Networks in the Real World

@ A network is a set of items (nodes or vertices) connected by edges or
links.

@ Systems taking the form of networks abound in the world.

o Types of Networks:

e Social and economic networks: A set of people or groups of people
with some pattern of contacts or interactions between them.

o Facebook, friendship networks, business relations between companies,
intermarriages between families, labor markets

@ Questions: Degree of connectedness, homophily, small-world effects

e Information networks: Connections of “information” objects.

@ Network of citations between academic papers, World Wide Web
(network of Web pages containing information with links from one page
to other), semantic (how words or concepts link to each other)

@ Questions: Ranking, navigation



Networks in the Real World (Continued)

o Types of Networks:
e Technological networks: Designed typically for distribution of a
commodity or service.

o Infrastructure networks: e.g., Internet (connections of routers or
administrative domains), power grid, transportation networks (road,
rail, airline, mail)

@ Temporary networks: e.g., ad hoc communication networks, sensor
networks, autonomous vehicles

@ Questions: Does network structure support performance? Fragility?
Cascading failures?

e Biological networks: A number of biological systems can also be
represented as networks.

@ Food web, protein interaction network, network of metabolic pathways



Network Study

@ Historical study of networks:
e Mathematical graph theory: One of the pillars of discrete mathematics
o Started with Euler’s celebrated 1735 solution of the Kénigsberg bridge
problem.
o Networks also studied extensively in sociology.
o Typical studies involve circulation of questionnaires, leading to small
networks of interactions.
@ Recent years witnessed a substantial change in network research.
o From analysis of single small graphs (10-100 nodes) to statistical
properties of large scale networks (million-billion nodes).
e Motivated by availability of computers and computer networks that
allow us to gather and analyze large scale data.
o New Analytical Approach:
e Find statistical properties that characterize the structure of these
networks and ways to measure them
o Create models of networks
o Predict behavior of networks on the basis of measured structural
properties and models



SI2phs
Graphs—1

@ We represent a network by a graph (N, g), which consists of a set of nodes
N ={1,...,n} and an n x n matrix g = [gj]; jen (referred to as an
adjacency matrix), where gj; € {0, 1} represents the availability of an edge
from node i to node j.

o The edge weight g;; > 0 can also take on non-binary values,
representing the intensity of the interaction, in which case we refer to
(N, g) as a weighted graph.

@ We refer to a graph as a directed graph (or digraph) if gj; # gji and an
undirected graph if g; = gj; for all i,j € N.
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Weighted Directed
Network:
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Weighted Directed
Network:




SI2phs
Graphs—2

@ Another representation of a graph is given by (N, E), where E is the
set of edges in the network.

o For directed graphs: E is the set of “directed” edges, i.e., (i,j) € E.
e For undirected graphs: E is the set of “undirected” edges, i.e.,

{i,j} € E.
In Example 1, E4 = {(1,2),(2,3),(3,1)}
In Example 2, E, = {{1,2},{1,3},{2,3}}
When are directed /undirected graphs applicable?

o Citation networks: directed
o Friendship networks: undirected

(]

We will use the terms network and graph interchangeably.

We will sometimes use the notation (/,j) € g (or {/,j} € g) to
denote gj; = 1.



SI2phs
Walks, Paths, and Cycles—1

@ We consider “sequences of edges” to capture indirect interactions.

@ For an undirected graph (N, g):

o A walk is a sequence of edges {i1, i}, {io, 3}, ..., {ik_1. ik }-

o A path between nodes i and j is a sequence of edges
{il, f2}, {ig, i3}, ceey {iK—lr iK} such that i; = i and iK :j, and each
node in the sequence Iy, ..., ik Is distinct.

A cycle is a path with a final edge to the initial node.
A geodesic between nodes i and j is a “shortest path” (i.e., with
minimum number of edges) between these nodes.

@ A path is a walk where there are no repeated nodes.

@ The length of a walk (or a path) is the number of edges on that walk (or
path).

@ For directed graphs, the same definitions hold with directed edges (in which
case we say “a path from node i to node j").



Networks: Lecture 2 Graphs

Walks, Paths, and Cycles—2

[N

walk path between / and j cycle shortest path

O—0

o Note: Under the convention g; = 0, the matrix g2 tells us number of
walks of length 2 between any two nodes:
° (g Xg)j=Lk&ik8kj
o Similarly, g¥ tells us number of walks of length k.



Counting Walks:

0 1 0 1
1 0) 0 1
9= 0O 0 0 1
1 1 1 0
2 1 1 1
1 2 1 1
92 = 1 1 1 0 number of walks of length 2 from i to |
1 1 0 3



Counting Walks: @
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SI2phs
Connectivity and Components

@ An undirected graph is connected if every two nodes in the network
are connected by some path in the network.
e Components of a graph (or network) are the distinct maximally
connected subgraphs.
@ A directed graph is
o connected if the underlying undirected graph is connected (i.e.,
ignoring the directions of edges).
e strongly connected if each node can reach every other node by a
“directed path”.

Figure: A directed graph that is connected but not strongly connected
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A network with four
components:

LN




SI2phs
Trees, Stars, Rings, Complete and Bipartite Graphs

@ A tree is a connected (undirected) graph with no cycles.
e A connected graph is a tree if and only if it has n — 1 edges.
e In a tree, there is a unique path between any two nodes.

Sl S

Complete graph Ring Star

% 3 E % Bipartite graph

Tree actors movies
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SI2phs
Neighborhood and Degree of a Node

@ The neighborhood of node i is the set of nodes that i is connected to.
@ For undirected graphs:

e The degree of node i is the number of edges that involve i (i.e.,
cardinality of his neighborhood).

o For directed graphs:
o Node i's in-degree is }; gj;.
e Node i's out-degree is Zj 8ij-

Figure: Node 1 has in-degree 1 and out-degree 2
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Properties of Networks

@ While a small network can be visualized directly by its graph (N, g),
larger networks can be more difficult to envision and describe.

@ Therefore, we define a set of summary statistics or quantitative
performance measures to describe and compare networks (focus on
undirected graphs):

e Diameter and average path length

o Clustering

o Centrality

o Degree distributions

@ A Simple Random Graph Model—Erdos-Renyi model

o We use the notation G(n, p) to denote the undirected Erdos-Renyi
graph.

o Every edge is formed with probability p € (0,1) independently of
every other edge.

o Expected degree of a node i is E[d;] = (n—1)p

o Expected number of edges is ]E[number of edges] =1 n2—1) p

13



Simplifying the Complexity

Global patterns of networks

— degree distributions, path lengths...
Segregation Patterns

— node types and homophily

Local Patterns

— Clustering, Transitivity, Support...
Positions in networks

— Neighborhoods, Centrality, Influence...




Diameter and Average Path Length

o Let /(7,/) denote the length of the shortest path (or geodesic)
between node i and j (or the distance between i and ).

@ The diameter of a network is the largest distance between any two
nodes in the network:

diameter = max /(i, )
ij

@ The average path length is the average distance between any two
nodes in the network:
L)

n(n—1)
2

average path length =

@ Average path length is bounded from above by the diameter; in some
cases, it can be much shorter than the diameter.

@ If the network is not connected, one often checks the diameter and
the average path length in the largest component.

14



Diameter:

K levels has n = 2X*1-1 nodes
so, K=log,(n+1) -1
g diameter is 2K

30

5‘5

diameter is either diameter is on order of
n/2 or (n-1)/2 2 log,(n+1)



Small average path length and diameter@
e Milgram (1967) letter experiments

— median 5 for the 25% that made it
e Co-Authorship studies

— Grossman (2002) Math mean 7.6, max 27,

— Newman (2001) Physics mean 5.9, max 20

— Goyal et al (2004) Economics mean 9.5, max 29
e WWW

— Adamic, Pitkow (1999) — mean 3.1 (85.4% possible of 50M pages)
* Facebook

— Backstrom et al (2012) — mean 4.74 (721 million users)



Sequences of Networks @

e Links are dense enough so that network is
connected almost surely:

d(n) = (1+¢€) log(n) some >0

e d(n)/n > 0:
network is not too complete



Theorem on Network
Structure

If d(n) > (1+¢) log(n) some >0 and d(n)/n > 0

Then for large n, average path length and diameter
are approximately proportional to log(n)/log(d)

(Proven for increasingly general models:

Erdos-Renyi 59 - Moon and Moser 1966, Bollobas
1981; Chung and Lu 01; Jackson 08; ...)



Theorem on Network
Structure

If d(n) = (1+¢) log(n) some €>0 and d(n)/n > 0

AvgDist(n) ->F1
log(n)/log(d(n))

same for diameter



Diameter

e Bounds can be difficult — theorems
are narrow, but intuition is easy

e Let’s start with an easy calculation --

 Cayley Tree: each node besides
leaves has degree d



Ideas: @

N 1 step: Reach d nodes,

then d(d-1),
then d(d-1)4, d(d-1)3, ...

After ¢ steps, totals roughly d ¢



Moving out € links from root in each direction
reaches d +d(d-1) + .... d(d-1) ¢! nodes

— T T
.
' u_;)
. rd

\__\ -
P

This is d((d-1) ¢ -1)/(d-2) nodes: roughly (d-1) ¢

To reach n-1, need roughly (d-1) ¢ = n

or

¢ on the order of log(n)/log(d)



<>

What if not a tree, but Erdos-Renyi random graph?

e all have same degree — really are random
— show that fraction of nodes that have nearly
average degree is going to 1

e E[d]> (1+¢€) log(n)



e Chernoff Bounds:

X is binomial variable then

Pr(E[X]/3 <X <3E[X])> 1-e EX

http://en.wikipedia.org/wiki/Chernoff bound




e Chernoff Bounds: Links binomial implies @

Probability that node has degree close to average:
Pr(d/3<d <3d)> 1-e

Pr(d/3 < all degrees <3d)=> (1-e-9)n

(missing steps: degrees not quite ind.)



* Chernoff Bounds: @

Pr(d/3 < all degrees <3d)=> (1-e-9)n

e If d>(1+¢)log(n) then
Pr(d/3 <all degrees <3d) > (1-1/nt*)"

— exp(-n€) = 1



e So:

e If d>(1+€)log(n) then
Pr(d/3 <alldegrees<3d)—1



e Thus:

e If d>(1+€)log(n) then with prob — 1:

log(n)/log(3d) < € < log(n)/log(d/3)



Avg distance and diameter:

Large d: log(3d) & log(d/3) tend to log(d)

log(n)/log(3d) <

log(n)/log(d) =

¢ <log(n)/log(d/3)

4
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Clustering

@ Measures the extent to which my friends are friends with one another.
@ This clustering measure is represented by the overall clustering
coefficient Cl(g), given by

Ci(g) = 3 X number of triangles in the network
&)= number of connected triples of nodes '

where a “connected triple” refers to a node with edges to an
unordered pair of nodes.

o Note that 0 < Cl(g) < 1.
o Cl(g) measures the fraction of triples that have their third edge filled

in to complete the triangle.
o Also referred to as network transitivity: measures the extent that a

friend of my friend is also my friend.

15



Clustering (Continued)

@ Another measure of clustering is defined on an individual node basis:
The individual clustering for a node i is

number of triangles connected to vertex i

Cli(g) =

number of triples centered at i

o The average clustering coefficient is CI€(g) = 1 ¥, Cli(g).

Figure: The overall clustering coefficient for this network is 3/8. The individual
clustering for the nodes are 1, 1, 1/6, 0, and 0.

@ What is the individual clustering for a node in the Erdés-Renyi model?

16



Clustering @

 What fraction of my friends are friends of each other?

* Cl(g) =#{kjing | k, jinN(g)} / #{kj |k, jin N(g)}

| 7
e Average clustering: \/,’.\ -
e
Cl*s(g) =3,Cl(g) / n o

link?



Differences in Clustering

Average tends to 1

\

\

Overall tends to O




Centrality,
Four different things to measure:

* Degree — connectedness

* Closeness, Decay — ease of reaching other nodes

* Betweenness —role as an intermediary, connector

* Influence, Prestige, Eigenvectors —
“"'not what you know, but who you know..”




