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Introduction

Contents
1.1 Matching and market design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Time line of the main evolution of matching and market design . . . . . . . . . 3

1.1 Matching andmarket design

1.1 Matching theory, a name referring to several loosely related research areas concerningmatching,
allocation, and exchange of indivisible resources, such as jobs, school seats, houses, etc., lies at
the intersection of game theory, social choice theory, and mechanism design.

1.2 Matching can involve two-sided matching, in markets with two sides, such as firms and work-
ers, students and schools, or men and women, that need to be matched with each other. Or
matching can involve the allocation or exchange of indivisible objects, such as dormitory rooms,
transplant organs, courses, summer houses, etc.

Recently, matching theory and its application to market design have emerged as one of the suc-
cess stories of economic theory and applied mechanism design.

1.3 The economics of “matching and market design” analyzes and designs real-life institutions. A
lot of emphasis is placed on concrete markets and details so that we can offer practical solutions.

1.4 Labor markets: the case of American hospital-intern markets:

• Medical students in many countries work as residents (interns) at hospitals.

1
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1.1. Matching and market design 2

• In the U.S. more than 20,000 medical students and 4,000 hospitals are matched through a
clearinghouse, called NRMP (National Resident Matching Program).

• Doctors and hospitals submit preference rankings to the clearinghouse, and the clearing-
house uses a specified rule (computer program) to decide who works where.

• Some markets succeeded while others failed. What is a “good way” to match doctors and
hospitals?

1.5 School choice:

• In many countries, especially in the past, children were automatically sent to a school in
their neighborhoods.

• Recently, more and more cities in the United States and in other countries employ school
choice programs: school authorities take into account preferences of children and their
parents.

• Because school seats are limited (for popular schools), school districts should decide who
is admitted.

• How should school districts decide placements of students in schools?

1.6 Kidney exchange:

• Kidney exchange is a preferred method to save kidney-disease patients.

• There are lots of kidney shortages, and willing donor may be incompatible with the donor.

• Kidney exchange tries to solve this by matching donor-patient pairs.

• What is a “good way” to match donor-patient pairs?

1.7 Targets:

• Efficiency: Pareto efficiency, individual optimality, ordinal efficiency, ex ante efficiency, ex
post efficiency, etc.

• Fairness: stability, anonymity, envy-freeness, equal treatment of equals, etc.

• Incentives: strategy-proofness, nonbossiness, etc.

• Easy for participants to understand and use.

1.8 Reading:

• Information for the Public: Stable matching: Theory, evidence, and practical design.

• Scientific Background: Stable allocations and the practice of market design.

• Roth (2015).

• Sakai (2013).

http://www.nrmp.org/
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/popular-economicsciences2012.pdf
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/advanced-economicsciences2012.pdf
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1.2 Time line of the main evolution of matching andmarket design

Gale & Shapley

Kelso & Crawford

1960 AMM 62

1970

1980
Econometrica 82

Dubins & Freedman
AMM 81

Real Life
Practice

Roth
MOR 82

Roth
JPE 84

1990
Roth & Sotomayor

1990

2000

2010

Hatfield & Milgrom
AER 05

Hatfield & Kojima
JET 10

Echenique
AER 12

=

Matching Markets: The Path Between Theory & Practice

Timeline Two-Sided Matching

Balinski & Sönmez
JET 99

Sönmez & Switzer

2011

Key
Contributions

NRMP &
Various other labor markets
summarized in Roth & Peranson AER 99

Abdulkadiroğlu &

Sönmez AER 03

One-Sided Matching
(Unit-Demand Indivisible Goods Allocation)

Shapley & Scarf
JME 74

Abdulkadiroğlu &
Sönmez JET 99

Hylland & Zeckhauser
JPE 77

Roth, Sönmez &
Ünver QJE 04

JET 05

School Choice Reforms in:
New York City
Boston
Chicago
Denver
England

New Orleans

Combinatorial
Optimization

Gallai
MTAMKIK 63
MTAMKIK 64

Edmonds
CJM 65

Kidney Exchange Clearinghouses:
New England Program for Kidney Exchange
Allience for Paired Donation
National Matching Scheme
for Paired Donation
National KPD Pilot Program (USA)

(England)

Allocation via
Priorities

Figure 1.1: Overview (Taken from Sönmez’s lecture notes).

Two-sided matching

1.9 In 1962, deferred-acceptance algorithm by David Gale and Lloyd Shapley.
� David Gale and Lloyd Shapley, College admissions and the stability of marriage, The American

Mathematical Monthly 69 (1962), 9–15.

http://en.wikipedia.org/wiki/David_Gale
http://en.wikipedia.org/wiki/Lloyd_Shapley
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1.2. Time line of the main evolution of matching and market design 4

(a) Lloyd Stowell Shapley. (b) David Gale.

Figure 1.2

Gale and Shapley asked whether it is possible to matchm women withm men so that there is
no pair consisting of a woman and aman who prefer each other to the partners with whom they
are currently matched. They proved not only non-emptiness but also provided an algorithm for
finding a point in it.

1.10 Shapley and Shubik (1972) and Kelso and Crawford (1982) introduced variants of the two-sided
matching model where monetary transfers are also possible between matching sides.

� Lloyd Shapley and Martin Shubik, The assignment game I: the core, International Journal of
GameTheory 1 (1972), 111–130.

� Alexander S. Kelso and Vincent P. Crawford, Job matchings, coalition formation, and gross
substitutes, Econometrica 50:6 (1982), 1483–1504.

(a) Martin Shubik. (b) Vincent Crawford.

Figure 1.3
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1.2. Time line of the main evolution of matching and market design 5

1.11 In 1982, impossibility theorem by Alvin Roth.
� Alvin Roth, The economics of matching: stability and incentives, Mathematics of Operations

Research 7:4 (1982), 671–628.

Figure 1.4: Alvin Roth.

Roth proved that no stable matching mechanism exists for which stating the true preferences is
a dominant strategy for every agent.

1.12 Gale and Shapley’s short note was almost forgotten until 1984, when Roth showed that the
same algorithm was independently discovered by the National Residency Matching Program
(NRMP) in the United States.

� Alvin Roth, The evolution of the labor market for medical interns and residents: a case study in
game theory, Journal of Political Economy 92 (1984), 991–1016.

1.13 Recently, new links between auctions, two-sided matching, and lattice theory were discovered;
for example, matching with contracts by Hatfield and Milgrom in 2005.

� J. W. Hatfield, P. R. Milgrom, Matching with contracts, American Economic Review 95 (2005),
913–935.

http://en.wikipedia.org/wiki/Alvin_E._Roth


Do
No
t C
op
y o
r D
istr
ibu
te

1.2. Time line of the main evolution of matching and market design 6

(a) Paul Milgrom. (b) John Hatfield.

Figure 1.5

One-sided matching

1.14 In 1974, top trading cycles algorithm by David Gale, Herbert Scarf and Lloyd Shapley.
� Lloyd Shapley andHerbert Scarf, On cores and indivisibility, Journal ofMathematical Economics

1 (1974), 23–28.

Figure 1.6: Herbert Scarf.

In the other branch of matching theory, allocation and exchange of indivisible goods, the basic
model, referred to as the housing market, consists of agents each of whom owns an object, e.g.,
a house. They have preferences over all houses including their own. The agents are allowed
to exchange the houses in an exchange economy. Shapley and Scarf showed that such a market
always has a (strict) corematching, which is also a competitive equilibrium allocation. They also
noted that a simple algorithm suggested by David Gale, now commonly referred to as Gale’s top
trading cycles algorithm, also finds this particular core outcome.

http://en.wikipedia.org/wiki/David_Gale
http://en.wikipedia.org/wiki/Herbert_Scarf
http://en.wikipedia.org/wiki/Lloyd_Shapley
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1.2. Time line of the main evolution of matching and market design 7

In 1994, Jinpeng Ma provided an axiomatic characterization (known by MA’s characterization)
of top trading cycles algorithm.

� JinpengMa, Strategy-proofness and the strict core in amarket with indivisibilities, International
Journal of GameTheory 23 (1994), 75–83.

The TTC algorithm is the only mechanism that satisfies individual rationality, Pareto efficiency
and strategy-proofness for the classic Shapley-Scarfmodel. Thismakes the TTC a natural choice
for other related situations.

1.15 In 1979, Hylland and Zeckhauser proposed the house allocation problem.
� Aanund Hylland and Richard Zeckhauser, The efficient allocation of individuals to positions,

Journal of Political Economy 87:2 (1979), 293–314.

(a) Aanund Hylland. (b) Richard Zeckhauser.

Figure 1.7

1.16 In 1999, Atila Abdulkadiroğlu and Tayfun Sönmez proposed YQMH-IGYT (you request my
house—I get your turn) algorithm for the house allocation problem with existing tenants.

� Atila Abdulkadiroğlu and Tayfun Sönmez, House allocation with existing tenants, Journal of
Economic Theory 88 (1999), 233–260.
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1.2. Time line of the main evolution of matching and market design 8

(a) Atila Abdulkadiroğlu. (b) Tayfun Sönmez.

Figure 1.8

1.17 In 2003, Atila Abdulkadiroğlu and Tayfun Sönmez proposed school choice problem.
� Atila Abdulkadiroğlu andTayfun Sönmez, School choice: amechanismdesign approach,Amer-

ican Economic Review 93:3 (2003), 729–747.

1.18 In 2004, Alvin Roth, Tayfun Sönmez and M. Utku Ünver proposed kidney exchange problem.
� Alvin E. Roth and Tayfun Sönmez, M. Utku Ünver, Kidney exchange, Quarterly Journal of Eco-

nomics 119 (2004), 457–488.

Figure 1.9: M. Utku Ünver.
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Part I

Two-sidedmatching

9
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Marriage

Contents
2.1 The formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Stability and optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Deferred acceptance algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Properties of stable matchings I . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Properties of stable matchings II . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Extension: Extending the men’s preferences . . . . . . . . . . . . . . . . . . . . 28

2.7 Extension: Adding another woman . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Incentive compatibility I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Incentive compatibility II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Non-bossiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1 The formal model

2.1 A marriage problem (婚姻问题) is a triple Γ = ⟨M,W,%⟩, where�

• M is a finite set of men,

• W is a finite set of women,

• %= (%i)i∈M∪W is a list of preferences. Here

– %m denotes the preference of manm overW ∪ {m},
– %w denotes the preference of woman w overM ∪ {w},

11
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2.2. Stability and optimality 12

– ≻i denotes the strict preference derived from %i for each i ∈M ∪W .

2.2 For manm:

• w ≻m w′ means that manm prefers woman w to woman w′.

• w ≻m mmeans that manm prefers woman w to remaining single.

• m ≻m w means that woman w is unacceptable to manm.

We use the similar notation for women.

2.3 If an individual is not indifferent between any two distinct acceptable alternatives, he has strict
preferences. Unless otherwise mentioned all preferences are strict.

2.4 In a marriage problem Γ = ⟨M,W,%⟩, a matching (配对) is a outcome, and is defined by a�

function µ : M ∪W →M ∪W such that

• for allm ∈M , if µ(m) ̸= m then µ(m) ∈W ,

• for all w ∈W , if µ(w) ̸= w then µ(w) ∈M ,

• for all m ∈ M and w ∈ W , µ(m) = w if and only if µ(w) = m (i.e., a matching is
mutual: you are matched with me if and only if I am matched with you).

We refer to µ(i) as the mate of i, and µ(i) = i means that agent i remains single under the
matching µ.

2.5 A matching will sometimes be represented as a set of matched pairs. Thus, for example, the
matching

µ =

[
w4 w1 w2 w3 (m5)

m1 m2 m3 m4 m5

]
hasm1 married to w4 andm5 remaining single.

2.2 Stability and optimality

Let us focus on a fixed marriage problem Γ = ⟨M,W,%⟩.

2.6 For two matchings µ and ν, an individual i prefers µ to ν if and only if i prefers µ(i) to ν(i).

Let µ ≻M ν if µ(m) %m ν(m) for allm ∈M , and µ(m) ≻m ν(m) for at least one manm.

Let µ %M ν denote that either µ ≻M ν or that all men are indifferent between µ and ν.

The relation %M gives a partial order on the set of stable matchings; see 2.37.



Do
No
t C
op
y o
r D
istr
ibu
te

2.2. Stability and optimality 13

2.7 A matching µ is Pareto efficient1 (帕累托有效) if there is no other matching ν such that�

• ν(i) %i µ(i) for all i ∈M ∪W ,

• ν(i0) ≻i0 µ(i0) for some i0 ∈M ∪W .

2.8 A matching µ is blocked by an individual i ∈M ∪W if i ≻i µ(i).�

A matching is individually rational2 (个人理性) if it is not blocked by any individual.

2.9 A matching µ is blocked by a pair (m,w) ∈ M ∪ W if they both prefer each other to their
partners under µ, i.e.,

w ≻m µ(m) andm ≻w µ(w).

2.10 A matching µ is stable (稳定) if it is not blocked by any individual or any pair.�

Roughly speaking, a matching is stable if there are no individuals or pairs of individuals who
can profitably deviate from it.

2.11 Example: There are three men and three women, with the following preferences:

m1 m2 m3 w1 w2 w3

w2 w1 w1 m1 m3 m1

w1 w3 w2 m3 m1 m3

w3 w2 w3 m2 m2 m2

Table 2.1

All possible matchings are individually rational, since all pairs (m,w) are mutually acceptable.

The matching µ given below is unstable, since (m1, w2) is a blocking pair.

µ =

[
w1 w2 w3

m1 m2 m3

]
.

The matching µ′ is stable.

µ′ =

[
w1 w2 w3

m1 m3 m2

]
.

2.12 Proposition: Stability implies Pareto efficiency.
1In general, Pareto efficiency or Pareto optimality is a state of allocation of resources from which it is impossible to

reallocate so as to make any one individual or preference criterion better off without making at least one individual or
preference criterion worse off.

2In general, individual rationality constraints are said to be satisfied if a mechanism leaves all participants at least as well
off as they would have been if they hadn’t participated. They are also called participation constraints or rational participation
constraints
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Proof. (1) Suppose the matching µ is not Pareto efficient, that is, there exists a matching ν
such that ν(i) %i µ(i) for all i ∈M ∪W and ν(i0) ≻i0 µ(i0) for some i0 ∈M ∪W .

(2) Case 1: If ν(i0) = i0, then µ is blocked by the individual i0. Contradiction.

(3) Case 2: Suppose ν(i0) ̸= i0, without loss of generality, denote i0 bym, and ν(i0) = ν(m)

by w. Hence we have w ≻m µ(m).

(4) Since ν(i) %i µ(i) holds for all i, we havem = ν(w) %w µ(w).

(5) Since all preferences are strict,m %w µ(w) if and only ifm ≻w µ(w) orm = µ(w).

(6) If m = µ(w), then µ(m) = w, which contradicts to w ≻m µ(m). Hence we have
m ≻w µ(w). Therefore µ is blocked by the pair (m,w). Contradiction.

ν(w) = m
ν

w = ν(m)

µ

µ(w)

2.13 Exercise: Stability can not be implied by Pareto efficiency.

2.14 Question: Does a stable matching always exists? How to get a stable matching?

2.3 Deferred acceptance algorithm

2.15 Men-proposing deferred acceptance algorithm.�

Step 1: (a) Each manm proposes to his first choice (if he has any acceptable choices).

(b) Each woman rejects any offer except the best acceptable proposal and “holds” the
most-preferred acceptable proposal (if any). Note that she does not accept him yet,
but keeps him on a string to allow for the possibility that someone better may come
along later.

Step k: (a) Any man who was rejected at Step (k − 1) makes a new proposal to his most-
preferred acceptable potential mate who has not yet rejected him (If no acceptable
choices remain, he makes no proposal).
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2.3. Deferred acceptance algorithm 15

(b) Each woman receiving proposals chooses her most-preferred acceptable proposal
from the group consisting of the new proposers and the man on her string, if any.
She rejects all the rest and again keeps the best-preferred in suspense.

End: The algorithm terminates when there are no more rejections. Each woman is matched
with the man she has been holding in the last step. Any woman who has not been holding
an offer or any man who was rejected by all acceptable women remains single.

2.16 Question: Why do we call this algorithm the “deferred acceptance” algorithm? Hint: Compare
it with the Boston mechanism 8.21.

2.17 Example ofmen-proposing deferred acceptance algorithm: There are fivemen and four women,
and their preferences are as follows:

m1 m2 m3 m4 m5 w1 w2 w3 w4

w1 w4 w4 w1 w1 m2 m3 m5 m1

w2 w2 w3 w4 w2 m3 m1 m4 m4

w3 w3 w1 w3 w4 m1 m2 m1 m5

w4 w1 w2 w2 m4 m4 m2 m2

m5 m5 m3 m3

Table 2.2

Step 1: m1,m4, andm5 propose to w1, andm2 andm3 propose to w4; w1 rejectsm4 andm5

and keepsm1 engaged; w4 rejectsm3 and keepsm2 engaged. That is,[
w1 w2 w3 w4

m1,��HHm4,��HHm5 m2,��HHm3

]
.

Step 2: m3,m4 andm5 propose to their second choice, that is, to w3, w4 and w2 respectively;
w4 rejectsm2 and keepsm4 engaged:[

w1 w2 w3 w4

m1 m5 m3 m4,��HHm2

]
.

Step 3: m2 proposes to his second choice, w2, who rejectsm5 and keepsm2 engaged:[
w1 w2 w3 w4

m1 m2,��HHm5 m3 m4

]
.

Step 4: m5 proposes to his third choice, w4, who rejects m5 and continues with m4 engaged.
Since m5 has been rejected by every woman on his list of acceptable women, he stays
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single, and the matching is: [
w1 w2 w3 w4 (m5)

m1 m2 m3 m4 m5

]
.

2.18 Observation: As the algorithm proceeds, the tentative partners of a man is weakening, and the
tentative partners of a woman is improving.

2.19 Theorem on stability (Theorem 1 in Gale and Shapley (1962)): The men-proposing deferred�

acceptance algorithm gives a stable matching for each marriage problem.

Proof. (1) It suffices to show that the matching µ determined by the men-proposing deferred
acceptance algorithm is not blocked by any pair (m,w).

(2) Suppose that there is a pair (m,w), such thatm ̸= µ(w) and w ≻m µ(m).

(3) Thenmmust have proposed tow at some step and subsequently been rejected in favor of
someone (m′ in the figure) that w likes better.

≻m
w µ(m)

≻w

µ(w) m′ m

(4) It is now clear that w must prefer her mate µ(w) tom and there is no instability.

(5) Similar discussion applies to the pair (m,w) withm ̸= µ(w) andm ≻w µ(w).

2.20 Quotation fromRoth (2008): At his birthday celebration in StonyBrook on12 July 2007, DavidGale
related the story of his collaboration with Shapley to produce deferred acceptance algorithm by
saying that he (Gale) had proposed the model and definition of stability, and had sent to a num-
ber of colleagues the conjecture that a stable matching always existed. By return mail, Shapley
proposed the deferred acceptance algorithm and the corresponding proof.

2.21 Theorem on optimality (Theorem 2 in Gale and Shapley (1962)): The matching determined by�

men-proposing deferred acceptance algorithm is at least as good as any other stable matching
for all men.

Proof. Let us call a woman “achievable” for a particular man if there is a stable matching that
sends him to her.

(1) For contradiction, suppose that a man is rejected by an achievable woman.
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(2) Consider the first step (say Step k) in which aman (call himm) is rejected by an achievable
woman (call her w).

(3) Then w keeps some other manm′ at this step, som′ ≻w m.

(4) Let µ be a stable matching where µ(m) = w.

(5) Since this is the first step of DA where a man is rejected by an achievable woman, w ≻m′

µ(m′). Otherwise,

• Case 1: µ(m′) ≻m′ w, thenm′ is rejected by an achievable womanµ(m′) before Step
k.

• Case 2: µ(m′) = w = µ(m), which leads tom = m′. Contradiction.

(6) Thus, (m′, w) blocks µ, contradicting the stability of µ.

2.22 Remark: Theorem 2.21 says that different stable matchings may benefit different participants.
In particular, each version of deferred acceptance algorithm favors one side at the expense of
the other side.

2.23 Remark: Intuitively, men may have different (individually) optimal matchings, since they have
different preferences. However, restricting to the set of stable matchings, the stable matching
resulting from men-proposing deferred acceptance algorithm is optimal for every man.

2.24 For Γ = ⟨M,W,%⟩, we refer to the outcome of the men-proposing deferred acceptance algo-
rithm as the man-optimal stable matching and denote it by µM [Γ] or µM [%] (whenM andW
are fixed) or µM (whenM ,W and % are fixed).

The algorithmwhere the roles ofmen andwomen are reversed is known as thewomen-proposing
deferred acceptance algorithm and we refer to its outcome µW [Γ] or µW [%] (whenM andW
are fixed) or µW (whenM ,W and % are fixed) as the woman-optimal stable matching.

2.25 These two matchings will not typically be the same. For Example 2.17, the matching obtained
when the women propose to the men is[

w4 w1 w2 w3 (m5)

m1 m2 m3 m4 m5

]
.

It turns out that the stable matchings are not unique.

2.26 If some individuals may be indifferent between possible mates, i.e., some individuals’ prefer-
ences is not strict, Theorem 2.21 need not hold.

Example: There are three men and three women, and their preferences are as follows:
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m1 m2 m3 w1 w2 w3

w2, w3 w2 w3 m1 m1 m1

w1 w1 w1 m2 m2 m3

m3

Table 2.3

The stable matchings are

µ1 =

[
w1 w2 w3

m2 m1 m3

]
and µ2 =

[
w1 w2 w3

m3 m2 m1

]
,

but there are no optimal stable matchings since

• µ1(m3) ≻m3
µ2(m3) and µ2(m2) ≻m2

µ1(m2);

• µ1(w2) ≻w2
µ2(w2) and µ2(w3) ≻w3

µ1(w3).

