orthonormal;

Basis Gram-Schmidt−−−−−−−−→ orthogonal basis normalizing−−−−−−→ orthonormal basis;
Projection.
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Linear system

Ax = b is consistent iff rank(A|b) = rank(A).
The general solution of Ax = b is the general solution of Ax = 0 + a special
solution of Ax = b.
The number of parameters of Ax = b is n − rank(A).
Least squares solution: ATAx = ATb.
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Eigenvalue

If there exist a nonzero column vector x ∈ Rn and a (real) scalar λ such that
Ax = λx, then λ is called an eigenvalue of A, and x is said to be an eigenvector
of A associated with the eigenvalue λ.
The equation det(λI − A) = 0 is called the characteristic equation of A and the
polynomial φ(λ) = det(λI − A) is called the characteristic polynomial of A.
λ is an eigenvalue iff det(λI − A) = 0. Hence, # eigenvalues ≤ n.
If B = P−1AP, where P is some invertible matrix, then A and B have same
eigenvalues. While the converse is not necessarily true. (Exercise 6.13)
λ1 and λ2 are 2 distinct eigenvalues, x1 and x2 are 2 eigenvectors associated
with λ1 and λ2, respectively. Then x1 and x2 are linearly independent.
If A has n eigenvalues {λi}n

i=1, then tr(A) =
∑n

i=1 λi, det(A) =
∏n

i=1 λi.
(Exercise 6.2(a))
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Eigenvalue

Let λ be an eigenvalue of A. Then the solution space of the linear system
(λI − A)x = 0 is called the eigenspace of A associated with the eigenvalue λ and
is denoted by Eλ = {x ∈ Rn | (λI − A)x = 0}. The geometric multiplicity of an
eigenvalue is defined as the dimension of the associated eigenspace.
The algebraic multiplicity of an eigenvalue is defined as the multiplicity of the
corresponding root of the characteristic polynomial. That is, the algebraic
multiplicity of λi is ri for i = 1, 2, . . . , k.
For any eigenvalue λ of A,

the algebraic multiplicity of λ ≥ the geometric multiplicity of λ ≥ 1.
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Conditions for diagonalizability

The square matrix A of order n is diagonalizable iff A has n linearly independent
eigenvectors.
If the square matrix A of order n has n distinct eigenvalues, then A is
diagonalizable; while the converse is not necessarily true. That is, if A is
diagonalizable, A may have some same eigenvalues (e.g. I2).
A is diagonalizable iff for each eigenvalue λ0 of matrix A, the algebraic
multiplicity is equal to the geometric multiplicity.
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Exercise (Question 3 in Final 2002-2003(II))
Let V = span{u1,u2} where u1 = (1, 2, 3) and u2 = (1, 1, 1).
(a) Find all vectors orthogonal to V.
(b) Note that V is a plane in R3 containing the origin. Write down an equation that

represents this plane.

Exercise (Question 6 in Final 2001-2002(I))
Let S = {v1, v2, v3} be a basis of R3 and let u1 = av1 + bv2 + cv3,
u2 = dv1 + ev2 + fv3, u3 = gv1 + hv2 + kv3. Suppose thata d g

b e h
c f k


is invertible. Prove that {u1,u2,u3} is a basis of R3.
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Exercise (Question 6(c) in Final 2005-2006(I))
Let S = {x1, x2, . . . , xn} be a basis for a vector space V. Show that

T = {x1 + x2, x2 + x3, . . . , xn−1 + xn, xn + x1}

is a basis for V if and only if n is odd.

Exercise (Question 5(d) in Final 2007-2008(II))
Determine whether the statements is true: If the nullspace of two matrices A and B
are the same, then A is row equivalent to B.
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