Centrality

@ A micro measure that captures the importance of a node's position in
the network.
o Different measures of centrality
e Degree centrality: for node i,

di(g)/n—1, where d;(g) is the degree of node i

o Closeness centrality: Tracks how close a given node is to any other
node: for node /, one such measure is

n—1

Y l(i))

o Betweenness centrality: Captures how well situated a node is in terms
of paths that it lies on (see the Florentine marriages example from the
previous lecture).

where /(i, ) is the distance between i and j

17



Degree Centrality @

. PUCCI

Medici = 6
Strozzi = 4
Guadagni = 4

BISCHERI

Padgett Ansell's Data
Florentine Marriages,
1430’s



Degree Centrality @

e Node 3 is considered as central’” as 1 and 2
\ / \

% el



Closeness

Closeness centrality: (n-1) / 3, €i,])

BISCHERI

IIIIII

GINORI

ignoring Pucci:
Medici 14/25
Strozzi 14/32
Guadagni 14/26
Tornabuon 14/29
Ridolfi 14/28



Decay Centrality @

Cid(g) = Zj;éi 6 Uid)

d near 1 becomes component size
® near 0 becomes degree
® in between decaying distance measure

— weights distance exponentially



4 3
. aae. ;

I T L T
.50 33

Degree 33

Closeness 40 .55 .60
Decay 6=.5 1.5 2.0 2.0
Decay 6=.75 3.1 3.7 3.8

Decay 6 =.25 .59 .84 .75



Normalize: Decay @

Centrality

Cid(g) = Zj;éi 6 444) [ ((n-1) 8)

* (n—1) 6 isthe lowest decay possible



3

7
L=
=3

Degree
Closeness

N. Decay 6=.5
N. Decay &6=.75
N. Decay 6 =.25

33 .50 33

40
.50
.69
.39

.55
.67
.82
.56

.60
.67
.84
.50




Betweenness Centrality

. PUCCI

BISCHERI

GINORI

IIIIII

Padgett and Ansell’s
(1993) Data (from

Kent 1978) .
Florentine Marriages, " Medici = .522
1430’s Strozzi = .103

Guadagni = .255



3

7
L=
=]

Degree
Closeness

N. Decay 6=.5
N. Decay &6=.75
N. Decay 6 =.25

Betweenness

33 .50 33

40
.50
.69
.39
.00

.55
.67
.82
.56
.53

.60
.67
.84
.50
.60



Degree Centrality?

* Failure of degree centrality to capture
reach of a node:



Degree Centrality?

e More reach if connected toa 6 and 7
thana 2 and 2?

:2%/0 » /i%

\‘/0



Eigenvector Centrality

e Centrality is proportional to the
sum of neighbors’ centralities

C.

C, proportional to 3 fieng ofi G

Ci=a28; G



Eigenvector Centrality @

Now distinguishes more "influential”’ nodes




Prestige, Influence, Eigenvector-
based Centrality

 Get value from connections to others,
but proportional to their value

» Self-referential concept

Ce(g)=a 2 8i Cje(g)
— centrality is proportional to the
summed centralities of neighbors




Prestige, Influence, Eigenvector-based @
Centrality

« Ce(g)=a2;8g; Csg) Cé(g) = a g C(g)
— C®(g) is an eigenvector - many possible solutions

— Look for one with largest eigenvalue — will be
nonnegative (Perron-Frobenius Theorem)

— normalize entries to sum to one



Eigenvector Centrality

. PUCCI

BISCHERI

ALBIZZ|

Padgett and Ansell’s .
(1993) Data (from Medici = .430

Kent 1978) . Strozzi = .356
Florentine Marriages, Guadagni = .289
1430’s Ridolfi=.341

Tornabuon=.326



Centrality

* Concepts related to eigenvector centrality:

 Google Page rank: score of a page is
proportional to the sum of the scores of pages
linked to it

 Random surfer model: start at some page on the
web, randomly pick a link, follow it, repeat...



Degree
Closeness

N. Decay 6=.5
N. Decay &6=.75
N. Decay 6=.25
Betweenness

Eigenvector

4 3
. ey

2
3

33 .50 33

40
.50
.69
.39
.00
A7

.55
.67
.82
.56
.53
.63

.60
.67
.84
.50
.60
.54



Bonacich Centrality @

Builds on a measure by Katz
give each node a base value ad,(g) for some a>0

then add in all paths of length 1 from i to some |
times b times j’s base value

then add in all walks of length 2 from i to some |
times b? times j’s base value...

Cb(g) = agl + bgagl + b2g2agl..



Bonacich Centrality @

Cb(g) = agl + bgagl + b2g2agl..
=a(gl + bg?l + b?g31 ...)

normalize a to 1, need small b to be finite
Cb(g)= g1 + bg?21l + b%2g31 ..