2.4 Properties of stable matchings I

2.27 Decomposition theorem (Knuth (1976)): Letµ andµ′ be stablematchings in ⟨M,W,%⟩, where�

all preferences are strict. LetM(µ) be the set of men who prefers µ to µ′ andW (µ) the set of
women who prefer µ to µ′. Analogously defineM(µ′) andW (µ′). Then µ and µ′ mapM(µ′)

ontoW (µ) andM(µ) ontoW (µ′).

Proof. (1) For anym ∈M(µ′), we have µ′(m) ≻m µ(m) %m m, where the second inequal-
ity holds since µ is stable and not blocked by any individual.

(2) Then µ′(m) ̸= m, and hence µ′(m) ∈W , denoted by w.

(3) Since µ is a stable matching in ⟨M,W,%⟩, µ(w) %w µ′(w); otherwise the pair (m,w)
blocks µ.

(4) Furthermore, µ(w) ≻w µ′(w) otherwise µ′(m) = w = µ(m).

(5) We have µ′(m) = w ∈W (µ), and hence µ′(M(µ′)) ⊆W (µ).

(6) For any w ∈ W (µ), we have µ(w) ≻w µ′(w) %w w, where the second inequality holds
since µ is stable and not blocked by any individual.

(7) Then µ(w) ∈M , denoted bym.

(8) Since µ′ is a stable matching in ⟨M,W,%⟩, µ′(m) ≻m µ(m); otherwise the pair (m,w)
blocks µ′.

(9) We have µ′(m) ≻m µ(m) = w and µ(m) ≻m m, then µ′(m) ≻m µ(m) = w.
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(10) We havem ∈M(µ′) and hence µ(W (µ)) ⊆M(µ′).

(11) Since µ and µ′ are one-to-one andM(µ′) andW (µ) are finite, the conclusion follows.

2.28 Remark: Decomposition theorem (Theorem 2.27) implies that ifm prefers µ to µ′ and µ(m) =

w and µ′(m) = w′, then both w and w′ will prefer µ′ to µ. That is, both µ and µ′ decompose
the men and women as illustrated in Figure 2.1:

W W (µ) W \
(
W (µ) ∪W (µ′)

)
W (µ′)

M M(µ′) M \
(
M(µ) ∪M(µ′)

)
M(µ)

µ µ′ µ µ′ µ µ′

Figure 2.1: Decomposition theorem

2.29 Theorem (Knuth (1976)): When all the agents have strict preferences, if µ and µ′ are stable�

matchings, then µ′ ≻M µ if and only if µ ≻W µ′.

Proof. (1) µ′ ≻M µ if and only ifM(µ) = ∅ andM(µ′) ̸= ∅.

(2) This is equivalent toW (µ′) = ∅ andW (µ) ̸= ∅.

(3) This is equivalent to µ ≻W µ′.

2.30 Corollary: When all the agents have strict preferences, the man-optimal stable matching is the
worst matching for the women; that is, it matches each woman with her least-preferred achiev-
able mate.

Similarly, thewoman-optimal stablematchingmatches eachmanwith his least-preferred achiev-
able mate.

2.31 Rural hospital theorem3 (Theorem in McVitie and Wilson (1970), Theorem 1 in Gale and So-�

tomayor (1985)): The set of individuals who are matched is the same for all stable matchings.

Proof. (1) Suppose thatm is matched under µ′ but not under µ. Thenm ∈M(µ′).

(2) By decomposition theorem (Theorem 2.27), µmapsM(µ′) toW (µ).
3This theorem is renamed as “屌丝孤独终身定理” by Xiaoguang Chen and Tianchen Song for fun.
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(3) Som is also matched under µ. Contradiction.

2.32 Direct proof:

Proof. (1) Let µM be theman-optimal stable matching and µ be an arbitrary stable matching.

(2) Since µM is man-optimal, all the men that are matched in µ are matched in µM .

(3) Since µM is woman-pessimal, all the women that are matched in µM are matched in µ
(why?).

(4) But for any given matching, the number of matched men and women are the same to each
other (why?).

(5) So the same set of men and women are matched in µM and µ (exercise: complete the
argument).

For an alternative proof, see Ciupan, Hatfield and Kominers (2016).

2.33 Remark: One motivation is the allocation of residents in rural hospitals. Hospitals in rural
areas cannot fill positions for residents, and some people argue that the matching mechanisms
should be changed so that more doctors end up in rural hospitals. But the theorem says that it
is impossible as long as stable matchings are implemented.

If some men were matched in some stable matching and not in others, the latter may be unfair
to them. The theorem says that there is no need to worry.

2.34 In ⟨M,W,%⟩, when preferences are strict, for any two matchings µ and µ′, define the following
function onM ∪W :

µ∨Mµ′(m) =

µ(m), if µ(m) ≻m µ′(m)

µ′(m), otherwise
, µ∨Mµ′(w) =

µ(w), if µ′(w) ≻w µ(w)

µ′(w), otherwise
.

This function assigns each man his more preferred mate from µ and µ′, and it assigns each
woman her less preferred mate.

Similarly, we can define the function µ∧M µ′, which gives each man his less preferred mate and
each woman her more preferred mate.

2.35 Remark: µ ∨M µ′ may fail to be matchings due to the following two ways.

• µ ∨M µ′ might assign the same woman to two different men.
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• µ∨M µ′ might be that giving each man the more preferred of his mates at µ and µ′ is not
identical to giving each woman the less preferred of her mates.

Even when µ ∨M µ′ and µ ∧M µ′ are matchings, they might not be stable.

Exercise: Provide several examples (as simple as possible) to illustrate the points above.

2.36 Lattice theorem (Conway): When all the preferences are strict, if µ and µ′ are stable matchings
for ⟨M,W,%⟩, then the functions λ = µ ∨M µ′ and ν = µ ∧M µ′ are both stable matchings.

Proof. We only prove the statement for λ.

(1) By definition, µ ∨M µ′ agrees with µ′ onM(µ′) andW (µ), and with µ otherwise.

(2) By decomposition theorem (Theorem 2.27), λ is therefore a matching.

(3) It is trivial that λ is not blocked by any individual in ⟨M,W,%⟩.

(4) Suppose that some pair (m,w) blocks λ.

(5) Ifm ∈M(µ′), then w ≻m λ(m) = µ′(m) ≻m µ(m).

• If w ∈W (µ), thenm ≻w λ(w) = µ′(w), and hence µ′ is blocked by (m,w).

• If w ∈W \W (µ), thenm ≻w λ(w) = µ(w), and hence µ is blocked by (m,w).

(6) Ifm ∈M \M(µ′), then w ≻m λ(m) = µ(m) %m µ′(m).

• If w ∈W (µ), thenm ≻w λ(w) = µ′(w), and hence µ′ is blocked by (m,w).

• If w ∈W \W (µ), thenm ≻w λ(w) = µ(w), and hence µ is blocked by (m,w).

(7) Therefore, λ is a stable matching.

2.37 Remark: The existence of man-optimal and woman-optimal stable matchings can be deduced
from the lattice theorem.

A lattice is a partially ordered set in which every two elements have a supremum (also called a
least upper bound or join) and an infimum (also called a greatest lower bound or meet). Lattice
theorem (Theorem 2.36) implies that the set of stable matchings is a lattice under %M (defined
in 2.6), dual to %W .
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µM

µ ∨M µ′

µ ∧M µ′

µW

µ′µ

2.38 To compute all the stable matchings, see McVitie and Wilson (1971), Irving and Leather (1986)
and Section 3.2 of Roth and Sotomayor (1989).

2.39 Theorem on weak Pareto optimality for the men (Theorem 6 in Roth (1982b)): In a marriage
problem Γ = ⟨M,W,%⟩, there is no individually rational matching µ (stable or not) such that
µ(m) ≻m µM (m) for allm ∈ M , where µM is the matching obtained by the men-proposing
deferred acceptance algorithm.

Proof. (1) Suppose that there exists such a matching µ.

(2) µ matches every man m to some woman w , µ(m) who has rejected him in the men-
proposing deferred acceptance algorithm, so

µ(m) ≻m µM (m) %m m

holds for everym, and hence µ(m) ∈W for everym.

(3) Since µM is a stable matching, µM (w) ≻w m = µ(w).

(4) Since µ is individually rational, µ(w) %w w, and hence

µM (w) ≻w m = µ(w) %w w.

(5) Therefore, µM (w) ∈M for every w with the form w = µ(m).

(6) Hence, µ(M) have been matched under µM . That is, µM (µ(M)) ⊆M .
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(7) Sinceµ andµM are one-to-one andµ(M) ⊆W , we have |µM (µ(M))| = |M |, and hence
µM (µ(M)) =M .

(8) Hence, all ofM have been matched under µM and µM (M) = µ(M).

(9) Since all ofM are matched under µM , any woman w who gets a proposal at the last step
of the algorithm at which proposals were issued has not rejected any acceptable man; oth-
erwise her waiting list is full, and some man is rejected at the last step.

(10) That is, the algorithm stops as soon as everywoman inµM (M) has an acceptable proposal.

(11) Since every man prefers µ to µM , such a womanwmust be single under µ, which contra-
dicts the fact that µM (M) = µ(M).

2.40 Remark: There is no other matching, stable or not, that all men prefer to µM .

Wehave already studied the sense inwhich it is as good a stablematching as themen can achieve,
but now we want to ask whether there might not be some other unstable matching that all the
men would prefer. If so, then wemight conclude that, even at the man-optimal stable matching,
the men collectively “pay a price” for stability. However, this turns out not to be the case.

2.41 Example: µM is not strongly Pareto optimal, that is, there exists an individually rational match-
ing µ, such that µ(m) %m µM (m) for allm, and µ(m0) ≻m0

µM (m0) for somem0 ∈M .

There are three men and two women, and their preferences are as follows:

m1 m2 m3 w1 w2

w2 w1 w1 m1 m3

w1 w2 m2 m1

m3

Table 2.4

Then

µM =

[
w1 (m2) w2

m1 m2 m3

]
.

Nevertheless

µ =

[
w2 (m2) w1

m1 m2 m3

]
leavesm2 no worse than under µM , but benefitsm1 andm3.
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2.5 Properties of stable matchings II

2.42 Definition: In amarriage problemΓ = ⟨M,W,%⟩, we say that amatchingµ′ weakly dominates
another matching µ if there exists a coalition ∅ ̸= A ⊆ M ∪W , such that µ′(i) %i µ(i) and
µ′(i) ∈ A for any i ∈ A and µ′(i0) ≻i0 µ(i0) for some i0 ∈ A.

A matching µ is in the core if there exists no matching µ′ which weakly dominates µ.

2.43 Theorem: In a marriage problem Γ = ⟨M,W,%⟩, the core equals to the set of stable matchings.

Proof. “⇒”: Assume that µ is in the core.

(1) If µ is blocked by an individual i, then it is weakly dominated by any matching µ′

with µ′(i) = i via the singleton coalition {i}.
(2) If µ is blocked by a pair (m,w), then it is weakly dominated by any matching µ′ with

µ′(m) = w via the coalition {m,w} .

“⇐”: Assume that µ is a stable matching.

(1) If µ is not in the core, then µ is weakly dominated by somematching µ′ via a coalition
A. Hence, there exists i0 ∈ A such that µ′(i0) ≻i0 µ(i0).

(2) For notational simplicity, denote i0 = m.
(3) Since µ is individually rational, µ′(m) ≻m µ(m) %m m, and hence µ′(m) ∈ W .

Denote µ′(m) by w.
(4) Since w ∈ A, we have µ′(w) %w µ(w).
(5) Clearly, µ′(w) = µ(w); otherwise, µ′(m) = µ(m). Thus, µ′(w) ≻w µ(w).
(6) The matching µ is blocked by (m,w). It is a contradiction.

2.44 Remark: There is another version of core.

In a marriage problem Γ = ⟨M,W,%⟩, we say that a matching µ′ dominates another matching
µ if there exists a coalition ∅ ̸= A ⊆ M ∪W , such that µ′(i) ≻i µ(i) and µ′(i) ∈ A for any
i ∈ A.

A matching µ is in the core defined via strict domination if there exists no matching µ′ which
dominates µ.

Exercise: Show that the set of stable matchings, the core, and the core defined via strict domi-
nation are the same.

2.45 Theoremon strong stability property (Demange, Gale and Sotomayor (1987)): Ifµ is an unstable
matching, then either there exists a blocking pair (m,w) and a stable matching µ̄ such that

µ̄(m) %m µ(m) and µ̄(w) %w µ(w),
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or µ is not individually rational.

2.46 Blocking lemma (Hwang (unknown), Gale and Sotomayor (1985)): Let µ be any individually
rational matching with respect to strict preferences % and let M ′ be all men who prefer µ to
µM . If M ′ is non-empty, there is a pair (m,w) that blocked µ such that m ∈ M \M ′ and
w ∈ µ(M ′).

Proof. Case 1: Suppose µM (M ′) ̸= µ(M ′).

(1) Choose w ∈ µ(M ′) \ µM (M ′), say, w = µ(m′).

(2) Thenm′ prefers µ to µM , that is, w = µ(m′) ≻m′ µM (m′).

(3) Since µM is stable, we havem , µM (w) %w µ(w) = m′.

(4) Furthermore, m = µM (w) ≻w µ(w) = m′; otherwise m = µM (w) = µ(w) = m′

contradicts with the fact w ∈ µ(M ′) \ µM (M ′).

(5) Since µM (m) = w ̸∈ µM (M ′),m is not inM ′.

(6) Hence, µM (m) %m µ(m).

(7) Furthermore, µM (m) ≻m µ(m); otherwise µ(m′) = w = µM (m) = µ(m).

(8) Hence, (m,w) blocks µ.

w ∈ µ(M ′) \ µM (M ′)

m′ ∈M ′ m ̸∈M ′

µ µM

Figure 2.2

Case 2: Suppose µM (M ′) = µ(M ′) ,W ′.

(1) Letw be the last woman inW ′ to receive a proposal from an acceptable member ofM ′ in
the deferred acceptance algorithm.

(2) Since µM (M ′) = µ(M ′) and each m ∈ M ′ prefers µ(m) to µM (m), all w ∈ W ′ have
rejects acceptablemen fromM ′, and hencew has somemanm engagedwhen she received
this last proposal.

(3) We claim (m,w) is the desirable blocking pair.

• m is not inM ′; otherwise, after being rejected byw, he will propose again to a mem-
ber ofW ′, contradicting the fact that w received the last such proposal.
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• Sincem is rejected byw,m prefersw to his mate µM (m) under µM . Sincem ̸∈M ′,
m is not better off under µ than under µM , and hencem prefers w to µ(m).

• In the algorithm,m is the last man to be rejected by w, so she must have rejected her
mate µ(m) under µ before she rejectedm. Hence, she prefersm to µ(w).

2.47 Remark: Sincem ∈M \M ′, we have µM (m) %m µ(m).

Since w ∈ µ(M ′), we have w , µ(m′) ≻m′ µM (m′). Then by stability of µM we have
µM (w) %w µ(w).

2.48 Proof of Theorem 2.45. (1) If µM [%] %M µ is not satisfied, the setM ′ would be non-empty
and the blocking pair (m,w) will satisfy

µM [%](m) %m µ(m) and µM [%](w) %w µ(w),

so Theorem will be true with (m,w) and µ̄ = µM .

(2) Henceforth, we therefore assume

µM [%] %M µ and symmetrically µW [%] %W µ.

(3) The set of stable matchings µ′ such that µ′ %M µ is non-empty since it contains µM [%],
and it has a smallest element µ∗, since the set of stable matchings is a lattice under the
partial order %M .

(4) If µ∗(w) ≻w µ(w) for somew, thenTheorem holds with (µ∗(w), w) and µ∗. We can now
restrict our consideration to the case where

µ %W µ∗.

(5) Define a new preference profiles %′ by modifying % as follows:

• Each w who is matched under the stable matchings deletes from her preference list
of acceptable men allm such that µ∗(w) ≻w m.

• If µ(w) ≻w µ∗(w), then µ∗(w) is also deleted.

Clearly the second item must hold for some w; otherwise µ = µ∗.

(6) LetµM [%′] be theman-optimal stablematching for ⟨M,W,%′⟩. Wewill show thatµM [%′

] is the matching µ̄ of the Theorem.

(7) First we claim µM [%′] is stable under %.
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(i) Since µW [%] %W µ %W µ∗, µW [%](w) is acceptable forw under%′, and hence the
woman-optimal stable matching µW [%′] in ⟨M,W,%′⟩ is still µW [%].

(ii) Since µW [%] and µM [%′] are two stable matchings in ⟨M,W,%′⟩, we have µM [%′

] %′
M µW [%], which is equivalent to µM [%′] %M µW [%] due to every man use the

same preference in % and %′.

(iii) Suppose w is single under µM [%′].

• Thenw is also single under µW [%], since both are stable matchings in ⟨M,W,%′

⟩.
• If w is part of a blocking pair for µM [%′] under %, that is, there exists m, such

that (m,w) blocks µM [%′] under %.

• We have

m ≻w µM [%′](w) = w, and w ≻m µM [%′](m) %m µW [%](m).

• Since µW [%] is stable in ⟨M,W,%⟩, we have

w = µW [%](w) %w m,

which contradicts the factm ≻w w.

• Therefore, w can not be part of a blocking pair for µM [%′] under %.

(iv) Suppose w is matched under µM [%′].

• Then she prefers her mate to the men she has deleted.

• Hence she can not blockwith any deletedman and hence she belongs to no block-
ing pair.

(8) Next we show that µ∗ %M µM [%′].

(i) If not, we have w , µM [%′](m) ≻m µ∗(m).

(ii) Then by stability of µ∗ we have µ∗(w) ≻w m.

(iii) By the definition of %′,m is deleted by w, so w = µM [%′](m) is impossible.

(9) It follows that µ(m) ≻m µM [%′](m) for at least onem.

(i) If not we have µ∗ %M µM [%′] %M µ.

(ii) By the definition of %′, µM [%′] ̸= µ∗.

(iii) It contradicts that µ∗ is the smallest stable matching preferred byM to µ.

(10) Finally, we apply the blocking lemma to the preference profile %′ for which µM [%′] is
man-optimal.

(11) Then there is a blocking pair (m0, w0) for µ under %′ and hence under %.
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(12) Theproof is complete with µ̄ = µM [%′] as claimed, under the assumption that preferences
are strict, by Remark 2.47.

(13) To prove the theorem without the assumption that preferences are strict, we need the fol-
lowing additional observation. Let µ be an unstable matching under non-strict prefer-
ences%. Then there exists a way to break ties so that the strict preferences%′ correspond
to %, and every pair (m,w) that blocks µ under %′ also blocks µ under %: If any agent x
is indifferent under % between µ(x) and some other alternative, then under %′, x prefers
µ(x). Then the theorem applied to the case of the strict preferences %′ gives the desired
result.

2.6 Extension: Extending the men’s preferences

2.49 Example: The effect of extending the men’s preferences.

In the marriage problem Γ = ⟨M,W,%⟩, there are six men and five women, and their prefer-
ences are given as follows:

m1 m2 m3 m4 m5 m6 w1 w2 w3 w4 w5

w1 w2 w4 w3 w5 w1 m2 m6 m3 m4 m5

w3 w4 w3 w4 w4 m1 m1 m4 m3

m6 m2 m1 m2

m2

The man-optimal and woman-optimal stable matchings are given by:

µM [%] =

[
w1 w2 w3 w4 w5 (m6)

m1 m2 m4 m3 m5 m6

]
, µW [%] =

[
w1 w2 w3 w4 w5 (m6)

m1 m2 m3 m4 m5 m6

]
.

Consider a new marriage problem Γ′ = ⟨M,W,%′⟩ some of men decide to extend their lists of
acceptable women yielding the new preference profile %′:

m1 m2 m3 m4 m5 m6 w1 w2 w3 w4 w5

w1 w2 w4 w3 w5 w1 m2 m6 m3 m4 m5

w3 w4 w3 w4 w3 w4 m1 m1 m4 m3

w2 w1 w2 w2 m6 m2 m1 m2

m2
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In this case the man-optimal and woman-optimal stable matchings are:

µM [%′] =

[
w1 w2 w3 w4 w5 (m1)

m2 m6 m4 m3 m5 m1

]
, µW [%′] =

[
w1 w2 w3 w4 w5 (m1)

m2 m6 m3 m4 m5 m1

]
.

Under the original preferences %, no man is worse off, and no woman is better off at µM [%]

(resp. µW [%]) than at µM [%′] (resp. µW [%′]).

2.50 Notation: We will write %′
m ◃ %m if %′

m is an extension of %m by adding people to the end
of the original list of acceptable people. Similarly, we will write %′

w ◃ %w and finally we will
write %′ ◃M % if %′

m ◃ %m for allm ∈M .

Note that for any woman w, her preferences in %′ and % are same when %′ ◃M %.

2.51 Decomposition lemma (Lemma 1 in Gale and Sotomayor (1985)): Let µ and µ′ be, respectively,
stable matchings in ⟨M,W,%⟩ and ⟨M,W,%′⟩ with %′ ◃M %, and all preferences are strict.
Let M(µ′) be the set of men who prefers µ′ to µ under % and let W (µ) be the set of women
who prefer µ to µ′. Then µ′ and µ are bijections fromM(µ′) toW (µ). (That is, both µ′ and µ
match any man who prefers µ′ to a woman who prefers µ, and vice versa.)

Proof. (1) For anym ∈M(µ′), we haveµ′(m) ≻m µ(m) %m m, where the second equation
holds since µ is stable and not blocked by any individual.

(2) Then µ′(m) ̸= m, and hence µ′(m) ∈ W , denoted by w. So we have w = µ′(m) ≻m

µ(m).

(3) Since µ is a stable matching in ⟨M,W,%⟩, µ(w) %w m = µ′(w); otherwise the pair
(m,w) blocks µ.

(4) Furthermore, µ(w) ≻w µ′(w) otherwise µ′(m) = w = µ(m).

(5) We have µ′(m) = w ∈W (µ), and hence µ′(M(µ′)) ⊆W (µ).

(6) For any w ∈ W (µ), we have µ(w) ≻w µ′(w) %w w, where the second equation holds
since µ′ is stable and not blocked by any individual.

(7) Then µ(w) ∈M , denoted bym.

(8) Since µ′ is a stable matching in ⟨M,W,%′⟩, µ′(m) ≻′
m µ(m); otherwise the pair (m,w)

blocks µ′.

(9) We have µ′(m) ≻′
m µ(m) = w and µ(m) ≻m m, then µ′(m) ≻′

m µ(m) ≻m m, and
hence µ′(m) ≻m µ(m) = w.

(10) We havem ∈M(µ′) and hence µ(W (µ)) ⊆M(µ′).

(11) Since µ and µ′ are one-to-one andM(µ′) andW (µ) are finite, the conclusion follows.
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2.52 Remark: µ and µ′ are not bijections fromM(µ) toW (µ′).

Consider the Example 2.49. Let

µ , µM [%] =

[
w1 w2 w3 w4 w5 (m6)

m1 m2 m4 m3 m5 m6

]
, µ′ , µM [%′] =

[
w1 w2 w3 w4 w5 (m1)

m2 m6 m4 m3 m5 m1

]
.

Then it is clear that there is no bijection betweenM(µ) andW (µ′), where

M(µ) = {m1,m2,m6} andW (µ′) = {w1, w2}.

2.53 Lattice lemma: Let µ and µ′ be, respectively, stable matchings in ⟨M,W,%⟩ and ⟨M,W,%′⟩
with %′ ◃M %, and all preferences are strict. Then we have

• λ = µ ∨M µ′, under %, is a matching and is stable for ⟨M,W,%⟩.
• ν = µ ∧M µ′, under %, is a matching and is stable for ⟨M,W,%′⟩.

Proof. We only prove the first statement.

(1) By definition, µ ∨M µ′ agrees with µ′ onM(µ′) andW (µ), and with µ otherwise.

(2) By decomposition lemma, λ is therefore a matching.

(3) Form ∈M(µ′), we have µ′(m) ≻m µ(m) %m m so µ′(m) is acceptable tom under %,
and hence λ is not blocked by any individual in ⟨M,W,%⟩.

(4) Suppose that some pair (m,w) blocks λ.

(5) Ifm ∈M(µ′), then w ≻m λ(m) = µ′(m) ≻m µ(m).

• If w ∈W (µ), thenm ≻w λ(w) = µ′(w), and hence µ′ is blocked by (m,w).
• If w ∈W \W (µ), thenm ≻w λ(w) = µ(w), and hence µ is blocked by (m,w).

(6) Ifm ∈M \M(µ′), then w ≻m λ(m) = µ(m) %m µ′(m).

• If w ∈W (µ), thenm ≻w λ(w) = µ′(w), and hence µ′ is blocked by (m,w).
• If w ∈W \W (µ), thenm ≻w λ(w) = µ(w), and hence µ is blocked by (m,w).

(7) Therefore, λ is a stable matching.

2.54 Theorem (Gale and Sotomayor (1985)): Suppose %′ ◃M %, and let µM [%′], µM [%], µW [%′]

and µW [%] be the corresponding optimal matchings. Then under the preference % the men
are not worse off and the women are not better off in ⟨M,W,%⟩ than in ⟨M,W,%′⟩, no matter
which of the two optimal matchings are considered. That is,

µM [%] %M µM [%′], and µW [%′] %W µW [%].
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Proof. (1) By lattice lemma (Lemma 2.53), µM [%]∨MµM [%′] under% is stable for ⟨M,W,%
⟩.

(2) Then by optimality we have µM [%] %M

(
µM [%] ∨M µM [%′]

)
%M µM [%′].

(3) Also by lattice lemma (Lemma 2.53),µW [%]∨W µW [%′] under% is stable for ⟨M,W,%′⟩.

(4) Then by optimality we have µW [%′] %W

(
µW [%] ∨W µW [%′]

)
%W µW [%].

2.55 Corollary: µM [%′] %W µM [%] by the stability of µM [%′] and µW [%] %M µW [%′] by the
stability of µW [%].

2.7 Extension: Adding another woman

2.56 Example: Effect of adding another woman.

In the marriage problem Γ = ⟨M,W,%⟩, where there are three men and three women, and
their preferences are as follows:

m1 m2 m3 w1 w2 w3

w1 w3 w1 m1 m2 m3

w3 w2 w3 m3 m2

Table 2.5

There is a single stable matching in this example:

µM [Γ] = µW [Γ] =

[
w1 w2 w3

m1 m2 m3

]
.

Suppose woman w4 now enters, and the new marriage problem Γ′ = ⟨M,W ′,%′⟩ is given by
W ′ = {w1, w2, w3, w4}, and %′ given by:

m1 m2 m3 w1 w2 w3 w4

w4 w3 w1 m1 m2 m3 m2

w1 w2 w3 m3 m2 m1

w3

Table 2.6

Again there is a single stable matching under %′;

µM (Γ′) = µW (Γ′) =

[
w1 w2 w3 w4

m3 (w2) m2 m1

]
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Under the preferences %′, all the men are better off under µM [Γ′] than under µM [Γ].

2.57 Theorem (Gale and Sotomayor (1985)): SupposeW ⊆W ′ and µM [Γ] and µW [Γ] are the man-
optimal and woman-optimal matchings, respectively, for Γ = ⟨M,W,%⟩. Let µM [Γ′] and
µW [Γ′] be the man-optimal and woman-optimal matchings, respectively, for Γ′ = ⟨M,W ′,%′

⟩, where %′ agrees with % onM andW . Then

µW [Γ] %W µW [Γ′], µW [Γ′] %′
M µW [Γ], µM [Γ′] %′

M µM [Γ], µM [Γ] %W µM [Γ′].

Proof. (1) Denote by %′′ the set of preferences on M ∪W ′ such that %′′ agrees with %′ on
M ∪W , and for each w ∈W ′ \W , w has no acceptable man under %′′.

(2) Let µM [Γ′′] and µW [Γ′′] be the man-optimal and woman-optimal stable matchings for
Γ′′ = ⟨M,W ′,%′′⟩.

(3) Since noman is acceptable to anywoman inW ′\W under%′′,µM [Γ′′] agrees withµM [Γ]

onM ∪W , and µW [Γ′′] agrees with µW [Γ] onM ∪W .

(4) Note that %′ ◃W %′′.

(5) So we can apply Theorem 2.54 and obtain that

µW [Γ′′] %′′
W ′ µW [Γ′],

so µW [Γ] %W µW [Γ′].

(6) Similarly, µW [Γ′] %′
M µW [Γ′′] so µW [Γ′] %′

M µW [Γ].

(7) Similarly, µM [Γ′] %′
M µM [Γ′′] so µM [Γ′] %′

M µM [Γ].

(8) Finally, µM [Γ′′] %′′
W ′ µM [Γ′] so µM [Γ] %W µM [Γ′].

2.58 Remark: Theorem 2.57 states that when new women enter, no man is hurt under the man-
optimal matchings.

2.59 Theorem: Suppose a womanw0 is added and letµW [Γ′] be the woman-optimal stablematching
for Γ′ = ⟨M,W ′ = W ∪ {w0},%′⟩, where %′ agrees with % on W . Let µM [Γ] be the man-
optimal stable matching for Γ = ⟨M,W,%⟩. Ifw0 is not single under µW [Γ′], then there exists
a non-empty subset of men, S, such that if a man is in S he is better off, and if a woman is in
µM [Γ](S) she is worse off under any stable matching for the new marriage problem than under
any stable matching for the original marriage problem, under the new (strict) preferences %′.

Proof. (1) Let µW [Γ′](w0) = m0.

(2) Ifm0 is single under µM [Γ], then Theorem holds by taking S = {m0}.
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(3) So supposem0 is matched to w1 ∈W under µM [Γ].

(4) It suffices to show that there exists a set of men S such that

µW [Γ′](m) ≻′
m µM [Γ] for allm ∈ S, and µM [Γ](w) ≻w µW [Γ′] for any w ∈ µM [Γ](S).

(5) Construct a directed graph whose vertices areM ∪W . There are two type of arcs.

• Ifm ∈M and µM [Γ](m) = w ∈W , there is an arc fromm to w.

• If w ∈W and µW [Γ′](w) = m ∈M , there is an arc from w tom.

(6) Let M̄ ∪ W̄ be all vertices that can be reached by a directed path starting fromm0.

(7) Case 1: The path starting fromm0 ends at wk+1, that is,

m0 w1 m1 w2 m2

wi+1 mi wi mi−1 wi−1

mk−1 wk mk wk+1 wk+1

µM [Γ]

µW [Γ′]

µM [Γ]

µW [Γ′]

µW [Γ′]

µM [Γ]

µW [Γ′]

µM [Γ]

µM [Γ]

µW [Γ′]

µM [Γ]

µW [Γ′]

Figure 2.3

(i) We claim that S = {m0,m1, . . . ,mk} has the desired property. µM [Γ](S) =

{w1, w2, . . . , wk+1}
(ii) mk = µM [Γ](wk+1) ≻wk+1

wk+1 = µW [Γ′](wk+1) implies

wk = µW [Γ′](mk) ≻mk
wk+1 = µM [Γ](mk).

(iii) Thenmk−1 = µM [Γ](wk) ≻wk
mk = µW [Γ′](wk).

(iv) By induction, we have

µW [Γ′](mi) ≻mi
µM [Γ](mi), i = 0, 1, . . . , k

µM [Γ](wj) ≻wj
µW [Γ′](wj), j = 1, 2, . . . , k + 1.

(8) Case 2: The path starting fromm0 ends atmk, that is,

(i) We claim thatS = {m0,m1, . . . ,mk}has the desired property. µ(S) = {w1, w2, . . . , wk}.
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m0 w1 m1 w2 m2

wi+1 mi wi mi−1 wi−1

mk−1 wk mk mk

µM [Γ]

µW [Γ′]

µM [Γ]

µW [Γ′]

µW [Γ′]

µM [Γ]

µW [Γ′]

µM [Γ]

µM [Γ]

µW [Γ′]

µM [Γ]

Figure 2.4

(ii) wk = µW [Γ′](mk) ≻mk
µM [Γ](mk) = mk implies

mk−1 = µM [Γ](wk) ≻wk
mk = µW [Γ′](wk).

(iii) Then wk−1 = µW [Γ′](mk−1) ≻mk−1
wk = µM [Γ](mk−1).

(iv) By induction, we have

µW [Γ′](mi) ≻mi
µM [Γ](mi), i = 0, 1, . . . , k

µM [Γ](wj) ≻wj
µW [Γ′](wj), j = 1, 2, . . . , k.

2.60 Remark: There exist some men who are in fact helped in quite a clear way (unless the new
women remain unmatched): They are better off at every stable matching in the new market
than they were at any stable matching of the old market. Furthermore (unless these men were
all previously unmatched), there are somewomenwho are similarly harmed by the entry of new
women into the market.

2.8 Incentive compatibility I

2.61 A (direct) mechanism (机制) φ is a systematic procedure that determines a matching for each�

marriage problem ⟨M,W,%⟩.
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φa (marriage) problem
input output

a matching

Figure 2.5: A mechanism

We have already studied two typical mechanisms which select the man-optimal and woman-
optimal stable matchings, denoted by DAM and DAW , respectively. We call them the man-
optimal stable mechanism and the woman-optimal stable mechanism, respectively.

For the sake of convenience, we shall use “the men-proposing deferred acceptance algorithm”
interchangeably with “the man-optimal stable mechanism”.

2.62 Question: What is the difference between a matching and a mechanism?

2.63 A mechanism φ is stable if it always selects a stable matching.4�

A mechanism φ is Pareto efficient if it always selects a Pareto efficient matching.

A mechanism φ is individually rational if it always selects an individually rational matching.

2.64 LetPi denote the set of all preferences for i ∈M∪W ,P = Pm1
×· · ·×Pmp

×Pw1
×· · ·×Pwq

denote the set of all preference profiles, and P−i denote the set of all preference profiles for all
individuals except i. LetM denote the set of all matchings.

2.65 We have learned properties of stable matching, given information about preferences of par-
ticipants. But in reality, preferences are private information, so the clearinghouse should ask
participants. Do people have incentives to tell the truth?

In a marriage problem ⟨M,W,%⟩, we assume that everything is known except %. Therefore,
people are the only strategic agents in the problem and can manipulate the mechanism by mis-
reporting their preferences.

When other components of the problem are clear, we represent the problem just by≻, represent
the outcome of the mechanism by φ[≻], and a mechanism becomes a function φ : P →M.

2.66 A mechanism φ is strategy-proof5 (抗策略操作) if for each marriage problem ⟨M,W,%⟩, for�

each i ∈M ∪W , and for each %′
i∈ Pi, we have

φ[%−i,%i](i) %i φ[%−i,%′
i](i).

4Table 1 in Roth (2002) shows that unstable matching algorithms tend to die out while stable algorithms survive the test
of time.

5In general, a mechanism is strategy-proof if it is a weakly-dominant strategy for every individual to reveal his/her private
information.
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2.67 Example: Deferred acceptance algorithm is not strategy-proof.

Consider the following marriage problem with two men and two women with preferences %
given by:

m1 m2 w1 w2

w1 w2 m2 m1

w2 w1 m1 m2

Table 2.7

The outcome of men-proposing deferred acceptance algorithm is[
m1 m2

w1 w2

]
.

However, w1 can be better off if she misreports her preference≻′
w1

: m2. The new outcome is[
m1 m2

w2 w1

]
.

2.68 Example: A strategy-proof (and Pareto efficient) mechanism.

For anymarriage problem ⟨M,W,%⟩, let the men be placed in some order, {m1,m2, . . . ,mp}.
Consider the mechanism that for any stated preference profile %′ yields the matching µ =

φ[%′] that matchesm1 to his stated first choice, m2 to his stated first choice of possible mates
remaining after µ(m1) has been removed from the market, and anymk to his stated first choice
after µ(m1) through µ(mk−1).

• It is clearly a dominant strategy for each man to state his true preferences, since each man
is married to whomever he indicates is his first choice among those remaining when his
turn comes. It is also (degenerately) a dominant strategy for each woman to state her true
preferences, since the preferences stated by the women have no influence.

• The mechanism φ is Pareto efficient, since at any other matching some man would do no
better.

• However, φ is not a stable matching mechanism, since it might happen, for example, that
woman w = φ[%](m1), who is the (draft) choice of manm1 would prefer to be matched
with someone else, who would also prefer to be matched to her. That is, φ is not a stable
matching mechanism because there are some sets of preferences for which it will produce
unstable outcomes.

2.69 Impossibility theorem (Theorem 3 in Roth (1982b)): There exists no mechanism that is both�
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stable and strategy-proof. In other words, for any stable mechanism φ, there exist a marriage
problem ⟨M,W,%⟩, a person i ∈M ∪W , and a preference %′

i such that

φ[%′
i,%−i](i) ≻i φ[%i,%−i](i).

Proof. (1) Consider the followingmarriage problemwith twomen and twowomenwith pref-
erences % given by:

m1 m2 w1 w2

w1 w2 m2 m1

w2 w1 m1 m2

Table 2.8

(2) In this problem there are only two stable matchings:

µM =

[
m1 m2

w1 w2

]
and µW =

[
m1 m2

w2 w1

]
.

(3) Let φ be any stable mechanism. Then φ[%] = µM or φ[%] = µW .

(4) Ifφ[%] = µM thenwomanw1 can report a fake preference%′
w1

where only her top choice
m2 is acceptable and force her favorite stable matching µW to be selected by φ since it is
the only stable matching for the marriage problem (%−w1 ,%′

w1
).

(5) If, on the other hand, φ[%] = µW , then manm1 can report a fake preference%′
m1

where
only his top choicew1 is acceptable and force his favorite stablematchingµM to be selected
by φ since it is the only stable matching for the marriage problem (%−m1 ,%′

m1
).

2.70 Remark: No perfect mechanism exists.

2.71 Corollary: No stable mechanism exists for which stating the true preferences is always a best
response for every individual when all other individuals state their true preferences.

2.72 Theorem: When any stable mechanism is applied to a marriage problem in which preferences
are strict and there is more than one stable matching, then at least one individual can profitably
misreport his or her preference, assuming that the others tell the truth.

Proof. (1) By hypothesis µM ̸= µW .

(2) Without loss of generality, suppose that when all individuals state their true preferences,
the mechanism selects a stable matching µ ̸= µW .
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(3) Let w be any woman such that µW (w) ≻w µ(w). Note that w is not single at µW .

(4) Let w misreport her preference by removing from her stated preference list of acceptable
men all men who rank below µW (w).

≻w

µW (w) µ(w) w

≻′
w

µW (w)

w
µ′(w)

(5) Clearly the matching µW will still be stable under this preference profile.

• It is obvious that µW is individually rational under the new preference profile, since
µW (w) %′

w w and µW (i) %i i for each i ̸= w.

• It is trivial that µW is not blocked by a pair which does not contain w under the new
preference profile; otherwise µW is blocked by this pair under the original preference
profile.

• If µW is blocked by a pair (m,w) under the new preference profile, then m ≻′
w

µW (w) and w ≻m µW (m). Thus,m ≻w µW (w) and w ≻m µW (m), which means
that µW is blocked by the pair (m,w) under the original preference profile.

(6) Lettingµ′ be the stablematching selected by themechanism for the new preference profile.

(7) It follows from rural hospital theorem (Theorem 2.31) that w is not single under µ′ (µW

and µ′ are two stable matchings under the new preference profile).

(8) Hence, she is matched with someone she likes at least as well as µW (w), since all other
men have been removed from her list of acceptable men. That is, µ′(w) %w µW (w).

(9) It is clear that µ′ is also stable for the original preference profile.

• It is obvious thatµ′ is individually rational under the original preference profile, since
µ′(w) %w µW (w) ≻w w and µ′(i) %i i for each i ̸= w.

• It is trivial that µ′ is not blocked by a pair which does not contain w under the origi-
nal preference profile; otherwise µ′ is blocked by this pair under the new preference
profile.

• If µ′ is blocked by a pair (m,w) under the original preference profile, then m ≻w

µ′(w) and w ≻m µ′(m). Thus, m ≻′
w µ′(w) and w ≻m µ′(m), which means that

µ′ is blocked by the pair (m,w) under the new preference profile.

(10) Then µW (w) %w µ′(w) due to the woman-optimality of µW (under the original prefer-
ence profile).

(11) It follows that µW (w) = µ′(w), and hence µ′(w) ≻w µ(w).
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(12) Therefore, w prefers matching µ′ to µ.

(13) If the mechanism originally selects the matching µW , then the symmetric argument can
be made for any manm who strictly prefers µM .

2.73 Question: What is the difference between Theorems 2.69 and 2.72?

2.74 Proposition: If φ is a stable mechanism, and µ is a stable matching in ⟨M,W,≻⟩, then for each
i ∈M ∪W , there exists≻′

i such that φ[≻′
i,≻−i](i) = µ(i).

Proof. (1) Let≻′
i : µ(i), i.

(2) Note that µ is also stable at (≻′
i,≻−i).

(3) If i is matched at≻, then i is also matched at (≻′
i,≻−i).

(4) Since only µ(i) is acceptable to i at≻′
i and φ is stable, φ[≻′

i,≻−i](i) = µ(i).

Theproposition implies that aman/woman canmisreport to obtain any stable assignment under
a stable mechanism.

2.75 Theorem (Proposition 1 in Alcalde and Barberà (1994)): There exists no mechanism that is
Pareto efficient, individually rational, and strategy-proof.

Proof. (1) Consider the followingmarriage problemwith twomen and twowomenwith pref-
erences %1 given by:

m1 m2 w1 w2

w1 w2 m2 m1

w2 w1 m1 m2

Table 2.9

(2) In this problem there are only two individually rational, Pareto efficient matchings:

µ1
1 =

[
m1 m2

w1 w2

]
and µ1

2 =

[
m1 m2

w2 w1

]
.

(3) Let φ be any individually rational, and Pareto efficient mechanism. Then φ[%1] = µ1
1 or

φ[%1] = µ1
2.



Do
No
t C
op
y o
r D
istr
ibu
te

2.8. Incentive compatibility I 40

m1 m2 w1 w2

w1 w2 m2 m1

w2 w1 m2

Table 2.10

(4) If φ[%1] = µ1
1. Then consider the marriage problem with two men and two women with

preferences %2 given by:

In this problem there are only two individually rational, Pareto efficient matchings:

µ2
1 =

[
m1 m2 (w1)

(m1) w2 w1

]
and µ2

2 =

[
m1 m2

w2 w1

]
.

• If φ[%2] = µ2
2, w1 can manipulate φ at %1 via %2

w1
: w1 will getm1 if reporting true

preference %1
w1

, and getm2 if misreporting %2
w1

.

• If φ[%2] = µ2
1, then consider the marriage problem with two men and two women

with preferences %3 given by:

m1 m2 w1 w2

w1 w2 m2 m1

w2 w1

Table 2.11

In this problem there is only one individually rational, Pareto efficient matching:

µ3 =

[
m1 m2

w2 w1

]
.

w2 can manipulate at %2 via %3
w2

: w2 will get m2 if reporting the true preference
%2

w2
, and get w1 if misreporting %3

w2
.

(5) If φ[%] = µ1
2. Then consider the marriage problem with two men and two women with

preferences %4 given by:

m1 m2 w1 w2

w1 w2 m2 m1

w1 m1 m2

Table 2.12
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In this problem there are only two individually rational, Pareto efficient matchings:

µ4
1 =

[
m1 m2

w1 w2

]
and µ4

2 =

[
m1 m2 (w2)

(m1) w1 w2

]
.

• If φ[%4] = µ4
1,m1 can manipulate φ at%1 via%4

m1
: m1 will getw2 if reporting true

preference %1
m1

, and get w1 if misreporting %4
m1

.
• If φ[%4] = µ4

2, then consider the marriage problem with two men and two women
with preferences %5 given by:

m1 m2 w1 w2

w1 w2 m2 m1

m1 m2

Table 2.13

In this problem there is only one individually rational, Pareto efficient matching:

µ5 =

[
m1 m2

w1 w2

]
.

m2 can manipulate at %4 via %5
m2

: m2 will get w1 if reporting the true preference
%5

m2
, and get w2 if misreporting %5

m2
.

2.9 Incentive compatibility II

2.76 Theorem (Theorem 9 in Dubins and Freedman (1981), Theorem 5 in Roth (1982b)): Truth-�

telling is a weakly dominant strategy for any man under the man-optimal stable mechanism.
Similarly, truth-telling is a weakly dominant strategy for any woman under the woman-optimal
stable mechanism.

Intuition: Men are not punished when applying to preferred women. This is in a contrast with
the Boston mechanism.

Proof. It is a corollary of theorem of limits on successful manipulation (Theorem 2.86).

We provide an alternative proof as follows:

(1) In the marriage problem ⟨M,W,≻⟩, suppose that manmmisreports≻′
m. Let DAM [≻′

m

,≻−m] = µ. It is sufficient to show that by truthfully reporting ≻m, m will be weakly
better off.
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(2) Case 1: If µ(m) = m orm ≻i µ(m), nothing needs to be proved.

(3) Case 2: Suppose that µ(m) = w.

(4) Supposem reports≻′′
m : w,m, i.e., only w is acceptable to him.

≻′
m

µ(m) = w m

≻′′
m w m

(i) At (≻′′
m,≻−m), µ is still stable due to less desires.

(ii) Sincem is matched tow under µ, rural hospital theorem (Theorem 2.31) implies that
m being unmatched will be unstable at (≻′′

m,≻−m).

(5) Consider≻′′′
m : . . . , w,m, which is obtained by truncating the true preference from w.

≻m w
m

≻′′′
m w m

(i) m being unmatched will also be unstable at (≻′′′
m,≻−m): If a matching making m

single is stable under (≻′′′
m,≻−m), then it is also stable under (≻′′

m,≻−m).

(ii) Therefore, under DAM [≻′′′
m,≻−m],m is matched to somewomanweakly better than

w.

(iii) As the DA procedure is the same under (≻′′′
m,≻−m) and (≻m,≻−m), m will be

weakly better off by truthfully reporting≻m.

2.77 Remark: Deferred acceptance algorithm is the unique stable andone-sided strategy-proofmech-�

anism; see Theorem 8.34.

2.78 Remark: The men-proposing deferred acceptance algorithm is group strategy-proof for men.

2.79 Simplemisreportmanipulation lemma (Lemma 1 in Roth (1982b)): Letm be inM . LetµM [%′]

andµM [%′′]be the correspondingman-optimal stablematchings for ⟨M,W,%′⟩ and ⟨M,W,%′′

⟩, where %′
i=%′′

i for all agents i other thanm, and µM [%′](m) is the first choice form in %′′
m.

Then µM [%′′](m) = µM [%′](m).

Proof. (1) Clearly the matching µM [%′] is stable under the preference profile %′′.
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(2) Since µM [%′′] is man-optimal in ⟨M,W,%′′⟩ and µM [%′](m) is the first choice of %′′
m,

we have µM [%′](m) = µM [%′′](m).

2.80 Remark: There are of course many ways in which a man m might report a preference order-
ing %′

m different from %m, but this lemma shows that, in considering man m’s incentives to
misreport his preferences, we can confine our attention to certain kinds of simple misreport.

Suppose by reporting some preference %′
m, man m can change his mate from µM [%](m) to

µM [%′](m). Then he can get the same result—that is, he can be matched to µM [%′](m)—by
reporting a preference%′′

m in which µM [%′](m) is his first choice. So, if there is any way form
to be matched to µM [%′](m) by reporting some appropriate preference, then there is a simple
way—he can just list her as his first choice.

≻′
w

µM [%′](m) = w m

≻′′
w w m

2.81 Lemma (Lemma 2 in Roth (1982b)): Let m be in M . Let µM [%′] be the man-optimal stable
matching for ⟨M,W,%′⟩. If%′

i=%i for all i other thanm and µM [%′](m) is the first choice for
m in%′

m, and µM [%′](m) %m µM [%](m), then for eachmj inM we have µM [%′](mj) %mj

µM [%](mj).

Proof. (1) LetM∗ =
{
mj | µM [%](mj) ≻mj

µM [%′](mj)
}
. SupposeM∗ ̸= ∅.

(2) It is clear that allmj inM∗ are matched under µM [%].

(3) Since every individual other than m reports the same preferences under % and %′ and
m ̸∈M∗, it must be that allmj inM∗ are rejected by their mates under %M [%] at some
step of the deferred acceptance algorithm in ⟨M,W,%′⟩.

(4) Let s be the first step of the algorithm in ⟨M,W,%′⟩ at which somemj inM∗ is rejected
by w , µM [%](mj).

(5) Since mj and w are mutually acceptable, this implies that w must receive a proposal at
Step s of the algorithm for ⟨M,W,%′⟩ from somemk who did not propose to her under
% and whom she likes more thanmj .

(6) The fact thatmk did not propose to w under % means that µM [%](mk) ≻mk
w.

(7) Thenmk ∈M∗; otherwise we have the contradiction

w %mk
µM [%′](mk) %mk

µM [%](mk) ≻mk
w,
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where the first relation holds because in deferred acceptance algorithm for ⟨M,W,%′⟩,
mk is on the waiting list of w at Step s.

(8) Somk ̸= m and%mk
=%′

mk
andmk must have been rejected byµM [%](mk) in ⟨M,W,%′

⟩ prior to Step s, which contradicts the choice of s as the first such period.

(9) Consequently,M∗ = ∅ and µM [%′](mj) %mj µ
M [%](mj) for allmj inM .

2.82 Remark: Lemma shows that if a simple misreport bym leavesm at least as well off as at µM [%
], then no man will suffer; that is, every man likes the matching µM [%′] resulting from the
misreport at least as well as the matching µM [%]. This illustrates another way in which the men
have common rather than conflicting interests.

2.83 Theorem (Theorem 17 in Dubins and Freedman (1981)): Let % be the true preferences of the
agents, and let%′ differ from% in that some coalition M̄ of themenmisreport their preferences.
Then there is no matching µ, stable for %′, which is preferred to µM [%] by all members of M̄ .

Proof. It is a corollary of theorem of limits on successful manipulation (Theorem 2.86).

2.84 Remark: Theorem 2.83 implies that if the man-optimal stable mechanism is used, then no man
or coalition of men can improve the outcome for all its members by misreporting preferences.

2.85 For an agent i with true preference %i, the strict preference %+
i corresponds to %i if the true

preference can be obtained from %+
i without changing the order of any alternatives, simply by

indicating which alternatives are tied.

2.86 Theorem of limits on successful manipulation (Theorem in Demange, Gale and Sotomayor
(1987)): Let % be the true preferences (not necessarily strict) of the agents, and let %′ differ
from % in that some coalition C of men and women misreport their preferences. Then there is
no matching µ, stable for%′, which is preferred to every stable matching under the true prefer-
ence profile % by all members of C .

Proof. (1) Suppose that some non-empty subset M̄ ∪ W̄ of men and women misreport their
preferences and are strictly better off under someµ, stable under%′, than under any stable
matching under %.

(2) If µ is not individually rational under %, then someone, say a man, is matched under µ
with a woman not on his true list of acceptable women, so he is surely a liar and is in M̄ ,
which is a contradiction.

(3) Assume µ is individually rational under %.
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(4) Clearly µ is not stable under%, since every member in the coalition prefers µ to any stable
matching.

(5) Construct a corresponding preference profile %+, with strict preferences, so that, if any
agent i is indifferent under % between µ(i) and some other alternative, then under %+ i

prefers µ(i).

(6) Then (m,w) blocks µ under %+ only if (m,w) blocks µ under %.

(7) Since every stable matching under %+ is also stable under %,

µ(m) ≻m µM [%+](m) for everym in M̄ , and µ(w) ≻w µW [%+](w) for every w in W̄ .

(8) If M̄ is not empty, we can apply the blocking lemma (Lemma 2.46) to the marriage prob-
lem ⟨M,W,%+⟩: there is a pair (m,w) that blocks µ under %+ and so under %, such
that

µM [%+](m) %m µ(m) and µM [%+](w) %w µ(w).

(9) Clearlym and w are not in M̄ ∪ W̄ and therefore are not misreporting their preferences,
so they will also block µ under %′, contradicting that µ is stable under %′.

(10) If M̄ is empty, W̄ is not empty and the symmetrical argument applies.

2.87 Remark: Theorem 2.86 implies that no matter which stable matching under %′ is chosen, at
least one of the liars is not better off than he would be at the man-optimal matching under %.

2.10 Non-bossiness

2.88 Definition: A mechanism φ is said to be non-bossy (不专横)6 if, for each marriage problem�

⟨M,W,≻⟩, for each i ∈M ∪W , and for each≻′
i∈ Pi,

φ[≻′
i,≻−i](i) = φ[≻](i) implies φ[≻′

i,≻−i] = φ[≻].

2.89 Example: Deferred acceptance algorithm is not non-bossy.

LetM = {m1,m2,m3} andW = {w1, w2}, and preferences given by
6Theconcept of non-bossiness is due to Satterthwaite and Sonnenschein (1981). Amechanism is “non-bossy” if whenever

a change in an individual’s preference does not bring about a change in his assignment, then it does not bring about a change
in anybody’s assignment. See Thomson (2014).
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m1 m2 m3 w1 w2

w1 w1 w2 m3 m1

w2 w1 m2 m3

m1

Table 2.14

The men-proposing DA outcome is [
m1 m2 m3

w2 (m2) w1

]

Consider a preference for m2, ≻′
m2

: m2. Then the men-proposing DA outcome under this
modified preference is [

m1 m2 m3

w1 (m2) w2

]

So we have just shown that the men-proposing DA is not non-bossy.

2.90 Theorem (Theorem 1 in Kojima (2010)): There exists no stable mechanism that is non-bossy�

for marriage problems.

Proof. (1) Consider a problem where W = {w1, w2, w3} and M = {m1,m2,m3}, and
preferences are given by

m1 m2 m3 w1 w2 w3

w3 w3 w1 m1 ∅ m3

w2 w2 w2 m2 m2

w1 w1 w3 m3 m1

Table 2.15

(2) There exists a unique stable matching

φ[≻] =

[
w1 w2 w3 ∅
m1 ∅ m3 m2

]
.

(3) Consider≻′
m2

given by
≻′

m2
: ∅.

(4) Now there are two stable matchings, µ and µ′, given by

µ =

[
w1 w2 w3 ∅
m3 ∅ m1 m2

]
, µ′ =

[
w1 w2 w3 ∅
m1 ∅ m3 m2

]
.
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(5) Case 1: φ[≻′
m2
,≻−m2 ] = µ. Then φ[≻′

m2
,≻−m2 ](m2) = φ[≻](m2) and φ[≻′

m2
,≻−m2

] ̸= φ[≻]. Thus, φ is not non-bossy.

(6) Case 2: φ[≻′
m2
,≻−m2 ] = µ′.

(i) Consider≻′
w2

given by
≻′

w2
: m1,m2,m3.

(ii) Then φ[≻′
w2
,≻′

w2
,≻−w2−m2 ] is given by

φ[≻′
w2
,≻′

m2
,≻−w2−m2

] =

[
w1 w2 w3 ∅
m3 ∅ m1 m2

]
.

(iii) Therefore, we have that

φ[≻′
w2
,≻′

m2
,≻−w2−m2 ](w2) = φ[≻′

m2
,≻−m2 ](w2), and φ[≻′

w2
,≻′

m2
,≻−w2−m2 ] ̸= φ[≻′

m2
,≻−m2 ],

so φ is not non-bossy.

2.91 A rough idea is to note that the men-proposing DA is not non-bossy, but then when preference
of aman (saym2) changes, there are two stablematchings and one of them, which is thewoman-
optimal stable matching, does not contradict non-bossiness (yet). But then, we can add one
more agent,w2, to make the situation much like the original situation, but the roles of men and
women are switched.

2.92 Exercise: Find a non-bossy mechanism for marriage problems.
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3.1 The formal model

3.1 In a college admissionsmodel, there exist two sides of agents referred to as colleges and students.
Each student would like to attend a college and has preferences over colleges and the option
of remaining unmatched. Each college would like to recruit a maximum number of students
determined by their exogenously given capacity. Theyhave preferences over individual students,
which translate into preferences over groups of students under a responsiveness assumption.

3.2 Definition: A college admissions problem Γ = ⟨S,C, q,≻⟩ consists of:�

49
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• a finite set of students S,

• a finite set of colleges C ,

• a quota vector q = (qc)c∈C such that qc ∈ Z+ is the quota of college c,

• a preference profile for students ≻S= (≻s)s∈S such that ≻s is a strict preference over
colleges and remaining unmatched, denoting the strict preference of student s,

• a preference profile for colleges ≻C= (≻c)c∈C such that ≻c is a strict preference over
students and remaining unmatched, denoting the strict preference of college c.

In this chapter, we will use ∅ to denote “unmatched”.

3.3 Definition: In a college admissions problem, a matching is the outcome, and is defined by a�

function µ : C ∪ S → 2S ∪ 2C such that

• for each student s ∈ S, µ(s) ∈ 2C with |µ(s)| ≤ 1,

• for each college c ∈ C , µ(c) ∈ 2S with |µ(c)| ≤ qc,

• µ(s) = c if and only if s ∈ µ(c).

Alternatively, a matching is a function µ : S → C∪{∅} such that for each college c, |µ−1(c)| ≤
qc.

3.4 Even though we have described colleges’ preferences over students, each college with a quota
greater than one must be able to compare groups of students in order to compare alternative
matchings, and we have yet to describe the preferences of colleges over groups of students.

Example: Suppose that there are three students {1, 2, 3} and a college c has three quotas. Then
the college c should have a ranking over the groups of students: {1, 2, 3}, {1, 2}, {1, 3}, {2, 3},
{1}, {2}, {3}, ∅.

3.5 Let ≻#
c denote the preference of college c over all assignments µ(c) it could receive at some

matching µ of the college admissions problem.

Definition: The preference ≻#
c over sets of students is responsive (to the preferences over indi-

vidual students) if,1

• whenever si, sj ∈ S and S′ ⊆ S \ {si, sj}, si ∪ S′ ≻#
c sj ∪ S′ if and only if si ≻c sj ;

• whenever s ∈ S and S′ ⊆ S \ s, s ∪ S′ ≻#
c S

′ if and only if s ≻c ∅, which denotes the
remaining unmatched option for a college (and for a student).

3.6 Remark: A college c’s preferences≻#
c will be called responsive to its preferences over individual

students if, for any two assignments that differ in only one student, it prefers the assignment
containing the more preferred student (and is indifferent between them if it is indifferent be-
tween the students).

1By an abuse of notation, we will denote a singleton without {}.
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3.7 Example: Suppose that there are two students {1, 2} and a college c has two quotas. The fol-
lowing preference≻c is not responsive:

c
{1, 2}
{1}
∅

Table 3.1

3.2 Stability

3.8 Definition: A matching µ is blocked by a college c ∈ C if there exists s ∈ µ(c) such that ∅ ≻c s.

A matching µ is blocked by a student s ∈ S if ∅ ≻s µ(s).

A matching is individually rational if it is not blocked by any college or student.

3.9 Definition: A matching µ is blocked by a pair (c, s) ∈ C × S if

• c ≻s µ(s), and

• – either there exists s′ ∈ µ(c) such that s ≻c s
′ (justifiable envy), or

– |µ(c)| < qc and s ≻c ∅ (wasteful).

3.10 Definition: A matching is stable if it is not blocked by any agent or pair.�

3.11 Example: If colleges do not have responsive preferences, the set of stable matchings might be
empty.

Consider two colleges and three students with the following preferences, and each college can
admit as many as students as it wishes.

c1 c2 s1 s2 s3
{s1, s3} {s1, s3} c2 c2 c1
{s1, s2} {s2, s3} c1 c1 c2
{s2, s3} {s1, s2}
s1 s3
s2 s1

s2

Table 3.2

It is clear that c1’s preference is not responsive.
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The only individually rational matchings without unemployment are

µ1 =

[
c1 c2

s1, s3 s2

]
, which is blocked by (c2, s1)

µ2 =

[
c1 c2

s1, s2 s3

]
, which is blocked by (c2, {s1, s3})

µ3 =

[
c1 c2

s2, s3 s1

]
, which is blocked by (c2, {s1, s2})

µ4 =

[
c1 c2

s2 s1, s3

]
, which is blocked by (c1, {s2, s3})

µ5 =

[
c1 c2

s1 s2, s3

]
, which is blocked by (c1, {s1, s3})

Now observe that any matching that leaves s1 unmatched is blocked either by (c1, s1) or by
(c2, s1); anymatching that leaves s2 unmatched is blocked either by (c1, s2), (c2, s2)or (c2, {s2, s3}).
Finally, any matching that leaves s3 unmatched is blocked by (c2, {s1, s3}).

3.12 We will henceforth assume that colleges have preferences over groups of students that are re-
sponsive to their preferences over individual students.

3.13 Definition: Amatching µ is group unstable, or it is blocked by a coalition, if there exists another
matching µ′ and a coalition A, which might consist of multiple students and/or colleges, such
that for all students s in A, and for all colleges c in A,

(1) µ′(s) ∈ A, i.e., every student in A who is matched by µ′ is matched to a college in A;

(2) µ′(s) ≻s µ(s), i.e., every student in A prefers his/her new match to his/her old one;

(3) s′ ∈ µ′(c) implies s′ ∈ A ∪ µ(c), i.e., every college in A is matched at µ′ to new students
only from A, although it may continue to be matched with some of its old students from
µ(c);

(4) µ′(c) ≻c µ(c), i.e., every college in A prefers its new set of students to its old one.

A matching is group stable if it is not blocked by any coalition.

3.14 Proposition: In college admissions model, a matching is group stable if and only if stable.

Proof. (1) If µ is blocked via coalition A and matching µ′, let c ∈ A.

(2) Then the fact that µ′(c) ≻c µ(c) implies that there exists a student s in µ′(c) \ µ(c) and a
s′ ∈ µ(c) \ µ′(c) such that s ≻c s

′.

(3) So s ∈ A, and hence µ′(s) ≻s µ(s).
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(4) So s prefers c = µ′(s) to µ(s), so µ is blocked by the pair (s, c).

3.3 Theconnectionbetween the college admissionsmodel and themar-
riage model

3.15 The importance of Proposition 3.14 for the college admissions model goes beyond the fact that
it allows us to concentrate on small coalitions. It says that stable and group stable matchings
can be identified using only the preferences ≻ over individuals—that is, without knowing the
preferences≻#

c that each college has over groups of students.

3.16 Consider a particular college admissions problem. We can consider a relatedmarriage problem,
in which each college c with quota qc is broken into qc “pieces” of itself, so that in the related
problem, the agents will be students and college positions, each having a quota of one.

3.17 Given a college admissions problem ⟨S,C, q,≻⟩, the related marriage problem is constructed
as follows:

• “Divide” each college cℓ into qcℓ separate pieces c1ℓ , c2ℓ , . . . , c
qcℓ
ℓ , where each piece has a

capacity of one; and let each piece have the same preferences overS as college c has. (Since
college preferences are responsive,≻c is consistent with a unique ranking of students.)

C∗: The resulting set of college “pieces” (or seats).

• For any student s, extend her preference toC∗ by replacing each college cℓ in her original
preference≻s with the block c1ℓ , c2ℓ , . . . , c

qcℓ
ℓ in that order.

3.18 Example: Consider the problem consisting of two colleges {c1, c2} with qc1 = 2, qc2 = 1 and
two students {s1, s2}. The preferences are given by

s1 s2 c1 c2
c1 c2 s2 s1
c2 c1 s1 s2

Table 3.3

The related marriage problem is as follows: Three seats C∗ = {c11, c21, c2} and three students
{s1, s2, s3}. The preferences are given by
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s1 s2 s3 c11 c21 c2
c11 c2 c11 s2 s2 s1
c21 c11 c21 s1 s1 s2
c2 c21

Table 3.4

3.19 Given amatching for a college admissions problem, it is straightforward to define a correspond-
ingmatching for its relatedmarriage problem: Given any college c, assign the students whowere
assigned to c in the original problem one at a time to pieces of c starting with lower index pieces.

In the college admissions problem above, consider a matching[
c1 c2

s1, s3 s2

]
.

Then we have a corresponding matching for the related marriage problem[
c11 c21 c2

s1 s3 s2

]
.

3.20 Lemma (Lemma 1 in Roth and Sotomayor (1989)): Amatching of a college admissions problem
is stable if and only if the corresponding matching of its related marriage problem is stable.

Proof. Exercise.

3.4 Deferred acceptance algorithmandproperties of stablematchings

3.21 College-proposing deferred acceptance algorithm.�

Step 1: (a) Each college c proposes to its top choice qc students (if it has fewer individually
rational choices than qc, then it proposes to all its individually rational students).

(b) Each student rejects any individually irrational proposal and, if more than one indi-
vidually rational proposal is received, “holds” the most preferred. Any college c that
is rejected will remove the students who have rejected it.

Step k: (a) Any college c that was rejected at the previous step by ℓ students makes a new
proposal to its most preferred ℓ students who haven’t yet rejected it (if there are fewer
than ℓ individually rational students, it proposes to all of them).

(b) Each student “holds” her most preferred individually rational offer to date and rejects
the rest. Any college c that is rejected will remove the students who have rejected it.
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End: The algorithm terminates after a step where no rejections are made by matching each
student to the college (if any) whose proposal she is “holding.”

3.22 Student-proposing deferred acceptance algorithm.�

Step 1: (a) Each student proposes to her top-choice individually rational college (if she has
one).

(b) Each college c rejects any individually irrational proposal and, if more than qc indi-
vidually rational proposals are received, “holds” the most preferred qc of them and
rejects the rest.

Step k: (a) Any student who was rejected at the previous step makes a new proposal to her
most preferred individually rational college that hasn’t yet rejected her (if there is
one).

(b) Each college c “holds” at most qc best student proposals to date, and rejects the rest.

