Collusion and cartels

Xiang Sun

Wuhan University

April 13, 2016

Outline

1 Cartel

2 One-shot game

3 Repeated game

- Finitely repeated game
- Infinitely repeated game
 - Infinitely repeated Cournot competition
 - Infinitely repeated Bertrand competition

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Folk theorem

4 Antitrust policy

Section 1

Cartel

What is a cartel?

An association of firms that reduces competition by coordinating actions:

- setting prices
- allocating market shares
- creating exclusive territories

Cartel

- Cartels are fairly common but hidden since collusion is illegal in the US, the European Union, and other countries
- But some cartels are explicit
 - Phoebus cartel (太阳神卡特尔): light bulbs
 - OPEC/Organization of the Petroleum Exporting Countries (欧佩克/石油 输出国组织): oil

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト クタペ

• De Beers (戴比尔斯): diamonds

Cartel (cont.)

- Evidence shows that cartels raise prices by a substantial amount ⇒ Connor and Lande (2005) found that the median cartel price increase was 22%
- Governments have agencies to combat collusion
 - United States Department of Justice Antitrust Division (美国司法部反托 拉斯司)

- European Commission (欧洲联盟委员会)
- Fines and jail sentences are used as punishment
- Antitrust authorities have been reasonably successfully in recent years

Cartel (cont.)

- Cournot competition induces firms to overproduce
- Bertrand competition induces low prices
- Firms would be better off if they coordinated their activities
- \Rightarrow *e.g.*, restricting their outputs increases the market price and profits

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト クタペ

Cartel (cont.)

- In a one-shot game, each firm finds it profitable to cheat
- ⇒ firms can't commit (they can't exactly sign contracts agreeing to price fix)
- ⇒ prisoner's dilemma
 - But firms typically interact repeatedly so they may have an incentive to coordinate activities

 \Rightarrow look for strategies that will sustain cooperation

Section 2

One-shot game

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

One-shot Cournot competition

- Two firms
- Demand: p = a Q
- Marginal cost: *c*
- NE:

$$q^c = \frac{a-c}{3}$$

• Profit:

$$\pi^c = \frac{(a-c)^2}{9}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

One-shot Cournot competition (cont.)

- If they are able to coordinate and behave as a monopoly $\Rightarrow Q^* = \frac{a-c}{2}$
- The firms split the output ⇒ Output:

$$q^* = \frac{a-c}{4}$$

 \Rightarrow Profit:

$$\pi^* = \frac{(a-c)^2}{8} > \pi^c$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - シ へ () ヘ

One-shot Cournot competition (cont.)

- There is an incentive to cheat
- If firm *j* sticks to the agreement and produces $\frac{a-c}{4}$ \Rightarrow Optimal output for firm *i*:

$$q^d = \frac{3(a-c)}{8}$$

 \Rightarrow Profit:

$$\pi^d = \frac{9(a-c)^2}{64}$$

 \Rightarrow Firm *j*'s profit:

$$\pi' = \frac{3(a-c)^2}{32}$$

One-shot Cournot competition (cont.)

•
$$\pi^{d} = \frac{9(a-c)^{2}}{64} > \pi^{*} = \frac{(a-c)^{2}}{8} > \pi^{c} = \frac{(a-c)^{2}}{9} > \pi' = \frac{3(a-c)^{2}}{32}$$

• Prisoner's dilemma

	Cooperate	Non-cooperate
Cooperate	π^*,π^*	π', π^d
Non-cooperate	π^d,π'	π^c, π^c

One-shot Bertrand competition

• NE:

$$p^b = c$$
 and $\pi^b = 0$

• If they are able to coordinate and behave as a monopoly

 $\Rightarrow \max_{p}(a-p)(p-c)$ $\Rightarrow \text{ Price:}$

$$p^* = \frac{a+c}{2}$$

 \Rightarrow Profit:

$$\pi^* = \frac{(a-c)^2}{8}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

One-shot Bertrand competition (cont.)