=(I-bg )" gl



Bonacich Centrality

BISCHERI

Padgett and Ansell's

(1993) Data (from Medici = 8.2

Kent 1978) o Strozzi = .5;8
Florentine Marriages, Guadagni = 5.5
1430’s Ridolfi=4.9

Tornabuon=4.9

GINORI




T e [Nodes [ oies

Degree 33 .50 33
Closeness 40 .55 .60
N. Decay 6=.5 .50 .67 .67
N. Decay 6=.75 .69 .82 .84
N. Decay 6 =.25 .39 .56 .50
Betweenness .00 .53 .60
Eigenvector A7 .63 .54
Bonacich b=1/3 9.4 13 11

Bonacich b=1/4 4.9 6.8 5.4




Degree Distributions

@ The degree distribution, P(d), of a network is a description of relative
frequencies of nodes that have different degrees d.
o For a given graph: P(d) is a histogram, i.e., P(d) is the fraction of
nodes with degree d.
o For a random graph model: P(d) is a probability distribution.

@ Two types of degree distributions:

o P(d) < ce™d, for some & > 0 and ¢ > 0: The tail of the distribution
falls off faster than an exponential, i.e., large degrees are unlikely.

o P(d)=cd™7, for some v > 0 and ¢ > 0: Power-law distribution:
The tail of the distribution is fat, i.e., there tend to be many more
nodes with very large degrees.

@ Appear in a wide variety of settings including networks describing
incomes, city populations, WWW, and the Internet

@ Also known as a scale-free distribution: a distribution that is unchanged
(within a multiplicative factor) under a rescaling of the variable

@ Appear linear on a log — log plot

@ What is the degree distribution of the Erdos-Renyi model?

18



Games on Networks

Players on a network - explicitly modeled...
Care about actions of neighbors

Early literature: How complex is the computation
of equilibrium in worse case games?

Second branch: what can we say about behavior
and how it relates to network structure



Start with a Canonical @
Special Case:

e Each player chooses action x; in {0,1}

e payoff will depend on
— how many neighbors choose each action
— how many neighbors a player has



Definitions @

e Each player chooses action x; in {0,1}

e Consider cases where i’s payoff is
Ug (X;,my )

depends only on di(g) and m (&) - the number of
neighbors of | choosmg 1



Example: Simple @
Complement

e agentiis willing to choose 1 if and only if at
least t neighbors do:

e Payoff action0: u (0,m, )=0

e Payoff action1: uy(1,m, ) = -t+my
I I I



Example:

21 >
\@/.

 An agent is willing to take action 1 if
and only if at least two neighbors do



Example:

21 >
\@/.

 An agent is willing to take action 1 if
and only if at least two neighbors do



Example: Best Shot @

e agentiis willing to choose 1 if and only if no
neighbors do:

e Payoff action0: u,(0,my )= 1ifm, >0

0if m, =0

e Payoff action1l: uy(1,m, )= 1-c
I I



Another Example:
Best Shot Public Goods

0. W @
a>- - P ®
@ O

 An agent is willing to take action 1 if
and only if no neighbors do



Complements/Substitutes

e strategic complements -- for all d, m>m’
— Increasing differences:
Ud (1,m)'ud (O,m) 2 Ud (1,m,)' Ud (O,m,)

e strategic substitutes -- for all d, m>m’
— Decreasing differences:
Ud (1,m)'ud (O,m) S Ud (1,m,)' Ud (O,m,)



Externalities: @

e Others’ behaviors affect my utility/welfare

 Others’ behaviors affect my decisions,
actions, consumptions, opinions...

— others’ actions affect the relative payoffs
to my behaviors



(Strategic) @
Complements/Substitutes

e Complements: Choice to take an action by my friends
increases my relative payoff to taking that action (e.g., friend
learns to play a video game)

e Substitutes: Choice to take an action by my friends decreases
my relative payoff to taking that action (e.g., roommate buys
a stereo/fridge)



Examples

e Complements:
— education decisions

e care about number of neighbors, access to jobs, etc. —
invest if at least k neighbors do

— smoking & other behavior among teens, peers, ...
— technology adoption — how many others are compatible...
— learn a language, ...
— cheating, doping
e Substitutes
— information gathering

e e.g., payoff of 1 if anyone in neighborhood is informed,
cost to being informed (c<1)

— local public goods (shareable products...)
— competing firms (oligopoly with local markets)



Equilibrium

Nash equilibrium: Every player’s action is optimal
for that player given the actions of others

Often look for pure strategy equilibria

May require some mixing



Useful Observation

Complements: there is a threshold t(d), such
thatiprefers 1 if m >t(d) and O if m < t(d)

Substitutes: there is a threshold t(d), such that i
prefers 1 if m <t(d) and O if m > t(d)

Can be indifferent at the threshold



Complements

R
'?I/ °®
¥/. / \‘/O
\-/‘
e threshold is two

* multiple equilibria
e |attice structure to set of equilibria



Complete lattice

e Complete Lattice: for every set of equilibria X

— there exists an equilibrium x” such that x’>x
forall xin X, and

— there exists an equilibrium x”’ such that
x"’<x for all x in X.



®
& o
o @
®
/ /.\

Lattice:

/ /‘\
‘/0
® »



Proposition

In a game of strategic complements where
the individual strategy sets are complete
lattices:

the set of pure strategy equilibria are a
(nonempty) complete lattice.



Best shot

not
equilibrium

SR -

s e s o s e

e Maximal independent set: each 1 hasno 1’s
in its neighborhood, each 0 has at least one 1

Different distributions of utilities, and
different total costs



Maximal Independent Set

* Independent Set: a set S of nodes such that no two
nodes in S are linked,

e Maximal: every node in N is either in S or linked to a
node in S



Basic model

n agents in a network; each exerts e; € [0, +00) effort; mc = c;

m An agent /i's payoff from profile e = (e1,--- , e,) in a network g is

Ul(e;g)=b | e+ Z e | —ce
JEN;
strategic substitutes
m b(-) strictly increasing and concave benefit. let e* solves
b'(e) —c=0.
m Let & = ) .y, €. Then every agent i either (1) & > e* and ¢; =0
or (2) & <e*and e =ef —§.
m Equilibrium always exists by Brouwer's Fixed Point Theorem. multiple
equilibria;

short author (SHUFE) lec 2015 17 / 18



main result

m maximal independent sets. An independent set | of a graph g is a
set of agents such that no two agents who belong to / are linked; i.e.,
Vi,j € I such that i # j, gjj = 0. An independent set is maximal when
it is not a proper subset of any other independent set.

m We say a profile e is specialized when every agent either exerts the

maximum amount of effort e* or exerts no effort; for all agents i
either e; = 0 or ¢; = e*. We call an agent who exerts e* a specialist.

A specialized profile is a Nash equilibrium if and only if its set of specialists
is a maximal independent set of the structure g. Since for every g there
exists a maximal independent set, there always exists a specialized Nash
equilibrium.

short author (SHUFE) lec 2015 18 / 18



Contrast: Complements
and Substitutes

 |n agame of complements: pure strategy equilibria
are a nonempty complete lattice

* |n a game of strategic substitutes:

— Best shot game: pure strategy equilibria exist and
are related to maximal independent sets

— Others: pure strategy may not exist, but mixed will
(with finite action spaces)

— Equilibria usually do not form a lattice



Best Shot Public Goods

D
'?Ix/‘ 7\ o ®

e invest if and only if no neighbors do (threshold is 1)
e again, multiple equilibria
e but, no lattice structure...



Ballester et al: Who's who in networks. wanted: the key player.

A set of players \V in a social network G.

m Each / choose x; simultaneously. The payoff for player i,

N
1
(X1, X0, 5 Xn) = QX §X,2 + 5Zgux,xj,
j=1
m x;: contribution (time, effort)
m «; : intrinsic marginal utility
m G = (gjj) network matrix; gij =0, g; > 0

m local network effect
m e.g., G: adjacent matrix of undirected graph, g; € {0,1};

m § > 0 sufficiently small (stability)

short author (SHUFE) lec 2015 4 /18



Ballester et al: Who's who in networks. wanted: the key player.
Equilibrium

m Best Responses:
xN = BRi(x"N) = a; + (5Zg,-jxjN.
J#
m Matrix representation [o = (a1, -+, a,)]:
XN =a+0G-x"N < x" =1 -G a =b(G,4d,a).
m Weighted Katz-Bonacich Centrality b;(G, ¢, a)
m When § < 1/p(G), M := [I — 5G] ! is well defined with

+o00
my = 0% = (1= 66) )y = 1{i = j} + dgy + gy + -~
k=0

m counts paths from node i to j, weighted by §%.

m therefore,
XN =[1-6G]ta=a+dGa+5°G*a+---,
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Examples: K>

1 2

r—e

Figure: The graph for Kj.

m Kj, the complete graph with 2 nodes.
m the adjacency matrix is
01
o-[7 o
m by induction,
2k+1 _ [0 1] o _ 10 _
N .
m The M matrix, well defined when § < 1, is
16
_ -1_ _1
M=[l,-0G]™" = =5 51

unique Nash Equilibrium

N_ ;N Ny _ (o1t 0o as + daq \’
X _(X17X2)_(1_627 1—(52
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Examples: K, the complete graph with n nodes

4 3

1 2

Figure: A graph for K,.

m The adjacency matrix of K, is G = J,, — I,
m For K,, we can verify that

]

M = [|,,7(SG]71: (nfl)(ann]’

1
(1+5)['”+17

well defined when § < 1/(n—1).
m In equilibrium,

1 0> ak .
N K
N — . =1,---.n.
i 1+(5<a' 1—(n—1)6>7l R

m Clearly, xI.N > xjN if and only if a; > a;.
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Regular graph with degree d

7 2 3

0

Figure: A regular graph with degree three.

4 3

1 2

Figure: A circle of four nodes Oy, which is also a regular graph with degree
2.

m G is regular with degree d, if each node has exactly d neighbors, i.e.,
Gl, =d1,.
m Assume a; = a for all i, then

N_ 2y
X; 717d(57VI'
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Examples: Ki»

2 1 3

m star network. center: 1; spokes: 2 and 3;
m the adjacency matrix is

011
G=1[1 00
1 00
m by induction,
2k 0 0 0 2k 2k
G2k: 0 2k71 2!(71 G2k+1: 2k 0 0 k>1
0 2k-1 k-1 2 0 0

® M matrix, well-defined when § < 1/\/§ is

1 9 5
§ 1-62 52
§ & 1-042

1

M=[l,-dG] = o
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Ballester et al: Who's who in networks. wanted: the key player.

wi W2 w3
Figure: A graph for Ky 3.

m In a complete bipartite graph K4, there are two disjoint groups P
and Q in Kyq such that any node in P is connected to any node in
Q. Let p=|P|, g =|Q)|. Thus, the network size satisfies n = p + q.

m The adjacency matrix is G = [ 0 JP"} )
Jop O
52 5
M = [I,-6G] ! = o+ 5gpdon]  1=i7pgdpa
= n - _5 Iy + _&p g ]
1-¢2pq~apP 9T 1-352gp~99

. 52 [
m forany i€ P, xV = [aj + 5500 D ocp as] + 1rmg Doreq
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Discussions

m Linear-quadratic payoff structure
m explicit equilibrium characterization; related to sociology literature
m applicable for various scenarios:

m monopoly pricing;

B crime;

® team production;

m education and peer effects;
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Key player problem

m Question: Within a crime organization the police/government has the
ability to remove one player, who should it be?
m Mathematically,the key player program is formulated as follows:

n
max b,-(G,(S,a) — bk(G,,-,cS,a,,-)
Here G_; is the resulting network when player i is removed. The first
term >, bi(G, d,a) is the sum of total activities in the original
network G, while the second term 3, ; bi(G—j,d,a_;) is the
resulting equilibrium total activity when / is removed.

The following identity holds:

n
> bi(G,6,a) = Y b(G_j,d,a ) p = (G ((5
k=1 k#i i
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Ballester et al: Who's who in networks. wanted: the key player.

m Example

Figure: An example to illustrate the key player policy.

m key player for different §:

0 0.18 0.2

Player Type b,' Ci b,' Ci
1 477 17.03 833 4l.67*
2 5.23* 17.62* 9.17* 40.33
3 451 1407 7.78 32.67
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Prlcmg stage(Candogan et aI (OR '12), Bloch and
Querou(GEB '13))

m Monopoly seller sets up price vector p = (p;)ien (full discrimination)
m Player i's net utility:

1,
ui(x1, Xz, s Xn) = QX — 5%i + 5Zginin = PiXi.
JF#i
m two-stage game, using Backward induction:
m Players’ optimal consumption decisions: x = M(« — p).
m Seller's problem:

=N(p)

7 s a+c
max (p—c) M(a—p), = p'= , independent of G,
pER” —— 2

m Seller's equilibrium profit:

a—-c _,a—c

— M—
2 2
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