End: The algorithm terminates after a step where no rejections are made by matching each
college to the students (if any) whose proposals it is “holding.”

3.23 Theoremon stability (Theorem1 inGale and Shapley (1962)): The student- and college-proposing�

deferred acceptance algorithms give stable matchings for each college admissions model.

Proof. It is a consequence of theorem on stability in marriage problem (Theorem 2.45) and
Lemma 3.20.

3.24 In a college admissions model, college c and student s are “achievable” for one another if there
is some stable matching at which they are matched.

For each cℓ with quota qℓ, letaℓ be the number of achievable students, anddefinekℓ = min{qℓ, aℓ}.

3.25 Theorem: The college-proposing deferred acceptance algorithm produces a matching that gives�

each college cℓ its kℓ highest ranked achievable students.

Proof. We can prove it by induction.

(1) Suppose that, up to Step r of the algorithm, no student has been removed from the list of a
college for whom he or she is achievable, and that at Step (r+ 1) student sj holds college
ci, and has been removed from the list of ck.

(2) Then any matching that matches sj with ck, and matches achievable students to ci, is
unstable since sj ranks ci higher than ck and ci ranks sj higher than one of its assignees.
(This follows since sj is top-ranked by ci at the end of Step r, when no achievable students
had yet been removed from ci’s list.)
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(3) So sj is not achievable for ck.

3.26 Corollary: There exists a college-optimal stable matching that every college likes as well as any
other stable matching, and a student-optimal stable matching that every student likes as well as
any other stable matching.

3.27 Theorem: The student-optimal stable matching is weakly Pareto efficient for the students.�

Proof. It follows from Theorem 2.39 and Lemma 3.20.

3.28 Example: The college-optimal stable matching need not be even weakly Pareto optimal for the
colleges.

Proof. (1) Consider the problem consisting of two colleges {c1, c2} with qc1 = 2, qc2 = 1,
and two students {s1, s2}. The preferences are given by

s1 s2 c1 c2
c1 c2 {s1, s2} s1
c2 c1 s2 s2

s1

Table 3.5

(2) It is straightforward to see that the college-optimal stable matching is

µC =

[
c1 c2

s1 s2

]
.

(3) Consider the matching

µ′ =

[
c1 c2

s2 s1

]
.

(4) Both colleges strictly prefer µ′ to µC .

3.29 Remark: in the marriage problem related to a college admissions problem, it is the college
seats that play the role of the agents on the college side of the market. So Theorem 2.39 and
Lemma 3.20 tell us that there exists no matching that gives every college a more preferred stu-
dent in every seat than it gets at the college-optimal stable matching. But of course, as we have
just seen, this does not imply that the colleges do not all prefer some other matching.
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This result is also consistent with the fact that DA is not strongly Pareto optimal; see Exam-
ple 2.41.

3.30 Theorem: The set of students admitted and seats filled is the same at every stable matching.�

Proof. The proof is immediate via Theorem 2.31 and Lemma 3.20.

3.31 Lemma (Lemma 3 in Roth and Sotomayor (1989)): Suppose that colleges and students have
strict individual preferences, and let µ and µ′ be stable matchings for ⟨S,C, q,≻⟩, such that
µ(c) ̸= µ′(c) for some c. Let µ̄ and µ̄′ be the stable matchings corresponding to µ and µ′ in the
related marriage problem. If µ̄(ci) ≻c µ̄

′(ci) for some seat ci of c, then µ̄(cj) ≻c µ̄
′(cj) for all

seats cj of c.

Proof. (1) It suffices to show that µ̄(cj) ≻c µ̄
′(cj) for all j > i. To see this, if there exists

j < i, such that µ̄′(cj) ≻c µ̄(c
j), then by this claim we have µ̄′(ci) ≻c µ̄(c

i), which
contradicts the fact µ̄(ci) ≻c µ̄

′(ci).

(2) Suppose that this claim is false. Then there exists an index j such that

µ̄(cj) ≻c µ̄
′(cj) and µ̄′(cj+1) %c µ̄(c

j+1).

(3) It is clear that µ̄(cj) ∈ S. Then by Theorem 3.30, we know µ̄′(cj) is also in S, so denote it
by s′.

(4) By decomposition lemma, cj = µ̄′(s′) ≻s′ µ̄(s
′).

(5) Since µ̄′(cj) ≻c µ̄
′(cj+1), we have s′ = µ̄′(cj) ≻c µ̄

′(cj+1) %c µ̄(c
j+1), and hence

s′ ̸= µ̄(cj+1).

(6) Since µ̄(cj) ≻c s
′, µ̄(cj+1) ̸= s′, and cj+1 comes right after cj in the preference of s′ in

the related marriage problem, we have µ̄(cj+1) ≻c s
′.

(7) So µ̄ is blocked by the pair (s′, cj+1), contradicting the stability of µ.

3.32 Remark: The proof of Lemma 3.31 actually shows that if µ̄(ci) ≻c µ̄
′(ci) for some position ci

of c then µ̄(cj) ≻c µ̄
′(cj) for all j > i.

3.33 Remark: Consider a college c with qc = 2 and preferences s1 ≻c s2 ≻c s3 ≻c s4. Consider
two matchings µ and ν such that µ(c) = {s1, s4} and ν(c) = {s2, s3}. Then without knowing
anything about the preferences of students and other colleges, we can conclude that µ and ν can
not both be stable by Lemma 3.31.
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3.34 Theorem (Theorem 1 in Roth (1986)): Any college that does not fill its quota at some stable�

matching is assigned precisely the same set of students at every stable matching.

Proof. (1) Recall that if a college c has any unfilled positions, these will be the highest num-
bered cj at any stable matching of the corresponding marriage problem.

(2) By Theorem 3.30 these positions will be unfilled at any stable matching, that is, µ̄(cj) =
µ̄′(cj) for all such j.

(3) µ̄(cj) = µ̄′(cj) for all j, since the proof of Lemma 3.31 shows that if µ̄(ci) ≻c µ̄
′(ci) for

some position ci of c, then µ̄(cj) ≻c µ̄
′(cj) for all j > i.

3.35 Exercise: Find a non-trivial example to illustrate the above result does not necessarily hold for
colleges which fill quotas at some stable matching.

Hint: Consider the example in the proof of Theorem 2.69.

3.36 Theorem (Theorem 3 in Roth and Sotomayor (1989)): If colleges and students have strict pref-
erences over individuals, then colleges have strict preferences over those groups of students that
theymay be assigned at stablematchings. That is, if µ andµ′ are stablematchings, then a college
c is indifferent between µ(c) and µ′(c) only if µ(c) = µ′(c).

Proof. (1) If µ(c) ̸= µ′(c), then without loss of generality µ̄(ci) ≻c µ̄
′(ci) for some position

ci of c, where µ̄ and µ̄′ are the matchings in the related marriage problem corresponding
to µ and µ′.

(2) By Lemma 3.31, µ̄(cj) ≻c µ̄
′(cj) for all positions cj of c.

(3) So µ(c) ≻c µ
′(c), by repeated application of the fact that c’s preferences are responsive

and transitive:

µ(c) = {µ̄(c1), µ̄(c2), . . . , µ̄(cqℓ)} ≻c {µ̄′(c1), µ̄(c2), . . . , µ̄(cqℓ)}

≻c {µ̄′(c1), µ̄′(c2), . . . , µ̄(cqℓ)} ≻c · · · ≻c {µ̄′(c1), µ̄′(c2), . . . , µ̄′(cqℓ)} = µ′(c).

3.37 Theorem (Theorem 4 in Roth and Sotomayor (1989)): Let preferences over individuals be strict,
and let µ and µ′ be stable matchings for ⟨S,C,≻, q⟩. If µ(c) ≻c µ

′(c) for some college c, then
s ≻c s

′ for all s ∈ µ(c) and s′ ∈ µ′(c) \ µ(c). That is, c prefers every student in its entering
class at µ to every student who is in its entering class at µ′ but not at µ.
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Proof. (1) Consider the related marriage problem ⟨S,C ′,≻⟩ and the stable matchings µ̄ and
µ̄′ corresponding to µ and µ′.

(2) Observe that c fills its quota under µ and µ′, since if not, Theorem 3.34 would imply that
µ(c) = µ′(c).

(3) So µ′(c) \ µ(c) is a non-empty subset of S.

(4) Let s′ ∈ µ′(c) \ µ(c), then s′ = µ̄′(cj) for some position cj and s′ ̸∈ µ(c), and hence
µ̄(cj) ̸= µ̄′(cj).

(5) By Lemma 3.31 µ̄(cj) ≻c µ̄
′(cj) = s′; otherwise µ′(c) ≻c µ(c), which contradicts the

fact µ(c) ≻c µ
′(c).

(6) The decomposition lemma (Lemma 2.51) implies cj = µ̄′(s′) ≻s′ µ̄(s
′).

(7) So the construction of the related marriage problem implies c ≻s′ µ(s
′), since µ(s′) ̸= c.

(8) Thus s ≻c s
′ for all s ∈ µ(c) by the stability of µ.

3.38 Corollary: Let µ and µ′ be two stable matchings. For any college c,

• either i ≻c j for all i ∈ µ(c) \ µ′(c) and j ∈ µ′(c) \ µ(c),

• or j ≻c i for all i ∈ µ(c) \ µ′(c) and j ∈ µ′(c) \ µ(c).

3.39 Remark: Consider again a college c with qc = 2 and preferences s1 ≻c s2 ≻c s3 ≻c s4.
Consider two matchings µ and ν such that µ(c) = {s1, s3} and ν(c) = {s2, s4}. Then the
theorem says that if µ is stable, ν is not, and vice versa. (Since c’s preference is responsive,
µ(c) ≻c µ

′(c).)

3.40 Corollary (Corollary 1 in Roth and Sotomayor (1989)): Consider a college c with preferences
≻c over individual students, and let≻#

c and≻∗
c be preferences over groups of students that are

responsive to ≻c, (but are otherwise arbitrary). Then for every pair of stable matchings µ and
µ′, µ(c) is preferred to µ′(c) under the preferences ≻#

c if and only if µ(c) is preferred to µ′(c)

under≻∗
c .

Proof. It follows immediately from the theorem and the definition of responsive preferences.

3.41 Example: Let the preferences over individuals be given by

and let the quotas be qc1 = 3, qcj = 1 for j = 2, . . . , 5. Then the set of stable outcomes is
{µ1, µ2, µ3, µ4}, where

µ1 =

[
c1 c2 c3 c4 c5

s1, s3, s4 s5 s6 s7 s2

]
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s1 s2 s3 s4 s5 s6 s7 c1 c2 c3 c4 c5
c5 c2 c3 c4 c1 c1 c1 s1 s5 s6 s7 s2
c1 c5 c1 c1 c2 c3 c3 s2 s2 s7 s4 s1

c1 c4 s3 s3
s4
s5
s6
s7

Table 3.6

µ2 =

[
c1 c2 c3 c4 c5

s3, s4, s5 s2 s6 s7 s1

]

µ3 =

[
c1 c2 c3 c4 c5

s3, s5, s6 s2 s7 s4 s1

]

µ4 =

[
c1 c2 c3 c4 c5

s5, s6, s7 s2 s3 s4 s1

]

Note that these are the only stable matchings, and

µ1(c1) ≻#
c1 µ2(c1) ≻#

c1 µ3(c1) ≻#
c1 µ4(c1),

for any responsive preferences≻#
c1 .

3.5 Further results for the college admissions model

3.42 Theorem: If µ and µ′ are stable matchings for ⟨S,C,≻, q⟩ then µ ≻C µ′ if and only if µ′ ≻S µ.�

Here µ ≻C µ′ means µ(c) %c µ
′(c) for all c ∈ C and µ(c) ≻c µ

′(c) for some c ∈ C .

Proof. (1) Suppose that µ(c) %c µ
′(c) for all c ∈ C and µ(c) ≻c µ

′(c) for some c ∈ C .

(2) Using Lemma 3.31 in one direction and the responsiveness of the colleges’ preferences in
the other direction, we can see that this is equivalent to µ̄(c′) %′

c′ µ̄
′(c′) for all c′ ∈ C ′ and

µ̄(c′) ≻′
c′ µ̄

′ for some c′ ∈ C ′, where µ̄ and µ̄′ are the stable matchings corresponding to
µ and µ′ for the related marriage problem ⟨S,C ′,≻′⟩

(3) This in turn is satisfied if and only if µ̄ ≻C′ µ̄′ and hence, if and only if µ̄′ ≻S µ̄ by
Theorem 2.29, which implies µ′ ≻S µ.
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3.43 Corollary: The optimal stable matching on one side of the problem ⟨S,C,≻, q⟩ is the worst
stable matching for the other side.

3.44 In ⟨S,C,≻, q⟩, for any two matchings µ and µ′, define the following function on S ∪ C :

µ ∨C µ′(c) =

µ(c), if µ(c) ≻c µ
′(c)

µ′(c), otherwise
, µ ∨C µ′(s) =

µ(s), if µ′(s) ≻s µ(s)

µ′(s), otherwise
.

Similarly, we can define the function µ ∧C µ′.

3.45 Theorem: Let µ and µ′ be stable matchings for ⟨S,C,≻, q⟩. Then µ∨C µ′ and µ∧C µ′ are stable
matchings.

Proof. (1) Consider the marriage problem ⟨S,C ′,≻′⟩ related to ⟨S,C,≻, q⟩ and the stable
matchings µ̄ and µ̄′ corresponding to µ and µ′.

(2) We know that λ̄ , µ̄ ∨C′ µ̄′ is a stable matching for ⟨S,C ′,≻′⟩.

(3) If µ ∨C µ′(c) = µ(c), then µ(c) %c µ
′(c), and hence µ̄(ci) %ci µ̄

′(ci) for all positions ci

of c by Lemma 3.31.

(4) Then µ̄ ∨C′ µ̄′(ci) = µ̄(ci) for all positions ci of c.

(5) If s is in µ(c), there is some position ci of c such that s = λ̄(c).

(6) (i) To see that µ ∨C µ′ is a matching, suppose by the way of contradiction that there
are some s in S and c and c′ in C with c ̸= c′ and such that s is contained in both
µ ∨C µ′(c) and µ ∨C µ(c′).

(ii) Then there exists some position ci of c, and some position cj of c′, such that λ̄(ci) =
s = λ̄(cj), which contradicts the fact that λ̄ is a matching.

(7) The matching µ ∨C µ′ is stable: if s ≻c s
′ ∈ µ ∨C µ′(c), so there is some position ci of

c such that s′ = λ̄(ci) and s ≻ci λ̄(c
i). Then by stability of λ̄, λ̄(s) ≻s c

i, which implies
that µ ∨C µ′(s) ≻s c and (c, s) does not block µ ∨C µ′.

3.46 Corollary: The set of stablematchings forms a lattice under the partial orders≻C or≻S with the
lattice under the first partial order being the dual to the lattice under the second partial order.

3.47 Theorem: If µ and µ′ are two stable matchings for ⟨S,C,≻, q⟩ and c = µ(s) or c = µ′(s),
with c ∈ C and s ∈ S, then if µ(c) ≻c µ

′(c) then µ′(s) %s µ(s); and if µ′(s) ≻s µ(s) then
µ(c) %c µ

′(c).

Proof. (1) Consider the related marriage problem ⟨S,C ′,≻′⟩ and the corresponding stable
matchings µ̄ and µ̄′.
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(2) Define

S(µ̄′) = {s ∈ S | µ̄′(s) ≻s µ̄(s)}, and C ′(µ̄) = {ci ∈ C ′ | µ̄(ci) ≻ci µ̄
′(ci)}.

Similarly define S(µ̄) and C ′(µ̄′).

(3) By decomposition lemma (Lemma 2.51) µ̄ and µ̄′ map S(µ̄′) onto C ′(µ̄) and S(µ̄) onto
C ′(µ̄′).

(4) If µ(c) ≻c µ
′(c), Lemma 3.31 implies that µ̄(ci) %ci µ̄

′(ci) for all position ci of c.

(5) Then ci ̸∈ C ′(µ̄′) for all positions ci of c.

(6) Then µ̄(ci) and µ̄′(ci) are in S(µ̄′) or µ̄(ci) = µ̄′(ci), for all positions ci of c.

(7) Since s is matched to some position of c under µ̄ or µ̄′, we have µ′(s) %s µ(s).

3.48 Theorem: Suppose that≻′ ◃C ≻ and letµC [≻′], µC [≻], µS [≻′], andµS [≻] be the correspond-
ing optimal stable matchings. Then

µC [≻] %C µC [≻′], µC [≻′] %S µ
C [≻], µS [≻′] %S µ

S [≻] and µS [≻] %C µS [≻′].

Symmetrical results are obtained if≻′ ◃S ≻.

Proof. (1) Suppose that≻′ ◃C ≻.

(2) Consider themarriage problems ⟨S, C̄, ≻̄⟩ and ⟨S, C̄, ≻̄′⟩ related to ⟨S,C,≻, q⟩ and ⟨S,C,≻′

, q⟩ respectively, where ≻̄(s) = ≻̄′(s) for all s in S.

(3) Then ≻̄′ ◃C̄ ≻̄.

(4) Now apply Theorem 2.54.

3.49 Theorem: Suppose that C is contained in C ′ and µS [Γ] is the student-optimal matching for
Γ = ⟨S,C,≻, q⟩ and µS [Γ′] is the student-optimal matching for Γ′ = ⟨S,C ′,≻′, q′⟩, where
≻′ agrees with≻ on C . Then

µS [Γ′] %′
S µ

S [Γ] and µS [Γ] %C µS [Γ′].

Symmetrical results are obtained if S is contained in S′.

Proof. (1) Suppose that C is contained in C ′.
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(2) Consider themarriage problem ⟨S, C̄, ≻̄⟩ and ⟨S, C̄ ′, ≻̄′⟩ related to ⟨S,C,≻, q⟩ and ⟨S,C ′,≻′

, q′⟩ respectively, where ≻̄′ agrees with ≻̄ on C̄ .

(3) Now apply Theorem 2.57.

3.50 Definition: A matching µ′ weakly dominates µ via a coalition A contained in C ∪ S if for all
students s and colleges c in A,

µ′(s) ∈ A, µ′(c) ⊆ A, µ′(s) %s µ(s), and µ′(c) %c µ(c),

and
µ′(s) ≻s µ(s) for some s in A, or µ′(c) ≻c µ(c) for some c in A.

The core, C(≻), is the set of matchings that are not weakly dominated by any other matching.

3.51 Proposition (Theorem A2.2 in Roth (1985b)): When preferences over individuals are strict, the
set of stable matchings is C(≻).

Proof. Part 1: Every core matching is stable.

(1) If µ is not stable, then µ is unstable via some student s and college cwith s ≻c s
′ for some

s′ in µ(c).

(2) Then µ is weakly dominated via the coalition c ∪ µ(c) ∪ s \ s′ by any matching µ′ with
µ′(s) = c and µ′(c) = µ(c) ∪ s \ s′.

Part 2: Every stable matching is in the core.

(3) If µ is not in C(≻), then µ is weakly dominated by some matching µ′ via a coalitionA, so
some student or college in A prefers µ′ to µ.

(4) Suppose that some c prefersµ′ toµ. Then theremust be some student s inµ′(c)\µ(c) and
some s′ in µ(c) \ µ′(c) such that s ≻c s

′. If not, then s′ ≻c s for all s in µ′(c) \ µ(c) and
s′ in µ(c) \ µ′(c), which would imply µ(c) %c µ

′(c), since c has responsive preferences.
So µ is unstable, since it is blocked by the pair (s, c).

(5) Suppose that some student s in A with µ′(s) = c prefers µ′ to µ. Then the fact that
µ′(c) %c µ(c) similarly implies that there is a student s′ (possibly different from s) in
µ′(c) \ µ(c) and a s′′ in µ(c) \ µ′(c) such that s′ ≻c s

′′. Then µ is blocked by the pair
(s′, c).
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3.52 Remark: There is another version of core.

A matching µ′ dominates another matching µ via a coalition A contained in C ∪ S if for all
students s and colleges c in A,

µ′(s) ∈ A, µ′(c) ⊆ A, µ′(s) ≻s µ(s), and µ′(c) ≻c µ(c).

The core defined via strict domination is the set of matchings that are not dominated by any
other matching.

Exercise: Find a college admission problem such that the core and the core defined via strict
domination are not the same.

3.6 Incentive compatibility

3.53 Throughout this section we fix S = {s1, s2, . . . , sp}, and C = {c1, c2, . . . , cr}, so each pair of
preference profile and quota profile defines a college admissions problem.

3.54 Let Ps and Pc denote the set of all preferences for student s and college c, P = (Ps)
p × (Pc)

r

denote the set of all preference profiles, and P−i denote the set of all preference profiles for all
agents except i.

LetQc denote the set of all quotas for college c,Q = Qc1 ×Qc2 × · · · × Qcr denote the set of
all quota profiles, andQ−c denote the set of all quota profiles for all schools except c.

Let E = P ×Q, and letM denote the set of all matchings.

3.55 A (direct) mechanism is a systematic procedure that determines a matching for each college�

admissions problem. Formally, it is a function φ : E →M.

3.56 A mechanism φ is stable if φ[%, q] is stable for any (%, q) ∈ E .�

A mechanism φ is Pareto efficient if it is always selects a Pareto efficient matching.

A mechanism φ is individually rational if it is always selects an individually rational matching.

3.57 Let φS (or SOSM) and φC be the student-optimal and college-optimal stable mechanisms that
selects the student-optimal and college-optimal stable matchings for each problem respectively.

3.6.1 Preference manipulation

3.58 A mechanism φ is strategy-proof if for each i ∈ S ∪ C , for each %i,%′
i ∈ Pi, for each %−i ∈�

P−i,
φ[%−i,%i, q](i) %i φ[%−i,%′

i, q](i).
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3.59 Theorem (Theorem 3 in Roth (1982b)): There exists no mechanism that is stable and strategy-�

proof.

Proof. It follows immediately from Theorem 2.69.

3.60 Theorem (Proposition 1 in Alcalde and Barberà (1994)): There exists no mechanism that is
Pareto efficient, individually rational, and strategy-proof.

Proof. It follows immediately from Theorem 2.75.

3.61 Theorem (Theorem 5 in Roth (1982b)): Truth-telling is a weakly dominant strategy for all stu-�

dents under the student-optimal stable mechanism.

Proof. It follows immediately from Theorem 2.76.

3.62 Remark: Deferred acceptance algorithm is the unique stable andone-sided strategy-proofmech-
anism; see Theorem 8.34.

3.63 Theorem (Proposition 2 in Roth (1985a)): There exists no stablemechanismwhere truth-telling�

is a weakly dominant strategy for all colleges.

Proof. (1) Consider the problem consisting of two colleges {c1, c2} with qc1 = 2, qc2 = 1,
and two students {s1, s2}. The preferences are given by

s1 s2 c1 c2
c1 c2 {s1, s2} s1
c2 c1 s2 s2

s1

Table 3.7

(2) It is straightforward to see that the college-optimal stable matching is

µC [≻c1 ,≻c2 ] =

[
c1 c2

s1 s2

]
.

(3) Now suppose that college c1 reports the manipulated preferences ≻′
c1 where only s2 is

acceptable. For this new college admissions problem, the only stable matching is

µC [≻′
c1 ,≻c2 ] =

[
c1 c2

s2 s1

]
.
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(4) Hence college c1 benefits by manipulating its preferences under any stable mechanism
(including the college-optimal stable mechanism).

3.64 Remark: A college is like a coalition of players in terms of strategies.

3.65 Corollary: In the college admissions model, a coalition of agents (in fact, even a single agent)
may be able to misreport its preferences so that it does better than at any stable matching.

3.66 Roth (1984) showed that the algorithm independently discovered by the National Residency
Matching Program (NRMP) in the United States was equivalent to the college-optimal stable
mechanism. Roth (1991) observed that several matching mechanisms that have been used in
Britain for hospital-intern matching were unstable and as a result were abandoned, while stable
mechanisms survived. This key observation helped to pin down stability as a key property of
matching mechanisms in the college admissions framework. Roth and Peranson (1999) intro-
duced a new design for the NRMP matching mechanism based on the student-optimal stable
mechanism. Interestingly, the replacement of the older stablemechanismwith the newermech-
anism was partially attributed to the positive and negative results in Theorems 3.61 and 3.63,
respectively.

3.6.2 Capacity manipulation

3.67 I a college admission problem ⟨S,C, q,≻⟩, a college cmanipulates amechanismφ via capacities�

if
φ[≻, q−c, q

′
c](c) ≻c φ[≻, q](c) for some q′c < qc.

A mechanism is immune to capacity manipulation if it can never be manipulated via capacities.

3.68 Example: The college-optimal stable mechanism is not immune to capacity manipulation:

Proof. (1) Consider the problem consisting of two colleges {c1, c2} with qc1 = 2, qc2 = 1,
and two students {s1, s2}. The preferences are as follows:

s1 s2 c1 c2
c1 c2 {s1, s2} s1
c2 c1 s2 s2

s1

Table 3.8
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(2) It is straightforward to see that the college-optimal stable matching is

µC [≻, q] =

[
c1 c2

s1 s2

]
.

(3) Let q′c1 = 1 be a potential capacity manipulation by college c1. For this new college ad-
missions problem, the only stable matching is

µC [≻, q′c1 , qc2 ] =

[
c1 c2

s2 s1

]
.

(4) Hence college c1 benefits by reducing the number of its positions under the college-optimal
stable mechanism.

3.69 Theorem (Theorem 1 in Sönmez (1997)): Suppose that there are at least two colleges and three�

students. Then there exists no stable mechanism that is immune to capacity manipulation.

Proof. (1) We first prove the theorem for two colleges and three students.

(2) Let ϕ be a stable mechanism, C = {c1, c2} and S = {s1, s2, s3},

s1 s2 s3 c1 c2
c2 c1 c1 {s1, s2, s3} {s1, s2, s3}
c1 c2 c2 {s1, s2} {s2, s3}

{s1, s3} {s1, s3}
s1 s3

{s2, s3} {s1, s2}
s2 s2
s3 s1

Table 3.9

qc1 = qc2 = 2 and q′c1 = q′c2 = 1.

(3) The only stable matching for ⟨≻, qc1 , qc2⟩ is

µ1 =

[
c1 c2

s2, s3 s1

]
.

(4) The only two stable matchings for ⟨≻, qc1 , q′c2⟩ are µ1 and

µ2 =

[
c1 c2

s1, s2 s3

]
.
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(5) The only stable matching for ⟨≻, q′c1 , q
′
c2⟩ is

µ3 =

[
c1 c2

s1 s3

]
.

(6) Therefore ϕ[≻, qc1 , qc2 ] = µ1, ϕ[≻, q′c1 , q
′
c2 ] = µ3, and ϕ[≻, qc1 , q′c2 ] ∈ {µ1, µ2}.

(7) If ϕ[≻, qc1 , q′c2 ] = µ1, then ϕ[≻, q′c1 , q
′
c2 ](c1) = µ3(c1) = {s1} and ϕ[≻, qc1 , q′c2 ](c1) =

µ1(c1) = {s2, s3} and hence

ϕ[≻, q′c1 , q
′
c2 ](c1) ≻c1 ϕ[≻, qc1 , q′c2 ](c1),

which implies college c1 can manipulate ϕ via capacities when its capacity is qc1 = 2 and
college c2’s capacity is q′c2 = 1 by underreporting its capacity as q′c1 = 1.

(8) Otherwise ϕ[≻, qc1 , q′c2 ] = µ2 and therefore ϕ[≻, qc1 , q′c2 ](c2) = µ2(c2) = {s3}, ϕ[≻
, qc1 , qc2 ](c2) = µ1(c2) = {s1}. Hence

ϕ[≻, qc1 , q′c2 ](c2) ≻c2 ϕ[≻, qc1 , qc2 ](c2)

which implies college c2 can manipulate ϕ via capacities when its capacity is qc2 = 2 and
college c1’s capacity is qc1 = 2 by underreporting its capacity as q′c2 = 1.

(9) Hence, ϕ is manipulable via capacities completing the proof for the case of two colleges
and three students.

(10) Finally we can include colleges whose top choice is keeping all its positions vacant and
students whose top choice is staying unmatched to generalize this proof to situations with
more than three students and two colleges.

3.70 Exercise: Is there a stable mechanism that is immune to capacity manipulation for college ad-
missions problems with two colleges and two students?

3.71 Remark: In one-to-one matching, DA cannot be manipulated by an agent if and only if there is
a unique stable partner. The statement is false in many-to-one matching.

3.72 Definition: College preferences are strongly monotonic if for every c ∈ C , for every T, T ′ ⊂ S,

|T ′| < |T | ≤ qc ⇒ T ≻c T
′.

3.73 Theorem (Theorem5 inKonishi andÜnver (2006)): Suppose that college preferences are strongly
monotonic. Then the student-optimal stable mechanism is immune to capacity manipulation.
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Proof. Omitted.

3.74 Remark: Example 3.68 shows that the college-optimal stablemechanism is capacitymanipulable
even under strongly monotonic preferences.

3.75 Definition: For each s ∈ S, let q
s
denote the minimum capacity imposed on school s.

3.76 Theorem (Theorem 1 in Kesten (2012)): DA is immune to capacity manipulation for all school
preferences if and only if the priority structure (≻, q) is acyclic. See Chapter 9 for the definition
of acyclicity.

Proof. Omitted.

3.7 Comparison of marriage problems and college admissions

3.77 Comparison of marriage problems and college admissions problems:

Marriage problems College admissions (with responsive preferences)
Existence of stable matchings

√ √

One-sided individual optimality
√ √

One-sided weakly Pareto optimality
√ √

(s) and × (c)
Rural hospital theorem

√ √

Two-sided strategy-proofness × ×
One-sided strategy-proofness

√ √
(s) and × (c)

3.8 National intern matching program

3.78 Students who graduate frommedical schools in US are typically employed as residents (interns)
at hospitals, where they comprise a significant part of the labor force.

In the early twentieth century, the market for new doctors was largely decentralized. During
the 1940s, competition for medical students forced hospitals to offer residencies/internships
increasingly early, sometimes several years before a student would graduate. This so-called un-
raveling had many negative consequences. Matches were made before students could produce
evidence of how qualified theymight become, and even before they knewwhat kind ofmedicine
they would like to practice.

The market also suffered from congestion: when an offer was rejected, it was often too late to
make other offers.
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3.79 In response to the failure of the US market for new doctors, a centralized clearinghouse was
introduced in the early 1950s. This institution is now called the National Resident Matching
Program (NRMP).

3.80 NIMP algorithm.�

Initial editing of ranking lists: Each hospital ranks the students who have applied to it and
each student ranks the hospital to which he has applied.

These ranking lists are mailed to the central clearinghouse, where they are edited by re-
moving from each hospital’s ranking list any student who has marked that hospital as
unacceptable, and by removing from each student’s ranking list any hospital which has
indicated he is unacceptable.

The edited lists are thus ranking lists of acceptable alternatives.

Matching phase: 1 : 1 step: Check to see if there are any students and hospitals which are top-
ranked in one another’s ranking. (If a hospital has a quota of q then the q highest
students in its ranking are top-ranked.) If no such matches are found, the matching
phase proceeds to the 2 : 1 step; otherwise the algorithm proceeds to the tentative
assignment and update phase.

k : 1 step: Seek to find student-hospital pairs such that the student is top-ranked on the
hospital’s ranking and the hospital is k-th ranked by the student. If no such matches
are found, the matching phase proceeds to the (k + 1) : 1 step; otherwise the algo-
rithm proceeds to the tentative assignment and update phase.

Tentative assignment and update phase: • When the algorithm enters the tentative assign-
ment and update phase from the k : 1 step of the matching phase, the k : 1 matches
are tentatively made; i.e., each student who is a top-ranked choice of his k-th choice
hospital.

• The rankings of students and hospitals are then updated in the following way:

– Any hospital which a student sj ranks lower than his tentative assignment is
deleted from his ranking. (So the updated ranking of a student sj tentatively
assigned to his k-th choice now lists only his first k choices.)

– Any student sj is deleted from the ranking of any hospital which was deleted
from sj ’s ranking. (So the updated ranking of each hospital now include only
those applicants who have not yet been tentatively assigned to a hospital they
prefer.)

• When the rankings have been updated in this way, the algorithm returns to the start of
the matching phase. Any new tentative matches found in the matching phase replace
prior tentative matches involving the same student.
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End: The algorithm terminates when no new tentative matches are found, at which point ten-
tative matches become final.

3.81 Example: Consider the problem consisting of two hospitals {h1, h2}, each with a quota of one,
and three students {s1, s2, s3}. The preferences are given by

h1 h2 s1 s2 s3
s1 s1 h1 h1 h1
s2 s2 h2 h2
s3 s3

Table 3.10

The edited lists are:

h1 h2 s1 s2 s3
s1 s1 h1 h1 h1
s2 ZZs2 h2 h2
s3 s3

Table 3.11

In 1 : 1 step, one tentative match (h1, s1) is found. Then the algorithm proceeds to tentative
assignment and update phase. The updated lists are

h1 h2 s1 s2 s3
s1 ZZs1 h1 h1 h1
s2 ZZs2 @@h2 h2
s3 s3

Table 3.12

The algorithm returns to the matching phase. In 1 : 1 step, no new tentative match. In 2 : 1

step, one tentativematch (h2, s3) is found. Then the algorithm proceeds to tentative assignment
and update phase, but there is no new update for rankings.

The outcome is [
h1 h2

s1 s3 s2

]
.

3.82 Roth (1984) showed that the NRMP algorithm is equivalent to a (hospital-proposing) DA algo-
rithm, so NIMP produces a stable matching. Roth (1984) argued that the success of NRMP was
due to the fact that it produced stable matchings.

3.83 Several issues led to the redesign NRMP algorithm:
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• The NRMP algorithm favors hospitals at the expense of students.

• Both students and hospitals may have incentives to manipulate the NRMP algorithm.

• NRMP has special features, called “match variations”. An example is couples.

3.84 Theorem (Theorem 10 in Roth (1984)): In a market in which some agents are couples, the set
of stable outcomes may be empty.

Proof. Consider the problem consisting of two hospitals {h1, h2}, each with a quota of one, one
single student s and one couple (m,w). The preferences are given by

h1 h2 s (m,w)
m s h1 (h1, h2)
s w h2

Table 3.13

In this market, no stable matching exists.

3.85 Remark: The rural hospital theorem also fails in the market above.

3.86 In 1995, Roth was hired by the board of directors of NRMP to direct the design of a new algo-
rithm. The new algorithm (which is called Roth-Peranson algorithm), designed by Roth and
Peranson (1999), is a student-proposing algorithmmodified to accommodate couples: potential
instabilities caused by the presence of couples are resolved sequentially, following the instability-
chaining algorithm of Roth and Vate (1990).

For details of the new NRMP algorithm, see Roth and Peranson (1999).

3.9 New York City high school match

3.87 Main reference: Abdulkadiroğlu et al. (2005a) and Abdulkadiroğlu et al. (2009).

3.88 Background: Over 90,000 students enter high schools each year.

The old NYC system was decentralized:

• Each student can submit a list of at most 5 schools.

• Each school obtains the list of students who listed it, and independently make offers.

• There were waiting lists (run by mail), and 3 rounds of move waiting lists.

3.89 Problems with the old system:
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• The system left 30,000 children unassigned to any of their choices and they are adminis-
tratively assigned.

• Strategic behavior by schools: school principals were concealing capacities.

3.90 In New York City, schools behave strategically.

Deputy Chancellor of Schools (NYT 19 November 2004):

Before you might have had a situation where a school was going to take 100 new
children for 9th grade, they might have declared only 40 seats and then placed the
other 60 children outside the process.

Unlike Boston, the market seems to be really two-sided, i.e., we should treat both students and
schools are strategic players.

3.91 Since NYC is a two-sided matching market, the student-proposing DA is the big winner:

• DA implements a stable matching (probably more important for NYC than for Boston.)

• DA is strategy-proof for students: it is a dominant strategy for every student to report true
preferences.

• There is no stable mechanism that is strategy-proof for schools.

• When the market is large, it is almost strategy-proof for schools to report true prefer-
ences; Kojima and Pathak (2009): Recall there are 90000 students and over 500 public
high schools in New York City.

3.92 Abdulkadiroğlu et al. (2009) andNYCDepartment of Education changed themechanism to the
student-proposing DA, except for some details:

• Students can rank only 12 schools.

• Seats in a few schools, called specialized high schools (such as Stuyvesant and Bronx High
School of Science), is assigned in an earlier round, separately from the rest.

• Some top students are granted to get into a school when they rank the school as their first
choices.

• All unmatched students in the main round will be assigned in the supplementary round,
where the random serial dictatorship is used.

These features come from historical constraints and could not be changed.

This make it technically incorrect to use standard results in two-sided matching, but they seem
to be small enough a problem (it may be interesting to study if this is true and why or why not.)

3.93 Effect of changes in the mechanism:



Do
No
t C
op
y o
r D
istr
ibu
te

3.9. New York City high school match 74

• Over 70,000 students were matched to one of their choice schools: an increase of more
than 20,000 students compared to the previous year match.

• An additional 7,600 students matched to a school of their choice in the third round.

• 3,000 students did not receive any school they chose, a decrease from 30,000 who did not
receive a choice school in the previous year.
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Part II

One-sidedmatching
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Housingmarket
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4.2 Top trading cycles algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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4.4 Axiomatic characterization of top trading cycles algorithm . . . . . . . . . . . . 95

4.1 The former model

4.1 Housing market model was introduced by Shapley and Scarf (1974). Each agent owns a house,
and a housing market is an exchange (with indivisible objects) where agents have the opinion
to trade their houses in order to get a better one.

4.2 Definition: Formally, a housing market is a quadruple ⟨A,H,≻, e⟩ such that�

• A = {a1, a2, . . . , an} is a set of agents,

• H is a set of houses such that |A| = |H|,

• ≻= (≻a)a∈A is a strict preference profile such that for each agent a ∈ A, ≻a is a strict
preference over houses. Let Pa be the set of preferences of agent a. The induced weak
preference of agent a is denoted by%a and for any h, g ∈ H , h %a g if and only if h ≻a g

or h = g.

• e : A → H is an initial endowment matching, that is, hi , hai
, e(ai) is the initial

endowment of agent i.

77
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4.3 Like a pure exchange economy, in a housing market, agents can trade the houses among them-
selves according to certain rules and attempt to make themselves better off.

Example: Let A = {a1, a2, a3, a4} and let hi be the occupied house of agent i. Let the prefer-
ence profile≻ be given as:

a1 a2 a3 a4
h4 h3 h2 h3
h3 h4 h4 h2
h2 h2 h1 h1
h1 h1 h3 h4

Table 4.1

These four agents can trade the houses and get the following (Pareto) improved reallocation

µ1 =

[
a1 a2 a3 a4

h4 h3 h1 h2

]
.

They also have the following (Pareto) improved reallocation

µ2 =

[
a1 a2 a3 a4

h4 h3 h2 h1

]
.

What are desirable outcome of such a reallocation process? What allocative mechanisms are
appropriate for achieving desirable outcomes?

4.4 Definition: In a housing market ⟨A,H,≻, e⟩, a matching (allocation) is a bijection µ : A→ H .�

Here µ(a) is the assigned house of agent a under matching µ. LetM be the set of matchings.

4.5 Definition: A (deterministic direct) mechanism is a procedure that assigns a matching for each�

housing market ⟨A,H,≻, e⟩.

For the fixed sets of agents A and housesH , a mechanism becomes a function

φ : ×a∈A Pa →M.

4.6 Definition: A matching µ is individually rational if for each agent a ∈ A,�

µ(a) %a ha = e(a),

that is, each agent is assigned a house at least as good as her own occupied house.
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A mechanism is individually rational if it always selects an individually rational matching for
each housing market.

In Example 4.3, the matchings µ1 and µ2 are individually rational.

4.7 Definition: A matching µ is Pareto efficient if there is no other matching ν such that�

• ν(a) %a µ(a) for all a ∈ A, and

• ν(a0) ≻a0 µ(a0) for some a0 ∈ A.

A mechanism is Pareto efficient if it always selects a Pareto efficient matching for each housing
market.

In Example 4.3, the matchings µ1 and µ2 are Pareto efficient.

4.8 In Example 4.3, if houses are assigned according to µ1, then agents 2 and 3 will not attend this
reallocation process. Instead, they will trade with each other; that is, agent 2 gets house 3 and
agent 3 gets house 2. Clearly, this trade benefits agent 3 and does not hurt agent 2, compared
with µ1.

In other words, matching µ1 is blocked by the coalition {2, 3} and the trade between them.
Such a matching is not good enough, and a core matching, defined in the following paragraphs,
is required to exclude such blocks.

4.9 Definition: Given a market ⟨A,H,≻, e⟩ and a coalitionB ⊆ A, a matching µ is aB-matching
if for all a ∈ B, µ(a) = hb for some b ∈ B. That is, {µ(a) | a ∈ B} = {hb | b ∈ B}.

4.10 Definition: A matching µ is in the core1 if there exists no coalition of agents B ⊆ A such that�

someB-matching ν ∈M weakly dominates µ, that is,

• ν(a) %a µ(a) for all a ∈ B, and

• ν(a0) ≻a0
µ(a0) for some a0 ∈ B.

That is, the core is the collection of matchings such that no coalition could improve their as-
signed houses even if they traded their initially occupied houses only among each other.

We shall use C(≻) or C to denote the core.

A matching in the core is called a core matching.

A mechanism is called a core mechanism if it always selects a core matching for each housing
market, denoted by φcore.

1It was also called strong core in the literature. In game theory, the core is the set of feasible allocations that cannot be
improved upon by a subset (a coalition) of the economy’s consumers. A coalition is said to improve upon or block a feasible
allocation if the members of that coalition are better off under another feasible allocation that is identical to the first except
that every member of the coalition has a different consumption bundle that is part of an aggregate consumption bundle that
can be constructed from publicly available technology and the initial endowments of each consumer in the coalition.
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4.11 Remark: It is clear that a corematching is Pareto efficient (takeB = A) and individually rational
(takeB = {a} for some a ∈ A).

4.12 Definition: Define a vector price as a positive real vector assigning a price for each house, i.e.,�

p = (ph)h∈H ∈ Rn
++

such that ph is the price of house h.

A matching-price vector pair (µ,p) ∈M×Rn
++ is a competitive equilibrium (or a Walrasian

equilibrium) if for each agent a ∈ A,

• pµ(a) ≤ pha
(budget constraint), and

• µ(a) %a h for all h ∈ H such that ph ≤ pha
(utility maximization).

A matching is called a competitive equilibrium matching if there exists a price vector which
supports the matching to be a competitive equilibrium.

A mechanism is called a competitive equilibrium mechanism if it always selects a competitive
equilibrium matching for each housing market, denoted by φeq.

4.13 Remark: The market clear condition trivially holds since each matching is required to be a bi-
jection. Furthermore, in a competitive equilibrium (µ,p), for each agent a, the price of her final
house pµ(a) equals the price of her initial house pha

. (Exercise)

4.14 Proposition: If each agent’s preference is strict, then any competitive equilibrium allocation is
in the core.

Proof. (1) Let (µ,p) be a competitive equilibrium. Suppose that µ is not in the core.

(2) Then there is a coalitionB ⊆ A and aB-matching ν such that ν(a) %a µ(a) for all a ∈ B
and ν(a0) ≻a0

µ(a0) for some a0 ∈ B.

(3) Since µ is a competitive equilibrium matching, pν(a) ≥ pha = pµ(a) for all a ∈ B and
pν(a0) > pha0

= pµ(a0) (Here we need to assume each agent’s preference to be strict).

(4) Since ν is a B-matching,
∑

a∈B pν(a) =
∑

a∈B pha
.

(5) Thus, ∑
a∈B

pµ(a) <
∑
a∈B

pν(a) =
∑
a∈B

pha
=
∑
a∈B

pµ(a),

which leads to a contradiction.

It iswell known that any competitive equilibriumallocation is in the core for exchange economies
with divisibilities.
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4.15 Definition: Amatchingµ is in the core defined via strong domination if there exists no coalition
of agentsB ⊆ A such that someB-matching ν ∈M strongly dominates µ, that is,

• ν(a) ≻a µ(a) for all a ∈ B.

It is clear that the core is a subset of the core defined via strong domination.

4.2 Top trading cycles algorithm

4.16 Theorem (Theorem in Shapley and Scarf (1974)): The core of a housing market is non-empty�

and there exists a core matching that can be sustained as part of a competitive equilibrium.

Actually, this theorem is originally stated as follows: The core defined via strong domination is
always non-empty, where agents’ preferences are allowed to be not strict. Its initial proof makes
use of Bondareva-Shapley Theorem.

As an alternative proof, Shapley and Scarf (1974) introduced an iterative algorithm that is a core
and competitive equilibrium matching. They attributed this algorithm to David Gale.

4.17 Top trading cycles algorithm.�

Step 1: Each agent points to the owner of his favorite house.

Due to the finiteness of agents, there exists at least one cycle (including self-cycles). More-
over, cycles do not intersect.

Each agent in a cycle is assigned the house of the agent he points to and removed from the
market.

If there is at least one remaining agent, proceed with the next step.

Step k: Each remaining agent points to the owner of his favorite house among the remaining
houses.

Each agent in a cycle is assigned the house of the agent he points to and removed from the
market.

If there is at least one remaining agent, proceed with the next step.

End: No agents remain. It is clear that the algorithm will terminate within finite steps. Let Step
t denote the last step.

The mechanism determined by top trading cycles algorithm is denoted by TTC.

4.18 Notation: In the top trading cycles algorithm, given≻ and e:

https://en.wikipedia.org/wiki/Bondareva%E2%80%93Shapley_theorem
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• Ak or Ak[≻] orAk[e] or Ak[≻, e]: the agents removed at Step k in ⟨A,H,≻, e⟩. If Step t
is the last step, then

A = A1 ∪A2 ∪ · · · ∪At.

We refer to Ã = {A1, A2, . . . , At} as the cycle structure.

• Bk orBk[≻] orBk[e] orBk[≻, e]: the remaining agents after Step (k−1) in ⟨A,H,≻, e⟩.
So

Bk = A \ (A1 ∪A2 ∪ · · · ∪Ak−1) = Ak ∪Ak+1 ∪ · · · ∪At.

• Hk orHk[≻] orHk[e] orHk[≻, e]: the set of houses that are owned by agents in Ak:

Hk = {h ∈ H | h = e(a) for some a ∈ Ak}.

LetH0 = ∅.
If Step t is the last step, then

H = H0 ∪H1 ∪H2 ∪ · · · ∪Ht.

• G′ = ⟨B,≻⟩: the directed sub-graph determined by agentsB ⊆ A and preference profile
≻.

• Gk orGk[≻] orGk[e] orGk[≻, e]: the directed sub-graph after Step (k − 1) in ⟨A,H,≻
, e⟩.

• Bra(H ′) where a ∈ A and H ′ ⊆ H : agent a’s favorite house among H ′. Then for each
a ∈ Ak, we have

Bra
(
H \ ∪k−1

ℓ=1H
ℓ
)
= TTC(a).

• a G′

−→ b where G′ = ⟨B,≻⟩ and B ⊆ A: the house of agent b is agent a’s favorite house
in {ha | a ∈ B} under the preference≻a.

• C = (an1 , an2 , . . . , anm) is a chain in the directed sub-graphG′ = ⟨B,≻⟩whereB ⊆ A:
anj ∈ B for j = 1, 2, . . . ,m, and

an1

G′

−→ an2

G′

−→ · · · G′

−→ anm−1

G′

−→ anm
.

Note that a cycle is a special chain.

4.19 Proof of “core is non-empty”.

(1) LetB be any coalition. Consider the first j such thatB ∩Aj ̸= ∅.
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(2) Then we have

B ⊆ Aj ∪Aj+1 ∪ · · · ∪At = A \ (A1 ∪A2 ∪ · · · ∪Aj−1).

(3) Let a ∈ B ∩ Aj . Then a is already getting the favorite possible house available to her in
B.

(4) No improvement is possible for her, unless she deals outside ofB.

(5) By induction, no agent in B can not strictly improve, and it follows that the outcome
produced by top trading cycles algorithm is in the core.

4.20 Proof of “being a competitive equilibrium matching”.

(1) Price vector p is defined as follows:

• for any a and b in Ak for some k, set pha = phb
;

• if a ∈ Ak and b ∈ Aℓ with k < ℓ, then set pha
> phb

.

(2) That is,

• the prices of the occupied houses whose owners are removed at the same step are set
equal to each other;

• the prices of those whose owners are removed at different steps are set such that the
price of a house that leaves earlier is higher than the price of a house that leaves later.

(3) It is easy to check that this price vector p supports the outcome produced by top trading
cycles algorithm as a competitive equilibrium.

4.21 Example of the top trading cycles algorithm:

LetA = {a1, a2, . . . , a16}. Here hi is the occupied house of agent ai. Let the preference profile
≻ be given as:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h15 h3 h1 h2 h9 h6 h7 h6 h11 h7 h2 h4 h6 h8 h1 h5

h4 h3 h12 h3 h4 h14 h13
h12 h16
h10

Table 4.2

Step 1:
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a1 a2 a3 a4 a5

a6

a7

a8

a9a10a11a12a13

a14

a15

a16

Figure 4.1: Step 1

A1 = {a1, a6, a7, a15}.

Step 2: The reduced preferences are as follows:

a2 a3 a4 a5 a8 a9 a10 a11 a12 a13 a14 a16
h3 h3 h2 h9 h12 h11 h3 h2 h4 h13 h8 h5
h4 h12 h4 h14

h10 h16

Table 4.3
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a1 a2 a3 a4 a5

a6

a7

a8

a9a10a11a12a13

a14

a15

a16

Figure 4.2: Step 2

A2 = {a3, a13}.

Step 3: The reduced preferences are as follows:

a2 a4 a5 a8 a9 a10 a11 a12 a14 a16
h4 h2 h9 h12 h11 h12 h2 h4 h8 h5

h10 h4 h14
h16

Table 4.4
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a1 a2 a3 a4 a5

a6

a7

a8

a9a10a11a12a13

a14

a15

a16

Figure 4.3: Step 3

A3 = {a2, a4}.

Step 4: The reduced preferences are as follows:

a5 a8 a9 a10 a11 a12 a14 a16
h9 h12 h11 h12 h16 h14 h8 h5

h10

Table 4.5
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a1 a2 a3 a4 a5

a6

a7

a8

a9a10a11a12a13

a14

a15

a16

Figure 4.4: Step 4

A4 = {a5, a8, a9, a12, a14, a16}.

Step 5: The reduced preferences are as follows:

a10
h10

Table 4.6
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a1 a2 a3 a4 a5

a6

a7

a8

a9a10a11a12a13

a14

a15

a16

Figure 4.5: Step 5

A5 = {a10}.

The outcome is

µ =

[
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

h15 h4 h3 h2 h9 h6 h7 h12 h11 h10 h16 h14 h13 h8 h1 h5

]
.

4.22 Lemma (Lemma 1 in Roth and Postlewaite (1977)): If the preference of each agent is strict, then
a competitive equilibrium matching (or core matching) weakly dominates any other matching.

Proof. (1) If µ is any competitive equilibrium matching, we can think of µ as being arrived at
via trading among top trading cycles A1, A2, . . . , At.

(2) Let ν be any matching.

(3) If µ(a) ̸= ν(a) for some a ∈ A1, µ weakly dominates ν via the coalitionA1 since µ gives
each agent of A1 her most preferred house.

(4) If µ(a) = ν(a) for all a ∈ A1 and µ(a) ̸= ν(a) for some a ∈ A2, µ weakly dominates
ν via the coalition A1 ∪A2 since µ gives each agent of A1 her most preferred house, and
each agent of A2 her most preferred of what was left.

(5) Proceeding in this manner we see that µ weakly dominates all other matchings.

4.23 Theorem (Theorem 2 in Roth and Postlewaite (1977)): If the preference of each agent is strict,�

the core of a housing market has exactly one matching which is also the unique matching that
can be sustained at a competitive equilibrium.
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Proof. Theorem 4.16 implies that no matching weakly dominates a competitive equilibrium
matching (or core matching). Then apply Lemma 4.22.

4.24 Remark: In a housing market ⟨A,H,≻, e⟩ (with strict preference profile), we have

TTC = φcore = φeq .

4.25 Remark: Chain structure of top trading cycles algorithm.

(1) Consider any agent in Ak at Step (k − 1). This agent will take part in a cycle only in the
next step. Therefore her favorite house among those left at Step (k − 1) is either inHk−1

or inHk.

(2) Note that these should be at least one agent in Ak whose favorite house among those left
at Step (k − 1) is inHk−1; otherwise agents in Ak would form one or several cycles and
trade at Step (k − 1). Therefore we have

Bra(H) ∈ H1 for all a ∈ A1, and Bra(H \ ∪k−2
ℓ=1H

ℓ) ∈ Hk−1 ∪Hk for all a ∈ A \A1.

(3) Based on this observation, for all k ≥ 2, we partition the set Ak into the sets of satisfied
agents Sk and unsatisfied agents Uk where

Sk = Sk[≻, e] =
{
a ∈ Ak | Bra(H \ ∪k−2

ℓ=1H
ℓ) ∈ Hk

}
,

Uk = Uk[≻, e] =
{
a ∈ Ak | Bra(H \ ∪k−2

ℓ=1H
ℓ) ∈ Hk−1

}
.

Note that Uk ̸= ∅, k ≥ 2.

(4) At Step (k − 1), agents in Sk point to an agent in Ak whereas agents in Uk point to an
agent inAk−1. The agents in the latter group only in the next step point to an agent inAk

and this follows that agents in Ak form one or several cycles.

(5) At Step (k − 1), agents in Ak form one or several chains each of which is headed by an
agent in Uk who possibly follows agents in Sk. Formally the chain structure of Ak is a
partition {Ck

1 , C
k
2 , . . . , C

k
rk
} where each chain Ck

i = (aki1, a
k
i2, . . . , a

k
ini

) is such that

aki1
Gk−1

−−−→ aki2
Gk−1

−−−→ · · · Gk−1

−−−→ aki(ni−1)︸ ︷︷ ︸
Sk

Gk−1

−−−→ akini︸︷︷︸
Uk

and Brak
ini

(H\∪k−2
ℓ=1H

ℓ) ∈ Hk−1.

(6) We refer to agent aki1 as the tail and agent akini
as the head of the chain Ck

i . Let T k[µ] =

{aki1 | i = 1, 2, . . . , rk}.
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(7) At Step k (agents inAk−1 with the set of housesHk−1 have already been removed), each
agent inUk points to one of these tails (and each of them points to a different one), which
in turn converts these chains into one or several cycles.

4.3 Incentive compatibility

4.26 Definition: A mechanism φ is strategy-proof if for each housing market ⟨A,H,≻, e⟩, for each�

a ∈ A, and for each≻′
a, we have

φ[≻](a) %a φ[≻−a,≻′
a](a).

4.27 Theorem (Theorem in Roth (1982a)): The core mechanism TTC is strategy-proof.�

Intuition: Once being pointed by others, an agent never loses the chain pointing to her, so she
can get the house any later time if she wants.

For the proof, we need the following three lemmas.

4.28 Lemma (Lemma 1 in Roth (1982a)): In the top trading cycles algorithm, given≻, if

C = (an1
, an2

, . . . , anm
)

is a chain inGk[≻] and r > k, thenC is a chain inGr[≻] if and only if anm
∈ Br[≻] (e.g., anm

has not been removed before Step r).

Proof. (1) If anm−1

Gk[≻]−−−−→ anm , then anm−1

Gr[≻]−−−−→ anm if and only if anm ∈ Br[≻], due to
the top trading cycles algorithm.

(2) By induction, anm−2

Gr[≻]−−−−→ anm−1
if and only if anm−1

∈ Br[≻], and so on.

4.29 Lemma (Lemma 2 in Roth (1982a)): Let≻ be a strict preference profile, and≻′ be another strict
preference profile which differs from ≻ only in the preference of agent ai. Let k and k′ be the
steps at which agent ai is removed from the housing market in ⟨A,H,≻, e⟩ and ⟨A,H,≻′, e⟩,
respectively. Then Bℓ[≻] and Bℓ[≻′] are same for 1 ≤ ℓ ≤ min{k, k′}, and have the same
cycles for 1 ≤ ℓ ≤ min{k, k′} − 1.

Proof. Since the graphs inB1[≻] andB1[≻′] differs only in the edge emanating from agent ai,
they have the same cycles if min{k, k′} > 1, and hence the agents removed at Step 1 from ≻
and≻′ are same. This lemma follows by induction.
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4.30 Simplemisreport manipulation lemma (Lemma 3 in Roth (1982a)): Let≻′′ be a preference pro-
file which differs from≻′ only in the preference of agent ai, where TTC[≻′](ai) is ai’s favorite
house under≻′′

i . Then we have

TTC[≻′′](ai) = TTC[≻′](ai).

≻′
ai

TTC[≻′](ai)

≻′′
ai

TTC[≻′](ai)

Proof. (1) Let k′ be the step at which agent ai with house hj , TTC[≻′](ai) is removed from
the market ⟨A,H,≻′, e⟩. That is, ai, aj ∈ Bk′

[≻′].

(2) Let TTC[≻′](ai) be the initial house of agent aj .

(3) Let k′′ be the step at which agent ai with house TTC[≻′′](ai) is removed from the market
⟨A,H,≻′′, e⟩.

(4) Case 1: k′′ ≥ k′.

time≻′ k′

(i) ai → aj → · · · → ai

time≻′′
k′ k′′

(ii)–(iii) ai → aj → · · · → ai

(i) That is, agent ai is still in the market ⟨A,H,≻′, e⟩ at Step k′.
(ii) Then Lemma 4.29 implies that Bk′

[≻′] = Bk′
[≻′′]. Hence, ai, aj ∈ Bk′

[≻′] =

Bk′
[≻′′].

(iii) Since hj is top-ranked for agent ai under≻′′
ai

, we have ai
Gk′

[≻′′]−−−−−→ aj and hence

Gk′
[≻′] = Gk′

[≻′′].

(iv) By the top trading cycles algorithm, ai withhj is also removed at Step k′ in themarket
⟨A,H,≻′′, e⟩, that is TTC[≻′′](ai) = hj = TTC[≻′](ai) and k′′ = k′.

(5) Case 2: k′′ < k′.
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time≻′ k′′ k′

ai, aj ∈ Bk′
ai, aj ∈ Bk′′

time≻′′
k′′

(ii)–(iv) ai → aj

(i) That is, agent ai is removed at Step k′′ in the market ⟨A,H,≻′′, e⟩.
(ii) Lemma 4.29 implies that at Step k′′ = min{k′, k′′},Bk′′

[≻′] = Bk′′
[≻′′].

(iii) Since aj ∈ Bk′′
[≻′], we have aj ∈ Bk′′

[≻′′].

(iv) Therefore, ai
Gk′′

[≻′′]−−−−−→ aj , since hj is top-ranked for agent aj in ⟨A,H,≻′′, e⟩.
(v) Hence hj is exactly the house which is removed with agent ai at Step k′′ in themarket
⟨A,H,≻′′, e⟩, that is, TTC[≻′′](ai) = hj = TTC[≻′](ai).

4.31 Proof of Theorem 4.27. Let k and k′ be the steps of ⟨A,H,≻, e⟩ and ⟨A,H,≻′, e⟩, respectively,
at which agent ai is removed from the market. Let hj = TTC[≻](ai) and hj′ = TTC[≻′](ai).
We will see that hj′ ≻ai hj is impossible.

Lemma 4.30 implies that it is sufficient to consider a preference≻′
ai

that ranks hj′ first.

Case 1: k′ ≥ k.

time≻ k

(iii) aj′ ∈ Bk[≻]

time≻′
k k′

(ii) aj′ ∈ Bk′
[≻′](iii) aj′ ∈ Bk[≻′]

(1) Lemma 4.29 implies thatBℓ[≻] = Bℓ[≻′] for 1 ≤ ℓ ≤ k.

(2) It is clear aj′ ∈ Bk′
[≻′], since agent ai with house hj′ is removed at Step k′.

(3) So aj′ ∈ Bk[≻′] = Bk[≻].

(4) If hj′ ≻ai hj , then at Step k, we have ai
Gk[≻]−−−−→ aj′ not ai

Gk[≻]−−−−→ aj in the market
⟨A,H,≻, e⟩, which contradicts the fact that ai is removed with hj .

Case 2: k′ ≤ k.
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time≻ k′ k

(iv) aj′ → · · · → ai(iii) aj′ → · · · → ai

time≻′
k′

(ii) aj′ → · · · → ai

(1) Lemma 4.29 implies thatBℓ[≻] = Bℓ[≻′] for 1 ≤ ℓ ≤ k′.

(2) Let the chain C = (aj′ , an1
, an2

, . . . , anm
, ai) be the cycle that forms at Step k′ in

the market ⟨A,H,≻′, e⟩.

(3) Since≻ and≻′ differ only in the ai’s preference, we have

aj′ = an1

Gk′
[≻]−−−−→ an2

Gk′
[≻]−−−−→ · · · Gk′

[≻]−−−−→ anm = ai,

and hence C forms a chain inGk′
[≻].

(4) Since anm
= ai is not removed st Step k in the market ⟨A,H,≻, e⟩, Lemma 4.28 implies

that C is a chain inGk[≻].

(5) If hj′ ≻ai
hj , then at Step k, we have ai

Gk[≻]−−−−→ aj′ not ai
Gk[≻]−−−−→ aj in the market

⟨A,H,≻, e⟩, which contradicts the fact that ai is removed with hj .

4.32 Definition: A mechanism φ is group strategy-proof, if for each housing market ⟨A,H,≻, e⟩,
there is no group of agentsB ⊆ A and preferences≻′

B such that

• φ[≻′
B ,≻−B ](a) %a φ[≻B ,≻−B ](a) for all a ∈ B and

• φ[≻′
B ,≻−B ](a0) ≻a0

φ[≻B ,≻−B ](a0) for some a0 ∈ B.

In words, a mechanism is group strategy-proof if no group of agents can jointly misreport pref-
erences in such a way to make some member strictly better off while no one in the group is
made worse off.

4.33 Lemma (Lemma 1 in Bird (1984)): Consider two preference profiles ≻ and ≻′. If there is an
agent ai ∈ Ak[≻] such that TTC[≻′](ai) ≻ai

TTC[≻](ai), then there exist agents aj ∈ A1[≻
] ∪A2[≻] ∪ · · · ∪Ak−1[≻] and agent aℓ ∈ Ak[≻] ∪Ak+1[≻] ∪ · · · ∪At[≻] such that

hℓ ≻′
aj

TTC[≻](aj).
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Proof. (1) Assume the contrary. Then

TTC[≻](aj) %′
aj
hℓ,

for all aj ∈ A1[≻] ∪A2[≻] ∪ · · · ∪Ak−1[≻] and aℓ ∈ Ak[≻] ∪Ak+1[≻] ∪ · · · ∪At[≻].

(2) It is clear that the equalities above can not hold; otherwise TTC[≻](aj) = hℓ due to the
strictness of preferences.

(3) Since each TTC[≻](aj) = hm for some am ∈ A1[≻]∪A2[≻]∪ · · · ∪Ak−1[≻], it follows
from the top trading cycle algorithm that

A1[≻′] ∪A2[≻′] ∪ · · · ∪Ak′−1[≻′] = A1[≻] ∪A2[≻] ∪ · · · ∪Ak−1[≻]

for some k′.

(4) Since TTC[≻′](ai) ≻ai
TTC[≻](ai), TTC[≻′](ai) must have been taken in an earlier

trading cycle under≻.

(5) Thus, TTC[≻′](ai) = hj for some aj ∈ A1[≻] ∪A2[≻] ∪ · · · ∪Ak−1[≻].

(6) For preference profile ≻′, ai and aj are in the same cycle , thus ai is in A1[≻′] ∪ A2[≻′

] ∪ · · · ∪Ak′−1[≻′].

(7) ButA1[≻] ∪A2[≻] ∪ · · · ∪Ak−1[≻] = A1[≻′] ∪A2[≻′] ∪ · · · ∪Ak′−1[≻′] and ai is not
in A1[≻] ∪A2[≻] ∪ · · · ∪Ak−1[≻]. A contradiction.

4.34 Remark: This lemma shows that if any agent wants to get a more preferred house, she needs to
get an agent in an earlier cycle to change her preference to a house that went in a later trading
cycle.

4.35 Theorem (Theorem in Bird (1984)): TTC is group strategy-proof.

Proof. (1) Assume that each agent a in a subsetB ⊆ A reports a preference≻′
a instead of her

true preference≻.

(2) Let ai be the first agent in B to enter a trading cycle under ≻. We will show that ai can
not improve.

(3) Let ai be in Ak[≻].

(4) If TTC[≻′](ai) ≻ai
TTC[≻](ai), from the lemma there is an agent aj ∈ A1[≻] ∪ · · · ∪

Ak−1[≻] reporting a preference for a house that was assigned in a cycle q ≥ k under≻.

(5) Thus, aj ’s reported preference≻′ is not same as her true preference≻.

(6) Thus, aj ∈ B and ai can not be the first agent inB.
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(7) By induction, every agent inB can not improve her assignment.

4.36 Remark: We have shown a stronger result: for each housing market ⟨A,H,≻, e⟩, for each non-
empty coalitionB ⊆ A, for each (≻′

a)a∈B , we have for each a ∈ B,

φ[≻−B ,≻B ](a) %a φ[≻−B ,≻′
B ](a).

4.4 Axiomatic characterization of top trading cycles algorithm

4.37 Theorem (Theorem 1 in Ma (1994)): The core mechanism TTC is the only mechanism that is�

individually rational, Pareto efficient, and strategy-proof.

4.38 Proof of Theorem 4.37. (1) Suppose that there is another mechanism φ satisfying the three
conditions.

(2) Fix a housing market ⟨A,H,≻, e⟩.

(3) Let A1 be the set of agents matched in Step 1 of TTC for ⟨A,H,≻, e⟩. We first show that
for any agent a ∈ A1, φ[≻](a) = TTC[≻](a).

(4) Suppose not, then φ[≻](a) is worse. That is, TTC[≻](a) ≻a φ[≻](a).

(5) Since TTC is individually rational, TTC[≻](a) %a ha.

(6) If TTC[≻](a) = ha, we have a contradiction with individual rationality of φ; that is,
ha ≻a φ[≻](a).

(7) Thus, a trades with others under TTC at ≻. Assume that the trading cycle is a → k →
· · · → 1→ a.

(8) Consider a new preference≻′
a : hk, ha.

≻a

TTC[≻](a) = hk ha

≻′
a

hk ha

(9) Then TTC[≻] = TTC[≻′
a,≻−a] and TTC[≻′

a,≻−a](a) = TTC[≻](a) = hk.

(10) Since φ is individual rational, amust be assigned hk or ha under φ[≻′
a,≻−a].

(11) If she is assignedhk, then underφ, when her preference is≻a, shewill profitablymisreport
≻′

a, violating the strategy-proofness of φ:

φ[≻′
a,≻−a](a) = hk = TTC[≻](a) ≻a φ[≻](a).
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(12) Thus, φ[≻′
a,≻−a](a) = ha, which is not hk = TTC[≻′

a,≻−a](a).

(13) Summary:

TTC[≻′
a,≻−a] = TTC[≻],

φ[≻′
a,≻−a](a) = ha.

(14) Since φ[≻′
a,≻−a](a) = ha, we have φ[≻′

a,≻−a](1) ̸= ha = TTC[≻′
a,≻−a](1). Thus,

TTC[≻′
a,≻−a](1) = ha ≻1 φ[≻′

a,≻−a](1).

(15) Consider a new preference≻′
1 : ha, h1.

≻1

TTC[≻′
a,≻−a](1) = ha h1

≻′
1

ha h1

(16) Similarly, at [≻′
a,≻′

1,≻−a−1], agent 1 is assigned ha under TTC (a→ k → · · · → 1→ a

is still a cycle), but is assigned h1 under φ (φ[≻′
a,≻′

1,≻−a−1](1) = ha = TTC[≻′
a,≻−a

](1) ≻1 φ[≻′
a,≻−a](1)).

(17) Summary:

TTC[≻′
a,≻′

1,≻−a−1] = TTC[≻′
a,≻−a] = TTC[≻],

φ[≻′
a,≻′

1,≻−a−1](a) = h1.

(18) By induction, at≻′= [≻′
a,≻′

1, . . . ,≻′
k], TTC[≻′] = TTC[≻], but φ[≻′](i) = hi for each

i ∈ {a, 1, . . . , k}, violating the Pareto efficiency of φ.

(19) By induction on the steps of cycles, we complete the proof.

4.39 Theorem 4.37 is “robust” via the following three examples.

4.40 Example 1: A mechanism is individually rational and Pareto efficient, but not strategy-proof.

A = {a1, a2, a3}, the preference profile≻ is as follows:

Then both

TTC[≻] =

[
a1 a2 a3

h2 h1 h3

]
and µ =

[
a1 a2 a3

h2 h3 h1

]
are individually rational, and Pareto efficient under≻.
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a1 a2 a3
h2 h1 h1
h3 h3 h3
h1 h2

Table 4.7

Define a mechanism for this market

φ[≻′] =

µ, if ≻′=≻;

TTC[≻′], otherwise.

Now φ is not strategy-proof.

4.41 Example 2: Themechanism in which each agent is assigned her initial house. Clearly thismech-
anism is individually rational and strategy-proof, but not Pareto efficient.

4.42 Example 3: A mechanism is Pareto efficient and strategy-proof, but not individually rational.

A = {a1, a2}, the mechanism φ in which agent 1 is always assigned the house she likes most.
This mechanism is Pareto efficient and strategy-proof.

But under the following preference profile≻

a1 a2
h2 h2
h1

Table 4.8

φ[≻] =

[
a1 a2

h2 h1

]
̸=

[
a1 a2

h1 h2

]
= TTC[≻],

and is not individually rational.
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House allocation
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5.6 Random house allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 The former model

5.1 The house allocation problem was introduced by Hylland and Zeckhauser (1979). In this prob-
lem, there is a group of agents and houses. Each agent shall be allocated a house by a central
planner using preferences over the houses.

5.2 Definition: A house allocation problem is a triple ⟨A,H,≻⟩ such that�

• A = {a1, a2, . . . , an} is a set of agents,

• H = {h1, h2, . . . , hn} is a set of houses,

• ≻= (≻a)a∈A is a strict preference profile such that for each agent a ∈ A, ≻a is a strict
preference over houses. Let Pa be the set of preferences of agent a. The induced weak
preference of agent a is denoted by%a and for any h, g ∈ H , h %a g if and only if h ≻a g

or h = g.

99
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5.3 Definition: In a house allocation problem ⟨A,H,≻⟩, a matching (allocation) is a bijection�

µ : A → H . Here µ(a) is the assigned house of agent a under matching µ. LetM be the
set of matchings.

5.4 Definition: A (deterministic direct) mechanism is a procedure that assigns a matching for each�

house allocation problem ⟨A,H,≻⟩.

For the fixed sets of agents A and housesH , a mechanism becomes a function

φ : ×a∈A Pa →M.

5.5 Definition: A matching µ is Pareto efficient if there is no other matching ν such that�

• ν(a) %a µ(a) for all a ∈ A, and

• ν(a0) ≻a0
µ(a0) for some a0 ∈ A.

Let E denote the set of all Pareto efficient matchings.

A mechanism is Pareto efficient if it always selects a Pareto efficient matching for each house
allocation.

5.2 Simple serial dictatorship and core from assigned endowments

5.6 An ordering f : {1, 2, . . . , n} → A is a one-to-one and onto function. Each ordering induces
the following simple mechanism, which is especially plausible if there is a natural hierarchy of
agents. Let F be the set of all orderings.

Simple serial dictatorship induced by an ordering f , denoted by SDf .�

Step 1: The highest priority agent f(1) is assigned her top choice house under≻f(1).

Step k: The k-th highest priority agent f(k) is assigned her top choice house under ≻f(k)

among the remaining houses.

5.7 Proposition: Simple serial dictatorship induced by an ordering f , SDf , is Pareto efficient.

Proof. (1) Suppose that there is a matching ν that Pareto dominates SDf [≻].

(2) Consider the agent a = f(i) with the highest priority who obtains a strictly better house
in ν than in SDf [≻].

(3) Then ν(a) = SDf [≻](b) for some agent b = f(j) with j < i.

(4) By assumption, a is the agent with highest priority such that ν(a) ≻a SDf [≻](a), so
ν(b) ≻b SDf [≻](b) is impossible.
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(5) Since ν Pareto dominates SDf [≻], ν(b) %b SDf [≻](b).

(6) Therefore, ν(b) = SDf [≻](b), which leads to a contradiction.

5.8 Core fromassigned endowmentsµ, denoted byTTCµ: For anyhouse allocation problem ⟨A,H,≻�

⟩, select the unique element of the core of the housing market ⟨A,H,≻, µ⟩ where each agent
a’s initial house is µ(a). That is,

TTCµ[≻] = TTC[≻, µ].

5.9 Theorem (Lemma 1 in Abdulkadiroğlu and Sönmez (1998)): For any house allocation problem�

⟨A,H,≻⟩, for any ordering f , and for anymatchingµ, the simple serial dictatorship induced by
f and the core from assigned endowments µ both yield Pareto efficient matchings. Moreover,
for any Pareto efficient matching ν, there is a simple serial dictatorship and a core from assigned
endowments that yield it.

Given a house allocation problem ⟨A,H,≻⟩, let SDF = {ν ∈ M | SDf [≻] = ν for some f ∈
F}, and TTCM = {ν ∈M | TTCµ[≻] = ν for some µ ∈M}. Then it suffices to show

TTCM = SDF = E .

5.10 Proof of Theorem 5.9, Step 1: “TTCM ⊆ SDF ”.

(1) Let ν ∈ TTCM. Then there exists µ ∈M with ν = TTCµ[≻].

(2) Let Step t be the last step of top trading cycles algorithm and let {A1, A2, . . . , At} be the
cycle structure.

(3) For each k = 1, 2, . . . , t and each a ∈ Ak, we have

Bra(H \ ∪k−1
ℓ=0H

ℓ) = TTCµ[≻](a) = ν(a).

(4) Let f : {1, 2, . . . , n} → A be the ordering such that for each k, k′ ∈ {1, 2, . . . , t}, for
each a ∈ Ak, for each a′ ∈ Ak′ , we have

k < k′ ⇒ f−1(a) < f−1(a′).

That is, f orders agents in A1 before agents in A2; agents in A2 before agents in A3 and
so on.

(5) We will show by induction on i that for all i ∈ {1, 2, . . . , n} we have SDf [≻](f(i)) =

ν(f(i)).
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(6) By top trading cycles algorithm and the construction of f , we have

SDf [≻](f(1)) = Brf(1)(H) = TTCµ[≻](f(1)) = ν(f(1)).

(7) Suppose that SDf [≻](f(j)) = ν(f(j)) for all j = 1, 2, . . . , i− 1 where 2 ≤ i ≤ n.

(8) Let f(i) ∈ Ak. We have the following:

• By top trading cycles algorithm, we have

Brf(i)(H \ ∪k−1
ℓ=0H

ℓ) = TTCµ[≻](f(i)) = ν(f(i)).

• By the construction of f , we have

∪k−1
ℓ=0H

ℓ ⊆ ∪i−1
j=1ν(f(j)),

and hence
H \ ∪i−1

j=1ν(f(j)) ⊆ H \ ∪
k−1
ℓ=0H

ℓ.

• ν(f(i)) ∈ H \ ∪i−1
j=1ν(f(j)).

(9) Therefore,

ν(f(i)) = Brf(i)(H \ ∪k−1
ℓ=0H

ℓ) %f(i) Brf(i)
(
H \ ∪i−1

j=1ν(f(j))
)
%f(i) ν(f(i)),

and hence
ν(f(i)) = Brf(i)

(
H \ ∪i−1

j=1ν(f(j))
)
.

(10) It follows that

ν(f(i)) = Brf(i)
(
H \ ∪i−1

j=1ν(f(j))
)
= Brf(i)

(
H \ ∪i−1

j=1 SDf [≻](f(j))
)
= SDf [≻](f(i)).

5.11 Proof of Theorem 5.9, Step 2: “φF ⊆ E ”. See Proposition 5.7.

5.12 Proof of Theorem 5.9, Step 3: “E ⊆ TTCM”.

(1) Let µ ∈ E . Consider the mechanism TTCµ.

(2) Since TTCµ[≻] = TTC[≻, µ], TTCµ is individually rational. That is, for all a ∈ A,
TTCµ[≻](a) %a µ(a).

(3) Sinceµ is Pareto efficient and the preference profile is strict, we have TTCµ[≻] = µ, which
in turn implies µ ∈ TTCM, completing the proof of “E ⊆ TTCM.”
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5.13 Theorem (Theorem1 inAbdulkadiroğlu and Sönmez (1998)): For any house allocation problem�

⟨A,H,≻⟩, the number of simple serial dictatorships selecting a Pareto efficient matching µ is
the same as the number of cores from assigned endowments selecting µ. That is, for all ν ∈ E ,
we have |Mν | = |Fν |, whereMν = {µ ∈ M | TTCµ[≻] = ν} and Fν = {f ∈ F | SDf [≻
] = ν}.

5.14 Proof of Theorem 5.13, Step 1: Define “f onMν”.

Let ν ∈ E . For any µ ∈M, define f(µ) as follows:

(1) Apply top trading cycles algorithm tofind the cycle structure Ã[µ] =
{
A1[µ], A2[µ], . . . , Atµ [µ]

}
for the housing market ⟨A,H,≻, µ⟩.

(2) For all k = 2, 3, . . . , tµ, partition Ak[µ] into its chains as in Remark 4.25.

(3) Order the agents inA1[µ] based on the index of their endowments, starting with the agent
whose house has the smallest index. (Recall that the endowment of agent a is µ(a).)

(4) Order the agents in Ak[µ], k = 2, 3, . . . , tµ as follows:

(i) Order the agents in the same chain subsequently, based on their order in the chain,
starting with the head.

(ii) Order the chains based on the index of the endowments of the tails of the chains
(starting the chain whose tail has the house with the smallest index).

(5) Order the agents in Ak[µ] before the agents in Ak+1[µ], k = 1, 2, . . . , tµ − 1.

5.15 Proof of Theorem 5.13, Step 2: “f ’s range is Fν”.

(1) Let µ ∈Mν . We have TTCµ[≻] = ν.

(2) By top trading cycles algorithm, for each k = 1, 2, . . . , tµ, for each a ∈ At[µ], we have

Bra
(
H \ ∪k−1

ℓ=0H
ℓ
)
= TTCµ[≻](a) = ν(a).

(3) By construction, f(µ) orders agents in A1[µ] before the agents in A2[µ], agents in A2[µ]

before the agents in A3[µ], and so on.

(4) By the similar method applied in the proof of 5.11, we have the simple serial dictatorship
induced by f(µ), namely SDf(µ), assigns each agent a ∈ A the house ν(a).
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5.16 Proof of Theorem 5.13, Step 3: “f is one-to-one”.

Claim 1: For any µ, µ′ ∈Mν ,

f(µ) = f(µ′)⇒ Ã[µ] = Ã[µ′].

(1) Without loss of generality assume that f = f(µ) = f(µ′)orders the agents asa1, a2, . . . , an.

(2) Let

Ã[µ] =
{
{a1, . . . , am1

}︸ ︷︷ ︸
A1[µ]

, {am1+1, . . . , am2
}︸ ︷︷ ︸

A2[µ]

, . . . , {amk−1+1, . . . , amk
}︸ ︷︷ ︸

Ak[µ]

, . . . , {amt−1, . . . , an}︸ ︷︷ ︸
At[µ]

}
,

Ã[µ′] =
{
{a1, . . . , am′

1
}︸ ︷︷ ︸

A1[µ′]

, {am′
1+1, . . . , am′

2
}︸ ︷︷ ︸

A2[µ′]

, . . . , {am′
k−1+1, . . . , am′

k
}︸ ︷︷ ︸

Ak[µ′]

, . . . , {am′
t′−1, . . . , an}︸ ︷︷ ︸
At′ [µ′]

}
.

We want to show that t = t′ and Ak[µ] = Ak[µ′] for all k = 1, 2, . . . , t. We proceed by
induction.

(3) Suppose that A1[µ] ̸= A1[µ′]. Without loss of generality suppose thatm′
1 < m1.

(4) We have agent am′
1+1 ∈ A1[µ], and µ ∈Mν , so

Bram′
1+1

(H) = TTCµ[≻](am′
1+1) = ν(am′

1+1).

(5) Since am′
1+1 is ordered first in A2[µ′], she is also ordered first among the agents in her

chain.

(6) Then agent am′
1+1 is the head of her chain, and hence am′

1+1 ∈ U2[µ′].

(7) Therefore

Bram′
1+1

(H) ̸= Bram′
1+1

(H \H1[µ′]) = TTCµ′
[≻](am′

1+1) = ν(am′
1+1),

which leads to a contradiction.

(8) Therefore A1[µ] = A1[µ′].

(9) Suppose that Aℓ[µ] = Aℓ[µ′] for all ℓ = 1, 2, . . . , k − 1 where 2 ≤ k ≤ min{t, t′}.

(10) Then we havem′
k−1 = mk−1. We want to show Ak[µ] = Ak[µ′].

(11) Suppose, without loss of generality,m′
k < mk.

(12) Then we have am′
k+1 ∈ Ak[µ].

(13) Since µ ∈Mν , we have

Bram′
k
+1
(H \ ∪k−1

ℓ=0H
ℓ[µ]) = TTCµ[≻](am′

k+1) = ν(am′
k+1).
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(14) Since am′
k+1 is ordered first in Ak+1[µ′], she is also ordered first among those agents in

her chain.

(15) Then am′
k+1 is the head of her chain, and hence am′

k+1 ∈ Uk+1[µ′].

(16) Therefore,

Bram′
k
+1
(H \ ∪k−1

ℓ=0H
ℓ[µ]) = Bram′

k
+1
(H \ ∪k−1

ℓ=0H
ℓ[µ′]) ∈ Hk[µ′].

(17) Since am′
k+1 ∈ Ak+1[µ′] and µ′ =Mν , we have

ν(am′
k+1) = TTCµ′

[≻](am′
k+1) ∈ Hk+1[µ′],

and hence Bram′
k
+1
(H \ ∪k−1

ℓ=0H
ℓ[µ]) ̸= ν(am′

k+1), which leads to a contradiction.

(18) Therefore Ak[µ] = Ak[µ′]. This also proves that t = t′ and hence Ã[µ] = Ã[µ′] by
induction.

Claim 2: Suppose µ, µ′ ∈Mν are such that Ã[µ] = Ã[µ′]. Then

f(µ) = f(µ′)⇒ µ = µ′.

(19) Let µ, µ′ ∈Mν be such that Ã[µ] = Ã[µ′] = {A1, A2, . . . , At}.

(20) Then we haveHk[µ] = Hk[µ′] for all k = 1, 2, . . . , t.

(21) Suppose f(µ) = f(µ′) = f . For each k = 1, 2, . . . , t, for each a ∈ Ak, we will show
µ(a) = µ′(a).

(22) Consider agents in A1. We haveH1[µ] = H1[µ′].

(23) By construction, f orders agents inA1 based on the index of their endowments. Therefore
f(µ) = f(µ′) implies that µ′(a) = µ(a) for all a ∈ A1.

(24) Consider agents in Ak where k = 2, 3, . . . , t.

(25) SinceHk[µ] = Hk[µ′] for all k = 1, 2, . . . , t, we have

Uk[µ′] =
{
a ∈ Ak | Bra(H \ ∪k−2

ℓ=0H
ℓ[µ′]) ∈ Hk−1[µ′]

}
=
{
a ∈ Ak | Bra(H \ ∪k−2

ℓ=0H
ℓ[µ]) ∈ Hk−1[µ]

}
= Uk[µ],

Sk[µ′] = Ak \ Uk[µ′] = Ak \ Uk[µ] = St[µ].

(26) These relations together with f(µ) = f(µ′) and the construction of f imply that we have
the same chain structure for µ and µ′. (Recall that f orders agents in a chain subsequently
based on their order in the chain, starting with the head of the chain who is the only
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member of chain that is an element of Uk. Therefore for a given ordering f , the set of
agents in U t uniquely determines the chain structure for Ak.)

(27) Let this common chain structure be {Ck
1 , C

k
2 , . . . , C

k
rk
}, where for all i = 1, 2, . . . , rk, we

have Ck
i = (aki1, a

k
i2, . . . , a

k
ini

) with akini
∈ Uk and akij ∈ Sk for all j = 1, 2, . . . , ni − 1.

(28) By the definition of a chain, for all i ∈ 1, 2, . . . , rk and all j = 1, 2, . . . , ni − 1, we have

µ
(
aki(j+1)

)
= Brak

ij
(H \ ∪k−2

ℓ=0H
ℓ[µ]) = Brak

ij
(H \ ∪k−2

ℓ=0H
ℓ[µ′]) = µ′(aki(j+1)

)
.

(29) Since the chain structure is the same for endowments µ and µ′, the set of tails is also the
same for both endowments. That is, T k[µ] = T k[µ′] , T .

(30) Therefore we have µ(a) = µ′(a) for all a ∈ Ak \ T k.

(31) We also have

{h ∈ H | µ′(a) = h for some a ∈ T k} = Hk \ {h ∈ H | µ′(a) = h for some a ∈ Ak \ T k}

= Hk \ {h ∈ H | µ(a) = h for some a ∈ Ak \ T k}

= {h ∈ H | µ(a) = h for some a ∈ T k}.

That is, the set of agents T k collectively own the same set of houses under endowments µ
and µ′.

(32) By the construction of f , tails of chains are ordered based on their endowments, f(µ) =
f(µ′) implies µ(a) = µ′(a) for all a ∈ T k, and hence µ(a) = µ′(a) for all a ∈ Ak.

5.17 Proof of Theorem 5.13, Step 4: “f is onto”.

(1) By Step 2 and Step 3 we have

|Fν | ≥ |Mν | for all ν ∈ E .

(2) Therefore ∑
ν∈E

|Fν | ≥
∑
ν∈E

|Mν |.

(3) By Theorem 5.9, ∑
ν∈SDF

|Fν | ≥
∑

ν∈TTCM

|Mν |.

(4) Both the left-hand side and the right-hand side of the inequality are equal to the number
of orderings, n!.
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(5) Hence, |Mν | = |Fν | for all ν ∈ E .

5.3 Incentive compatibility

5.18 Definition: A mechanism φ is strategy-proof if for each house allocation problem ⟨A,H,≻⟩,�

for each a ∈ A, and for each≻′
a, we have

φ[≻](a) %a φ[≻−a,≻′
a](a).

5.19 Theorem: The simple serial dictatorship induced by an ordering f is strategy-proof.�

Proof. (1) Let f be an ordering.

(2) The first agent f(1) of the ordering obtains the favorite house for her when she tells the
truth, so she has no incentives to lie.

(3) The second agent f(2) of the ordering gets her favorite house among the remaining houses,
so she has no incentives to lie.

(4) And so on.

5.20 Definition: Amechanismφ is group strategy-proof if for eachhouse allocationproblem ⟨A,H,≻
⟩, there is no group of agentsB ⊆ A and preferences≻′

B such that

• φ[≻′
B ,≻−B ](a) %a φ[≻B ,≻−B ](a) for all a ∈ B and

• φ[≻′
B ,≻−B ](a0) ