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MA1101R Tutorial
Tutorial 1: Linear Systems and Gaussian Elimination

Schedule of Tutorial 1

Review concepts:
Linear equation, Linear system;
Elementary Row Operations (ERO), Gaussian Elimination (GE) and Gauss-Jordan
Elimination (GJE);
Row-Echelon Form (REF), Reduced Row-Echelon Form (RREF).

Tutorial: 1.8, 1.13, 1.18(b), 1.21, 1.22, 1.23
Additional material:

.. Structure theorem for the solutions of the linear systems

Question 1 in Final of 2001–2002(II)
Question 1 in Final of 2003–2004(II)
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Review

History of Linear Systems

About 4000 years ago the Babylonians knew how to solve a system of two linear
equations in two unknowns (a 2× 2 system);
In the famous Nine Chapters on the Mathematical Art (九章算术) (c. 200 BC),
the Chinese solved 3× 3 systems by working solely with their (numerical)
coefficients;
The modern study of systems of linear equations can be said to have originated
with Leibniz3, who in 1693 invented the notion of a determinant (Def 2.5.2) for
this purpose;
In Introduction to the Analysis of Algebraic Curves of 1750, Cramer4 published
the rule (Thm 2.5.32) named after him for the solution of an n × n system;
Euler5 was perhaps the first to observe that a system of n equations in n
unknowns does not necessarily have a unique solution;
About 1800, Gauss6 introduced a systematic procedure, now called Gaussian
Elimination, for the solution of systems of linear equations, though he did not use
the matrix notation.

3Gottfried Leibniz (July 1, 1646–November 14, 1716), a German mathematician and philosopher.
4Gabriel Cramer (July 31, 1704–January 4, 1752), a Swiss mathematician.
5Leonhard Euler (April 15, 1707–September 18, 1783), a pioneering Swiss mathematician and physicist.
6Carl Friedrich Gauss (April 30, 1777–February 23, 1855), a German mathematician and scientist.

http://en.wikipedia.org/wiki/The_Nine_Chapters_on_the_Mathematical_Art
http://en.wikipedia.org/wiki/Leibniz
http://en.wikipedia.org/wiki/Gabriel_Cramer
http://en.wikipedia.org/wiki/Euler
http://en.wikipedia.org/wiki/Gauss
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Review

Structure of Chapter 1

Linear Systems

Gaussian Elimination

Gauss-Jordan Elimination

Row-Echelon Forms

Reduced Row-Echelon Forms

Hyper-planes

Geometry Algebra

Transfer Elementary Row Operations

Key:
...1 Studying some geometric problems = Studying the relative linear system.

For example, solving a linear system = Finding the intersection of the graphs of
the equations in this linear system;

...2 If the augmented matrix of a linear system is in REF or RREF, we can get the
solutions easily.
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Review

Transfer between Linear Systems and Hyper-planes

A linear equation is an (algebraic) equation in which each term is either a constant or
the product of a constant and (the first power of) a single variable.

Dimen Geometric view Algebraic representation
2 points on a line solutions of ax + by = c
3 points on a plane solutions of ax + by + cz = d
n(> 3) points on a hyper-plane solutions of a1x1 + a2x2 + · · · + anxn = b

2 intersection of 2 lines solutions of the system
{

a1x + b1y = c1
a2x + b2y = c2

3 intersection of 2 planes solutions of the system
{

a1x + b1y + c1z = d1
a2x + b2y + c2z = d1

n(> 3) intersection of 2 hyper-planes solutions of the system
{

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

2 intersection of m(>1) lines solutions of the system


a1x + b1y = c1
· · · · · · · · · · · ·
amx + bmy = cm

3 intersection of m(>1) planes solutions of the system


a1x + b1y + c1z = d1
· · · · · · · · · · · ·
amx + bmy + cmz = dm

n(> 3) intersection of m(>1) hyper-planes solutions of the system


a11x1 + a12x2 + · · · + a1nxn = b1
· · · · · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm
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Elementary Row Operations


a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b1
· · · · · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

⇒


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
am1 am2 · · · amn bm


Elementary row operations (ERO):

Multiply a row by a nonzero constant;
Interchange two rows;
Add a multiple of one row to another row.

Two augmented matrices are said to be row equivalent if one can be obtained
from the other by a series of elementary row operations.
Theorem 1.2.7: If augmented matrices of two systems of linear equations are row
equivalent, then the two systems have the same set of solutions.
Why perform elementary row operations: the augmented matrices will be reduced
to be in REF or RREF via ERO, which is easier to solve.
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Review

Gaussian Elimination and Gauss-Jordan Elimination

There are standard procedures to get REF and RREF, which are Gaussian
elimination and Gauss-Jordan elimination, respectively.
Gaussian Elimination:
(1) Locate the leftmost column that does not consist entirely of zeros;
(2) Interchange the top row with another row, if necessary, to bring a nonzero entry to the

top of the column found in Step 1.
(3) For each row below the top row, add a suitable multiple of the top row to it so that the

entry below the leading entry of the top row becomes zero.
(4) Now cover the top row in the matrix and begin again with Step 1 applied to the

submatrix that remains. Continuous in this way until the entire matrix is in row-echelon
form.

Gauss-Jordan Elimination: For a REF of an augmented matrix, use Gauss-Jordan
elimination to reduce it to be in RREF:
(5) Multiple a suitable constant to each row so that all the leading entries become 1.
(6) Beginning with the last nonzero row and working upward, add suitable multiples of each

row to the rows above to introduce zeros above the leading entries.
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Row-Echelon Form and Reduced Row-Echelon Form

An augmented matrix is said to be in row-echelon form (REF) if it has properties
1 and 2:
(1) If there are any rows that consist entirely of zeros, then they are grouped together at

the bottom of the matrix.
(2) In any two successive nonzero rows, the first nonzero number in the lower row occurs

farther to the right than the first nonzero number in the higher row.

Definitions:
In a REF, every first nonzero number in a row is called the leading entry of the row.
In a REF, the leading entries of nonzero rows are also called pivot points.
A column of a REF is called a pivot column if it contains a pivot point; otherwise, it is
called a non-pivot column.
Theorem: In a REF, (# nonzero rows) = (# leading entries) = (# pivot columns) =
(# pivot points).

An augmented matrix is said to be in reduced row-echelon form (RREF) if it is
has properties 1, 2, 3 and 4:
(3) The leading entry of every nonzero row is 1.
(4) In each pivot column, except the pivot point, all other entries are zeros.
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Review

Structure Theorem for Solutions—Remark 1.4.7

A linear system has no solution if and only if the last column of its REF of the
augmented matrix is a pivot column, i.e. there is a row with nonzero last entry but
zero elsewhere.
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Review

Structure Theorem for Solutions—Remark 1.4.7 (Cont.)

A linear system has exactly one solution if and only if except the last column,
every column of a REF of the augmented matrix is a pivot column.
That is, A linear system has exactly one solution if and only if it is consistent and
(# variables) = (# nonzero rows).
In this case, its general solution has # variables − # nonzero rows = 0 arbitrary
parameter.
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Review

Structure Theorem for Solutions—Remark 1.4.7 (Cont.)
A linear system has infinitely many solutions if and only if apart from the last
column, a REF of the augmented matrix has at least one more non-pivot column.
That is, A linear system has exactly one solution if and only if it is consistent and
(# variables) > (# nonzero rows).
In this case, its general solution has # variables − # nonzero rows ̸= 0 arbitrary
parameter(s).
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Structure Theorem for Solutions—Summary

Linear system
Augmented 

matrix
REF

No: consistent Yes: inconsistent

# variables = # nonzero rows # variables > # nonzero rows

Is last column a pivot column?

Compare # variables and # nonzero rows

Unique solution Infinitely many solutions

No solution
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Tutorial

Exercise (1.8)
Each equation in the following linear system represents a line in the xy-plane

a1x + b1y = c1
a2x + b2y = c2
a3x + b3y = c3

where a1, a2, a3, b1, b2, b3, c1, c2, c3 are constants. Discuss the relative positions of
the three lines when the system
(a) has no solution;
(b) has exactly one solution;
(c) has infinitely many solutions.

Recall
There is a one-to-one correspondence between the solution set of the linear system
and the intersection of all the three lines.
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Tutorial

Method
Let’s consider all possible cases of the relative positions of 3 lines in xy-plane:

3 parallel lines:

2 parallel lines:

No parallel line:

i. All are 
distinct

ii. 2 parallel lines 
are same

iii. All are 
same

iv. 2 parallel lines 
are distinct

v. 2 parallel lines 
are same

vi. No intersection 
point

vii. 1 intersection 
point
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Tutorial

Solution.
Based on the graphs above, we have the following results:
(a) In case i, ii, iv and vi, the system has no solution;
(b) In case v and vii, the system has exactly one solution;
(c) In case iii, the system has infinitely many solutions.
To summarize,
(a) When the system has no solution, either (i) the three lines are parallel but not all

three are the same or (ii) two of the lines intersect at a point but this point does
not lie on the third line.

(b) When the system has exactly one solution, all three lines are distinct and intersect
at a single point, or two of the lines are identical and they intersect the third line
at a point.

(c) When the system has infinitely many solutions, all three lines are identical.
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Exercise (1.13)
Solve the following system of non-linear equations:

x2− y2+2z2 =6

2x2+2y2−5z2 =3

2x2+5y2+ z2 =9

Method
The given system of equations is not linear. Consider replacing the variables x2, y2, z2
by another set of variables so that we obtain a linear system.
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Tutorial

Solution.
...1 Let u = x2, v = y2, and w = z2, then the system becomes

u− v+2w =6

2u+2v−5w =3

2u+5v+ w =9

⇒

 1 −1 2 6
2 2 −5 3
2 5 1 9


...2 Apply Gauss-Jordan elimination to obtain the RREF:

→

 1 −1 2 6
0 4 −9 −9
0 7 −3 −3

 →

 1 −1 2 6
0 −17 0 0
0 7 −3 −3

 →

 1 −1 2 6
0 1 0 0
0 7 −3 −3


→

 1 0 2 6
0 1 0 0
0 0 −3 −3

 →

 1 0 2 6
0 1 0 0
0 0 1 1

 →

 1 0 0 4
0 1 0 0
0 0 1 1


Then x2 = u = 4, y2 = v = 0 and z2 = w = 1.

...3 Thus the solutions are (x, y, z) = (2, 0, 1), (2, 0,−1), (−2, 0, 1), (−2, 0,−1).
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Tutorial

Exercise (1.18(b))
For 

x+ y+ z = 1

2x+ay+ 2z = 2

4x+4y+a2z =2a

determine the values of a such that the system has
(i) no solution;
(ii) exactly one solution;
(iii) infinitely many solutions.

Solution.
The augmented matrix and its REF are: 1 1 1 1

2 a 2 2
4 4 a2 2a

 R2−2R1−−−−−−→
R3−4R1

 1 1 1 1
0 a − 2 0 0
0 0 a2 − 4 2(a − 2)


Therefore, the system has no solution if a = −2. It has only one solution if a ̸= 2,−2.
It has infinitely many solutions if a = 2.
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Tutorial

Exercise (1.21)
Consider the homogeneous linear system

a1x + b1y + c1z = 0

a2x + b2y + c2z = 0

a3x + b3y + c3z = 0

where a1, a2, a3, b1, b2, b3, c1, c2, c3 are constants. Determine all possible reduced
row-echelon forms of the augmented matrix of the system and describe the geometrical
meaning of the solutions obtained from various reduced row-echelon forms.

Remark
For a linear system, the coefficients may be zeros.
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Tutorial

Solution.

A reduced-row echelon form with three nonzero rows (leading entries): 1 0 0 0
0 1 0 0
0 0 1 0


Since homogeneous system is always consistent, and # variables = 3 = #
nonzero rows, the solution is unique, i.e., the origin in R3.
Reduced-row echelon forms with two nonzero rows (leading entries): 1 0 ∗ 0

0 1 ∗ 0
0 0 0 0

 ,

 1 ∗ 0 0
0 0 1 0
0 0 0 0

 ,

 0 1 0 0
0 0 1 0
0 0 0 0

 .

Since homogeneous system is always consistent, and # variables = 3 > 2 = #
nonzero rows, the general solutions obtained here has one parameter. Thus, the
solutions represent lines in R3 that passes through the origin.
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Tutorial

Solution (Cont.)

Reduced-row echelon forms with one nonzero row (leading entry): 1 ∗ ∗ 0
0 0 0 0
0 0 0 0

 ,

 0 1 ∗ 0
0 0 0 0
0 0 0 0

 ,

 0 0 1 0
0 0 0 0
0 0 0 0

 .

Since homogeneous system is always consistent, and # variables = 3 > 1 = #
nonzero rows, the general solutions obtained here has two parameter. Thus, the
solutions obtained here represent planes in R3 that passes through the origin.
A reduced-row echelon form with zero nonzero row (leading entry): 0 0 0 0

0 0 0 0
0 0 0 0

 .

The solutions obtained here represent the whole space of R3.
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Tutorial

Exercise (1.22)

Let

 a 0 0 d
0 b 0 e
0 0 c f

 be the reduced row-echelon form of the augmented matrix of

a linear system, where a, b, c, d, e, f are real numbers. Write down the necessary
conditions on a, b, c, d, e, f so that the solution set of the linear system is a plane in
the three dimensional space that does not contain the original.

Solution.

For the solution set to be a plane, there must be one leading entry in the
reduced-row echelon form and two arbitrary parameters. Thus, we have two zero
rows, i.e. b = c = e = f = 0.
Since the system is consistent (The solution set is a plane) and these is one
nonzero row, a is a leading entey, which is 1.
Since the plane does not contain the origin, d ̸= 0.

To summarize: the necessary condition is a = 1, b = c = e = f = 0, d ̸= 0.
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Exercise (1.23)

(a) Does an inconsistent linear system with more unknowns than equation exist?
(b) Does a linear system which has exactly one solution, but more equations than

unknowns, exist?
(c) Does a linear system which has exactly one solution, but more unknowns than

equations, exist?
(d) Does a linear system which has infinitely many solutions, but more equations than

unknowns, exist?

Solution.

(a) Yes. For example:
{

x + y + z = 0

x + y + z = 1
.

(b) Yes. For example:
{

x = 0

2x = 0
.

(c) No. A linear system with more unknowns than equations will either have no
solution or infinitely many solutions.

(d) Yes. For example:


x + y = 0

2x + 2y = 0

3x + 3y = 0

.
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Additional material

Structure theorem for the solutions of the linear systems

The rank of a matrix (Def 4.2.3) is the dimension of its row space (or column
space).
Notation: rank(A).
Theorem: rank(A) is equal to the # nonzero pivot columns in a REF of A.
Homogeneous:

Am×n · xn×1 = 0m×1, rank(A) = r ≤ min{m, n};
The homogeneous system is always consistent;
If r = n, then there is only zero solution;
If r < n, then there are infinite solutions with n − r arbitrary parameter(s).

Inhomogeneous:
Am×n · xn×1 = bm×1, rank(A) = r ≤ min{m, n};
The inhomogeneous system is consistent iff rank(A) = rank(A | b).
If consistent, and r = n, then there is only one solution;
If consistent, and r < n, then there are infinite solutions with n − r arbitrary
parameter(s).
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Additional material

Exercise (Question 1 in Final of 2001–2002(II))
Find a condition on the numbers a, b and c such that the following system of
equations is consistent. When that condition is satisfied, find all solutions (in terms of
a and b). 

x+3y+z =a
−x−2y+z =b
3x+7y−z =c

Solution.
Apply Gaussian elimination for the relative augmented matrix, we will obtain: 1 3 1 a

−1 −2 1 b
3 7 −1 c

 →

 1 3 1 a
0 1 2 a + b
0 −2 −4 c − 3a

 →

 1 3 1 a
0 1 2 a + b
0 0 0 −a + 2b + c

 .

Thus, this linear system is consistent iff −a + 2b + c = 0.
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Exercise (Question 1 in Final of 2003–2004(II))
Find a condition on the numbers a and b such that the following system of equations
is not consistent. 

x+ 3y = a
2x+ 4y+2z =2a
3x+3by+3z = 6

Solution.
Apply Gaussian elimination for the relative augmented matrix, we will obtain: 1 3 0 a

2 4 2 2a
3 3b 3 6

 →

 1 3 0 a
0 −1 1 0
0 3b − 9 3 6 − 3a

 →

 1 3 0 a
0 −1 1 0
0 0 3b − 6 6 − 3a

 .

Thus, this linear system is inconsistent iff 6− 3a ̸= 0 and 3b − 6 = 0, that is, a ̸= 2
and b = 2.
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Change log

Change log

Page 12: Add an diagram for how to use Structure Theorem;
Page 22: Revise the Solution.

Last modified: 13:24, January 28, 2011.



MA1101R Tutorial
Tutorial 2: Matrices 1

Schedule of Tutorial 2

Any question about last tutorial
Review concepts:

Definition of matrices;
Matrix operations: addition, scalar multiplication, multiplication and transpose;
Inverse, elementary matrices.

Tutorial: 2.7, 2.10, 2.11, 2.15, 2.16, 2.19
Additional material:

2.9, 2.20, 2.21, 2.22;
Question 5 in Final of 2006–2007(I);
Question 2 in Final of 2001–2002(II);
Question 1(b) in Final of 2005–2006(I);
Three extra questions.
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Review

History of Matrix Theory
Matrices were introduced implicitly as abbreviations of linear transformations by
Gauss;
Arthur Cayley7 formally introduced m × n matrices in two papers in 1850 and
1858 (the term “matrix” was coined by Sylvester8 in 1850);
In his 1858 paper “A memoir on the theory of matrices” Cayley proved the
important Cayley–Hamilton theorem of 2× 2 and 3× 3 matrices, while Hamilton9

proved the theorem independently for 4× 4 matrices;
Cayley advanced considerably the important idea of viewing matrices as
constituting a symbolic algebra. But his papers of the 1850s were little noticed
outside England until the 1880s;
During 1820s–1870s, Cauchy, Jacobi, Jordan10, Weierstrass, and others created
what may be called the spectral theory of matrices; An important example is the
Jordan canonical form;
In a seminal paper in 1878 titled “On linear substitutions and bilinear forms”
Frobenius11 developed substantial elements of the theory of matrices in the
language of bilinear forms.

7Arthur Cayley (August 16, 1821–January 26, 1895), a British mathematician.
8James Joseph Sylvester (September 3, 1814–March 15, 1897), an English mathematician.
9William Rowan Hamilton (August 4, 1805–September 2, 1865), an Irish physicist, astronomer, and

mathematician.
10Camille Jordan (January 5, 1838–January 22, 1922), a French mathematician.
11Ferdinand Georg Frobenius (October 26, 1849–August 3, 1917), a German mathematician.

http://en.wikipedia.org/wiki/Arthur_Cayley
http://en.wikipedia.org/wiki/James_Joseph_Sylvester
http://en.wikipedia.org/wiki/William_Rowan_Hamilton
http://en.wikipedia.org/wiki/Camille_Jordan
http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
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Review

Definition and Notation

A matrix is a rectangular array of numbers (the numbers here can be in N, Z, Q,
R, or C, etc.). The size of a matrix is given by m × n where m is # rows and n is
# columns. The (i, j)-entry of a matrix is the number which is in the ith row and
jth column of the matrix.
In general, an m × n matrix can be written as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


or simply A = (aij)m×n where aij is the (i, j)-entry of A.
Two matrices are said to be equal if they have the same size and their
corresponding entries are equal.
Remark: in some case, we regard (a) (a 1× 1 matrix) and a (a scalar) to be same.
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Review

Special Types of Matrices (I)

Row (resp. Column) matrix: only 1 row (resp. column);
Square matrix: # rows = # columns;
Diagonal matrix: square matrix, aij = 0 when i ̸= j;
Tridiagonal matrix: nonzero elements only in the main diagonal, the first diagonal
below this, and the first diagonal above this;
Identity matrix: diagonal matrix where diagonal entries are 1. Notation: In;
Scalar matrix: diagonal matrix where diagonal entries are c–constant number.
Notation: cIn;
Zero matrix: all entries are 0, notation: 0m×n;
Upper (resp. Lower)-triangular matrix: square matrix, aij = 0 if i > j (resp.
i < j) this.

Multiplication of two upper (resp. lower)-triangular matrices is also an upper (resp.
lower)-triangular matrix;
Inverse of an upper (resp. lower)-triangular invertible matrix is upper (resp.
lower)-triangular.
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Review

Addition

Let A = (aij)m×n and B = (bij)m×n. Define the matrix addition

A + B = (aij + bij)m×n.

Associated law: Let A = (aij)m×n, B = (bij)m×n and C = (cij)m×n, then
(A + B) + C = A + (B + C);
Commutative law: Let A = (aij)m×n and B = (bij)m×n, then A + B = B + A;
Identity: Let A = (aij)m×n, then A + 0m×n = 0m×n + A = A;
Inverse: For for A = (aij)m×n, there exists a unique matrix B = (bij)m×n, such
that A + B = 0 = B + A; We will denote B as −A;
Based on definition of −A, we can define the matrix subtraction:
A − B = A + (−B).
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Review

Scalar Multiplication

Let A = (aij)m×n and µ be a real constant. Define the scalar multiplication
µA = (µaij)m×n, where µ is usually called a scalar.

Let A = (aij)m×n and µ, λ be real constants, then (µλ)A = µ(λA);
1A = A;
1st distributive law: Let A = (aij)m×n and µ, λ be real constants, then

(µ+ λ)A = µA + λA;

2nd distributive law: Let A = (aij)m×n, B = (bij)m×n and µ a be real constant,
then

µ(A + B) = µA + µB;

Let A = (aij)m×n and µ be a real constant, if µA = 0, then A = 0 or µ = 0.
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Review

Multiplication
Let A = (aij)m×p and B = (bij)p×n. Define the matrix multiplication
AB = (cij)m×n, where

cij = ai1b1j + ai2b2j + · · ·+ aipbpj =
p∑

k=1

aikbkj,

for i = 1, 2, . . . ,m and j = 1, 2, . . . ,n.
Associated law: Let A, B and C be m × p, p × q and q × n matrices respectively,

then (AB)C = A(BC); Moreover, we can define An =


I if n = 0

n times︷ ︸︸ ︷
AA · · ·A if n ∈ N

.

Commutative law: not always hold.
Identity: Let A = (aij)m×n, then AIn = ImA = A;
Inverse: not invertible for all matrices;
1st-Distributive law: Let A, B1 and B2 be m × p, p × n and p × n matrices
respectively, then A(B1 + B2) = AB1 + AB2;
2nd-Distributive law: Let A, C1 and C2 be p × n, m × p and m × p matrices
respectively, then (C1 + C2)A = C1A + C2A;
Let A = (aij)m×p, B = (bij)p×n and µ be a real constant, then
(µA)B = A(µB) = µ(AB);
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Review

Transpose

The transpose of a matrix A, denoted by AT, is the matrix obtained from A by
changing columns to rows, and rows to columns.

Let A be a matrix, then (AT)T = A;
Let A and B be two m × n matrices, then (A + B)T = AT + BT;
Let A be a matrix, and µ be a scalar, then (µA)T = µAT;
Let A and B be m × n and n × p matrices, respectively, then (AB)T = BTAT;
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Review

Inverse

Let A be a square matrix of order n. Then A is said to be invertible if there exists a
square matrix B of order n such that AB = In and BA = In. Such a matrix B is
called an inverse of A, denoted as A−1. A square matrix is called singular if it has no
inverse.

Uniqueness: If B and C are inverses of a square matrix A, then B = C;
Thm 2.4.5: A is invertible iff Ax = 0 has trivial solution iff RREF of A is identity
matrix iff A can be expressed as a product of elementary matrices;
Let A be an invertible matrix and µ a nonzero scalar, then (µA)−1 = 1

µ
A−1;

Let A be an invertible matrix, then (AT)−1 = (A−1)T;
Let A be an invertible matrix, then (A−1)−1 = A;
Let A, B be two invertible matrices of the same size, then (AB)−1 = B−1A−1;
Let A be an invertible matrix and n be a positive integer, then we can define
A−n = (A−1)n = A−1A−1 · · ·A−1︸ ︷︷ ︸

n times

.
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Special Types of Matrices (II)

Symmetric matrix: A = AT;
Skew-symmetric matrix: A = −AT;
Hermite matrix: A = ĀT;

Let A be a square matrix, then A + AT is a symmetric matrix, and A − AT is a
skew-symmetric matrix;
Each square matrix A can be uniquely decomposed as an addition of a symmetric
matrix S and a skew-symmetric matrix K.

Nilpotent matrix: Ak = 0 for some positive integer k;
Let A be a matrix with Ak = 0, then (I − A)−1 = I + A + · · · + Ak−1.

Idempotent matrix: A2 = A;
Let A be an idempotent matrix, then (I + A)−1 = 1

2 (2I − A);
A is an idempotent matrix iff (I − 2A)−1 = I − 2A.
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Review

Elementary Matrices: Multiply a row by a constant
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Review

Elementary Matrices: Interchange two rows
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Review

Elementary Matrices: Add a multiple of a row by a constant
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Review

Elementary Matrices: Add a multiple of a row by a constant (Cont.)
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Tutorial

Exercise (2.7)
Give an example of a 2× 3 matrix A such that the solution set of the linear system
Ax = 0 is the plane {(x, y, z) | 2x + 3y − z = 0}.

Solution.
...1 The solution set of a homogeneous linear system (represented by Ax = 0) in the

xyz-space represents the set of points that satisfies every linear equation in the
linear system.

...2 In this case, the solution set is {(x, y, z) | 2x + 3y − z = 0}, so there is only one
equation to satisfy.

...3 While A is a 2× 3 matrix (means there are 2 equations to satisfy), so we need to
“construct” the other equation which has no effect on the solution set.

...4 So the matrix A can be
(
2 3 −1
0 0 0

)
,
(
2 3 −1
2 3 −1

)
, etc.
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Tutorial

Exercise (2.10)
Let A and B be m × n and n × p matrices respectively.
(a) Suppose the homogeneous linear system Bx = 0 has infinitely many solutions.

How many solutions does the system ABx = 0 have?
(b) Suppose Bx = 0 has only the trivial solution. Can we tell how many solutions are

there for ABx = 0?

Solution.

(a) Let x = u be any solution to the system Bx = 0. Then ABu = A0 = 0. The
system ABx = 0 has at least as many solutions as the system Bx = 0. Thus it
has infinitely many solutions.

(b) No. For example, let B =

(
1 0
0 1

)
and consider the following two cases:

(i) If A =

(
1 0
0 1

)
, then both Bx = 0 and ABx = 0 have only trivial solution;

(ii) If A =

(
1 0
0 0

)
, then both Bx = 0 has only trivial solution, but ABx = 0 has

infinitely many solutions.
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Tutorial

Exercise (2.11)
Let A = (aij)n×n be a square matrix. The trace of A, denoted by tr(A), is defined to
be the sum of the entries on the diagonal of A, i.e.

tr(A) = a11 + a22 + · · ·+ ann =
n∑

i=1

aii.

(a) Find the trace of each of the following square matrices.

(i)

1 0 1
0 1 1
1 1 0

 , (ii)

−1 3 −4
2 4 1
−4 2 −9

 , (iii)


1 0 0 0
1 3 0 0
1 3 5 0
1 3 5 7

 .

(b) Let A and B be any square matrices of the same size, show that
tr(A + B) = tr(A) + tr(B);

(c) Let A be any square matrices and k a scalar, show that tr(kA) = k tr(A);
(d) Let C and D be m × n and n × m matrices respectively, show that

tr(CD) = tr(DC).
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Tutorial

Solution and Proof.
(a) (i) The trace is 1 + 1 + 0 = 2;

(ii) The trace is (−1) + 4 + (−9) = −6;
(iii) The trace is 1 + 3 + 5 + 7 = 16.

(b) Let A = (aij)n×n and B = (bij)n×n be two matrices, where n ∈ N. Then

tr(A + B) = tr


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

an1 + bn1 an2 + bn2 · · · ann + bnn


= (a11 + b11) + (a22 + b22) + · · ·+ (ann + bnn)

= (a11 + a22 + · · ·+ ann) + (b11 + b22 + · · ·+ bnn)

= tr(A) + tr(B)

(c) Let A = (aij)n×n be a matrix, where n ∈ N. Then

tr(kA) = tr


ka11 ka12 · · · ka1n
ka21 ka22 · · · ka2n

...
...

. . .
...

kan1 kan2 · · · kann

 = k(a11 + a22 + · · ·+ ann) = k tr(A).
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Solution and Proof (Cont.)

(d) ...1 Let C = (cij)m×n and D = (dij)n×m.
...2 Then the (i, i)-entry of CD is

ci1d1i + ci2d2i + · · · + cindni =
n∑

j=1

cijdji.

Thus,

tr(CD) =

m∑
i=1

( n∑
j=1

cijdji
)

=

n∑
j=1

( m∑
i=1

cijdji
)
.

...3 But the (i, i)-entry of DC is

di1c1i + di2c2i + · · · + dimcmi.

So

tr(DC) =

n∑
j=1

( m∑
i=1

cijdji
)
,

which is precisely the term on the right hand side above.
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Exercise (2.15)
Show that there are no matrices A and B such that AB − BA = I.

Proof.
...1 Assume that there are matrices A and B such that AB − BA = I.
...2 Then tr(AB − BA) = tr(I).
...3 By Question 2.11, we have tr(AB − BA) = tr(AB)− tr(BA) = 0.
...4 Since tr(I) is the size of I which is nonzero, there is a contradiction.
...5 Thus, there are no matrices A and B such that AB − BA = I.
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Exercise (2.16)
Determine which of the following statements are true. Justify your answer.
(a) If A and B are diagonal matrices of the same size, then AB = BA.
(b) If A is a square matrix, then 1

2
(A + AT) is symmetric.

(c) For all matrices A and B, (A + B)2 = A2 + B2 + 2AB.
(d) If A and B are symmetric matrices for the same size, then A − B is symmetric.
(e) If A and B are symmetric matrices for the same size, then AB is symmetric.
(f) If A is a square matrix such that A2 = 0, then A = 0.
(g) If A is a matrix such that AAT = 0, then A = 0.

(h) There exists a real matrix A, such that A2 =

(
−1 0
0 −1

)
.
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Solution.

(a) True. Let A = (aij)n×n and B = (bij)n×n. Since aij = bij = 0 when i ̸= j, the
(i, j)-entry of AB is equal to

ai1b1j + ai2b2j + · · ·+ ainbnj =

{
aiibii if i = j
0 if i ̸= j.

Likewise, the (i, j)-entry of BA is equal to

bi1a1j + bi2a2j + · · ·+ binanj =

{
biiaii if i = j
0 if i ̸= j.

Thus, AB = BA.
(b) True.

[
1
2
(A + AT)

]T
= 1

2
(A + AT)T = 1

2
(AT + A).

(c) False. Choose any two matrices A and B which satisfy AB ̸= BA. We will find
that (A + B)2 ̸= A2 + B2 + 2AB.

(d) True. (A − B)T = AT − BT = A − B
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Solution (Cont.)

(e) False. Choose any two symmetric matrices A and B which satisfy AB ̸= BA.
We will find that (AB)T = BTAT = BA ̸= AB. For example:

A =

(
0 0
0 1

)
, B =

(
1 −1
−1 1

)
.

(f) False. Example: A =

(
0 1
0 0

)
.

(g) True. Let A = (aij)n×n, then for each i ∈ {1, 2, . . . ,n}, (i, i)-entry of AAT is
equal to

ai1ai1 + ai2ai2 + · · ·+ ainain =
n∑

k=1

a2
ik.

So AAT = 0 implies that aik = 0 for all i and k, i.e. A = 0.

(h) True. Example:
(
0 −1
1 0

)
or
(

0 1
−1 0

)
.

Remark
Compare

(
0 −1
1 0

)
with i ∈ C.
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Exercise (2.19)

Let A =

2 −1 −1
0 3 1
0 1 3

.

(a) Verify that A2 − 6A + 8I = 0.
(b) Show that A−1 = 1

8
(6I − A) without computing the inverse of A explicitly.

Solution and Proof.

(a)

A2 =

4 −6 −6
0 10 6
0 6 10

 ,−6A =

−12 6 6
0 −18 −6
0 −6 −18

 , 8I =

8 0 0
0 8 0
0 0 8

 .

It is easy to be checked that A2 − 6A + 8I = 0.
(b) By (a), A2 − 6A + 8I = 0, we have

I =
1

8

[
6A − A2

]
= A

[
1

8
(6I − A)

]
.

By definition, A−1 is 1
8
(6I − A).
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Exercise (2.9)
Suppose the homogeneous system Ax = 0 has non-trivial solution. Show that the
linear system Ax = b has either no solution or infinitely many solutions.

Proof.
If Ax = b has a solution x = u, then u + v is also a solution to Ax = b for all
solutions x = v to Ax = 0 since

A(u + v) = Au + Av = b + 0 = b.

Hence Ax = b has either no solutions or infinitely many solutions.

Remark
The structure of the solution set of inhomogeneous system Ax = b:

Solution set = {u + v | v is any solution to Ax = 0},

where u is any specific solution to the linear system Ax = b.
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2nd Method.

Ax = 0 has non-trivial solution, then in a REF of its augmented matrix, #
variables > # pivot columns;
For Ax = b, if in its REF, # pivot columns changes, then the last column must
be a pivot column, i.e. Ax = b can not be solved;
For Ax = b, if in its REF, # pivot columns does not change, then the last
column is not a pivot column, i.e. Ax = b can be solved; At this time, #
variables > # pivot columns, i.e. Ax = b has infinite solutions;
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Exercise (2.20)
Let A be a square matrix.
(a) Show that if A2 = 0, then I − A is invertible and (I − A)−1 = I + A.
(b) Show that if A3 = 0, then I − A is invertible and (I − A)−1 = I + A + A2.
(c) If An = 0 for n ≥ 4, is I − A invertible?

Recall
Based on distributive law, (I − A)(I + A + · · ·+ An−1) = I − An where n ≥ 2 is an
integer.

Proof and Solution.

(a) Since (I − A)(I + A) = I − A2 = I and (I + A)(I − A) = I − A2 = I, we have
that I − A is invertible and its inverse is I + A.

(b) Since (I−A)(I+A+A2) = I−A3 = I and (I+A+A2)(I−A) = I−A3 = I,
we have that I − A is invertible and its inverse is I + A + A2.

(c) Yes. I − A is invertible and its inverse is I + A + · · ·+ An.
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Exercise (2.21)

(a) Give three examples of 2× 2 matrices A such that A2 = A.
(b) Let A be a square matrix such that A2 = A. Show that I + A is invertible and

(I + A)−1 = 1
2
(2I − A).

(c) Is I − A always invertible? (Question 5 in Final of 2006–2007(I))

Method
For (b) and (c), suppose we have (I + A)(aI + bA) = I, and then solve a and b.

Solution and Proof.

(a)
(
1 0
0 0

)
,

(
1 0
0 1

)
,

(
0 0
0 1

)
.

(b) It is easy to obtain a = 1 and b = − 1
2

. Thus, (I + A)−1 = A − 1
2

A.
(c) No. Example: take A = I.
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Exercise (2.22)
Let A and B be invertible matrices of the same size.
(a) Give an example of 2× 2 invertible matrices A and B such that A ̸= −B and

A + B is not invertible.
(b) If A + B is invertible, show that A−1 + B−1 is invertible and

(A + B)−1 = A−1(A−1 + B−1)−1B−1.

Solution and Proof.

(a) Let A =

(
1 0
0 1

)
and B =

(
1 0
0 −1

)
, then A and B are invertible, A + B ̸= 0,

and A + B is not invertible.
(b)

A−1 + B−1 = B−1(BA−1 + I) = B−1(B + A)A−1.

Hence, (A−1 + B−1)−1 = A(A + B)−1B, i.e.

A−1(A−1 + B−1)−1B−1 = (A + B)−1.
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Exercise (Question 2 in Final of 2001–2002(II))
Let A be an n × n matrix. Then A2 = A iff (I − 2A)−1 = I − 2A.

Proof.
A2 = A iff I − 4A + 4A2 = I iff (I − 2A)2 = I.
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Exercise (Question 1(b) in Final of 2005–2006(I))
Let A be an m × n matrix and B be an n × m matrix with n < m. Show that AB is
singular.
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Exercise (Question 1)
Let A be an n × n matrix, and J be an n × n matrix in which the all entries are 1. In
each row of A, there are exactly two entries which are 1, and others are 0. Find all
matrices A which satisfy A2 + 2A = 2J.

Solution.
...1

A

1
...
1

 =

2
...
2

 , A2

1
...
1

 = 2A

1
...
1

 =

4
...
4

 , 2J

1
...
1

 =

2n
...
2n


Hence 4 + 4 = 2n, i.e. n = 4, A is a matrix of order 4.

...2 If B satisfies A2 + 2A = 2J, so does BT.

...3 The task left is simple.
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Exercise (Question 2)
Given an invertible matrix, how to compute its inverse.

Exercise (Question 3)
When a matrix A is not invertible, how to extend the definition of inverse for A.
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Schedule of Tutorial 3

Any question about last tutorial
Review concepts:

Definition of determinant;
Cofactor expansion;
Properties and computation of determinant.

Tutorial: 2.24, 2.26, 2.32, 2.35, 2.36, 2.37
Additional material:

.. Two other equivalent definitions of determinant.

.. Laplace formula and Binet-Cauchy formula.

.. Determinants of Vandermonde matrix and Hilbert matrix.

.. Determinant for block matrices.
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First definition of Determinant (Laplace formula)

Let A = (aij) be an n × n matrix. Let Mij be an matrix obtained from A by
deleting the ith row and the jth column. Then the determinant of A is defined as

det(A) =

{
a11 if n = 1

a11A11 + a12A12 + · · ·+ a1nA1n if n ≥ 2

where
Aij = (−1)i+j det(Mij),

which is called the (i, j)-cofactor of A.
Let A = (aij) be an n × n matrix. det(A) is usually written as∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ .
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Second definition of Determinant (Leibniz formula)

A permutation of a set S is a bijection from S to itself. If S is a finite set of n
elements, then there are n! permutations of S. We use Sn to denote the set of all
permutations of {1, 2, . . . ,n}.
In the following notation, one lists the elements of S in the first row, and for each
one its image under the permutation below it in the second row:

σ =

(
1 2 3 4 5
2 5 4 3 1

)
,

this means that σ satisfies σ(1) = 2, σ(2) = 5, σ(3) = 4, σ(4) = 3 and σ(5) = 1.
If S = {1, 2, . . . ,n}, the parity of a permutation σ of S can be defined as the
parity of the number of inversions for σ, i.e., of pairs of elements x, y of S such
that x < y and σ(x) > σ(y).
The sign or signature of a permutation σ is denoted sgn(σ) and defined as +1 if
the parity of σ is even and -1 otherwise.
Define

det(A) =
∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n).
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Third definition of Determinant (Axioms)

Let D be a function from the set of all n × n matrices to R.
We say that D is n-linear if for each i (1 ≤ i ≤ n), D is a linear function of the
ith row when the other (n − 1) rows are held fixed.
We say that D is alternating if the following two conditions are satisfied:

D(A) = 0 whenever two rows of A are equal;
If A′ is a matrix obtained from A by interchanging two rows of A, then
D(A′) = −D(A).

We say that D is a determinant function if D is n-linear, alternating, and
D(In) = 1.
Existence: Corollary, page 147 in Hoffman’s “Linear Algebra”.
Uniqueness: Theorem 2, page 152 in Hoffman’s “Linear Algebra”.
Notation: det.
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Equivalence of the three definitions

Def 3 ⇒ Def 1 Theorem 1, page 146 in Hoffman’s “Linear Algebra”;
Def 1 ⇒ Def 3 Trivial;
Def 2 ⇒ Def 1 Section 5.7, page 173–180 in Hoffman’s “Linear Algebra”, or 2.3 节，

许以超，“线性代数与矩阵论”;
Moreover, we will get Laplace Expansions (Ref Example 13, page 179
in Hoffman’s “Linear Algebra”, or 定理 2.3.3，许以超，“线性代数与
矩阵论”);

Def 1 ⇒ Def 2 Mathematical Induction.
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Properties of Determinants

det
(

a b
c d

)
= ad− bc, and det

a b c
d e f
g h i

 = aei+ bfg+ cdh− ceg−afh− bdi.

Let A be a square matrix. We can compute det(A) by performing cofactor
expansion along any row or any column of A:

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin along ith row
= a1jA1j + a2jA2j + · · ·+ anjAnj along jth column

Let A be a square matrix, then det(A) = det(AT); (By the last statement)
Let A be a triangular (hence square) matrix, then det A is the product of its
diagonal entries; (By induction and cofactor expansion)
The determinant of a square matrix with two identical rows (columns) is zero;
(By induction and cofactor expansion)

det
(

A B
0 C

)
= det(A)det(C), where A and C are m × m and n × n square

matrices, respectively. (See .. Determinant for block matrices. )
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Properties of Determinants (Cont.)

Let A be a square matrix.
If E is an elementary matrix of the same size as A, then det(EA) = det(E) det(A);
If B is obtained from A by multiplying one row of A by a constant k, then
det(B) = k det(A);
If B is obtained from A by interchanging two rows of A, then det(B) = − det(A);
If B is obtained from A by adding a multiple of one row of A to another row, then
det(B) = det(A).

Let A be a square matrix. Then A is invertible if and only if det(A) ̸= 0.
Let A and B be two square matrices of order n and c is a scalar. Then:

det(cA) = cn det(A);
det(AB) = det(A) det(B);
If A is invertible, then det(A−1) = 1

det(A)
.
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Additional Properties of Determinants
Let A = (aij) be an m × n matrix. For 1 ≤ i1 < i2 < · · · < ir ≤ m,
1 ≤ j1 < j2 < · · · < js ≤ n, let

A
(i1i2 · · · ir

j1j2 · · · js

)
=


ai1j1 ai1j2 · · · ai1js
ai2j1 ai2j2 · · · ai2js

...
...

. . .
...

airj1 airj2 · · · airjs


Laplace formula (Section 5.7 in Hoffman’s “Linear Algebra”, or 2.3 节，许以
超，“线性代数与矩阵轮”): For 1 ≤ i1 < i2 < · · · < ir ≤ n,

det(A) =
∑

1≤j1<j2<···<jr≤n
det A

(i1 · · · ir
j1 · · · jr

)
sgn

(i1i2 · · · in
j1j2 · · · jn

)
det A

(ir+1 · · · in
jr+1 · · · jn

)
,

where i1i2 · · · in and j1j2 · · · jn are permutations of 1, 2, . . . ,n, and
1 ≤ ir+1 < · · · in ≤ n, 1 ≤ jr+1 < · · · jn ≤ n.
Binet-Cauchy formula (2.3 节，许以超，“线性代数与矩阵轮”): Let A and B be
m × n and n × m matrices, respectively. Then:

det(AB) =


0 if m > n
det(A) det(B) if m = n∑

1≤j1<···<jm≤n det A
( 1···m

j1···jm

)
det B

(j1···jm
1···m

)
if m < n
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Exercise (2.24)
Consider the population of certain endangered species of wild animals: On the
average, each adult will give birth to one baby each year; 50% of the new born babies
will survive the first year; 60% of the one-year-old cubs will survive the second year
and become adults; and 70% of the adults will survive each year.

Define A =

 0 0 1
0.5 0 0
0 0.6 0.7

. Let x0, y0 and z0 be the numbers of babies,

one-year-old cubs and adults, respectively, at the end of a particular year.

(a) Let

x1
y1
z1

 = A

x0
y0
z0

. What information do the numbers x1, y1 and z1 give us?

(b) Let

xn
yn
zn

 = An

x0
y0
z0

, where n is a positive number. Interpret the numbers xn,

yn and zn.
(c) Suppose initially, x0 = 0, y0 = 0, z0 = 100. What is the total population three

years later?
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Solution.
In each year, there are three generations: babies, one-year-old cubs and adults.
(a) x1 = z0 is the number of babies at the end of the 1st year;

y1 = 0.5x0 is the number of one-year-old cubs at the end of the 1st year;
z1 = 0.6y0 + 0.7z0 is the number of adults at the end of the 1st year.

(b) x2 = z1 is the number of babies at the end of the 2nd year;
y2 = 0.5x1 is the number of one-year-old cubs at the end of the 2nd year;
z2 = 0.6y1 + 0.7z1 is the number of adults at the end of the 2nd year.
x3 = z2 is the number of babies at the end of the 3rd year;
y3 = 0.5x2 is the number of one-year-old cubs at the end of the 3rd year;
z3 = 0.6y2 + 0.7z2 is the number of adults at the end of the 3rd year.

Inductively, we will obtain: xn, yn and zn are the numbers of babies, one-year-old
cubs and adults, respectively, at the end of the nth year.

(c) Based on part (b), we havex3
y3
z3

 = A3

x0
y0
z0

 =

 0 0 1
0.5 0 0
0 0.6 0.7

3 0
0

100

 =

 49
35
64.3

.

Thus the total population three years later is 148 (x3 + y3 + z3 = 148.3
.
= 148).



MA1101R Tutorial
Tutorial 3: Matrices 2

Tutorial

Exercise (2.26)
Let A be the 4× 4 matrix obtained from I by the following sequence of elementary
row operations:

I
1
2

R2−−−→ R1−R2−−−−−→ R2↔R4−−−−−→ R3+3R1−−−−−−→ A

(a) Write A as a product of four elementary matrices.
(b) Find A−1 as a product of four elementary matrices.

Solution of (a).

A =


1 0 0 0
0 1 0 0
3 0 1 0
0 0 0 1



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 1

2
0 0

0 0 1 0
0 0 0 1

 I.
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Solution of (b).
Since (AB)−1 = B−1A−1, we have

A−1 =



1 0 0 0
0 1 0 0
3 0 1 0
0 0 0 1



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 1

2
0 0

0 0 1 0
0 0 0 1

 I


−1

= I−1


1 0 0 0
0 1

2
0 0

0 0 1 0
0 0 0 1


−1

1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−1

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


−1

1 0 0 0
0 1 0 0
3 0 1 0
0 0 0 1


−1

=


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1



1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
−3 0 1 0
0 0 0 1


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Exercise (2.32)

Solve the matrix equation

2 1 1
0 1 2
1 3 2

X =

2 3 4 1
1 0 3 7
2 1 1 2

.

Method

If

2 1 1
0 1 2
1 3 2

 is invertible, then X can be found easily.

Solution. 2 1 1 1 0 0
0 1 2 0 1 0
1 3 2 0 0 1

 Gauss-Jordan−−−−−−−→
Elimination

 1 0 0 4/7 −1/7 −1/7
0 1 0 −2/7 −3/7 4/7
0 0 1 1/7 5/7 −2/7


Thus

2 1 1
0 1 2
1 3 2

 is invertible and the inverse is 1
7

 4 −1 −1
−2 −3 4
1 5 −2

. So

X =
1

7

 4 −1 −1
−2 −3 4
1 5 −2

2 3 4 1
1 0 3 7
2 1 1 2

 =
1

7

5 11 12 −5
1 −2 −13 −15
3 1 17 32

 .
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Exercise (2.35)

(a) Determine the values of a, b and c so that the homogeneous system
x+ y+ z =0

ax+ by+ cz =0

a2x+b2y+c2z =0

has non-trivial solution.

(b) Write down the conditions so that the matrix

 1 1 1
a b c
a2 b2 c2

 is invertible.
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Solution.

(a) By Gaussian elimination, we have 1 1 1 0
a b c 0
a2 b2 c2 0

 R2−aR1−−−−−−−→
R3−a2R1

1 1 1 0
0 b − a c − a 0
0 b2 − a2 c2 − a2 0


R3−(a+b)R2−−−−−−−−−→

1 1 1 0
0 b − a c − a 0
0 0 (c − a)(c − b) 0

 .

The homogeneous linear system has non-trivial solution if and only if # pivot
points < # variables. Here the necessary and sufficient condition is b − a = 0 or
(c − a)(c − b) = 0, that is, a = b or a = c or b = c.

(b)

 1 1 1
a b c
a2 b2 c2

 is invertible iff the homogeneous system has trivial solution, so

by part (a), that is a ̸= b, a ̸= c and b ̸= c.

Remark
As we known, Ax = 0 has non-trivial solution iff A is not invertible iff det(A) = 0.
Hence, we may solve this question by computing det(A) directly. (In this question,
det(A) = (a − b)(a − c)(b − c).)



MA1101R Tutorial
Tutorial 3: Matrices 2

Tutorial

Exercise (2.36)
Let A be an m × n matrix and B an n × m matrix.

(a) Suppose A is row equivalent to the following matrix:
(

R
0 · · · 0

)
, where the last

row is a zero and R is an (m − 1)× n matrix. Show that AB is singular.
(b) If m > n, can AB be invertible? Justify your answer.
(c) When m = 2 and n = 3, give an example of A and B such that AB is invertible.

Proof and Solution.

(a) Since A is row equivalent to
(

R
0 · · · 0

)
, there exist some elementary matrices

E1, . . . ,Ek, such that A = Ek · · ·E1

(
R

0 · · · 0

)
. Hence AB = Ek · · ·E1

(
RB
0 · · · 0

)
,

and AB can not be row equivalent to the identity matrix, i.e. AB is singular.
(b) Since a REF of A can have at most n non-zero rows and m > n, a row-echelon

form of A must have a zero row. By part (a), AB cannot be invertible.

(c) For example, let A =

(
1 0 0
0 1 0

)
and B =

1 0
0 1
0 0

, then AB =

(
1 0
0 1

)
is

invertible. (Here BA =

1 0 0
0 1 0
0 0 0

 is not invertible.)
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Exercise (2.37)
Determine which of the following statements are true. Justify your answer.
(a) If A and B are invertible matrices of the same size, then A + B is also invertible.
(b) If A and B are invertible matrices of the same size, then AB is also invertible.
(c) If AB is invertible where A and B are square matrices of the same size, then both

A and B are invertible.

Solution.

(a) False. For example, let A =

(
1 0
0 1

)
and B =

(
−1 0
0 −1

)
.

(b) True. See Theorem 2.3.10.
(c) True. Let C be the inverse of AB. Then A(BC) = (AB)C = I which implies

that A is invertible.
Likewise, (CA)B = C(AB) = I which implies that B is invertible.

Remark
For part (c), since AB is invertible, det(AB) ̸= 0. Thus det(A)det(B) ̸= 0, and
hence det(A) ̸= 0 and det(B) ̸= 0. Therefore A and B are invertible.
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Exercise (Extra Question 1)

Find the determinant of Vandermonde12 matrix Vn =


1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
. . .

...
xn−1
1 xn−1

2 · · · xn−1
n

 .

Solution.
For the case n = 1, it is trivial; so we focus on the case n > 1.
Performing Rn − x1Rn−1, Rn−1 − x1Rn−2, · · · , R2 − x1R1, we will get:

det(Vn) =


1 1 1 · · · 1
0 x2 − x1 x3 − x1 · · · xn − x1
0 x2(x2 − x1) x3(x3 − x1) · · · xn(xn − x1)
...

...
...

. . .
...

0 xn−2
2 (x2 − x1) xn−2

3 (x3 − x1) · · · xn−2
n (xn − x1)



= (−1)1+1 det


x2 − x1 x3 − x1 · · · xn − x1

x2(x2 − x1) x3(x3 − x1) · · · xn(xn − x1)
...

...
. . .

...
xn−2
2 (x2 − x1) xn−2

3 (x3 − x1) · · · xn−2
n (xn − x1)


12Alexandre-Théophile Vandermonde (February 28, 1735–January 1, 1796), a French musician and chemist.
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Solution (Cont.)

det(Vn) = (x2 − x1)(x3 − x1) · · · (xn − x1) det


1 1 · · · 1
x2 x3 · · · xn
x22 x23 · · · x2n
...

...
. . .

...
xn−2
2 xn−2

3 · · · xn−2
n



=
n∏

j=2

(xj − x1)
n∏

j=3

(xj − x2)det


1 1 · · · 1
x3 x4 · · · xn
x23 x24 · · · x2n
...

...
. . .

...
xn−3
3 xn−3

4 · · · xn−3
n


Hence, by finite induction steps, we will obtain

det(Vn) =
n∏

i=1

[ n∏
j=i+1

(xj − xi)
]
=

∏
1≤i<j≤n

(xj − xi).

Remark
Vn is invertible iff xi ̸= xj for all i ̸= j.
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Exercise (Extra Question 2)

Find the determinant of Hilbert13 matrix Hn =


1

a1+b1
1

a1+b2
· · · 1

a1+bn
1

a2+b1
1

a2+b2
· · · 1

a2+bn
...

...
. . .

...
1

an+b1
1

an+b2
· · · 1

an+bn

 .

Solution.
We focus on the case n > 1.
Performing Rn − R1, Rn−1 − R1, · · · , R2 − R1, since

1

ai + bj
−

1

a1 + bj
=

a1 − ai
(ai + bj)(a1 + bj)

,

we will get:

det(Hn) =
(a1 − a2)(a1 − a3) · · · (a1 − an)∏n

j=1(a1 + bj)
det


1 1 · · · 1
1

a2+b1
1

a2+b2
· · · 1

a2+bn
...

...
. . .

...
1

an+b1
1

an+b2
· · · 1

an+bn

 .

13David Hilbert (January 23, 1862–February 14, 1943), a German mathematician.
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Solution (Cont.)
Performing Cn − C1, Cn−1 − C1, · · · , C2 − C1, since

1

ai + b1
−

1

ai + bj
=

bj − b1
(ai + b1)(ai + bj)

,

we will get:

det(Hn) =

∏n
i=2(a1 − ai)∏n
j=1(a1 + bj)

(b1 − b2) · · · (b1 − bn)∏n
j=2(aj + b1)

det


1

a2+b2
· · · 1

a2+bn
...

. . .
...

1
an+b2

· · · 1
an+bn

 .

Hence, by finite induction steps, we will obtain

det(Hn) =

∏
1≤i<j≤n(aj − ai)

∏
1≤i<j≤n(bj − bi)∏n

i=1

∏n
j=1(ai + bj)

.
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Exercise (Extra Question 3)

Let G =

(
A B
0 C

)
, then det(G) = det(A) det(C) (∗), where A and C are m × m

and n × n square matrices, respectively.

Proof.
Apply mathematical induction on m.

...1 If m = 1, it is exactly cofactor expansion;

...2 (i) For any m ∈ N, assume the Equation (∗) holds, then we want to prove the Equation
(∗) holds for m + 1:

(ii) Performing cofactor expansion along first column, we will get:

det(G) = a11G11 + a21G21 + · · · + am1Gm1,

where Gi1 = (−1)i+1 det(Mi1), where Mi1 is the matrix obtained from G by
deleting the ith row and the 1th column.

(iii) Since Mi1 =

(
Ni1 B
0 C

)
, where Ni1 is the matrix obtained from A by deleting the

ith row and 1th column.
(iv) By assumption, we have

Gi1 = (−1)
i+1 det

(
Ni1 B
0 C

)
= (−1)

i+1 det(Ni1) det(C) = Ai1 det(C),

where Ai1 is the (i, 1)-cofactor of A.
(v) Hence, we have

det(G) = a11A11 det(C)+a21A21 det(C)+· · ·+am1Am1 det(C) = det(A) det(C).
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Schedule of Tutorial 4

Any question about last tutorial
Review concepts:

Matrices:
Adjoint: definition, properties;
Cramer’s rule.

Vector spaces:
n-vector, Euclidean n-space;
Set notations for subsets of Rn: implicit form and explicit form.

Tutorial: 2.40, 2.48, 2.49, 3.4, Q3 in Mid-term Test of 2007–2008, Q4 in
Mid-term Test of 2008–2009
Additional material:

Question 2.46;
Question 3(b) in Mid-term Test of 2009–2010;
Proof for adj(AB) = adj(B) adj(A);
Abstract definition of vector space.
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Review

(Classical) Adjoint
Let A be a square matrix of order n > 1.

The (classical) adjoint of A is the n × n matrix

adj(A) =


A11 A21 · · · An1
A12 A22 · · · An2

...
...

. . .
...

A1n A2n · · · Ann

 ,

where Aij is the (i, j)-cofactor of A.
A adj(A) = adj(A)A = det(A)In, no matter whether A is invertible;

If A is invertible, then A−1 = 1
det(A)

adj(A);
If A is invertible, then adj(A) is also invertible, and its inverse is 1

det(A)
A; (See

Question 2.48.)
If A is invertible, then adj(A−1) = [adj(A)]−1 = 1

det(A)
A;

If adj(A) is invertible, then A is also invertible. (See Question 3(b) in Mid-term Test
of 2009–2010.)

adj(AT) = adj(A)T; (By definition.)
adj(cA) = cn−1 adj(A); (By definition.)

adj(AB) = adj(B) adj(A); (Using perturbation method.)
det(adj(A)) = [det(A)]n−1; (Using perturbation method.)
adj(adj(A)) = [det(A)]n−2A. (Using perturbation method.)
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Review

Cramer’s Rule

Let Ax = b be a linear system where A is an n × n matrix. Let Ai be the matrix
obtained from A by replacing the ith column of A by b. If A is invertible, then the
system has only solution

x =
1

det(A)


det(A1)
det(A2)

...
det(An)

 .
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n-vector and Euclidean n-space

An n-vector has the form (u1, u2, . . . , ui, . . . , un), where u1, u2, . . ., un are real
numbers, and ui is the ith coordinate.
Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be two n-vectors.

We say that u and v are equal iff ui = vi for all i = 1, 2, . . . , n;
The addition u + v is defined by u + v = (u1 + v1, u2 + v2, . . . , un + vn);
Let c be a real number. The scalar multiple cu is defined by
cu = (cu1, cu2, . . . , cun);
The n-vector (0, 0, . . . , 0) is called the zero vector and denote it by 0.

We identify an n-vector (u1, u2, . . . , un) with a 1× n matrix(
u1 u2 · · · un

)
or an n × 1 matrix

(
u1 u2 · · · un

)T.
Let u, v and w be n-vectors and a, b real numbers. Then
(1) u + v = v + u;
(2) u + (v + w) = (u + v) + w;
(3) u + 0 = u = 0 + u;
(4) u + (−u) = 0;

(5) a(bu) = (ab)u;
(6) a(u + v) = au + av;
(7) (a + b)u = au + bu;
(8) 1u = u.

The set of all n-vectors of real numbers space is called the Euclidean n-space and
is denoted by Rn.
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Review

Set notations for subsets of Rn

Set notation for subsets of Rn:
Implicit form: {(u1, u2, . . . , un) | conditions satisfied by u1, u2, . . . , un};
Explicit form: {n-vectors in terms of some parameters | range of the parameters}.

Examples:

Lines in xy-plane:
{

Implicit form: {(x, y) | ax + by = c}
Explicit form: {(general solution) | 1 parameter}

Planes in xyz-space:
{

Implicit form: {(x, y, z) | ax + by + cz = d}
Explicit form: {(general solution) | 2 parameters}

Lines in xyz-space:
{

Implicit form: {(x, y, z) | eqn of the line}
Explicit form: {(general solution) | 1 parameter}
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Exercise (2.40)

Let A =


1 0 2 0
0 1 3 −1
−2 1 0 −2
0 0 2 1

, C =


−1 3 4 −2
0 0 1 1
0 0 0 5
0 0 0 1

, b =


2
4
6
8

, x =


x1
x2
x3
x4

.

(a) Solve the linear system Ax = b.
(b) Without computing the matrix AC, explain why the homogeneous linear system

ACx = 0 has infinitely many solutions.

Solution.

(a)


1 0 2 0 2
0 1 3 −1 4
−2 1 0 −2 6
0 0 2 1 8

 Gauss-Jordan−−−−−−−→
Elimination


1 0 0 0 − 22

3
0 1 0 0 − 34

3
0 0 1 0 14

3
0 0 0 1 − 4

3

. So

x1 = − 22
3

, x2 = − 34
3

, x3 = 14
3

and x4 = − 4
3

.
(b) ...1 Since C is an upper-triangular matrix, det(C) is the product of its diagonal entries,

which is −1 × 0 × 0 × 1 = 0.
...2 Since det(AC) = det(A) det(C) = 0, the homogeneous system ACx = 0 has

infinitely many solutions.
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Exercise (2.48)
Let A be an n × n invertible matrix.
(a) Show that adj(A) is invertible.
(b) Find det(adj(A)) and adj(A)−1.
(c) If det(A) = 1, show that adj(adj(A)) = A.

Recall
Let A be a square matrix of order n.

...1 A is invertible iff there exists a square matrix B of order n such that AB = I and
BA = I.

...2 A is invertible iff there exists a square matrix B of order n such that AB = I.

...3 A is invertible iff there exists a square matrix B of order n such that BA = I.

Proof and solution.

(a) Since adj(A) is a square matrix, A adj(A) = det(A)In and det(A) ̸= 0, we have
that adj(A) is invertible and its inverse is 1

det(A)
A.
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Proof and Solution (Cont.)

(b) Since A adj(A) = det(A)In, we have

det(A) det(adj(A)) = det(A adj(A)) = det(det(A)In) = det(A)n.

Since det(A) ̸= 0, we have det(adj(A)) = det(A)n−1.
(c) ...1 For any square matrix X, X adj(X) = det(X)In.

...2 Taking X to be adj(A) and by part (b), we will have

adj(A) adj(adj(A)) = det(adj(A))In = det(A)
nIn = In.

...3 We also have A adj(A) = det(A)In = In.

...4 By definition, both A and adj(adj(A)) are the inverse of A, and hence they are the
same.
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Exercise (2.49)
Determine which of the following statements are true. Justify your answer.
(a) If A and B are square matrices of the same size, then

det(A + B) = det(A) + det(B).
(b) If A and B are square matrices of the same size, then det(AB) = det(A)det(B).
(c) If A and B are square matrices of the same size such that A = PBP−1 for some

invertible matrix P, then det(A) = det(B).
(d) If A, B and C are invertible matrices of the same size such that

det(A) = det(B), then det(A + C) = det(B + C).

Solution.

(a) False. For example, let A = I2 and B = −I2.
(b) True. See Theorem 2.5.27.
(c) True. Because det(A) = det(P)det(B) det(P−1) and det(P) det(P−1) = 1.
(d) False. For example, let A = I2 and B = C = −I2.
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Exercise (3.4)
Consider the following subsets of R3:

A = a line passes through the origin and (9, 9, 9),

B = {(k, k, k) | k ∈ R},
C = {(x1, x2, x3) | x1 = x2 = x3},
D = {(x, y, z) | 2x − y − z = 0},
E = {(a, b, c) | 2a − b − c = 0 and a + b + c = 0},
F = {(u, v,w) | 2u − v − w = 0 and 3u − 2v − w = 0}.

Which of these subsets are the same?

Method
If we can express the sets in explicit form, then it is easy to compare them.

Solution.

It is obvious that A = B = C;
By solving the linear system, we have F = C = B = A;
Since D = {( s+t

2
, s, t) | s, t ∈ R} and E = {(0, s,−s) | s ∈ R}, A, D and E are

different with each other.
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Exercise (Question 3 in Mid-term Test of 2007–2008)
Consider the following subsets of R3. (Note that vectors in R3 can be written in row
or column form and regarded as the same.)

S = {(x, y, z) | 2x − 3y + z = 10 and x − z = 5}

T = the solution set of the linear system

2 −3 1
1 0 −1
3 −3 0

x
y
z

 =

10
5
15


U = {(t + 2, t − 3, t − 3) | t ∈ R}

(i) Determine whether the vector (3,−2,−2) belongs to each of the three sets.
(ii) Describe the three sets geometrically (i.e. whether they represent points, lines,

planes or others).
(iii) Which of the three sets are the same, if any? Justify your answers.



MA1101R Tutorial
Tutorial 4: Matrices 3 and Vector Spaces 1

Tutorial

Solution.
(i) Since (3,−2,−2) satisfies 2x − 3y + z = 10 and x − z = 5, (3,−2,−2) ∈ S;

Since (3,−2,−2) satisfies

2 −3 1
1 0 −1
3 −3 0

x
y
z

 =

10
5
15

, (3,−2,−2) ∈ T;

Taking t to be 1, we get (t + 2, t − 3, t − 3) = (3,−2,−2), hence (3,−2,−2) ∈ U.
(ii, iii) (

2 −3 1 10
1 0 −1 5

)
Gauss-Jordan−−−−−−−→
Elimination

(
1 0 −1 5
0 1 −1 0

)
.

So S = {(s + 5, s, s) | s ∈ R}; 2 −3 1 10
1 0 −1 5
3 −3 0 15

 Gauss-Jordan−−−−−−−→
Elimination

 1 0 −1 5
0 1 −1 0
0 0 0 0

 .

So T = {(k + 5, k, k) | k ∈ R};
U = {(t + 2, t − 3, t − 3) | t ∈ R} = {(t + 5, t, t) | t ∈ R}.

Hence, all of them are same, and each of them represents a line in R3 since there
is 1 free parameter.
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Exercise (Question 4 in Mid-term Test of 2008–2009)
Let P represent a plane in the xyz-space with equation x − y + z = 1 and A,B,C
represent three different lines given by the following set notations:

A = {(a, a, 1) | a ∈ R}, B = {(b, 0, 0) | b ∈ R}, C = {(c, 0,−c) | c ∈ R}.

(a) Write down an explicit set notation that represents the plane P.
(b) Does any of the three lines above lie completely on the plane P? Briefly explain

your answer.
(c) Find all the points of intersection of the line B with the plane P.
(d) Find the equation of another plane that is parallel to (but not overlapping) the

plane P, and contains exactly one of the above three lines.
(e) Can you find a linear system whose solution set contains all the three lines?

Justify your answer.
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Solution.

(a) By finding the general solution of the equation x − y + z = 1, we get the explicit
form {(1 + s − t, s, t) | s, t ∈ R}.

(b) A lies on the plane, as any point (a, a, 1) ∈ A satisfies x − y + z = 1
(a − a + 1 = 1).

(c) By substituting a point (b, 0, 0) ∈ B into x − y + z = 1, we see that the only point
in B that satisfies the equation is when b = 1.

(d) A plane that is parallel to P has the form x − y + z = k (k ̸= 1). Such a plane will
not intersection P, and so cannot contain lines A and B. Line C does not lie on P
as none of the point (c, 0,−c) ∈ C satisfies x − y + z = 1. Instead C lies on
x − y + z = 0.

(e) No. The solution set must either be a point, a line or a plane. But there is no
plane in xyz-space that contains all the three lines. (Take (1, 1, 1) ∈ A,
(1, 0, 0) ∈ B, (1, 0, 1) ∈ C and check that there is no equation dx + ey + fz = g
that is simultaneously satisfied by these three points.)
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Exercise (2.46)

Let A =

a b c
d e f
g h i

 where a, b, c, d, e, f, g, h, i are either 0 or 1. Find the largest

possible value and the smallest possible value of det(A).

Solution.
det(A) = aei + bfg + cdh − afh − bdi − ceg.

If all a, b, c, d, e, f, g, h, i are 1, then det(A) = 0.
Suppose at least one of a, b, c, d, e, f, g, h, i is 0, say a = 0 (other cases are
similar). Then det(A) = bfg + cdh − bdi − ceg. As b, c, d, e, f, g, h, i can only be 0
and 1, −2 ≤ det(A) ≤ 2.

Note that

∣∣∣∣∣∣
1 1 0
0 1 1
1 0 1

∣∣∣∣∣∣ = 2 and

∣∣∣∣∣∣
0 1 1
1 1 0
1 0 1

∣∣∣∣∣∣ = −2.

The maximum possible value of det(A) is 2 and the minimum is −2.
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Exercise (Question 3(b) in Mid-term Test of 2009–2010)
If adj(A) is invertible, then A is also invertible.

Proof.
...1 Assume that A is not invertible, then det(A) = 0;
...2 Then A adj(A) = det(A)In = 0n×n;
...3 Since adj(A) is invertible, we have A = A adj(A) adj(A)−1 = 0n×n;
...4 Hence adj(A) = 0n×n, which is a contradiction. Hence A is invertible.
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Exercise
Let A and B be two square matrices of order n > 1. Then adj(AB) = adj(B) adj(A).

Proof.
Assume A and B are invertible, then

adj(AB) = det(AB)(AB)−1 = det(B)B−1 det(A)A−1 = adj(B) adj(A).

Assume A is not invertible, and B is invertible.
(1) For t > 0, consider At = A + tIn. Then det(At) is a polynomial of degree n, and

hence det(Ac) = 0 has at most n solutions, say t1, t2, . . . , tn.
(2) If not all of t1, t2, . . . , tn are 0, then we can find δ > 0, such that

δ < min{|tk| | tk ̸= 0, 1 ≤ k ≤ n}. Then for any t ∈ (0, δ), det(At) ̸= 0;
If all of t1, t2, . . . , tn are 0, then choosing arbitrary positive real number δ, we will
have det(At) ̸= 0 for any t ∈ (0, δ).

(3) Based on the discussion above, we can find δ > 0, such that det(At) ̸= 0 for any
t ∈ (0, δ). Thus At is invertible for t ∈ (0, δ), and hence
adj(AtB) = adj(B) adj(At).
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Proof (Cont.)

(4) We use lij(t) and rij(t) denote adj(AtB)’s and adj(B) adj(At)’s (i, j)-entries,
respectively.

(5) It is obvious that lij(t) and rij(t) are polynomials in term of t, and hence they are
continuous. Since lij(t) = rij(t) for any t ∈ (0, δ), we have

lij(0) = lim
t→0

lij(t) = lim
t→0

rij(t) = rij(t),

and hence limt→0 At = A.
(6) By the similar method, we have limt→0 adj(AtB) = adj(AB), and hence

adj(AB) = lim
t→0

adj(AtB) = lim
t→0

adj(B) adj(At) = adj(B) adj(A).

Assume A and B are not invertible. Then by the similar method, we also have
adj(AB) = adj(B) adj(A).
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Abstract definition of vector space

A vector space (or linear space) consists of the following:
...1 a field F of scalars;
...2 a set V of objects, called vectors;
...3 an operation, called vector addition, which associated with each pair of vectors u,

v in V, called the sum of u and v, in such a way that
(1) addition is commutative, u + v = v + u;
(2) addition is associated, u + (v + w) = (u + v) + w;
(3) there is a unique vector 0 in V, called the zero vector, such that u + 0 = u for all

u ∈ V;
(4) for each vector u in V there is a unique vector −u in V such that u + (−u) = 0;

...4 an operation, called scalar multiplication, which associates with each scalar c in F
and a vector u in V a vector cu in V, called the product of c and u, in such a
way that
(1) 1u = u for all u in V;
(2) (c1c2)u = c1(c2u);
(3) c(u + v) = cu + cv;
(4) (c1 + c2)u = c1u + c2u.
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Change log

Page 96: Change “(t − 2, t + 3, t + 3)” to “(t + 2, t − 3, t − 3)”;
Page 101: Add a proof for adj(AB) = adj(B) adj(A).

Last modified: 00:30, February 19, 2011.
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Information of Mid-Term Test

Time: March 3rd, 18:00–19:00;
Venue: MPSH1;
Close book with 1 helpsheet;
Consultation: March 2nd, 3rd

Office: S17-06-14.
Mobile: 9053-5550.
Email: xiangsun@nus.edu.sg.
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Any question about last tutorial
Review concepts: Vector spaces:

Linear combination, linear span;
Subspace;
Linear independence.

Tutorial: 3.6, 3.12, 3.16, 3.18, 3.22, 3.23, 3.24
Additional material: 3.10(a), 3.20, 3.21
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Linear combination, linear span, and subspace
u1,u2, . . . ,uk are fixed vectors in Rn, and c1, c2, . . . , ck are real numbers.
c1u1 + c2u2 + · · ·+ ckuk is called a linear combination of u1,u2, . . . ,uk.
S = {u1,u2, . . . ,uk}: a (finite) subset of Rn. The set of all linear combinations
of u1,u2, . . . ,uk

{c1u1 + c2u2 + · · ·+ ckuk | c1, c2, . . . , ck ∈ R}

is called the linear span of u1,u2, . . . ,uk, or the linear span of S. Natation:
span{u1,u2, . . . ,uk} or span(S).
Let V be a subset of Rn. V is called a subspace of Rn if there exists a set
S = {u1,u2, . . . ,uk} of Rn such that V = span(S).

If V is a subspace of Rn, then the zero vector 0 ∈ V. (Hence a subspace can not be
empty.)
Let V be a subspace of Rn. If u1, u2, . . . , uk ∈ V, and c1, c2, . . . , ck ∈ R, then
c1u1 + c2u2 + · · · + ckuk ∈ V.

Exercise 3.21: Let V be a non-empty subset of Rn. V is a subspace iff V satisfies
the closed condition: for any u, v ∈ V and a, b ∈ R, au + bv ∈ V.

{0}, lines through the origin and R2 are all the subspaces of R2;
{0}, lines through the origin, planes containing the origin and R3 are all the subspaces
of R3.
The solution set of every homogeneous linear system is a subspace of Rn;
The solution set of every inhomogeneous linear system is not a subspace of Rn.
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Methods for proving or disproving subspace

We have FOUR methods for showing a subset V ⊂ Rn to be a subspace:
Express V as a linear span;
(By Exercise 3.21) show that V is non-empty and satisfies the closed condition;
Show that V is a solution set of some homogeneous linear system;
(For R2 and R3) show that V represents a line or plane through origin.

First two methods are general, while the last two are available for some special
cases.
We have FIVE methods for showing a subset V ⊂ Rn to be not a subspace:

Show that zero vector in not in V;
Find u, v ∈ V, such that u + v ̸∈ V;
Find u ∈ V and a scalar c ∈ R, such that cu ̸∈ V;
Show that V is a solution set of some inhomogeneous linear system;
(For R2 and R3) show that V is not a line or plane through origin.

First three methods are general, while the last two are available for some special
cases.
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Operations of subspaces

Let V and W be subspaces of Rn.
Define V + W = {v + w | v ∈ V,w ∈ W}, then V + W is a subspace of Rn. See
Exercise 3.10(a).
V ∩ W is a subspace of Rn. See Exercise 3.22(a).
V ∪ W is a subspace of Rn iff V ⊂ W or W ⊂ V. See Exercise 3.22(c).
Difference between V + W and V ∪ W: take V to be the x-axis, and W to be the
y-axis in R2. It is obvious that V and W are subspaces in R2.
By definition, we can see that V + W = R2: for any vector u ∈ R2, we can write
it as u = (x1, y1). Let v = x1(1, 0), w = y1(0, 1), then u = v + w. It is easy to
see v ∈ V and w ∈ W. Thus u ∈ V + W.
While V ∪ W is the union of the x-axis and the y-axis, which is not a subspace
because (1, 0) and (0, 1) are in V ∪ W, but (1, 1) not.
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Linear independence

Problem 3.2.13: Suppose u1,u2, . . . ,uk are vectors taken from Rn. Show that if
uk is a linear combination of u1,u2, . . . ,uk−1, then

span{u1,u2, . . . ,uk−1} = span{u1,u2, . . . ,uk−1,uk}.

Let S = {u1,u2, . . . ,uk} ⊂ Rn.
S is called a linearly independent set and u1, u2, . . . , uk are said to be linearly
independent if the vector equation

c1u1 + c2u2 + · · · + ckuk = 0

has only trivial solution, where c1, c2, . . . , ck are variables.
S is called a linearly dependent set and u1, u2, . . . , uk are said to be linearly dependent
if the vector equation

c1u1 + c2u2 + · · · + ckuk = 0

has non-trivial solution, where c1, c2, . . . , ck are variables.
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Linear independence (Cont.)

How to determine whether a subset is linearly independent or not?
Let S′ ⊂ S ⊂ Rn,

if S′ is linearly dependent, then S is linearly dependent;
if S is linearly independent, then S′ is linearly independent;

Let S = {u} ⊂ Rn, then S is linearly dependent iff u = 0;
Let S = {u, v} ⊂ Rn, then S is linearly dependent iff u = av for some a ∈ R or
v = bu for some b ∈ R;
Let S = {u1,u2, . . . ,uk} ⊂ Rn where k ≥ 2. Then

S is linearly dependent iff at least one vector ui ∈ S can be written as a linear
combination of other vectors in S;
S is linearly independent iff no vector in S can be written as a linear combination of
other vectors in S.

Let S = {u1,u2, . . . ,uk} ⊂ Rn. If k > n, then S is linearly dependent.
In Rn, 2 vectors u, v are linearly dependent iff they lie on the same line.
In Rn, 3 vectors u, v,w are linearly dependent iff they lie on the same plane.
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Exercise (3.6)
Determine which of the following are subspaces of R3. Justify your answer.
(a) {(0, 0, 0)}.
(b) {(1, 1, 1)}.
(c) {(0, 0, 0), (1, 1, 1)}.
(d) {(0, 0, c) | c is an integer}.
(e) {(0, 0, c) | c is a non-negative real number}.
(f) {(0, 0, c) | c is a real number}.
(g) {(1, 1, c) | c is a real number}.
(h) {(a, b, c) | a, b, c are real numbers and abc = 0}.
(i) {(a, b, c) | a, b, c are real numbers and a ≥ b ≥ c}.
(j) {(a, b, c) | a, b are real numbers and 4a = 3b}.
(k) {(a, b, b) | a, b are real numbers}.
(l) {(a, b, ab) | a, b are real numbers}.

(m) {(a2, b2, c2) | a, b, c are real numbers}.
(n) {(a3, b3, c3) | a, b, c are real numbers}.

Recall
.. Methods for proving or disproving subspace
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Solution.

(a) Yes. {0} = span{0} is a subspace of Rn.
(b) No. It does not contain the zero vector.
(c) No. (1, 1, 1) belongs to the set but 2(1, 1, 1) does not.
(d) No. (0, 0, 1) belongs to the set but 1

2
(0, 0, 1) does not.

(e) No. (0, 0, 1) belongs to the set but −(0, 0, 1) does not.
(f) Yes. It is span{(0, 0, 1)}.
(g) No. It does not contain the zero vector.
(h) No. (1, 1, 0) and (0, 0, 1) belong to the set but (1, 1, 0) + (0, 0, 1) = (1, 1, 1) does

not.
(i) No. (3, 2, 1) belongs to the set but −(3, 2, 1) does not.
(j) Yes. It is a solution set of a homogeneous linear system.
(k) Yes. It is span{(1, 0, 0), (0, 1, 1)}.
(l) No. (1, 1, 1) belongs to the set but 2(1, 1, 1) does not.

(m) No. (1, 1, 1) belongs to the set but −(1, 1, 1) does not.
(n) Yes. It is R3, and hence a subspace.
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Exercise (3.12)
Let A be an n × n matrix. Define V = {u ∈ Rn | Au = u}.
(a) Show that V is a subspace of Rn.

(b) Let A =

1 0 −1
0 1 0
0 0 −1

. Write down the subspace V explicitly.

Proof and Solution.

(a) Since Au = u ⇔ (A − I)u = 0, V is the solution set of the homogeneous system
(A − I)u = 0. By Theorem 3.2.9, V is a subspace of Rn.

(b) A − I =

0 0 −1
0 0 0
0 0 −2

. A general solution of

0 0 −1
0 0 0
0 0 −2

x
y
z

 =

0
0
0

 is

x = s, y = t, z = 0, where s, t ∈ R. So V = {(s, t, 0) | s, t ∈ R}, i.e. V is the
xy-plane in R3.
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Exercise (3.16)
Let u1 = (2, 0, 2,−4), u2 = (1, 0, 2, 5), u3 = (0, 3, 6, 9), u4 = (1, 1, 2,−1),
v1 = (−1, 2, 1, 0), v2 = (3, 1, 4, 0), v3 = (0, 1, 1, 3), v4 = (−4, 3,−1, 6). Determine if
the following are true.
(a) span{u1,u2,u3,u4} ⊂ span{v1, v2, v3, v4}.
(b) span{v1, v2, v3, v4} ⊂ span{u1,u2,u3,u4}.
(c) span{u1,u2,u3,u4} = R4.
(d) span{v1, v2, v3, v4} = R4.

Method
Apply the method in Example 3.2.12.

Solution.

(a) By Gaussian elimination


−1 3 0 −4 2 1 0 1
2 1 1 3 0 0 3 1
1 4 1 −1 2 2 6 2
0 0 3 6 −4 5 9 −1

→


−1 3 0 −4 2 1 0 1
0 7 1 −5 4 2 3 3
0 0 3 6 −4 5 9 −1
0 0 0 0 0 1 3 0

, we know

u2,u3 ̸∈ span{v1, v2, v3, v4}, and hence
span{u1,u2,u3,u4} ̸⊂ span{v1, v2, v3, v4}
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Solution (Cont.)

(b) By Gaussian elimination


2 1 0 1 −1 3 0 −4
0 0 3 1 2 1 1 3
2 2 6 2 1 4 1 −1
0 5 9 −1 0 0 3 6

→


2 1 0 1 −1 3 0 −4
0 1 6 1 2 1 1 3
0 0 3 1 2 1 1 3
0 0 0 1 4 2 5 12

, we know

v1, v2, v3, v4 ∈ span{u1,u2,u3,u4}, and hence
span{v1, v2, v3, v4} ⊂ span{u1,u2,u3,u4}.

(c) Based on the same process, for any vector in R4, it is a linear combination of
u1,u2,u3,u4, and hence span{u1,u2,u3,u4} = R4.

(d) Based on the same process, there exists a vector in R4, which is not a linear
combination of v1, v2, v3, v4, and hence span{v1, v2, v3, v4} ̸= R4.
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Exercise (3.18)
Let u, v,w be the vectors and let

S1 = {u, v}, S2 = {u − v, v − w,w − u}, S3 = {u − v, v − w,u + w},

S4 = {u,u + v,u + v + w}, S5 = {u + v, v + w,u + w,u + v + w}.

(a) Suppose u, v,w are vectors in R3 such that span{u, v,w} = R3. Determine which
of the sets above span R3.

(b) Suppose u, v,w are linearly independent vectors in Rn. Determine which of the
sets above are linearly independent.
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Solution of (a).

Note that span(S1) is a plane in R3. So S1 does not span R3.
Since w − u = −(u − v)− (v − w), span(S2) = span{u − v, v − w} which is also
a plane in R3. So S2 does not span R3.
Note that span(S3) ⊂ R3, and

u =
1

2

[
(u − v) + (v − w) + (u + w)

]
,

v =
1

2

[
− (u − v) + (v − w) + (u + w)

]
,

w =
1

2

[
− (u − v)− (v − w) + (u + w)

]
.

Thus R3 = span{u, v,w} ⊂ span{u − v, v − w,u + w}, and hence
span(S3) = R3.
Using the same argument as for S3, we can show that both S4 and S5 also span
R3.
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Solution of (b).

If there exist a, b ∈ R, which are not both 0, such that au + bv = 0, then
au + bv + 0w = 0, i.e. u, v,w are linearly dependent, contradiction.
Since (u − v) + (v − w) + (w − u) = 0, they are linearly dependent.
Suppose a(u − v) + b(v − w) + c(w + u) = 0, it is equivalent to
(a + c)u + (−a + b)v + (−b + c)w = 0. Since u, v,w are linearly independent, we

have


a + c = 0

−a + b = 0

−b + c = 0

. It is obvious that this system has only trivial solution, i.e.

u − v, v − w,w + u are linearly independent.
By similarly method, we have that S4 is linearly independent.
Since (u + v) + (v + w) + (u + w)− 2(u + v + w) = 0, S5 is linearly independent.
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Exercise (3.22)
Let V and W be subspaces of Rn.
(a) Show that V ∩ W is a subspace of Rn.
(b) Give an example of V and W in R2 such that V ∪ W is not a subspace.
(c) Show that V ∪ W is a subspace of Rn iff V ⊂ W or W ⊂ V.

Proof of part (a) and Solution of part (b).

(a) We use the result of Exercise 3.21 to prove that V ∩ W is a subspace of Rn:
(1) Since both V and W contain the zero vector, the zero vector is contained in V ∩ W and

hence V ∩ W is nonempty.
(2) Let u and v be any two vectors in V ∩ W and let a and b be any real numbers. Since u

and v are contained in V, au + bv is also contained in V. Similarly, au + bv is also
contained in W. Thus au + bv is contained in V ∩ W.

By the result of Exercise 3.21, V ∩ W is a subspace of Rn.
(b) Let V = {(x, 0) | x ∈ R} and W = {(0, y) | y ∈ R}. Then both V and W are lines

through the origin and hence are subspaces of Rn. But V ∩ W is a union of two
lines which is not a subspace of Rn.
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Proof of part (c).

(⇐) If V ⊂ W, then V ∪ W = W is a subspace of Rn; if W ⊂ V, then W ∪ V = V is a
subspace of Rn.

(⇒) (1) Suppose V ̸⊂ W. We want to show that W ⊂ V.
(2) Take any vector x ∈ W, we want to show x ∈ V.
(3) Since V ̸⊂ W, there exists a vector y ∈ V but y ̸∈ W.
(4) Since V ∪ W is a subspace of Rn and x, y ∈ V ∪ W, we have x + y ∈ V ∪ W,

i.e. either x + y ∈ V or x + y ∈ W.
(5) If x + y ∈ W. As W is a subspace of Rn, we have y = (x + y)− x ∈ W

which contradict that y ̸∈ W as mentioned above.
(6) Now we know that x + y ∈ V. As V is a subspace of Rn, we have

x = (x + y)− y ∈ V.
(7) Since every vector in W must be contained in V, W ⊂ V.
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Exercise (3.23)
(All vectors in this question are column vectors.) Let u1,u2, . . . ,uk be vectors in Rn

and A an n × n matrix.
(a) Show that if Au1,Au2, . . . ,Auk are linearly independent, then u1,u2, . . . ,uk are

linearly independent.
(b) Suppose u1,u2, . . . ,uk are linearly independent.

Show that if A is invertible, then Au1, Au2, . . . , Auk are linearly independent.
If A is not invertible, are Au1,Au2, . . . , Auk linearly independent?

Proof of part (a).
Suppose c1u1 + c2u2 + · · ·+ ckuk = 0, then

c1Au1 + c2Au2 + · · ·+ ckAuk = A(c1u1 + c2u2 + · · ·+ ckuk) = 0.

Since Au1,Au2, . . . ,Auk are linearly independent, we have c1 = c2 = · · · = ck = 0,
i.e. u1,u2, . . . ,uk are linearly independent.
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Proof of part (b).

(1) Suppose c1Au1 + c2Au2 + · · · + ckAuk = 0, then
A(c1u1 + c2u2 + · · · + ckuk) = 0.

(2) Since A is invertible, c1u1 + c2u2 + · · · + ckuk = 0.
(3) Since u1, u2, . . . , uk are linearly independent, we have c1 = c2 = · · · = ck = 0, and

hence Au1, Au2, . . . , Auk are linearly independent.
No conclusion. For example, let u1 = (1, 0, 0)T and u2 = (0, 1, 0)T: It is obvious
that u1 and u2 are linearly independent.

If A =

1 0 0
0 1 0
0 0 0

, then Au1 and Au2 are linearly independent.

If A =

0 0 0
0 0 0
0 0 0

, then Au1 and Au2 are linearly dependent.
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Exercise (3.24)
Determine which of the following statements are true. Justify your answer.
(a) R2 is a subspace of R3.
(b) The solution set of x + 2y − z = 0 is a subspace of R3.
(c) The solution set of x + 2y − z = 1 is a subspace of R3.
(d) If u, v are nonzero vectors in R2 such that u ̸= v, then span{u, v} = R2.
(e) If S1 and S2 are two subsets of a vector space, then

span(S1 ∩ S2) = span(S1) ∩ span(S2).
(f) If S1 and S2 are two subsets of a vector space, then

span(S1 ∪ S2) = span(S1) ∪ span(S2).
(g) If S1 and S2 are two subsets of a vector space, then

span(S1 ∪ S2) = span(S1) + span(S2).
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Proof.

(a) False. R2 is not even a subset of R3. (We can only say that the xy-plane
{(x, y, 0) | x, y ∈ R} is a subspace of R3.)

(b) The equation x + 2y − z = 0 forms a homogeneous system of linear equations.
(c) False. Note that (0, 0, 0) is not a solution of ax + by + cz = 1.
(d) False. For example, let u = (1, 1), v = (2, 2).
(e) False. For example, let S1 = {(1, 0), (0, 1)},S2 = {(1, 0), (0, 2)}.
(f) False. For example, let S1 = {(1, 0)},S2 = {(0, 1)}.
(g) True.

For any element u of span(S1 ∪ S2), it can be expressed as a linear combination of
S1 ∪ S2. Hence, u = u1 + u2 where u1 ∈ span(S1) and u2 ∈ span(S2).
For any elements u1 ∈ span(S1) and u2 ∈ span(S2), u1 + u2 is a linear combination
of S1 ∪ S2.
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Exercise (3.10(a))
Let V and W be subspaces of Rn. Define V + W = {v + w | v ∈ V,w ∈ W}. Then
V + W is a subspace of Rn.

Proof.
We use the result of Exercise 3.21 to prove that V + W is a subspace of Rn:
(1) Since both V and W contain the zero vector, the zero vector is contained in

V + W and hence V + W is nonempty.
(2) Let u and v be any two vectors in V + W and let a and b be any real numbers.

Then u and v can be expressed as u = u1 + u2 and v = v1 + v2, where
u1, v1 ∈ V and u2, v2 ∈ W.

au + bv = (au1 + bv1) + (au2 + bv2)

is contained in V + W.
By the result of Exercise 3.21, V + W is a subspace of Rn.
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Exercise (3.20)
Let u, v,w be vectors in R3 such that V = span{u, v} and W = span{u,w} are
planes in R3. Find V ∩ W if
(a) u, v,w are linearly independent.
(b) u, v,w are not linearly independent.

Solution.

(a) If {u, v,w} are linearly independent, then the two planes V and W intersect at
the line spanned by u and hence V ∩ W = span{u}.

(b) V and W are planes in R3. So u, v are linearly independent and u,w are linearly
independent. If u, v,w are linearly dependent, then u, v,w must lie on the same
plane and hence V = W = V ∩ W.
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Exercise (3.21)
Let V be a non-empty subset of Rn. Show that V is a subspace iff for any u, v ∈ V
and a, b ∈ R, au + bv ∈ V.

Proof.

(⇒) If V is a subspace of Rn, then by Theorem 3.2.5.2, for any u, v ∈ V and a, b ∈ R,
au + bv ∈ V.

(⇐) ...1 Suppose for any u, v ∈ V and a, b ∈ R, au + bv ∈ V.
...2 Take a = b = 0, then we know that zero vector 0 ∈ V.
...3 If V = {0}, then V is a subspace of Rn, see Remark 3.2.4.1.
...4 Suppose V ̸= {0}. Since V is a non-empty subset of Rn, it has at least 1 and at most

n linearly independent vectors, see Theorem 3.3.9.
...5 Let S be a largest set of linearly independent vectors in V. Then span(S) = V; if not,

there exists v ∈ V but v ̸∈ span(S), and by Problem 3.3.11, S ∪ {v} is linearly
independent which violates our assumption on S

...6 So V is a subspace of Rn.
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Change log

Page 109: Add a slide for “operations of subspaces”;
Page 114: Revise a typo: “m × n” to “n × n”;
Page 119: Revise a mistake.

Last modified: 11:45, March 4, 2011.
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Schedule of Tutorial 6

Any question about last tutorial
Review concepts: Vector spaces:

Bases, coordinate vector relative to a basis;
Dimension;
Transition matrix.

Tutorial: 3.25, 3.28, 3.31, 3.32, 3.33, 3.36
Additional material:

3.35, 3.37;
Question 6 in Final 2001–2002(I);
Question 3 in Final 2001–2002(II);
Question 4 in Final 2004–2005(II);
Question 6(C) in Final 2005–2006(I);
Question 1(C) in Final 2008–2009(II).
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Review

Bases

Let u1,u2, . . . ,uk be linearly independent vectors in Rn. Suppose uk+1 is a
vector in Rn, and not a linear combination of u1,u2, . . . ,uk. Then
u1,u2, . . . ,uk,uk+1 are linearly independent.
Let S = {u1,u2, . . . ,uk} be a subset of a vector space V. S is called a basis for
V if

...1 S is linearly independent;

...2 S spans V.

A basis for a vector space V contains the smallest possible number of vectors that
can span V.
Existence of bases: Problem 3.4.8:

...1 Suppose S ⊂ V and span(S) = V, then there exists S′ ⊂ S, such that S′ is a basis
for V. (Remove “redundant” vectors form S repeatedly.)

...2 Suppose T is a set of linearly independent vectors in V. Then there exists a basis T′

for V such that T ⊂ T′. (Add in suitable vectors to T repeatedly.)
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Bases (Cont.)

Theorem 3.4.5: Let S = {u1,u2, . . . ,uk} be a basis for a vector space V, then
every vector v ∈ V can be expressed in the form v = c1u1 + c2u2 + · · ·+ ckuk in
exactly one way, where c1, c2, . . . , ck ∈ R.
Let S = {u1,u2, . . . ,uk} be a basis for a vector space V and v ∈ V.

If v = c1u1 + c2u2 + · · · + ckuk, then the coefficients c1, c2, . . . , ck are called the
coordinates of v relative to the basis S.
The vector (v)S = (c1, c2, . . . , ck) ∈ Rk is called the coordinate vector of v relative to
the basis S.

Except the zero space, any vector space has infinitely many different bases.
For example, for any x ̸= 0, {(x, 0), (0, x)} is a basis for R2.
S = {e1, e2, . . . , en}, where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, is the standard
basis for Rn, and we have

(u)S = (u1, u2, . . . , un) = u.
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Dimension

Theorem 3.5.1: Let V be a vector space which has a basis with k vectors. Then
any subset of V with more than k vectors is always linearly dependent;
any subset of V with less than k vectors can not span V.

Definition 3.5.3: The dimension of a vector space V, denoted by dim(V), is
defined to be the number of vectors in a basis for V. In addition, we define the
dimension of the zero space to be zero.
dim(Rn) = n for any n ∈ N.
Theorem 3.5.6: Let V be a vector space of dimension k and S a subset of V. The
following are equivalent:
(1) S is a basis for V;
(2) S is linearly independent, and |S| = k = dim(V);
(3) S spans V, and |S| = k = dim(V).

Theorem 3.5.8: Let A be an n × n matrix. The following statements are
equivalent:
(1) A is invertible;
(2) The linear system Ax = 0 has only trivial solution;
(3) The RREF of A is an identity matrix;
(4) A can be expressed as a product of elementary matrices;
(5) det(A) ̸= 0;
(6) The rows of A form a basis for Rn;
(7) The columns of A form a basis for Rn.
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Review

How to

How to prove S to be a basis for a vector space V:
(1) S ⊂ V;

(2-1) S is linearly independent;
(2-2) S spans V;
(2-3) |S| = dim(V).
If we show that the Condition (1) and any two of the Conditions (2-1), (2-2) and
(2-3) are satisfied, then S is a basis for V.
For Rn, if |u1,u2, · · · ,un| ̸= 0, then {u1,u2, . . . ,un} is a basis for Rn.
How to find a basis for a subspace V: express a general vector in V as a linear
combination.
How to compute dimension for a vector space: find a basis first.
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Transition matrices
Let S = {u1,u2, . . . ,uk} be a basis for a vector space V and v be a vector in V.
If v = c1u1 + c2u2 + · · ·+ ckuk, then the vectors

(v)S = (c1, c2, . . . , ck), [v]S =


c1
c2
...

ck


are called the coordinate vector of v relative to S.
Let S = {u1,u2, . . . ,uk} and T = {v1, v2, . . . , vk} be two bases for a vector
space V. Then for any w ∈ V, we have

[w]T =
(
[u1]T, [u2]T, . . . , [uk]T

)
[w]S.

Hence the matrix
P =

(
[u1]T, [u2]T, . . . , [uk]T

)
is called the transition matrix from S to T.
Let S and T be two bases of a vector space and let P be the transition matrix
from S to T. Then

P is invertible;
P−1 is the transition matrix from T to S.
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Exercise (3.25)
Determine which of the following sets are bases for R3.
(a) S1 = {(1, 0,−1), (−1, 2, 3)}.
(b) S2 = {(1, 0,−1), (−1, 2, 3), (0, 3, 0)}.
(c) S3 = {(1, 0,−1), (−1, 2, 3), (0, 3, 3)}.
(d) S4 = {(1, 0,−1), (−1, 2, 3), (0, 3, 0), (1,−1, 1)}.

Solution.

(a) No. There are too few vectors. (|S1| = 2 < 3 = dim(R3))
(b) Yes. S2 ⊂ R3, S2 is linearly independent (easy to check), and

|S2| = 3 = dim(R3).
(c) No. S3 is linearly dependent: 3(1, 0,−1) + 3(−1, 2, 3)− 2(0, 3, 3) = (0, 0, 0).
(d) No. There are too many vectors. (|S4| = 4 > 3 = dim(R3))
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Exercise (3.28)
Let V = {(a + b, a + c, c + d, b + d) | a, b, c, d ∈ R} and
S = {(1, 1, 0, 0), (1, 0,−1, 0), (0,−1, 0, 1)}.
(a) Show that V is a subspace of R4 and S is a basis for V.
(b) Find the coordinate vector of u = (1, 2, 3, 2) relative to S.
(c) Find a vector v such that (v)S = (1, 3,−1).

Proof.

(a) V = {a(1, 1, 0, 0) + b(1, 0, 0, 1) + c(0, 1, 1, 0) + d(0, 0, 1, 1) | a, b, c, d ∈ R} =
span{(1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1)} and hence is a subspace of R4.
It is easy to see that S ⊂ V, S is linearly independent and

span(S) = span{(1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1)} = V.

So S is a basis for V.
(b) Let (1, 2, 3, 2) = c1(1, 1, 0, 0) + c2(1, 0,−1, 0) + c3(0,−1, 0, 1). Then we will get

c1 = 4, c2 = −3 and c3 = 2, that is, the coordinate vector of u relative to S is
(4,−3, 2).

(c) v = 1(1, 1, 0, 0) + 3(1, 0,−1, 0)− 1(0,−1, 0, 1) = (4, 2,−3,−1).
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Exercise (3.31)
Let {u1,u2,u3} be a basis for a vector space V. Determine whether {v1, v2, v3} is a
basis for V if
(a) v1 = u1, v2 = u1 + u2, v3 = u1 + u2 + u3.
(b) v1 = u1 − u2, v2 = u2 − u3, v3 = u3 − u1.

Solution.
(a) v1, v2, v3 ∈ V, since V is a vector space;

(1) Suppose c1v1 + c2v2 + c3v3 = 0. Then

(c1 + c2 + c3)u1 + (c2 + c3)u2 + c3u3 = 0.

(2) Since u1, u2, u3 are linearly independent, c1 + c2 + c3 = c2 + c3 = c3 = 0, and
hence c1 = c2 = c3 = 0.

(3) Hence, v1, v2, v3 are linearly independent.
dim(V) = 3 = |{v1, v2, v3}|.

Hence, {v1, v2, v3} is a basis for V.
(b) Since v1 + v2 + v3 = 0, they are linearly dependent. Hence, {v1, v2, v3} is not a

basis for V.
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Exercise (3.32)
Let S = {u1,u2,u3}, where u1 = (3,−2, 5), u2 = (1,−4, 4), u3 = (0, 3,−2).
(a) Show that S is a basis for R3.
(b) Show that T = {u1 − u2,u1 + 2u2 − u3,u2 + 2u3} is also a basis for R3.
(c) Find the coordinate vector of v = (1, 0, 1) relative to S.
(d) Find a vector w in R3 such that (w)T = (1, 0, 1).
(e) Find the transition matrix from T to S and the transition matrix from S to T.
(f) Let x be a vector in R3 such that (x)T = (1, 1, 2). Find (x)S.

Proof of parts (a,b).

(a) Since

∣∣∣∣∣∣
3 1 0
−2 −4 3
5 4 −2

∣∣∣∣∣∣ = −1, by Theorem 3.5.8, S is a basis for R3.

(b) ...1 T ⊂ R3;
...2 Let c1(u1 − u2) + c2(u1 + 2u2 − u3) + c3(u2 + 2u3) = 0. Then

(c1 + c2)u1 + (−c1 + 2c2 + c3)u2 + (−c2 + 2c3)u3 = 0. By part (a), S is linearly

independent, thus


c1 + c2 = 0

−c1 + 2c2 + c3 = 0.

−c2 + 2c3 = 0

The system has only the trivial solution. So T is linearly independent.
...3 dim(R3) = 3 = |T|.

Hence, T is a basis for R3.
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Solution of parts (c–f).

(c) Let v = c1u1 + c2u2 + c3u3. Then we need to solve the linear system:
3c1 + c2 = 1

−2c1 − 4c2 + 3c3 = 0.

5c1 + 4c2 − 2c3 = 1

By Gaussian elimination, we get c1 = 1, c2 = −2 and c3 = −2. Hence
(v)S = (1,−2,−2).

(d) w = 1(u1 − u2) + 0(u1 + 2u2 − u3) + 1(u2 + 2u3) = (3, 4, 1).
(e) The transition matrix from T to S is P =

(
[v1]S, [v2]S, [v3]S

)
. Since

[v1]S =

 1
−1
0

, [v2]S =

 1
2
−1

 and [v3]S =

0
1
2

. Thus P =

 1 1 0
−1 2 1
0 −1 2

,

and hence the transition matrix from S to T is P−1 = 1
7

5 −2 1
2 2 −1
1 1 3

. s

(f) [x]S = P[x]T =

2
3
3

, hence (x)S = [x]TS = (2, 3, 3).
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Exercise (3.33)
Let V = {(x, y, z) | 2x − y + z = 0}, S = {(0, 1, 1), (1, 2, 0)},
T = {(1, 1,−1), (1, 0,−2)}.
(a) Show that both S and T are basis for V.
(b) Find the transition matrix from T to S and the transition matrix from S to T.
(c) Show that S′ = S ∪ {(2,−1, 1)} is a basis for R3.

Proof of parts (a,c).

(a) S ⊂ V.
Since V = {(x, y, z) | 2x − y + z = 0} = {(x, 2x + z, z) | x, z ∈ R} =
span{(1, 2, 0), (0, 1, 1)} = span(S), S spans V.
It is obvious that S is linearly independent.

Hence, S is a basis for V.
Similarly, we have that T is linearly independent. Since T ⊂ V and
dim(V) = |S| = 2 = |T|, T is also a basis for V.

(c) Since (2,−1, 1) does not satisfy the equation 2x − y + z = 0, it can not be
expressed as a linear combination of S, i.e., S′ is linearly independent. As
dim(R3) = 3, S′ is a basis for R3.
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Solution of part (b).
...1 By Gauss-Jordan elimination, we have 0 1 1 1

1 2 1 0
1 0 −1 −2

→

 1 0 −1 −2
0 1 1 1
0 0 0 0


...2 Thus [(1, 1,−1)]S =

(
−1
1

)
and [(1, 0,−2)]S =

(
−2
1

)
.

...3 The transition matrix from T to S is
(
−1 −2
1 1

)
.

...4 And hence the transition matrix from S to T is
(
−1 −2
1 1

)−1

=

(
1 2
−1 −1

)
.
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Exercise (3.36)
Let V and W be subspaces of Rn. Show that
dim(V + W) = dim(V) + dim(W)− dim(V ∩ W).

Proof.

Let {u1, . . . ,uk} be a basis for V ∩ W. By Problem 3.4.8.2, there exists vectors
v1, . . . , vm ∈ V such that {u1, . . . ,uk, v1, . . . , vm} is a basis for V and there
exists vectors w1, . . . ,wn ∈ W such that {u1, . . . ,uk,w1, . . . ,wn} is a basis for
W. It is easy to see that V + W = span{u1, . . . ,uk, v1, . . . , vm,w1, . . . ,wn}.
Consider a1u1 + · · ·+ akuk + b1v1 + · · ·+ bmvm + c1w1 + · · ·+ cnwn = 0 (∗).
Since c1w1 + · · ·+ cnwn = −(a1u1 + · · ·+ akuk + b1v1 + · · ·+ bmvm) ∈ V ∩ W,
there exists d1, . . . , dk ∈ R such that c1w1 + · · ·+ cnwn = d1u1 + · · ·+ dkuk,
i.e., c1w1 + · · ·+ cnwn − d1u1 − · · · − dkuk = 0. As {u1, . . . , uk,w1, . . . ,wn} is
linearly independent, c1 = · · · = cn = d1 = · · · = dk = 0.
Substituting c1 = · · · = cn = 0 into (∗), we have
a1u1 + · · ·+ akuk + b1v1 + · · ·+ bmvm = 0. As {u1, . . . ,uk, v1, . . . , vm} is
linearly independent, a1 = · · · = ak = b1 = · · · = bm = 0.
So (∗) has only the trivial solution and hence
{u1, . . . ,uk, v1, . . . , vm,w1, . . . ,wn} is linearly independent. We have shown that
{u1, . . . ,uk, v1, . . . , vm,w1, . . . ,wn} is a basis for V + W.
Thus dim(V + W) = k + m + n = dim(V) + dim(W)− dim(V ∩ W).
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Exercise (3.35)
Let V be a vector space of dimension of n. Show that there exists n + 1 vectors
u1,u2, . . . ,un,un+1 such that every vector in V can be expressed as a linear
combination of u1,u2, . . . ,un+1 with non-negative coefficients.

Proof.

Take a basis {u1,u2, . . . ,un} for V. Define un+1 = −u1 − u2 − · · · − un.
For any v ∈ V, v = a1u1 + a2u2 + · · ·+ anun for some a1, a2, . . . , an ∈ R.
Let a = min{0, a1, a2, . . . , an}. Then
v = (a1 − a)u1 + (a2 − a)u2 + · · ·+ (an − a)un + (−a)un+1 where ai − a ≥ 0,
for i = 1, 2, . . . ,n, and −a ≥ 0.
So every vector in V can be expressed as a linear combination of
u1,u2, . . . ,un,un+1 with non-negative coefficients.
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Exercise (3.37)
Determine which of the following statements are true. Justify your answer.
(a) If S1 and S2 are basis for V and W respectively, where V and W are subspaces of

a vector space, then S1 ∩ S2 is a basis for V ∩ W.
(b) If S1 and S2 are basis for V and W respectively, where V and W are subspaces of

a vector space, then S1 ∪ S2 is a basis for V + W.
(c) If V and W are subspace of a vector space, then there exists a basis S1 for V and

a basis S2 for W such that S1 ∩ S2 is a basis for V ∩ W.
(d) If V and W are subspace of a vector space, then there exists a basis S1 for V and

a basis S2 for W such that S1 ∪ S2 is a basis for V + W.

Solution.

(a) False. For example, let S1 = {(1, 0), (0, 1)} and S2 = {(1, 0), (0, 2)} where
V = W = R2.

(b) False. For example, let S1 = {(1, 0)} and S2 = {(1, 1), (0, 1)} where
V = span(S1) and W = V + W = R2. Note that S1 ∪ S2 is linearly dependent.

(c) True. See the proof of Exercise 3.36.
(d) True. See the proof of Exercise 3.36.
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Exercise (Question 6 in Final 2001–2002(I))
Let S = {v1, v2, v3} be a basis of R3 and let u1 = av1 + bv2 + cv3,
u2 = dv1 + ev2 + fv3, u3 = gv1 + hv2 + kv3. Suppose thata d g

b e h
c f k


is invertible. Prove that {u1,u2,u3} is a basis of R3.

Proof.

It is easy to see
(
u1 u2 u3

)
=
(
v1 v2 v3

)a d g
b e h
c f k

.

Thus det
(
u1 u2 u3

)
= det

(
v1 v2 v3

)
det

a d g
b e h
c f k

 ̸= 0.

Therefore u1,u2,u3 are linearly independent.
Since {u1,u2,u3} ⊂ R3 and |{u1,u2,u3}| = 3 = dim(R3), we have that {u1,u2,u3}
is a basis of R3.
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Exercise (Question 3 in Final 2001–2002(II))
Let W be the real vector space of all 3× 3 symmetric matrices. Find a basis of W.
Justify your answers.

Solution.

...1 A =

a b c
b d e
c e f

 is the typical element of W.

...2 A = a

1 0 0
0 0 0
0 0 0

+ b

0 1 0
1 0 0
0 0 0

+ c

0 0 1
0 0 0
1 0 0

+ d

0 0 0
0 1 0
0 0 0

+

e

0 0 0
0 0 1
0 1 0

+ f

0 0 0
0 0 0
0 0 1


...3 These 6 matrices are linearly independent (by definition).
...4 Hence, the set consisting of these 6 matrices is a basis of W.
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Exercise (Question 4 in Final 2004—2005(II))
Let A be a basis of Rn with det(A) = 0 and let {v1, v2, . . . , vn} be a basis of Rn.
Prove that {Av1,Av2, . . . ,Avn} is linearly dependent.

Proof.
Since (

Av1 Av2 · · ·Avn
)
= A

(
v1 v2 · · · vn

)
,

we have

det
(
Av1 Av2 · · ·Avn

)
= det(A)det

(
v1 v2 · · · vn

)
= 0.

Therefore {Av1,Av2, . . . ,Avn} is linearly dependent.
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Exercise (Question 6(c) in Final 2005–2006(I))
Let S = {x1, x2, . . . , xn} be a basis for a vector space V. Show that

T = {x1 + x2, x2 + x3, . . . , xn−1 + xn, xn + x1}

is a basis for V if and only if n is odd.

Proof.
It is easy to obtain(

x1 + x2 x2 + x3 · · · xn−1 + xn xn + x1
)
=
(
x1 x2 · · · xn

)
A,

where A =



1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 1 1


.

(⇒) If n is odd, det(A) = 1 + (−1)1+n = 2 ̸= 0. Thus T is a basis.
(⇐) If n is even, det(A) = 1 + (−1)1+n = 2. Thus T is not a basis.
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Exercise (Question 1(c) in Final 2008–2009(II))
Give an example of a family of subspaces V1,V2, . . . ,Vn of Rn such that dim(Vi) = i
for i = 1, 2, . . . ,n and V1 ⊂ V2 ⊂ · · · ⊂ Vn. Justify your answer.

Solution.
For any i = 1, 2, . . . ,n, let

Vi = {(x1, x2, x3, . . . , xn) | xi+1 = xi+2 = · · · = xn = 0}.
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Schedule of Tutorial 7

Any question about last tutorial
Review concepts: Vector spaces associated with matrices:

Row spaces and Column spaces;
Rank and Nullity.

Tutorial: 4.11, 4.16, 4.20, 4.21, 4.23, 4.27
Additional material:

Rank inequalities;
4.7, 4.8, 4.13, 4.17, 4.18, 4.24, 4.25, 4.26;
Question 2 in Final of 2001–2002(II);
Question 4 in Final of 2005–2006(II);
Question 8 in Final of 2006–2007(I);
7a, 7b, 7c, 7d.
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Review

Row spaces, Column spaces, and Nullspaces

Def Let A be an m × n matrix. The row space of A is the subspace of Rn spanned by
the rows of A. The column space of A is the subspace of Rm spanned by the
columns of A.
Let A and B be row equivalent matrices, then the row space of A = the row
space of B.
Let A and B be row equivalent matrices. Then the following statements hold:

A given set of columns of A is linearly independent iff the set of corresponding columns
of B is linearly independent;
A given set of columns of A forms a basis for the column space of A iff the set of
corresponding columns of B forms a basis for the column space of B.

Def A ∈ Rm×n. The solution space of the homogeneous system of linear equations
Ax = 0 is called nullspace of A, and dim(nullspace of A) is called the nullity of
A, denoted by nullity(A).
The row spaces of A and B are same iff the nullspaces of A and B are same.
(We will prove this result in the Chapter 5.)
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Review

Rank

For simplicity, we use Rm×n to denote the sets of all m × n matrices.
For a matrix A, dim(row space of A) = dim(column space of A).

Def The rank of matrix A is the dimension of its row space (or column space),
denoted by rank(A).
If R is a REF of A, then

rank(A) = (# non-zero rows of R) = (# leading entries of R)

= (# pivot columns of R) = (# pivot points of R)

= largest # of linearly independent rows (or columns) in A

A ∈ Rm×n, then rank(A) ≤ min{m,n}. If rank(A) = min{m,n}, then A is
said to be of full rank.
A ∈ Rm×n, then rank(A) = rank(AT).
B is a submatrix of A, then rank(B) ≤ rank(A).
A ∈ Rm×n, then rank(A) + nullity(A) = (# columns of A) = n.
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Review

Relation between rank and invertibility, rank and consistency

A square matrix A is of full rank iff det(A) ̸= 0.
Structure Theorem for homogeneous systems: Let A ∈ Rm×n, and rank(A) = r.
Then

if r = n, Ax = 0 has the only trivial solution;
if r < n, Ax = 0 has nontrivial solutions, depending on n − r parameters.

Consistency Theorem for inhomogeneous systems: Let A ∈ Rm×n, Ax = b is
consistent iff

rank(A) = rank(A | b).

Structure Theorem for inhomogeneous systems: Let A ∈ Rm×n, and
rank(A) = r. Assume the linear system Ax = b is consistent. Then

if r = n, Ax = b has unique solution;
if r < n, the general solution depends on n − r parameters; and a general solution x
has the form

(a general solution for Ax = 0) + (one particular solution to Ax = b).
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Tutorial

Exercise (4.11)

Let A be the 3× 5 matrix

 1 − 1
2

0 1 2
2 −1 3 5 7
−4 2 1 −3 −7

. Show that (−3, 0,−1, 1, 1)T,

(−1, 2,−1, 0, 1)T, (0, 2, 0,−1, 1)T form a basis for the nullspace of A.

Proof.
...1 It is easy to check that each of the three given vectors satisfy the linear system

Ax = 0. Hence the three vectors are contained in the nullspace of A.
...2 Applying the working definition, assume

c1(−3, 0,−1, 1, 1) + c2(−1, 2,−1, 0, 1) + c3(0, 2, 0,−1, 1) = (0, 0, 0, 0, 0). By
solving the linear system, we have c1 = c2 = c3 = 0, hence the three vectors are
linearly independent.

...3 By Gaussian elimination, 1 − 1
2

0 1 2
2 −1 3 5 7
−4 2 1 −3 −7

→

1 − 1
2

0 1 2
0 0 0 1 1
0 0 0 0 0

 .

Thus rank(A) = 2 and hence nullity(A) = 5− 2 = 3.
By Theorem 3.5.6, the three vectors forms a basis for the nullspace of A.
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Exercise (4.16)
Let V = {a(1, 2, 0, 0) + b(0,−1, 1, 0) + c(0, 0, 0, 1) | a, b, c ∈ R}.
(a) Find a 4× 4 matrix A such that the row space of A is V.
(b) Find a 4× 4 matrix B such that the column space of B is V.
(c) Find a 4× 4 matrix C such that the nullspace of C is V.

Solution.
(1, 2, 0, 0), (0,−1, 1, 0), (0, 0, 0, 1) are linearly independent, then dim(V) = 3.

(a,b) A =


1 2 0 0
0 −1 1 0
0 0 0 1
0 0 0 0

, and B =


1 0 0 0
2 −1 0 0
0 1 0 0
0 0 1 0

.

(c) ...1 The rank of C = (ci,j)4×4 is 1. So we can take the last 3 rows of C to be zero rows.
Now it suffices to find c11, c12, c13, c14.

...2 Since C(1, 2, 0, 0)T = C(0,−1, 1, 0)T = C(0, 0, 0, 1)T = 0, then c11 + 2c12 = 0,
c12 − c13 = 0, c14 = 0.

...3 Then we can take C to be

−2 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

.



MA1101R Tutorial
Tutorial 7: Vector Spaces associated Matrices
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Exercise (4.20)
Suppose A and B are two matrices such that AB = 0. Show that the column space
of B is contained in the nullspace of A.

Proof.
...1 Let B = (b1, . . . , bn), where bj is the jth column of B.
...2

AB = 0 ⇒ (Ab1, . . . ,Abn) = 0 ⇒ Abj = 0 for all j,

b1, . . . , bn are contained in the nullspace of A.
...3 For any element x in the column space of B = span{b1, . . . , bn}, it can be

written as x = c1b1 + c2b2 + · · ·+ cnbn. So we have

Ax = c1Ab1 + c2Ab2 + · · ·+ cnAbn = 0,

that is, x is in the nullspace of A.
...4 So the column space of B is contained in the nullspace of A.
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Tutorial

Exercise (4.21)
Show that there is no matrix whose row space and nullspace both contain the vector
(1, 1, 1).

Proof.

...1 Let A =

a1

...
am

 be a matrix where ai is the ith row of A. Let u be any column

vector in the nullspace of A. Then

Au = 0 ⇒

a1u
...

amu

 = 0 ⇒ aiu = 0 for all i.

...2 Let b be any vector in the row space of A, that is, b = c1a1 + · · ·+ cmam where
c1, . . . , cm are scalars. We have

bu = c1a1u + · · ·+ cmamu = 0.

...3 Since
(
1 1 1

)1
1
1

 ̸= 0, it is impossible to have a matrix whose row space

and nullspace both contain the vector (1, 1, 1).
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Exercise (4.22)
Let A be an m × n matrix and P an m × m matrix.
(a) If P is invertible, show that rank(PA) = rank(A).
(b) Given an example such that rank(PA) < rank(A).
(c) Suppose rank(PA) = rank(A). Is it true that P must be invertible? Justify your

answer.

Proof and Solution.

(a) rank(A) = rank(P−1PA) ≤ rank(PA) ≤ rank(A).

(b) P =

(
0 0
0 0

)
, A = I2, then rank(PA) = 0 ̸= 2 = rank(A).

(c) No. For example, let P = A =

(
1 0
0 0

)
, then rank(PA) = 1 = rank(A).
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Tutorial

Exercise (4.23(a))
Let A and B be m × p and p × n matrices respectively. Show that the nullspace of B
is a subset of the nullspace of AB. Hence prove that rank(AB) ≤ rank(B).

Proof.
...1 Let u be any vector in the nullspace of B, that is, Bu = 0.
...2 Since ABu = A0 = 0, u is a vector in the nullspace of AB.
...3 So the nullspace of B is a subset of the nullspace of AB, and hence

nullity(B) ≤ nullity(AB).
...4 Therefore

rank(AB) = n − nullity(AB) ≤ n − nullity(B) = rank(B).

...5 rank(BTAT) ≤ rank(AT). Since rank(AT) = rank(A) and
rank(AB) = rank(BTAT), rank(AB) ≤ rank(A).
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Exercise (4.23(b))
Let A and B be m × p and p × n matrices respectively. Show that every column of
the matrix AB lies in the column space of A. Hence, or otherwise, prove that
rank(AB) ≤ rank(A).

Proof.
...1 Let xj be the jth column of AB. Then xj = Abj where bj is the jth column of B.
...2 Let A =

(
a1 · · · ap

)
, where ai is the ith column of A, and let

bj = (b1j, b2j, . . . , bpj)T. Then

xj =
(
a1 · · · ap

)b1j
...

bpj

 = b1ja1 + b2ja2 + · · ·+ bpjap.

...3 Hence, xj is in the column space of A.

...4 Therefore the column space of AB is contained in the column space of A, and
hence

rank(AB) = dim(the column space of AB)

≤ dim(the column space of A) = rank(A)
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Tutorial

Exercise (4.27)
Determine which of the following statements are true. Justify your answer.
(a) If A and B are two row equivalent matrices, then the row space of AT and the

row space of BT are the same.
(b) If A and B are two row equivalent matrices, then the column space of AT and

the column space of BT are the same.
(c) If A and B are two row equivalent matrices, then the nullspace of AT and the

nullspace of BT are the same.
(d) If A and B are two matrices of the same size, then

rank(A + B) = rank(A) + rank(B).
(e) If A and B are two matrices of the same size, then

nullity(A + B) = nullity(A) + nullity(B).
(f) If A is an n × m matrix and B is an m × n matrix, then rank(AB) = rank(BA).
(g) If A is an n × m matrix and B is an m × n matrix, then

nullity(AB) = nullity(BA).
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Solution.

(ac) False. For example, let A =

(
1 0
0 0

)
and B =

(
0 0
1 0

)
.

(b) True. Since the row space of A and the the row space of B are the same. Hence
the column space of AT and the column space of BT are the same.

(d) False. For example, let A = B = I1.
(e) False. For example, let A = B = 01.

(fg) False. For example, let A =

(
0 1
0 0

)
and B =

(
0 0
0 1

)
.
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(1) rank(AB) ≤ min{rank(A), rank(B)}. See Exercise 4.23.
(2) A ∈ Rm×n, P ∈ Rm×m and Q ∈ Rn×n are invertible, then

rank(A) = rank(PA) = rank(AQ) = rank(PAQ). By (1) or see Exercise 4.22.
(2a) A ∈ Rm×n, rank(A) = r ≤ min{m,n}, then there exist invertible matrices

P ∈ Rm×m and Q ∈ Rn×n, such that PAQ =

(
Ir 0
0 0(n−r)×(m−r)

)
. By (2).

(2b) A =

(
B 0
0 C

)
, then rank(A) = rank(B) + rank(C). By (2a).

(2c) A ∈ Rm×n, rank(A) = r, then there exist B ∈ Rm×r and C ∈ Rr×n, such that
A = BC. By (2a).

(3) A ∈ Rm×n, B ∈ Rp×q, C ∈ Rm×p, then rank
(

A C
0 B

)
≥ rank

(
A 0
0 B

)
. By

(2).
(3a) Sylvester’s inequality: A ∈ Rm×p, B ∈ Rp×n, then

rank(AB) ≥ rank(A) + rank(B)− p. By (2), (3).
(3b) Frobenius’s inequality: A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×q, then

rank(AB) + rank(BC)− rank(B) ≤ rank(ABC). By (2), (3).
(4) rank(A ± B) ≤ rank

(
A | B

)
≤ rank(A) + rank(B). By (2), (2b) and Def.

(5) A ∈ Rm×n, then rank(AAT) = rank(ATA) = rank(A). Def.
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(2a) Apply elementary row operations, we can get a RREF; then apply elementary
column operations, we can get the form

(
Ir 0
0 0

)
, where

r = (# leading entries) = rank(A).
(2b) By (2a), there exist invertible matrices P1, P2, Q1 and Q2, such that

P1BQ1 =

(
Ir1 0
0 0

)
, P2CQ2 =

(
Ir2 0
0 0

)
,

where r1 = rank(B) and r2 = rank(C). Then

(
P1

P2

)(
B

C

)(
Q1

Q2

)
=


Ir1

0
Ir2

0

 .

Therefore rank(A) = r1 + r2 = rank(B) + rank(C).

(2c) By (2a), we have A = P−1

(
Ir 0
0 0

)
Q−1 = P−1

(
Ir
0

)(
Ir 0

)
Q−1. Let

B = P−1

(
Ir
0

)
and C =

(
Ir 0

)
Q−1, then A = BC.
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(3) By (2a), there exist invertible matrices P1, P2, Q1 and Q2, such that

P1AQ1 =

(
Ir1 0
0 0

)
, P2BQ2 =

(
Ir2 0
0 0

)
,

where r1 = rank(B) and r2 = rank(C). Then

(
P1

P2

)(
A C

B

)(
Q1

Q2

)
=


Ir1

0
P1CQ2

Ir2
0

 .

Therefore rank
(

A C
0 B

)
≥ rank

(
A 0
0 B

)
.

(3a) (
Im A

Ip

)(
AB

Ip

)(
In
−B Ip

)(
−Ip

In

)
=

(
A
I B

)
.

Hence by (3) rank(AB) + p ≥ rank(A) + rank(B).
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(3b) (
Im A

In

)(
ABC

B

)(
Iq
−C Ip

)(
−Iq

Ip

)
=

(
AB
B BC

)
.

Hence by (3) rank(ABC) + rank(B) ≥ rank(AB) + rank(BC).
(4)

rank(A + B) ≤ rank
(

A + B
0

)
= rank

(
A + B B

0

)
= rank(A | B).

largest # l.i. columns in (A | B) ≤
largest # l.i. columns in A + largest # l.i. columns in B, so
rank(A | B) ≤ rank(A) + rank(B).
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Exercise (4.7)
Let V = span{u1,u2,u3,u4} where

u1 = (1, 1, 1, 1, 1), u2 = (1, x, x, x, x), u3 = (1, x, x2, x, x2), u4 = (1, x3, x, 2x − x3, x)

for some constant x. Find a basis for V and determine the dimension of V.

Solution.
By Gaussian elimination, we have

1 1 1 1 1
1 x x x x
1 x x2 x x2
1 x3 x 2x − x3 x

→


1 1 1 1 1
0 x − 1 x − 1 x − 1 x − 1
0 0 x2 − x 0 x2 − x
0 0 0 2x − 2x3 0


If x = 1, then {u1} is a basis for V and dim(V) = 1.
If x = 0, then {u1, (0, 1, 1, 1, 1)} is a basis for V and dim(V) = 2.
If x = −1, then {u1, (0,−2,−2,−2,−2), (0, 0, 2, 0, 2)} is a basis for V and
dim(V) = 3.
If x ̸∈ {0, 1,−1}, then {u1,u2,u3,u4} is a basis for V and dim(V) = 4.
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Exercise (4.8)
For each of the following cases, write down a matrix with the required property or
explain why no such matrix exists.
(a) Column space contains vectors (1, 0, 0)T, (0, 0, 1)T and row space contains vectors

(1, 1), (1, 2).
(b) Column space = R4, row space = R3.

Solution.

(a) Yes, for example:

1 0
0 0
0 1

.

(b) No. By Theorem 4.2.1, the dimensions of the row space and column space of a
matrix must be the same.
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Exercise (4.13)
Determine the possible rank and nullity of each of the following matrices:

(a) A =

1 1 a
1 a 1
a 1 1

 , (b) B =

0 0 b
0 0 c
d e f

 ,

where a, b, c, d, e, f are real numbers.

Solution of part (a).
By Gaussian elimination:1 1 a

1 a 1
a 1 1

→

1 1 a
0 a − 1 1− a
0 1− a 1− a2

→

1 1 a
0 a − 1 1− a
0 0 −(a − 1)(a + 2)

 .

when a = 1, there is only 1 non-zero row, that is, rank(A) = 1, nullity(A) = 2;
when a = −2, there are 2 non-zero rows, that is, rank(A) = 2, nullity(A) = 1;
For other cases, all of the rows are non-zero rows, that is, rank(A) = 3,
nullity(A) = 0.
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Solution of part (b).
For

B =

0 0 b
0 0 c
d e f

 ,

...1 the first 2 rows are linearly dependent, then rank(B) ≤ 2.

...2 if b = c = d = e = f = 0, rank(B) = 0, nullity(B) = 3;

...3 if either (i) b = c = 0 and not all d, e, f are zero or (ii) d = e = 0 and not all
b, c, f are zero, rank(B) = 1, nullity(B) = 2.

...4 if not all b, c are zero and not all d, e are zero, rank(B) = 2,nullity(B) = 1.
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Exercise (4.17)
Let A be a 3× 4 matrix. Suppose that x1 = 1, x2 = 0, x3 = −1, x4 = 0 is a solution
to a non-homogeneous linear system Ax = b and that the homogeneous system
Ax = 0 has a general solution x1 = t − 2s, x2 = s + t, x3 = s, x4 = t where s, t are
arbitrary parameters.
(a) Find a basis for the nullspace of A and determine the nullity of A.
(b) Find a general solution for the system Ax = b.
(c) Write down the RREF of A.
(d) Find a basis for the row space of A and determine the rank of A.
(e) Do we have enough information for us to find the column space of A?

Solution of parts (a,b).

(a) Since (x1, x2, x3, x4)T = (t − 2s, s + t, s, t)T = s(−2, 1, 1, 0)T + t(1, 1, 0, 1)T,
{(−2, 1, 1, 0)T, (1, 1, 0, 1)T} is a basis for the nullspace of A. The nullity of A is
2.

(b) A general solution of Ax = b is x1 = t − 2s + 1, x2 = s + t, x3 = s − 1, x4 = t
where s, t are arbitrary parameters.
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Solution of parts (c–e).

(c) It is obvious that nullity(A) = 2, and rank(A) = 1. So we have that the last row in
the RREF of A is a zero row.

A general solution of Ax = 0 is


x1 = −2s + t
x2 = s + t
x3 = s
x4 = t

. Now we want to find 2 (since

rank(A) = 2) equations for x1, x2, x3, x4:
{

x1 = −2x3 + x4

x2 = x3 + x4
.

Hence, the entries in the i-th row of RREF are the coefficients in the i-th condition

(i = 1, 2), that is, RREF is

1 0 2 −1
0 1 −1 −1
0 0 0 0

.

(d) {(1, 0, 2,−1), (0, 1,−1,−1)} is a basis for the row space of A. The rank of A is
2.

(e) No, we cannot find the column space of A with the given information.
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Exercise (4.18)
Let A = (a1a2a3a4a5) be a 4× 5 matrix such that the columns a1, a2, a3 are linearly
independent while a4 = a1 − 2a2 + a3 and a5 = a2 + a3.
(a) Determine the RREF of A.
(b) Find a basis for the row space of A and a basis for the column space of A.

Solution.

(a) Let R be the RREF of A. Since a1, a2, a3 are linearly independent, the first three
columns of R are linearly independent. Thus the first three columns of R must be
1 0 0
0 1 0
0 0 1
0 0 0

. Since
{

a4 = a1 − 2a2 + a3

a5 = a2 + a3
, R =


1 0 0 1 0
0 1 0 −2 1
0 0 1 1 1
0 0 0 0 0

.

(b) It is obvious that {a1, a2, a3} is a basis for the column space of A, and both the
dimensions of column space and row spaces are 3. Hence
{(1, 0, 0, 1, 0), (0, 1, 0,−2, 1), (0, 0, 1, 1, 1)} is a basis for the row space of A.
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Exercise (4.24)
Let A and B be two matrices of the same size. Show that

rank(A + B) ≤ rank(A) + rank(B).

Proof.

rank(A) + rank(B) = rank
(

A 0
0 B

)
= rank

(
I I
0 I

)(
A 0
0 B

)(
I I
0 I

)
= rank

(
A A + B
0 B

)
≥ rank

(
0 A + B
0 0

)
= rank(A + B).
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Exercise (4.25)
Let A be an m × n matrix.
(a) Show that the nullspace of A is equal to the nullspace of ATA.
(b) Show that nullity(A) = nullity(ATA) and rank(A) = rank(ATA).
(c) Is it true that nullity(A) = nullity(AAT)? Justify your answer.
(d) Is it true that rank(A) = rank(AAT)? Justify your answer.

Proof and Solution.

(a) Proved in lecture;
(b) By part (a);

(c) No. For example, A =

(
1 0 0
0 1 0

)
.

(d) Yes. By (b), rank(A) = rank(AT) = rank((AT)TAT) = rank(AAT).
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Exercise (4.26)
Let A be an m × n matrix. Suppose the linear system Ax = b is consistent for any
b ∈ Rm. Show that the linear system ATy = 0 has only the trivial solution.

Proof.

ATy = 0 ⇒ xTATy = 0 ⇒ bTy = 0 for any b ∈ Rm.
For any 1 ≤ i ≤ m, b = ei whose components are zeros except i-th component,
then i-th component of y is 0, that is, y = 0.
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Exercise (Question 2 in Final of 2001-2002(II), Question 4 in Final of 2005-2006(II))
Determine the possible rank of each of the following matrices: 1 1 x2

1 x2 1
x2 1 1

 ,

 1 1 1
a b c
a2 b2 c2

 ,

where x, a, b, c are real numbers.
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Exercise (Question 8 in Final of 2006-2007(I))

(a) Let A be a square matrix such that rank(A) = rank(A2).
(i) Show that the nullspace of A is equal to the nullspace of A2.
(ii) Show that the nullspace of A and the column space of A intersect trivially.

(b) Suppose there exist n × n matrices X,Y,Z such that XY = Z. Show that the
column space of Z is a subset of the column space of X.

(c) Let B =

0 0 0
1 0 0
0 1 0


(i) Find the nullspace of B2.
(ii) Show that there does not exist any 3 × 3 matrix C such that C2 = B.
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Exercise (7a)
A ∈ Rn×n, then
(a) rank(adj(A)) = n iff rank(A) = n;
(b) rank(adj(A)) = 1 iff rank(A) = n − 1;
(c) rank(adj(A)) = 0 iff rank(A) < n − 1;

Proof.

(a) A is invertible iff adj(A) is invertible.

(b) rank(A) = n − 1 iff A = P
(

In−1

0

)
Q iff

adj(A) = adj(Q)

(
0n−1

1

)
adj(P).

(c) rank(A) < n − 1 iff adj(A) = 0 iff rank(adj(A)) = 0.
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Exercise (7b)
A ∈ Rn×n, and A2 = A, then rank(A) = tr(A).

Proof.
Let rank(A) = r, then there exist invertible matrices P and Q, such that
A = P

(
Ir

0

)
Q. Since A2 = A, we have A = P

(
Ir R12

0

)
P−1. Hence

tr(A) = tr
(

Ir R12

0

)
= r = rank(A).

Exercise (7c)
A ∈ Rn×n,
(a) if there exists an integer k, such that rank(Ak) = rank(Ak+1), then

rank(Ak) = rank(Ak+1) = rank(Ak+2) = · · · .
(b) there exists an integer k, such that rank(Ak) = rank(Ak+1).

Proof.
By Frobenius’s inequality.
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Exercise (7d)
A ∈ Rn×n, does rank(I − AAT) = rank(I − ATA) hold?

Proof.
By the following equations:(

I −A
I

)(
I A

AT I

)
=

(
I − AAT

AT I

)
,

(
I

−AT I

)(
I A

AT I

)
=

(
I A

I − ATA

)
.
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Change log

Page 153: Add a remark for “the relation between nullspace and row space”;
Page 159: Revise a typo: “0” to “0”.

Last modified: 23:38, March 19, 2011.
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Schedule of Tutorial 8

Any question about last tutorial
Review concepts:

Eigenvalue, Eigenvector and Eigenspace;
Diagonalization.

Tutorial: 6.6, 6.10, 6.13, 6.14, 6.16, 6.18
Additional material:

The algebraic multiplicity, the geometric multiplicity;
Remak 6.2.5.2 and Remak 6.2.5.3;
Exercise 6.3, 6.7, 6.12;
Question 6(b) in Final of 2006–2007(II);
Question 5 in Final of 2004–2005(II);
Question 1(a) in Final of 2005–2006(I);
Question 4(b) in Final of 2006-02007(II);
Question 3(b-iii) in Final of 2009–2010(I).
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Review

Eigenvalue and Eigenvector

Here we focus on the real case. Let A be a real square matrix of order n.
If there exist a nonzero column vector x ∈ Rn and a (real) scalar λ such that
Ax = λx, then λ is called an eigenvalue of A, and x is said to be an eigenvector
of A associated with the eigenvalue λ.
The equation det(λI − A) = 0 is called the characteristic equation of A and the
polynomial φ(λ) = det(λI − A) is called the characteristic polynomial of A.
λ is an eigenvalue iff det(λI − A) = 0. Hence, (# eigenvalues) ≤ n.
If B = P−1AP, where P is an invertible matrix, then A and B have same
eigenvalues. While the converse is not necessarily true. (See Exercise 6.13)
λ1 and λ2 are 2 distinct eigenvalues, x1 and x2 are 2 eigenvectors associated
with λ1 and λ2, respectively. Then x1 and x2 are linearly independent.
If λ is an eigenvalue of A, then cλ is an eigenvalue of cA. (See Exercise 6.6(c))
If A has n eigenvalues {λi}n

i=1, then tr(A) =
∑n

i=1 λi, det(A) =
∏n

i=1 λi. (See
Exercise 6.2(a))
AB and BA have same eigenvalues.
Cayley-Hamilton’s Theorem: If φ(λ) is the characteristic polynomial, then
φ(A) = 0. (See Exercise 6.2(b))
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Review

Algebraic multiplicity and Geometric multiplicity

Let A be a real square matrix of order n. Then the characteristic polynomial φA(λ)
can be decomposed as

(λ− λ1)
r1 · · · (λ− λk)

rk (λ2 + a1λ+ b1)s1 · · · (λ2 + alλ+ bl)
sl .

(See Remark 6.2.5.1)
Let λ be an eigenvalue of A. Then the solution space of the linear system
(λI − A)x = 0 is called the eigenspace of A associated with the eigenvalue λ and
is denoted by Eλ = {x ∈ Rn | (λI − A)x = 0}.
The geometric multiplicity of an eigenvalue is defined as the dimension of the
associated eigenspace.
The algebraic multiplicity of an eigenvalue is defined as the multiplicity of the
corresponding root of the characteristic polynomial. That is, the algebraic
multiplicity of λi is ri for i = 1, 2, . . . , k.
For any eigenvalue λ of A,

(the algebraic multiplicity of λ) ≥ ( the geometric multiplicity of λ) ≥ 1.
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Review

Diagonalization

Let A be a real square matrix of order n.
A is called diagonalizable if there exists an invertible matrix P such that P−1AP
is a diagonal matrix.
A is diagonalizable iff A has n linearly independent eigenvectors.
If A has n distinct eigenvalues, then A is diagonalizable; while the converse is not
necessarily true. That is, if A is diagonalizable, A may have some same
eigenvalues (e.g. I2).
A is diagonalizable iff for each eigenvalue λ0 of matrix A, the algebraic
multiplicity is equal to the geometric multiplicity.
Schur’s Theorem: There exists an invertible matrix P, such that P−1AP is an
upper-triangular block matrix.
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Review

How To

How to determine whether a square matrix is diagonalizable?
Method 1:
(1) Solve det(λI − A) = 0 to find all distinct eigenvalues λ1, λ2, . . . , λk.
(2) For each eigenvalue λi, find a basis Sλi for the eigenspace Eλi .
(3) Let S = Sλ1

∪ Sλ2
∪ · · · Sλk .

(a) If |S| < n, then A is not diagonalizable.
(b) If |S| = n, say S = {u1, u2, . . . , un}, then the square matrix

P =
(
u1 u2 · · · un

)
diagonalizes A.

Method 2:
(1) Decompose the characteristic polynomial φA(λ) as

(λ − λ1)
r1 · · · (λ − λk)

rk (λ2
+ a1λ + b1)

s1 · · · (λ2
+ alλ + bl)

sl ,

where λ1, . . . , λk are pairwise distinct, (λ2 + ajλ + bj) can not do more
decomposition.

(a) If k = n, then A is diagonalizable;
(b) otherwise do next step.

(2) If s1 = · · · = sl = 0, then do next step; otherwise A is not diagonalizable.
(3) For each eigenvalue λi whose ri > 1, find the dimension of the eigenspace Eλi . If for

each i, ri = dim(Eλi ), then A is diagonalizable; otherwise A is not diagonalizable.
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Tutorial

Exercise (6.6)

Let A =

0 −1 0
2 −3 0
0 0 −1

.

(a) Show that −1 is an eigenvalue of A.
(b) Show that dim(E−1) = 2.
(c) Find a 3× 3 matrix B such that −3 is an eigenvalue of BA.

Proof and Solution.

(a) Since −I − A =

−1 1
−2 2

0

, we have det(−I − A) = 0, and hence −1 is an

eigenvalue of A.
(b) Based on the Gaussian elimination, we will obtain the general solution for the

linear system (−I − A)x = 0 is x = s(1, 1, 0)T + t(0, 0, 1)T. That is,
E−1 = {s(1, 1, 0)T + t(0, 0, 1)T | s, t ∈ R} = span{(1, 1, 0)T, (0, 0, 1)T}. Since
(1, 1, 0)T and (0, 0, 1)T are linearly independent, they form a basis for E−1.
Hence dim(E−1) = 2.

(c) Take B to be 3I3. Then
det(−3I − BA) = det(−3I − 3IA) = det(−3I − 3A) = 33 det(−I − A) = 0, and
hence −3 is an eigenvalue of BA.
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Exercise (6.10)

Let A =

1 0 3
0 4 0
0 0 4

.

(a) Find a matrix P that diagonalizes A.
(b) Compute A10.
(c) Find a matrix B such that B2 = A.

Solution of part (a).
Since A is an upper-triangular matrix, the all eigenvalues of A are 1, 4, 4.

For eigenvalue 1, the general solution for (I − A)x = 0 is s(1, 0, 0)T. So
E1 = {s(1, 0, 0)T | s ∈ R}, and we may take {(1, 0, 0)T} as a basis for E1.
For eigenvalue 4, the general solution for (4I − A)x = 0 is
t(1, 0, 1)T + v(0, 1, 0)T. So
E4 = {t(1, 0, 1)T + v(0, 1, 0)T | t, v ∈ R} = span{(1, 0, 1)T, (0, 1, 0)T}, and we
may take {(1, 0, 1)T, (0, 1, 0)T} as a basis for E4.

Therefore P =

1 1 0
0 0 1
0 1 0

 will diagonalize A.



MA1101R Tutorial
Tutorial 8: Diagonalization

Tutorial

Solution of parts (b) and (c).

(b) (See Discussion 6.2.7) By part (a), we have A = P

1
4

4

P−1. Hence we

will have

A10 = P

1
4

4

10

P−1 = P

110

410

410

P−1 =

1 0 410 − 1
0 410 0
0 0 410

 .

(c) By part (a), we have

A = P

1
4

4

P−1 = P

1
2

2

P−1

︸ ︷︷ ︸
B

P

1
2

2

P−1

︸ ︷︷ ︸
B

.

So we may take B to be P

1
2

2

P−1 =

1 1
2

2

, and A = B2.
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Exercise (6.13(a))
Two square matrices A and B are said to be similar if there exists an invertible matrix
P such that P−1AP = B. Suppose A and B are similar matrices.

(i) Show that An is similar to Bn for all positive integer n.
(ii) If A is invertible, show that B is invertible and A−1 is similar to B−1.
(iii) If A is diagonalizable, show that B is diagonalizable.

Proof of part (a).

(i) Since A and B are similar, then there exists an invertible matrix P, such that
P−1AP = B. Then for any positive integer n, we will have
P−1AnP = (P−1AP)n = Bn, that is, An and Bn are similar.

(ii) Since P−1AP = B, A and P are invertible, we have that B is invertible. And
hence B−1 = P−1AP−1 = P−1A−1P, that is, A−1 and B−1 are similar.

(iii) ...1 Since A is diagonalizable, there exists an invertible matrix Q, such that Q−1AQ is a
diagonal matrix.

...2 Since A = PBP−1, we will have that Q−1PBP−1Q is a diagonal matrix.

...3 Let R = P−1Q, then R is invertible. Therefore we will have that R−1BR is a
diagonal matrix, that is, B is diagonalizable.
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Exercise (6.13(b))

Show that A =

0 1 2
0 1 3
0 0 −1

 and B =

0 1 0
1 0 0
0 0 0

 are similar.

Proof.
...1 Since A is an upper-triangular matrix, the all eigenvalues of A are 0, 1,−1. Since

this three eigenvalues are pairwise distinct, there exists an invertible matrix P,

such that P−1AP =

0
1

−1

.

...2 By solving the equation det(λI − A) = 0, we get the all eigenvalues of B are
0, 1,−1. Since this three eigenvalues are pairwise distinct, there exists an

invertible matrix Q, such that Q−1BQ =

0
1

−1

.

...3 Let R = PQ−1. Then R−1AR = QP−1APQ−1 = Q

0
1

−1

Q−1 = B,

that is A and B are similar.
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Exercise (6.14(a))
A square matrix (aij)n×n is called a stochastic matrix if all the entries are
non-negative and the sum of entries of each column is 1, i.e. a1i + a2i + · · ·+ ani = 1
for i = 1, 2, . . . ,n. Let A be a stochastic matrix.

(i) Show that 1 is an eigenvalue of A.
(ii) If λ is an eigenvalue of A, then |λ| ≤ 1.

Proof of part (a-i).

AT


1
1
...
1

 =


a11 + a21 + · · ·+ an1
a12 + a22 + · · ·+ an2

...
a1n + a2n + · · ·+ ann

 =


1
1
...
1

 .

Thus 1 is an eigenvalue of AT. By Question 6.3, 1 is also an eigenvalue of A.
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Proof of part (a-ii).
...1 By Question 6.3, λ is an eigenvalue of AT.
...2 Let x = (x1, x2, . . . , xn)T ̸= 0 be an eigenvector of AT associated with the

eigenvalue λ, that is, ATx = λx.
...3 Choose k ∈ {1, 2, . . . ,n} such that |xk| = max

i=1,2,...,n
|xi|, that is, |xk| ≥ |xi| for

i = 1, 2, . . . ,n. Since x is a non-zero vector, |xk| > 0.
...4 By comparing the k-th coordinate of both sides of ATx = λx, we have

a1kx1 + a2kx2 + · · ·+ ankxn = λxk.

...5 Hence we will have

|λ||xk| = |a1kx1 + a2kx2 + · · ·+ ankxn|
≤ |a1kx1|+ |a2kx2|+ · · ·+ |ankxn|
≤ a1k|x1|+ a2k|x2|+ · · ·+ ank|xn| (aij ≥ 0)

≤ (a1k + a2k + · · ·+ ank)|xk| = |xk|

Since |xk| > 0, we have |λ| ≤ 1.
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Exercise (6.14(b))

Let B =

0.95 0 0
0.05 0.95 0.05
0 0.05 0.95

.

(i) Is B a stochastic matrix?
(ii) Find a 3× 3 invertible matrix P that diagonalizes B.

Proof of part (b).

(i) All the entries are non-negative and the sum of entries of each column is 1, so B
is a stochastic matrix.

(ii) ...1 By solving the equation det(λI − B) = 0, the all eigenvalues of B are 1, 0.95 and 0.9.
...2 It is easy to get (0, 1, 1)T, (−1, 0, 1)T and (0,−1, 1)T are eigenvectors associated

with 1, 0.95 and 0.9 respectively.

...3 Let P =

0 −1 0
1 0 −1
1 1 1

, we will have P−1BP =

1
0.95

0.9

.
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Exercise (6.16)
In a large city, the soft-drink market was 100% dominated by brand A. Four months
ago, two new brands B and C were introduced to the market. According to the market
research, for each month, about 1% and 2% of the customers of brand A switch to
brands B and C respectively; and about 1% and 2% of the customers of brand B
switch to brands A and C respectively; and about 2% and 2% of the customers of
brand C switch to brands A and B respectively. Compute the present market shares of
the three brands of soft-drink. Will the market shares stabilize in the long run if the
trend continues? If so, estimate the market shares in the long run.

Solution.

(1) Let an, bn and cn be the percentage of customers choosing brand A, B and C,
respectively, after n months. Then for any positive integer n,

an = 0.97an−1 + 0.01bn−1 + 0.02cn−1;

bn = 0.01an−1 + 0.97bn−1 + 0.02cn−1;

cn = 0.02an−1 + 0.02bn−1 + 0.96cn−1.
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Solution (Cont.)

(2) Let xn =

an
bn
cn

 and A =

0.97 0.01 0.02
0.01 0.97 0.02
0.02 0.02 0.96

. Then the equations above can

be represented by xn = Axn−1 = · · · = Anx0, where x0 =

100
0
0

.

(3) By Algorithm 6.2.4, we find P =

1 1 −1
1 −1 −1
1 0 2

 such that

P−1AP =

1
0.96

0.94

.

(4) Then xn = P

1
0.96n

0.94n

P−1x0 = 50
3

2 + 3× 0.96n + 0.94n

2− 3× 0.96n + 0.94n

2− 2× 0.94n

.

(5) Therefore the present market shares are 50
3
[2 + 3× 0.964 + 0.944]% ≃ 88.8%,

50
3
[2− 3× 0.964 + 0.944]% ≃ 3.9% and 50

3
[2− 2× 0.944]% ≃ 7.3% for brand A,

B and C, respectively.
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Exercise (6.18)
Let dn be the determinant of the following n × n matrix:

3 1
1 3 1 0

1 3
. . .

. . .
. . .

. . .
. . . 3 1

0 1 3 1
1 3


Show that dn = 3dn−1 − dn−2. Hence, or otherwise, find dn.
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Proof and Solution.
...1 Use cofactor expansion along the first row:

dn = 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 0

1 3
. . .

. . .
. . .

. . .
. . . 3 1

0 1 3 1
1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0

3
. . .

. . .
. . .

. . .
. . . 3 1

0 1 3 1
1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

.

...2 The first determinant above is dn−1. By using cofactor expansion along the first
column, we find that the second determinant is dn−2. So dn = 3dn−1 − dn−2.

...3 Note that d1 = 3 and d2 =

∣∣∣∣3 1
1 3

∣∣∣∣ = 8. By the procedure discussed in Example
6.2.9.2 or Example 6.2.12, we obtain

dn =
5 + 3

√
5

10

(
3 +

√
5

2

)n

−
5− 3

√
5

10

(
3−

√
5

2

)n

.
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Exercise (Remak 6.2.5.2)
Let λ0 be an eigenvalue of matrix A. Then the algebraic multiplicity of λ0 is greater
than or equal to the geometric multiplicity of λ0.

Proof.
...1 Assume dim(Eλ0

) = m, then we can take a basis of Eλ0
: {α1,α2, . . . ,αm}.

Then we will get a basis for Rn: {α1,α2, . . . ,αm,αm+1, . . . ,αn}.
...2

A
(
α1 · · · αm · · · αn

)
=
(
α1 · · · αm · · · αn

)(λ0Im B
0 C

)
.

...3 Then det(λI − A) = (λ− λ0)m det(λIn−m − C).

...4 Hence, the algebraic multiplicity of some eigenvalue λ0 is greater then or equal to
the geometric multiplicity of λ0.
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Exercise (Remark 6.2.5.3)
Let λ1, λ2, . . . , λt, t ≥ 2 be distinct eigenvalues of matrix A, and xi be the
eigenvectors associated with λi, respectively. Then x1, x2, . . . , xt are linearly
independent.

Proof: 1st Method.
...1 First consider the case t = 2: if x1 and x2 are linearly dependent, then there exist

a, b, such that ax1 + bx2 = 0, where not both of a, b are zero.
...2 Then aλ1x1 + bλ2x2 = Aax1 + Abx2 = A0 = 0, and aλ1x1 + bλ1x2 = 0.
...3 Then we will get b(λ1 − λ2)x2 = 0, i.e., b = 0. Similarly, a = 0. Contradiction.
...4 For general case, we can apply mathematical induction, leave it for you.
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Proof: 2nd Method.

(1) If x1, x2, . . . , xt are linearly dependent, then there exist some constant numbers
a1, a2, . . . , at, such that a1x1 + a2x2 + · · ·+ atxt = 0, where not all of a1, . . . , at
are zero.

(2) Then 0 = A ·0 = A(a1x1 +a2x2 + · · ·+atxt) = a1λ1x1 +a2λ2x2 + · · ·+atλtxt.
(3) Similarly, we have a1λ2

1x1 + a2λ2
2x2 + · · ·+ atλ2

t xt = 0.
(4) By induction, we have a1λ

j
1x1 + a2λ

j
2x2 + · · ·+ atλ

j
txt = 0 for j = 1, 2, . . . , t.

(5) Consider the linear system:


λ1y1 + λ2y2 + · · ·+ λtyt = 0

λ2
1y1 + λ2

2y2 + · · ·+ λ2
t yt = 0

· · · · · ·
λt
1y1 + λt

2y2 + · · ·+ λt
tyt = 0
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Proof: 2nd Method (Cont.)

(6) Let xi =


xi1
xi2
...

xit

 for i = 1, 2, . . . , t.

(7) Then (a1x1i, a2x2i, . . . , atxti)T satisfies that linear system, for all i = 1, 2, . . . , t.

(8) While det


λ1 λ2 . . . λt
λ2
1 λ2

2 . . . λ2
t

...
...

. . .
...

λt
1 λt

2 . . . λt
t

 =
t∏

i=1
λi

∏
1≤i<j≤t

(λi − λj) ̸= 0. That is, that

homogeneous linear system has only trivial zero solution.
(9) Since x1, x2, . . . , xt are nonzero vectors, a1 = a2 = · · · = at = 0. Contradiction.
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Exercise (6.3)
Let A be a square matrix and λ an eigenvalue of A. Show that λ is an eigenvalue of
AT.

Proof.

λ is an eigenvalue of A
⇔ det(λI − A) = 0

⇔ det
(
(λI − A)T

)
= 0

⇔ det(λI − AT) = 0

⇔λ is an eigenvalue of AT

Exercise (Question 6(b) in Final of 2006-2007(II))
If λ is an eigenvalue of a matrix A, then Eλ(A) and Eλ(AT) of A and AT have the
same dimension.
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Exercise (6.7(c))

Let A =

4 −1 6
2 1 6
2 −1 8

. If B is another 3× 3 matrix with an eigenvalue λ such that

the dimension of the eigenspace associated with λ is 2, prove that 2 + λ is an
eigenvalue of the matrix A + B.

Proof of parts (a) and (b).

(a) Suppose det(λI − A) = (λ− 2)2(λ− 9) = 0, then the eigenvalues are 2,2,9.

(b) Suppose (2I − A)x = 0, i.e.

−2 1 −6
−2 1 −6
−2 1 −6

x1
x2
x3

 = 0. A general solution is

t(1, 2, 0)T + s(−3, 0, 1)T, i.e. {(1, 2, 0)T, (−3, 0, 1)T} is a basis for the eigenspace
associated with 2.
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Proof of part (c).
...1 Let E2 be the eigenspace of A associated with 2 and let E′

λ be the eigenspace of
B associated with λ.

...2 Since E2 and E′
λ are subspaces of R3 and have dimension 2, they are two planes

in R3 that contain the origin. So E2 ∩ E′
λ is either a line through the origin or a

plane containing the origin.
...3 In both cases, we can find a nonzero vector u ∈ E2 ∩ E′

λ, i.e. Au = 2u and
Bu = λu, such that

(A + B)u = Au + Bu = 2u + λu = (2 + λ)u.

...4 So 2 + λ is an eigenvalue of A + B.
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Exercise (6.11)
Find a 3× 3 matrix which has eigenvalue 1, 0, and -1 with corresponding eigenvectors
(0, 1, 1)T, (1,−1, 1)T and (1, 0, 0)T respectively.

Proof.

Let P =

0 1 1
1 −1 0
1 1 0

, and D =

1 0 0
0 0 0
0 0 −1

. Then

A = PDP−1 =

−1 − 1
2

1
2

0 1
2

1
2

0 1
2

1
2


satisfies the requirement.

Remark
P−1AP = D True
PAP−1 = D False
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Exercise (6.12)

Determine the values of a and b so that the matrix
(

a 1
0 b

)
is diagonalizable.

Proof.
Claim: The matrix is diagonalizable if and only if a ̸= b.

If a ̸= b, then there are 2 distinct eigenvalues, so the matrix is diagonalizable.

If a = b, then consider the linear system
(
0 1
0 0

)(
x1
x2

)
= 0. A general solution

is t(1, 0)T, where t is a parameter. That is, the dimension of the eigenspace
associated with a is 1. Hence, the matrix cannot be diagonalizable.
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Exercise (Question 5 in Final of 2004-2005(II))
Let A and B be 2 n × n diagonalizable matrices such that AB = BA. Prove that
there exists an invertible matrix P such that PAP−1 and PBP−1 are both diagonal
matrices.

Proof.

...1 There exists an invertible Q, such that, C = Q−1AQ =

λ1Ie1
. . .

λtIet

,

where λ1, . . . , λt are all distinct eigenvalues of A.

...2 Let D = Q−1BQ, then CD = DC, and hence D =

De1
. . .

Det

.

...3 Since B is diagonalizable, so is D, and hence so is Dei for all i = 1, . . . , t. Let
RiDei Ri be a diagonal matrix.

...4 Let R =

R1

. . .
Rt

, then R−1CR =

λ1Ie1
. . .

λtIet

 and

R−1DR are diagonal.
...5 Let P = QR, then P−1AP and P−1BP are diagonal.
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Exercise (Question 1(a) in Final of 2005-2006(I))

Let A =


1 1 0 0
0 1 1 0
0 0 2 2
0 0 0 2

.

(i) Write down the characteristic polynomial and eigenvalues of A.
(ii) Write down the characteristic polynomial and eigenvalues of A5.
(iii) Is A diagonalizable?

Exercise (Question 4(b) in Final of 2006-2007(II))
Let B be a 4× 4 matrix and {u1,u2,u3,u4} a basis for R4. Suppose Bu1 = 2u1,
Bu2 = 0, Bu3 = u4, Bu4 = u3.

(i) Find the eigenvalues of B.
(ii) Find an eigenvalue that corresponds to each eigenvalue of B.
(iii) Is B a diagonalizable matrix? Why?

Hint.

B
(
u1 u2 u3 u4

)
=
(
u1 u2 u3 u4

)
2 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 .
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Exercise (Question 3(b-iii) in Final of 2009-2010(I))
For n ≥ 2, let Bn = (bij) be a square matrix of order n such that

bij =


0, i > j or j > i + 1;

1, j = i + 1

k, i = j

where k is a real number. Prove that Bn is not diagonalizable for all n ≥ 2.
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Exercise
Let A and B be square matrices with order n. Then AB and BA have the same
characteristic polynomial.

Proof.

...1 There exist two invertible matrices P and Q, such that A = P
(

Ir
0n−r

)
Q.

...2 Let QBP =

(
R1 R2

R3 R4

)
, where R1 is an r × r matrix. Then

det(λI − AB) = det(λI − P
(

Ir
0n−r

)
QB)

= det(P) det(λI −
(

Ir
0n−r

)
QBP) det(P−1)

= det(λI −
(

R1 R2

0 0

)
) = det(λIr − R1)det(λIn−r)

det(λI − BA) = det(λI − BP
(

Ir
0n−r

)
Q)

= det(Q−1) det(λI − QBP
(

Ir
0n−r

)
)det(Q)

= det(λI −
(

R1 0
R3 0

)
) = det(λIr − R1) det(λIn−r)
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Change log

Change log

Page 190: Revise a typo: “(−3)3” to “33”;

Page 191: Revise two typos: “P =

1 1 0
0 0 1
0 1 1

” to “P =

1 1 0
0 0 1
0 1 0

”, and

“I − A” to “4I − A”.
Last modified: 19:14, March 25, 2011.
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Schedule of Tutorial 9

Any question about last tutorial
Review concepts:

Inner product;
Orthogonal and orthonormal bases, Gram-Schmidt process;
Projection, least squares solution.

Tutorial: 5.6, 5.8, 5.10, 5.12, 5.18, 5.19
Additional material: 4.25(b), 5.9, Question 4 in Final of 2003–2004(II).
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Review

Inner Products

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be two vectors in Rn.
The inner product of u and v: u · v = u1v1 + u2v2 + · · ·+ unvn.

The norm of u: ∥u∥ =
√

u · u =
√

u2
1 + u2

2 + · · ·+ u2
n. Vectors of norm 1 are

called unit vectors.
The distance between u and v is d(u, v) = ∥u − v∥.
The angle between u and v is cos−1

( u·v
∥u∥∥v∥

)
.

Relation between inner products and matrix products:
If u and v are written as row vectors, then u · v = uvT.
If u and v are written as column vectors, then u · v = uTv.

Let c be a scalar and u, v,w vectors in Rn. Then
...1 u · v = v · u;
...2 (u + v) · w = u · w + v · w and w · (u + v) = w · u + w · v;
...3 (cu) · v = u · (cv) = c(u · v);
...4 ∥cu∥ = |c|∥u∥;
...5 u · u ≥ 0; and u · u = 0 iff u = 0.
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Review

Orthogonal and Orthonormal Bases

Def u and v in Rn are called orthogonal if u · v = 0.
Def A set S of vectors in Rn is called orthogonal if every pair of distinct vectors in S

are orthogonal.
Def A set S of vectors in Rn is called orthonormal if S is orthogonal and every vector

in S is a unit vector.
If S is an orthogonal set of nonzero vectors in a vector space, then S is linearly
independent. (By contrapositive)

Def A basis S for a vector space is called an orthogonal basis if S is orthogonal.
A basis S for a vector space is called an orthonormal basis if S is orthonormal.

Let V be a subspace of Rn and w a vector in V.
If {w1, . . . ,wk} is a basis for V, then

w = a1w1 + a2w2 + · · · + akwk,

where we need to solve linear system to get a1, a2, . . . , ak.
If {u1, . . . , uk} is an orthogonal basis for V, then

w =
w · u1

∥u1∥2
u1 +

w · u2

∥u2∥2
u2 + · · · +

w · uk

∥uk∥2
uk.

If {v1, . . . , vk} is an orthonormal basis for V, then

w = (w · v1)v1 + (w · v2)v2 + · · · + (w · vk)vk.
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Review

Orthogonal and Orthonormal Bases (Cont.)

Let V be a subspace of Rn.
Def A vector u ∈ Rn is said to be orthogonal to V if u is orthogonal to all vectors in

V.
Let V be a plane in R3 defined by the equation ax + by + cz = 0. Then
n = (a, b, c) is orthogonal to V. The vector n is called a normal vector of V.
If V = span{u1,u2, . . . ,uk} is a subspace of Rn, then a vector v ∈ Rn is
orthogonal to V iff v · ui = 0 for i = 1, 2, . . . , k.
Let V⊥ = {u ∈ Rn | u is orthogonal to V}, then

V⊥ is a subspace of Rn;
V ∩ V⊥ = {0};
V + V⊥ = Rn;
if {u1, u2, . . . , uk, . . . , un} is an orthogonal basis for Rn, where {u1, u2, . . . , uk} is
an orthogonal basis for V, then {uk+1, uk+2, . . . , un} is an orthogonal basis for V⊥;
dim(V) + dim(V⊥) = dim(Rn): let {u1, . . . , uk} be an orthogonal basis for V, then
it can be extended to an orthogonal basis for Rn: {u1, u2, . . . , uk, . . . , un}. Then
{uk+1, . . . , un} is an orthogonal basis for V⊥.
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Gram-Schmidt Process

Let {u1,u2, . . . ,uk} be a basis for a vector space V. Let

v1 = u1

v2 = u2 −
u2 · v1
∥v1∥2

v1

v3 = u3 −
u3 · v1
∥v1∥2

v1 −
u3 · v2
∥v2∥2

v2

...

vk = uk −
uk · v1
∥v1∥2

v1 −
uk · v2
∥v2∥2

v2 − · · · −
uk · vk−1

∥vk−1∥2
vk−1

Then {v1, v2, . . . , vk} is an orthogonal basis for V. Furthermore, let wi =
vi

∥vi∥
for

i = 1, 2, . . . , k. Then {w1,w2, . . . ,wk} is an orthonormal basis for V.
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Review

Projection

Let V be a subspace of Rn. Every vector u ∈ Rn can be written uniquely as
u = n + p such that n is a vector orthogonal to V and p is a vector in V. The
vector p is called the (orthogonal) projection of u onto V
Let V be a subspace of Rn and w a vector in Rn.

...1 If {u1, . . . , uk} is an orthogonal basis for V, then
w · u1

∥u1∥2
u1 +

w · u2

∥u2∥2
u2 + · · · +

w · uk

∥uk∥2
uk

is the projection of w onto V.
...2 If {v1, . . . , vk} is an orthonormal basis for V, then

(w · v1)v1 + (w · v2)v2 + · · · + (w · vk)vk

is the projection of w onto V.

Let p be the projection of u onto V, then ∥u − p∥ ≤ ∥u − v∥ for any vector
v ∈ V, i.e. p is the best approximation of u in V.



MA1101R Tutorial
Tutorial 9: Orthogonality

Review

Least Square Solution

Let Ax = b be a linear system where A is an m × n matrix. A vector x ∈ Rn is
called the least squares solution to the linear system if it minimizes the value of
∥b − Ax∥.
The following statements are equivalent:

x is the least squares solution to Ax = b;
x is the solution Ax = p where p is the projection of b onto the column space of A;
ATAx = ATb.

The linear system ATAx = ATb is always consistent:

rank(ATA | ATb) = rank(AT(A | b))
≤ min{rank(AT), rank(A | b)}
= min{rank(A), rank(A | b)}
= rank(A) = rank(ATA)

Suppose a linear system Ax = b is consistent. Then the solution set of Ax = b is
equal to the solution set of ATAx = ATb.
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Exercise (5.6)
Let W be a subspace of Rn. Define W⊥ = {u ∈ Rn | u is orthogonal to W}.
(a) Let W = span{(1, 0, 1, 1), (1,−1, 0, 2), (1, 2, 3,−1)}. Find W⊥.
(b) Show that W⊥ is a subspace of Rn.

Solution of part (a).
...1 Let (x, y, z,w) be any vector in W⊥.
...2 Then it is equivalent to


(1, 0, 1, 1) · (x, y, z,w) = 0

(1,−1, 0, 2) · (x, y, z,w) = 0

(1, 2, 3,−1) · (x, y, z,w) = 0

⇔


x + z + w = 0

x − y + 2w = 0

x + 2y + 3z − w = 0

⇔


x = −s − t
y = −s + t
z = s
w = t

for some s, t ∈ R.
...3 So W⊥ = {s(−1,−1, 1, 0) + t(−1, 1, 0, 1) | s, t ∈ R}.
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Proof of part (b).
...1 Let {w1,w2, . . . ,wk} be a basis for W.
...2 Then we have

u ∈ W⊥ ⇔


w1 · u = 0

· · ·
wk · u = 0

⇔

w1

...
wk

uT = 0.

Here we regard u as a row vector.
...3 So W⊥ is a solution set of a homogeneous system, and hence W⊥ is a subspace

of Rn.

Remark
We also may prove this by showing W⊥ is non-empty and satisfies closed condition.
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Exercise (5.8)
Let ax + by + cz = d be a plane in R3. Show that the vector (a, b, c) is perpendicular
to the plane.

Proof.
...1 Note that ax + by + cz = d is parallel to ax + by + cz = 0:

If d = 0, then they are same, and hence parallel;
If d ̸= 0, then any point on the plane ax + by + cz = d is not on the plane
ax + by + cz = 0, vice versa. Since it is known that the relation between two planes in
R3 has only 2 cases—intersection and parallelism, they are parallel.

...2 Since (a, b, c) is perpendicular to ax + by + cz = 0, it would also be perpendicular
to ax + by + cz = d.
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Exercise (5.10)
For each of the following the line l and plane P in R3, determine whether l is
perpendicular to P.
(a) l: x = 1 + 2t, y = t, z = 2− t for t ∈ R; P: 4x + 2y − 2z = 7.
(b) l: x = 1 + t, y = −1 + t, z = 3t for t ∈ R; P: 2x + 2y = 5.

Solution.

(a) l can be represented as (x, y, z) = (1, 0, 2) + t(2, 1,−1). So l is parallel to
(4, 2,−2) = 2(2, 1,−1). By Question 5.8, l is perpendicular to the plane
4x + 2y − 2z = 7.

(b) l can be represented as (x, y, z) = (1,−1, 0) + t(1, 1, 3). So l is parallel to (1, 1, 3).
On the other hand, a vector perpendicular to the plane 2x + 2y = 5 must be
parallel to (2, 2, 0). Since (2, 2, 0) and (1, 1, 3) are not parallel, l is not
perpendicular to the plane P.
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Exercise (5.12)
Let u1 = (−2,−4, 1), u2 = (3,−1, 2) and u3 = (1,−1,−2).
(a) Show that {u1,u2,u3} is an orthogonal basis for R3.
(b) Let V = span{u1,u2} and W = span{u3}. Write each of the following vectors as

a sum of two vectors v and w such that v ∈ V and w ∈ W: (i) (0, 0, 1); (ii)
(1, 1, 0).

Proof and Solution.

(a) It is easy to check that ui · uj = 0 for i ̸= j.
(b) For any x ∈ R3, by Theorem 5.2.8,

x =
x · u1

∥u1∥2
u1 +

x · u2

∥u2∥2
u2︸ ︷︷ ︸

v

+
x · u3

∥u3∥2
u3︸ ︷︷ ︸

w

.

Let v = x·u1
∥u1∥2

u1 + x·u2
∥u2∥2

u2 ∈ V, and w = x·u3
∥u3∥2

u3 ∈ W, then x = u + v. Hence
following this process, we will have:

(i) v = ( 1
3 ,−

1
3 ,

1
3 ) and w = (− 1

3 ,
1
3 ,

2
3 ).

(ii) v = (1, 1, 0) and w = (0, 0, 0).
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Exercise (5.18)
Let V = span{(1, 1, 1), (1, p, p)} where p is a real number. Find an orthonormal basis
for V and compute the projection of (5, 3, 1) onto V.

Solution.

When p = 1, V = span{(1, 1, 1)} and hence
{(

1√
3
, 1√

3
, 1√

3

)}
is an orthonormal

basis for V. The projection of (5, 3, 1) onto V is

(5, 3, 1) · (1, 1, 1)
∥(1, 1, 1)∥2

(1, 1, 1) = (3, 3, 3).

When p ̸= 1. By observation, it is easy to obtain
V = span{(1, 1, 1), (1, p, p)} = span{(1, 0, 0), (0, 1, 1)}. Since (1, 0, 0) and
(0, 1, 1) are orthogonal, {(1, 0, 0), (0, 1, 1)} is an orthogonal basis for V. Hence{
(1, 0, 0),

(
0, 1√

2
, 1√

2

)}
is an orthonormal basis for V. The projection of (5, 3, 1)

onto V is

(5, 3, 1) · (1, 0, 0)
∥(0, 0, 1)∥2

(1, 0, 0) +
(5, 3, 1) · (0, 1, 1)

∥(0, 1, 1)∥2
(0, 1, 1) = (5, 2, 2).
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Exercise (5.19)

(a) In R2, find the point on the line y = x that is closet to the point (1, 5).
(b) In R2, find the point on the line y = x + 2 that is closet to the point (1, 5).

Solution.
(a) ...1 The line y = x is a subspace in R2 spanned by {(1,1)}.

...2 The projection of (1, 5) onto the line y = x is (1,1)·(1,5)
∥(1,1)∥2

(1, 1) = (3, 3).
...3 By Theorem 5.3.2, we have that (3, 3) is the point on y = x that is closest to (1, 5).

(b) Since y − 2 = x is not a subspace, we cannot apply the method in part (a)
directly.

...1 If we move the line y − 2 = x and the point (1, 5) down by 2 in the y direction, the
resultants are the line y = x and the point (1, 3).

...2 By the method in part (a), (2, 2) is the point on y = x that is closest to (1, 3).

...3 Moving back, we obtain that (2, 4) is the point on y − 2 = x that is closest to (1, 5).
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Exercise (4.25(b))
Suppose a linear system Ax = b is consistent. Show that the solution set of Ax = b
is equal to the solution set of ATAx = ATb.

Proof.
...1 Let v be a solution of Ax = b.
...2 Since ATAv = ATb, v is also a solution of ATAx = ATb.
...3 Since the nullspace of A and the nullspace of ATA are identical, we have

The solution set of (Ax = b) = {u + v | u ∈ nullspace of (A)}

= {u + v | u ∈ nullspace of (ATA)}

= The solution set of (ATAx = ATb)
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Exercise (Remark)
Uniqueness of the decomposition u = n + p, where n is orthogonal the subspace V,
and p ∈ V.

Proof.
Proof by contradiction:

...1 Assume that the decomposition is not unique. Then there exist n1, n2, p1 and
p2, such that n1 + p1 = u = n2 + p2, where n1,n2 are orthogonal to V, and
p1, p2 ∈ V.

...2 Then we have
n1 − n2 = p2 − p1.

...3 Since n1 and n2 are orthogonal to V, so is u1 − u2, and hence p2 − p1 is also
orthogonal to V.

...4 Since p1 and p2 are in the subspace V, we have p2 − p1 ∈ V.

...5 Therefore p2 − p1 is orthogonal to itself, that is, (p2 − p1) · (p2 − p1) = 0.
Hence p1 = p2, and n1 = n2. Contradiction.
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Exercise (5.9)
Let {u1,u2, . . . ,un} be an orthogonal set of vectors in a vector space. Show that

∥u1 + u2 + · · ·+ un∥2 = ∥u1∥2 + ∥u2∥2 + · · ·+ ∥un∥2.

For n = 2, interpret the result geometrically in R2.

Proof.

∥u1 + u2 + · · ·+ un∥2 = (u1 + u2 + · · ·+ un) · (u1 + u2 + · · ·+ un)

= (u1 · u1) + · · ·+ (un · un) Since ui · uj = 0 for i ̸= j
= ∥u1∥2 + ∥u2∥2 + · · ·+ ∥un∥2

For n = 2, it is Pythagoras’ Theorem or 勾股定理.
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Exercise (Question 4 in Final of 2003-2004(II))
Let W be a subspace of Rn and let W⊥ = {u ∈ Rn | u is orthogonal to W}. Then

(i) W⊥ is a subspace of Rn;
(ii) dim(W) + dim(W⊥) = n.
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Change log

Change log

Page 219: Revise typos: “dim(V) ∩ dim(V⊥)” to “V ∩ V⊥”,
“dim(V) + dim(V⊥)” to “V + V⊥”;
Page 219: Add a proof for “dim(V) + dim(V⊥) = n = dim(Rn)”;
Page 220: Revise a typo: “{w1,w2, . . . ,wk} is an orthogonal basis” to
“{w1,w2, . . . ,wk} is an orthonormal basis”;
Page 224: Add a remark “We also may prove this by showing W⊥ is non-empty
and satisfies closed condition”;
Page 228: Revise the proof;
Page 231: Add a proof for the Remark.

Last modified: 22:00, April 3, 2011.
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Schedule of Tutorial 10

Any question about last tutorial
Review concepts

Orthogonal matrices;
Symmetric matrices.

Tutorial: 5.25, 5.29, 5.30, 5.32, 6.21, 6.22
Additional material:

2 additional equivalent statements for orthogonal matrices;
Problem 6.3.8;
Any eigenvalue of a symmetric matrix is a real number;
Exercise 5.33;
Question 5(3-6) in Final 2005–2006(I);
Question 6 in Final 2001–2002(II).
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Review

Orthogonal Matrices and Symmetric Matrices

A square matrix A is called orthogonal if A−1 = AT.
A is a square matrix, then the following statements are equivalent:

A is orthogonal;
AAT = I;
ATA = I;
the rows of A form an orthonormal basis for Rn;
the columns of A form an orthonormal basis for Rn;
∥Ax∥ = ∥x∥ for any vector x ∈ Rn;
Au · Av = u · v for any vectors u, v ∈ Rn.

Let A be an orthogonal matrix, λ an eigenvalue of A, then |λ| = 1: Since
Ax = λx and ∥Ax∥ = ∥x∥, we have |λ| = 1.
Let A be a symmetric matrix. If u and v are two eigenvectors of A associated
with eigenvalues λ and µ, respectively, where λ ̸= µ, show that u · v = 0.
Let A be a symmetric matrix, λ an eigenvalue of A, then λ is a real number.
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Review

Orthogonal diagonalization

Let A be a real matrix.
If ATA = AAT, then A is called normal matrix.
A is called orthogonally diagonalizable if there exists an orthogonal matrix P
(real matrix) such that PTAP is a diagonal matrix.
Let A be a normal matrix, and a1 ±

√
−1b1, . . . , at ±

√
−1bt, λ2t+1, . . . , λn be

all eigenvalues of A, where b1, . . . , bt > 0. Then A is orthogonally similar with

B = diag
((

a1 b1
−b1 a1

)
, · · · ,

(
at bt
−bt at

)
, λ2t+1, · · · , λn

)
.

If A is an orthogonal matrix, then A is orthogonally similar with

B = diag
((

cos θ1 sin θ1
− sin θ1 cos θ1

)
, · · · ,

(
cos θt sin θt
− sin θt cos θt

)
, Iu,−Iv

)
,

where 2t + u + v = n, 0 < θ1 ≤ · · · ≤ θt < π.
If A is a symmetric matrix, then A is orthogonally similar with
diag(λ1, λ2, · · · , λn), where λ1 ≥ λ2 ≥ · · · ≥ λn are all eigenvalues of A.
Furthermore, every symmetric matrix has n real eigenvalues.
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Exercise (5.25(a))

(a) Let A =

1 1
1 2
1 0

 and b =

3
4
2

.

(i) Solve the linear system Ax = b.
(ii) Find the least squares solution to Ax = b.

Solution of part (a).

(i) By observation, x1 = 2, and then x2 = 1. Hence x =

(
2
1

)
.

(ii) As we known, x is a least squares solution to Ax = b iff x is a solution to
ATAx = ATb, so we only need to solve the following linear system

ATAx = ATb.

By Gaussian elimination, we have the solution is x =

(
2
1

)
, which is exact the

least squares solution of Ax = b.
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Exercise (5.25(b))

(b) Suppose a linear system Ax = b is consistent. Show that the solution set of
Ax = b is equal to the solution set of ATAx = ATb.

Recall

Theorem 4.3.5: If v is a solution of Ax = b, then the solution of Ax = b is

{u + v | u ∈ the nullspace of A}.

Question 4.25(a): The nullspace of A is equal to the nullspace of ATA.

Proof of part (b).
...1 Let v be a solution of Ax = b.
...2 Since ATAv = ATb, v is also a solution of ATAx = ATb.
...3 Since the nullspace of A and the nullspace of ATA are identical, we have

The solution set of (Ax = b) = {u + v | u ∈ nullspace of (A)}

= {u + v | u ∈ nullspace of (ATA)}

= The solution set of (ATAx = ATb)
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Exercise (5.29(a))

(a) Let S1 = {(1, 0), (0, 1)}, S2 = {(1,−1), (2, 1)} and
S3 =

{
( 1√

2
, 1√

2
), (− 1√

2
, 1√

2
)
}

. Clearly, S1, S2 and S3 are three bases for R2.
Let u = (1, 4) and v = (−1, 1). Compute (u)Si , (v)Si and (u)Si · (v)Si for
i = 1, 2, 3. What do you observe?

Solution of part (a).

Since S1 = {(1, 0), (0, 1)} is the standard basis for R2, we have
(u)S1

= u = (1, 4), (v)S1
= v = (−1, 1), and (u)S1

· (v)S1
= (1, 4) · (−1, 1) = 3.

It is clear that S3 is an orthonormal basis for R2. Thus
(u)S3

=
(

u · ( 1√
2
, 1√

2
),u · (− 1√

2
, 1√

2
)
)
=
(

5√
2
, 3√

2

)
,

(v)S3
=
(

v · ( 1√
2
, 1√

2
), v · (− 1√

2
, 1√

2
)
)
= (0,

√
2), and (u)S3

· (v)S3
= 3.

Since (1,−1) and (2, 1) are not orthogonal, we can not use inner product to get
the coordinate vectors. Assume u = a1(1,−1) + a2(2, 1), by solving this linear
system, we have a1 = − 7

3
, a2 = 5

3
, and hence (u)S2

= (− 7
3
, 5
3
). Similarly, we

will have (v)S2
= (−1, 0). Hence (u)S2

· (v)S2
= 7

3
.

Note that (u)S1
· (v)S1

= (u)S3
· (v)S3

̸= (u)S2
· (v)S2

. See part (b) for an
explanation.
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Exercise (5.29(b))

(b) Prove that if S and T are two othornormal bases for a vector space V, then for
any vectors u, v ∈ V, (u)S · (v)S = (u)T · (v)T.

Proof of part (b).
...1 Let P be the transition matrix from S to T. Since S and T are orthonormal

bases, P is orthogonal, i.e. PTP = I:

(u1,u2, · · · ,un) = (v1, v2, · · · , vn)P, see page 100 in textbook.

...2 By definition of the inner product, we have [u]S · [v]S = (u)S · (v)S.

...3 Then we have

[u]T · [v]T = ([u]T)T[v]T = (P[u]S)T(P[v]S) = ([u]S)TPTP[v]S
= ([u]S)T[v]S = [u]S · [v]S

Therefore, we have (u)S · (v)S = (u)T · (v)T.



MA1101R Tutorial
Tutorial 10: Orthogonality and Linear Transformations

Tutorial

Exercise (5.30)
Let A be an orthogonal matrix of order n and let u, v be any two vectors in Rn. Show
that
(a) ∥u∥ = ∥Au∥;
(b) d(u, v) = d(Au,Av);
(c) the angle between u and v is equal to the angle between Au and Av.

Proof.

(a) ∥Au∥2 = (Au)T(Au) = uTATAu = uTu = ∥u∥2. Since both ∥u∥ and ∥Au∥ are
nonnegative, we have ∥Au∥ = ∥u∥.

(b) By part (a), d(Au,Av) = ∥Au − Av∥ = ∥A(u − v)∥ = ∥u − v∥ = d(u, v).
(c) (Au) · (Av) = (Au)TAv = uTATAv = uTv = u · v. So the angle between u and

v is
cos−1

( u · v
∥u∥∥v∥

)
= cos−1

( Au · Av
∥Au∥∥Av∥

)
,

which is the angle between Au and Av.
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Exercise (5.32)
Let A be an orthogonal matrix of order n and let S = {u1,u2, . . . ,un} be a basis for
Rn.
(a) Show that T = {Au1,Au2, . . . ,Aun} is a basis for Rn.
(b) If S is orthogonal, show that T is orthogonal.
(c) If S is orthonormal, is T orthonormal?

Proof and Solution.

(a) Since A is invertible, by Question 3.23(b)(i), T is linearly independent. So T is a
basis for Rn by Theorem 3.5.6.

(b) By Question 5.30, for i ̸= j we know that the angle between Aui and Auj is same
as the angle between ui and uj which is 90◦, hence Aui and Auj are orthogonal,
so T is orthogonal.

(c) Yes. By part (b), we know that T is orthogonal. Also by Question 5.30, since
∥Aui∥ = ∥ui∥ = 1 for any i = 1, 2, . . . ,n, we have T is orthonormal.
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Exercise (6.21)
Let u be a column matrix.
(a) Show that I − uuT is orthogonally diagonalizable.
(b) Find a matrix P that orthogonally diagonalizes I − uuT if u = (1,−1, 1)T.

Proof.

(a) Since
(
I − uuT)T

= I − uuT, I − uuT is symmetric. Hence I − uuT is
orthogonally diagonalizable.

(b) When u = (1,−1, 1)T, I − uuT =

 0 1 −1
1 0 1
−1 1 0

. We will obtain all the

eigenvalues are 1, 1,−2.
For eigenvalue 1, by solving the linear system (I − [I − uuT])x = 0, we will have the
general solution x = s(1, 1, 0)T + t(−1, 0, 1)T. Hence, for the eigenspace E1, we may
take {( 1√

2
, 1√

2
, 0), (− 1√

2
, 1√

6
, 2√

6
)} as an orthonormal basis.

For eigenvalue −2, by solving the linear system (−2I − [I − uuT])x = 0, we will have
the general solution x = s(1,−1, 1)T. Hence, for the eigenspace E−2, we may take
{( 1√

3
,− 1√

3
, 1√

3
)} as an orthonormal basis.

Thus take P =


1√
2

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

0 2√
6

1√
3

, then PT[I − uuT]P =

1
1

−2

.
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Exercise (6.22(ab))

Let A =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, and u =


1
1
1
1

.

(a) Show that u is an eigenvector of A.
(b) Let v = (a, b, c, d)T. Show that if u · v = 0, then v is an eigenvector of A.

Proof of parts (a) and (b).

(a) Since Au =


4
4
4
4

 = 4u, u is an eigenvector associated with eigenvalue 4.

(b) Since u · v = 0, we have a + b + c + d = 0. Therefore Av =


0
0
0
0

 = 0v, that is, v

is an eigenvector associated with eigenvalue 0.
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Exercise (6.22(c))

Let A =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, and u =


1
1
1
1

.

(c) Suppose P =


1
2

a1 a2 a3
1
2

b1 b2 b3
1
2

c1 c2 c3
1
2

d1 d2 d3

 is an orthogonal matrix. Find PTAP.

Proof of part (c).
...1 Since P is an orthogonal matrix, the columns form an orthonormal basis for R4.

Thus ai + bi + ci + di = 0 for i = 1, 2, 3.
...2 By part (a), the first column of P is the eigenvector of A associated with the

eigenvalue 4. By part (b), the other three columns of P are eigenvectors of A
associated with the eigenvalue 0. So

PTAP = P−1AP =


4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
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Additional material

Exercise
Let A be a square matrix of order n. Then the following statements are equivalent:
(a) A is an orthogonal matrix;
(b) ∥x∥ = ∥Ax∥ for any vector x ∈ Rn;
(c) u · v = Au · Av for any vectors u, v ∈ Rn.

Proof.

“(a)⇒(b)”: ∥Ax∥2 = (Ax)TAx = xTATAx = xTx = ∥x∥2.
“(b)⇒(c)”: Since ∥u + v∥ = ∥A(u + v)∥ and ∥u − v∥ = ∥A(u − v)∥, we will get

uTv + vTu = uTATAv + vTATAu.

Since uTv = vTu and uTATAv = vTATAu, we have

u · v = uTv = uTATAv = Au · Av.

“(c)⇒(a)”: Take u = ei, v = ej, left is easy.
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Exercise (Problem 6.3.8)
Let A be a symmetric matrix. If u and v are two eigenvectors of A associated with
eigenvalues λ and µ, respectively, where λ ̸= µ, show that u · v = 0.

Proof.
...1 By assumption, we have Au = λu (1) and Av = µv (2).
...2 From Equation (1), we have uTA = uTAT = λuT. Hence uTAv = λuTv.
...3 From Equation (2), we have uTAv = uTµv = µuTv.
...4 Therefore λuTv = µuTv. Since λ ̸= µ, we have uTv = 0, that is, u · v = 0.

Exercise
Let A be a symmetric matrix, λ an eigenvalue of A, then λ is a real number.

Proof.
...1 Assume Ax = λx. Then Ax̄ = Āx̄ = λ̄x̄, that is, λ̄ is an eigenvalue of A.
...2 Take transpose, we will get x̄TA = λ̄x̄. Hence, x̄TAx = λ̄x̄Tx.
...3 Since Ax = λx, we have x̄TAx = λx̄Tx.
...4 Therefore λ̄x̄Tx = λx̄Tx. Since x̄T ̸= 0, λ = λ̄, that is, λ is a real number.
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Exercise (5.33)
Determine which of the following statements are true. Justify your answer.
(a) If u, v,w are vectors in Rn such that u, v are orthogonal and v,w are orthogonal,

then u,w are orthogonal.
(b) If u, v,w are vectors in Rn such that u, v are orthogonal and u,w are orthogonal,

then u is orthogonal to span{v,w}.
(c) If A = (c1 c2 · · · ck) is an n × k matrix such that c1, . . . , ck are orthonormal,

then ATA = Ik.
(c’) If A = (c1 c2 · · · ck) is an n × k matrix such that c1, . . . , ck are orthogonal,

then ATA is a diagonal matrix each of whose diagonal entries is not zero.
(d) If A = (c1 c2 · · · ck) is an n × k matrix such that c1, . . . , ck are orthonormal,

then AAT = In.
(e) If A and B are orthogonal matrices, then A + B is an orthogonal matrix.
(f) If A and B are orthogonal matrices, then AB is an orthogonal matrix.
(g) If p1 and p2 are the projections of u and v onto a vector space V, then p1 + p2

is the projection of u + v onto V.
(h) If the columns of a square matrix A form an orthonormal set, then the rows of A

also form an orthonormal set.
(h’) If the columns of a square matrix A form an orthogonal set, then the rows of A

also form an orthogonal set.
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Solution.

(a) False. For example: u = w = (1, 0) and v = (0, 1).
(b) True. Let av + bw be any vector in span{v,w}. Then

u · (av + bw) = a(u · v) + b(u · w) = 0.
(c) True. By definition.

(c’) False. Take c1 to be 0.

(d) False. For example, let A =

(
1
0

)
.

(e) False. For example, let A = I2 = −B.
(f) True. AB(AB)T = ABBTAT = AAT = I.
(g) True. By definition.
(h) True. By definition.

(h’) False. For example, let A =

1 0 0
0 1 0
0 1 0

.
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Exercise (Question 5(3-6) in Final 2005-2006(I))
Let A be an n × n matrix.
(3) If A is diagonalizable and x · Ax = 0 for every eigenvector x of A, show that A is

the zero matrix.
(4) Show that BBT + cI is a symmetric matrix for any scalar c.
(5) Using the fact that any symmetric matrix is diagonalizable, prove that if

∥Bx∥ = ∥x∥ for every x ∈ Rn, then B is an orthogonal matrix.
(6) We say that C preserves orthogonality if, for any x, y ∈ Rn,

x · y = 0 ⇒ Cx · Cy = 0.

Prove that if C preserves orthogonality, then C is a scalar multiple of an
orthogonal matrix.

Exercise (Question 6 in Final 2001-2002(II))
Let {v1, v2, . . . , vn} be a basis of Rn and let A be an n × n matrix. Prove that
{Av1,Av2, . . . ,Avn} is a basis of Rn if and only if the nullspace of A is {0}.
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Change log

Change log

Page 240: Revise a typo: “(v)S2
” to “(v)S1

”;
Page 244: Revise a mistake “general solution x = s(1, 1, 0)T + t(−1, 1, 2)T” to
“general solution x = s(1, 1, 0)T + t(−1, 0, 1)T”.

Last modified: 19:37, April 8, 2011.
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Schedule of Tutorial 11

Any question about last tutorial
Review concepts: Linear transformation

Linear transformation, standard matrix;
Range, rank;
Kernal, nullity.

Tutorial: 7.3, 7.5, 7.10, 7.11, 7.13, 7.14
Additional material:

Question 3 in Final 2002–2003(II)
Question 5(d) in Final 2007–2008(II)
Question 3 in Final 2004–2005(II)
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Review

Linear Transformation

A linear transformation is a mapping T : Rn → Rm of the form

T




x1
x2
...

xn


 =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




x1
x2
...

xn

 for all


x1
x2
...

xn

 ∈ Rn,

where aij is a real number for 1 ≤ i ≤ m, 1 ≤ j ≤ n. The matrix (aij)m×n is
called the standard matrix for T.
How to find the standard matrix for T:

computing A =
(
T(e1) T(e2) · · · T(en)

)
,

or solving T(e1, e2, . . . , en) = (e1, e2, . . . , em)A.

Exercise 7.3: A mapping T : Rn → Rm is a linear transformation if and only if

T(au + bv) = aT(u) + bT(v) for all u, v ∈ Rn, a, b ∈ R.

This result can be used in the Final Exam.
If n = m, T is also called a linear operator on Rn.
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Review

Linear Transformation (Cont.)

Let T : Rn → Rm be a linear transformation, then
(1) T(0) = 0;
(2) If u1, u2, . . . , uk ∈ Rn and c1, c2, . . . , ck ∈ R, then

T(c1u1 + c2u2 + · · · + ckuk) = c1T(u1) + c2T(u2) + · · · + ckT(uk).

Let S : Rn → Rm and T : Rm → Rk be linear transformations. The composition
of T with S, denoted by T ◦ S, is a mapping from Rn to Rk such that

(T ◦ S)(u) = T(S(u)) for all u ∈ Rn.

If S : Rn → Rm and T : Rm → Rk are linear transformations, then T ◦ S is again
a linear transformation.
If A and B are the standard matrices for the linear transformations S and T
respectively, then the standard matrix for T ◦ S is BA.
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Review

Range and Rank vs. Kernal and Nullity

Let T : Rn → Rm be a linear transformation and A the standard matrix for T.
The range of T is the set of images of T, that is,

R(T) = {T(u) | u ∈ Rn} ⊂ Rm
.

R(T) is the column space of A.
The dimension of R(T) is called the rank of T and denoted by rank(T).
rank(T) = rank(A).
The kernal of T is the set of vectors in Rn whose image is the zero vector in Rm, that is,

Ker(T) = {u | T(u) = 0} ⊂ Rn
.

Ker(T) is the nullspace of A.
The dimension of Ker(T) is called the nullity of T and denoted by nullity(T).
nullity(T) = nullity(A).

rank(T) + nullity(T) = rank(A) + nullity(A) = (# columns of A).
For a general linear transformation T : Rn → Rm, Ker(T) ∈ Rn and R(T) ∈ Rm

are not necessarily in the same space.



MA1101R Tutorial
Tutorial 11: Review

Tutorial

Exercise (7.3)
Show that a mapping T : Rn → Rm is a linear transformation if and only if

T(au + bv) = aT(u) + bT(v) for all u, v ∈ Rn, a, b ∈ R.

Proof.

“⇒” It is a particular case of Theorem 7.1.3.2.
“⇐” ...1 Suppose T(au + bv) = aT(u) + bT(v), for all u, v ∈ Rn, a, b ∈ R.

...2 Let {e1, e2, . . . , en} be the standard basis for Rn and A the m × n matrix(
T(e1) T(e2) · · · T(en)

)
.

We will see that A is the standard matrix for T:
...3 For any u = (u1, u2, . . . , un)

T ∈ Rn, u = u1e1 + u2e2 + · · · + unen, we have

T(u) = u1T(e1) + u2T(e2) + · · · + unT(en) By induction

=
(
T(e1) T(e2) · · · T(en)

)


u1

u2

...
un

 = Au

...4 Thus T is a linear transformation.
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Exercise (7.5)
Let T : Rn → Rn be a linear operator. If there exists a linear operator S : Rn → Rn

such that S ◦ T is the identity transformation, i.e.

(S ◦ T)(u) = u for all u ∈ Rn,

then T is said to be the invertible and S is called the inverse of T.
(a) For each of the following, determine whether T is invertible and find the inverse of

T if possible.

(i) T : R2 → R2 such that T
((

x
y

))
=

(
y
x

)
for all

(
x
y

)
∈ R2.

(ii) T : R2 → R2 such that T
((

x
y

))
=

(
x + y
0

)
for all

(
x
y

)
∈ R2.

(b) Suppose T is invertible and A is the standard matrix for T. Find the standard
matrix for the inverse of T.
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Solution and Proof.

(a) (i) Since T((x, y)T) = (x, y)T for all (x, y)T ∈ R2,
(T ◦ T)((x, y)T) = T(T((x, y)T)) = T((y, x)T) = (x, y)T. That is, T is
invertible, and its inverse is T itself.

(ii) Assume there exists an inverse S : R2 → R2. Then
(1, 0)T = (S ◦ T)((1, 0)T) = S((1, 0)T) = S ◦ T((0, 1)T) = (0, 1)T, a
contradiction.

(b) The standard matrix of S ◦ T which is the product of the standard matrix of S and
the standard matrix of T is identity matrix. That is,

BA = In

where B is the standard matrix of S. Hence the standard matrix of S is A−1.

Remark

A linear operator T is invertible if and only if the standard matrix A of T is
invertible. For part (a-ii), the standard matrix of T is

(
1 1
0 0

)
, which is not

invertible. Thus T is not invertible.
A linear operator T is invertible if and only if it is bijective.
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Exercise (7.10)
Let T : Rn → Rm be a linear transformation. Show that Ker(T) = {0} if and only if
T is one-to-one, i.e. for any two vectors u, v ∈ Rn, if u ̸= v, then T(u) ̸= T(v).

Proof.

“⇒” ...1 Suppose that Ker(T) = {0}.
...2 (Prove by contrapositive) Let u, v ∈ Rn such that T(u) = T(v).
...3 Then T(u − v) = T(u)− T(v) = 0, and hence u − v ∈ Ker(T).
...4 Since Ker(T) = {0}, u − v = 0, that is, u = v. Thus T is one-to-one.

“⇐” ...1 By Theorem 7.1.3.1, T(0) = 0.
...2 Since T is one-to-one, for all v ∈ Rn, if v ̸= 0, T(v) ̸= T(0) = 0.
...3 Thus Ker(T) = {0}.
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Exercise (7.11)
Let S : Rn → Rm and T : Rm → Rk be linear transformations.
(a) Show that Ker(S) ⊂ Ker(T ◦ S).
(b) Show that R(T ◦ S) ⊂ R(T).

Proof.

(a) ...1 Let u ∈ Ker(S), that is, S(u) = 0.
...2 Then (T ◦ S)(u) = T(S(u)) = T(0) = 0 and hence u ∈ Ker(T ◦ S).
...3 Thus Ker(S) ⊂ Ker(T ◦ S).

(b) ...1 Let v ∈ R(T ◦ S), that is, there exists u ∈ Rn such that v = (T ◦ S)(u).
...2 Put w = S(u) ∈ Rm. Then v = T(S(u)) = T(w).
...3 This means that v ∈ R(T). Thus R(T ◦ S) ⊂ R(T).
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Exercise (7.13(a))
Let n be a unit vector in Rn. Define F : Rn → Rn such that

F(x) = x − 2(n · x)n for all x ∈ Rn.

(a) Show that F is a linear transformation and find the standard matrix for F.

Proof of part (a).
For any x ∈ Rn,

F(x) = x − 2n(n · x) n · x is a real number.
= x − 2n(nTx) Definition of inner product.
= x − 2(nnT)x Associated law of matrix product.
= (I − 2nnT)x

So F is a linear transformation, whose standard matrix is I − 2nnT.
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Exercise (7.13(b))
Let n be a unit vector in Rn. Define F : Rn → Rn such that

F(x) = x − 2(n · x)n for all x ∈ Rn.

(b) Show that F ◦ F is the identity transformation.

Proof of part (b).

(First method) For any x ∈ Rn, we have

(F ◦ F)(x) = F(F(x)) = F(x − 2(n · x)n) Definition of F.
= x − 2(n · x)n − 2{n · [x − 2(n · x)n]}n Definition of F.
= x − 2(n · x)n − 2{(n · x)− 2(n · x)(n · n)}n Distributive law of inner product.
= x − 2(n · x)n − 2{−(n · x)} · n = x n is a unit vector.

Therefore, F ◦ F is the identity transformation.
(Second method) Alternatively, we consider the standard matrix of F ◦ F:

(I − 2nnT)2 = (I − 2nnT)(I − 2nnT) = I − 4nnT + 4nnTnnT = I.

Therefore, F ◦ F is the identity transformation.
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Exercise (7.13(c))
Let n be a unit vector in Rn. Define F : Rn → Rn such that

F(x) = x − 2(n · x)n for all x ∈ Rn.

(c) Show that the standard matrix for F is an orthogonal matrix.

Proof of part (c).
...1 By part (a), the standard matrix of F is I − 2nnT.
...2 By part (b), (I − 2nnT)−1 = I − 2nnT.
...3 Note that (I − 2nnT)T = I − 2(nnT)T = I − 2nnT.
...4 Thus

(I − 2nnT)T = (I − 2nnT)−1,

that is I − 2nnT is an orthogonal matrix.

Remark
F is a reflection operator about the hyperplane which is orthogonal to n.
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Exercise (7.14)
Let T : Rn → Rn be a linear transformation such that T ◦ T = T.
(a) If T is not the zero transformation, show that there exists a nonzero vector

u ∈ Rn such that T(u) = u.
(b) If T is not the identity transformation, show that there exists a nonzero vector

v ∈ Rn such that T(v) = 0.
(c) Find all linear transformation T : R2 → R2 such that T ◦ T = T.

Proof of parts (a) and (b).

(a) Suppose T is not the zero transformation. So there exists x ∈ Rn such that
T(x) ̸= 0. Define u = T(x). Then u is a nonzero vector and

T(u) u=T(x)======= T(T(x)) = (T ◦ T)(x) T◦T=T======= T(x) u=T(x)======= u.

(b) Suppose T is not the identity transformation. So there exists y ∈ Rn such that
T(y) ̸= y. Define v = T(y)− y. Then v is a nonzero vector and

T(v) = T(T(y)− y) = (T ◦ T)(y)− T(y) = T(y)− T(y) = 0.
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Solution of part(c).

Let A be the standard matrix for T. Then it is equivalent to find all 2× 2
matrices A, such that A2 = A.
Let λ be an eigenvalue of A, and x an eigenvector associated with λ, then
λ2x = A2x = Ax = λx. Since x is nonzero vector, λ2 = λ. Hence λ can only be
0 or 1.
Case 1: λ1 = λ2 = 0. We cannot find a nonzero vector u, such that T(u) = u;
Otherwise T has an eigenvalue 1. By part (a), then T is the zero transformation.
Case 2: λ1 = λ2 = 1. We cannot find a nonzero vector v, such that T(v) = 0;
Otherwise T has an eigenvalue 0. By part (b), then T is the identity
transformation.
Case 3: λ1 = 0, λ2 = 1. Then A can be diagonalizable. Then
A = P−1

(
1 0
0 0

)
P for some invertible matrix P. Let P =

(
a b
c d

)
, then

A = 1
ad−bc

(
ad bd
−ac −bc

)
where ad − bc ̸= 0. We can simplify the expression to(

r s
t 1− r

)
where st = r(1− r).

Therefore
A = 02, I2,

(
r s
t 1− r

)
, where st = r(1− r).
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Exercise (Question 3 in Final 2002-2003(II))
Let V = span{u1,u2} where u1 = (1, 2, 3) and u2 = (1, 1, 1).
(a) Find all vectors orthogonal to V.
(b) Note that V is a plane in R3 containing the origin. Write down an equation that

represents this plane.

Exercise (Question 5(d) in Final 2007-2008(II))
Determine whether the statements is true: If the nullspace of two matrices A and B
are the same, then A is row equivalent to B.
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Exercise (Question 3 in Final 2004-2005(II))
Let {e1, e2, . . . , en} be the basis of Rn and let T be a linear transformation from Rn

to Rn such that T(ei) = ei+1 for i = 1, 2, . . . ,n − 1 and T(en) = 0. Find all the
eigenvalues and eigenvectors of A, where A is the standard matrix for T.

Solution.

T(e1, . . . , en) = (e2, . . . , en,0) = (e1, . . . , en)



0 · · · · · · · · · · · · 0
1 0 · · · · · · · · · 0
0 1 0 · · · · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...
0 0 · · · · · · 1 0


.

Exercise (Question 3(b) in Final 2005-2006(I))
Let T : Rn → Rn be a linear transformation. If T ◦ T = T, show that

Ker(T) ∩ R(T) = {0}.
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Change log

Change log

Page 258: Revise a typo: “
(

x
y

)
” to “

(
y
x

)
”;

Page 259: Revise a mistake for part (a-i).
Last modified: 20:15, April 15, 2011.
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