- There is an incentive to cheat
- If firm *j* sticks to the agreement and sets price $\frac{a+c}{2}$
- ⇒ firm *i* can increase its profit by choosing a price $p^d < \frac{a+c}{2}$, but as close as possible to $\frac{a+c}{2}$, and is almost equal to monopoly profit

$$\pi^m = \frac{(a-c)^2}{4}$$

One-shot Bertrand competition (cont.)

$$\pi^m = \frac{(a-c)^2}{4} > \pi^* = \frac{(a-c)^2}{8} > \pi^b = 0$$

• Prisoner's dilemma

	Cooperate	Non-cooperate
Cooperate	π^*,π^*	π', π^m
Non-cooperate	π^m, π'	π^b, π^b

Section 3

Repeated game

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Repeated game

- In a repeated game cooperation may make sense
- The (discounted) profits from colluding over time may be greater than the profits from deviating today

- This may allow a regular and punishment action
 - player *i* plays the cooperative action if no one has played the uncooperative action in the past
 - otherwise, plays the uncooperative action

Repeated game (cont.)

Trigger strategy:

- cooperate in period 1
- maintain cooperation in period *t* if no firm has played the uncooperative action in the past, otherwise plays the uncooperative action

usion		

Repeated game

Finitely repeated game

Subsection 1

Finitely repeated game

Finitely repeated game

- T periods
- Trigger strategy is not subgame perfect
- In period *T* (last period), firm 1's dominant strategy is to not cooperate

- Moving backwards, period T 1 is now effectively the "last period", given that cooperation is not possible in period T
 - \Rightarrow firm 1 will not cooperate in period T-1
 - \Rightarrow collusion cannot happen

- Repeated game

Finitely repeated game

Selten's Theorem: If a game with a unique equilibrium is played finitely many times, its solution (SPE) is that equilibrium played each and every time Finitely repeated play of a unique NE is the equilibrium of the repeated game

Col	usion	and	carte	ls

Repeated game

Infinitely repeated game

Subsection 2

Infinitely repeated game

- Repeated game

Infinitely repeated game

Infinitely repeated game

- In most situations the assumption of infinitely repeated games makes more sense than finitely repeated games
 - firms are usually regarded as having an indefinite life
 - the firm may not last forever but players do not know when the game will end

- In an infinitely repeated game
 - Good behavior can be credibly rewarded
 - Bad behavior can be credibly punished

Collusion and cartels Repeated game Infinitely repeated game

Infinitely repeated game (cont.)

- The discount factor is $\delta \in (0, 1)$
- The discounted payoff

$$\pi^{1} + \delta \pi^{2} + \dots + \delta^{n} \pi^{n-1} + \dots = \sum_{t=1}^{\infty} \delta^{t-1} \pi^{t}$$

 π^t is the profit in period t

• The normalized discounted payoff

$$(1-\delta)(\pi^{1}+\delta\pi^{2}+\dots+\delta^{n}\pi^{n-1}+\dots) = (1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\pi^{t}$$

Collusion and cartels Repeated game Infinitely repeated game

Infinitely repeated Cournot competition

• If firm 2 uses trigger strategy, firm 1 follows trigger strategy at period *t*, then firm 1's payoff from period *t* onwards is

$$\sum_{t=1}^{\infty} \delta^{t-1} \pi^* = \frac{1}{1-\delta} \pi^*$$

• If firm 2 uses trigger strategy, firm 1 deviates at period *t*, then firm 1's payoff from period *t* onwards is

$$\pi^d + \delta \pi^c + \dots + \delta^t \pi^c + \dots = \pi^d + \frac{\delta}{1 - \delta} \pi^c$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

Here we consider only one-shot deviation

Infinitely repeated Cournot competition (cont.)

• Trigger strategy is better at period *t* iff

$$\pi^* \ge (1-\delta)\pi^d + \delta\pi^c$$

- $\pi^d > \pi^* > \pi^c$ \Rightarrow there exists $\underline{\delta}$ such that trigger strategy is better iff $\delta \ge \underline{\delta}$
- In this case, one-shot deviation principle guarantees trigger strategy profile to be a SPE

Repeated game

Infinitely repeated game

Infinitely repeated Bertrand competition

- Trigger strategy
 - In period 1, choose price *p**
 - In period *t*, choose *p*^{*} if no firm deviates *t*^{*} in the previous periods; otherwise, choose price *p*^b
- If firm 2 uses trigger strategy, firm 1 follows trigger strategy at period *t*, then firm 1's payoff from period *t* onwards is

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\pi^* = \pi^*$$

Infinitely repeated Bertrand competition (cont.)

• If firm 2 uses trigger strategy, firm 1 deviates at period *t*, then firm 1's payoff from period *t* onwards is

$$(1-\delta)(\pi^m + \delta\pi^b + \dots + \delta^t\pi^b + \dots) = (1-\delta)\pi^m + \delta\pi^b$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

- Trigger strategy is better iff π* ≥ (1 − δ)π^m + δπ^b
 ⇒ there exists δ such that trigger strategy is better iff δ ≥ δ
- In this case, one-shot deviation principle guarantees trigger strategy profile to be a SPE

Infinitely repeated game

Remark

Collusion is sustainable if:

• Short-term gains from cheating are low relative to long-run losses

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Cartel members value future profits (high discount factor)
- this model explains why we see collusion in practice

Remark (cont.)

- The strategies are based on the assumption that cheating on the cartel agreement is detected quickly and that punishment is swift
 - \Rightarrow What if there is a delay?
 - \Rightarrow collusion is still possible but the discount rate has to be higher
- The punishment is harsh and unforgiving because it does not permit mistakes
 - if there is a decrease in sales and profit is it because the other firm is cheating or is because there was a decrease in demand?

- modified trigger strategy based on a range of prices or outputs
- punish for a limited number of periods

Folk theorem

- There are many different trigger strategies that allow a cartel agreement to be sustained in an infinitely repeated game
- Friedman (1971): Suppose that an infinitely repeated game (with finite players) has a set of payoffs that exceed the one-shot Nash equilibrium payoffs for each and every firm. Then any set of feasible payoffs that are preferred by all firms to the Nash equilibrium payoffs can be supported as a SPE for the repeated game for some discount rate sufficiently close to unity

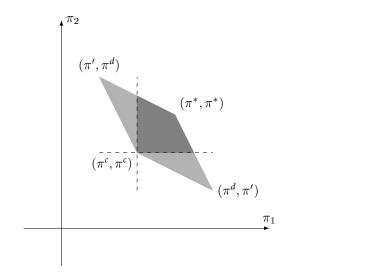
⇒ Construct a trigger strategy profile

Collusion and cartels

Repeated game

Infinitely repeated game

Folk theorem (cont.)



Antitrust policy

- A group of perfectly symmetric firms (an industry) which consider colluding taking into account the enforcement activity of the Antitrust Authority
- In each period, firms are reviewed by AA with probability *p*
- In each period, AA successfully finds the evidence that firms have collusion with probability *q*

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト クタペ

- Firm will be fined *F* if it has been found the collusion evidence
- Discount factor δ

Antitrust policy (cont.)

- Let Π be the utility when there is an antitrust policy
- At period 1, if there is no review, the utility is

$$(1-p)(\pi^* + \delta \Pi)$$

• At period 1, if there is a review, but AA does not find evidence, the utility is

$$p(1-q)(\pi^*+\delta\Pi)$$

• At period 1, if there is a review and AA finds evidence, the utility is

$$pq\left(\pi^* - F + \frac{\delta}{1-\delta}\pi^c\right)$$

Collusion and cartels

Antitrust policy (cont.)

• Thus

۲

$$\Pi = (1-p)(\pi^* + \delta\Pi) + p(1-q)(\pi^* + \delta\Pi) + pq(\pi^c - F + \frac{\delta}{1-\delta}\pi^c)$$

$$\Pi = \frac{1}{1 - \delta(1 - pq)} \left(\pi^* - pqF + \frac{pq\delta}{1 - \delta} \pi^c \right)$$

• Recall the utility without antitrust policy is

$$\frac{1}{1-\delta}\pi^*$$

Collusion and cartels Antitrust policy

Antitrust policy (cont.)

Two approaches

- Fine F
- Probabilities of reviewing and finding evidence pq

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで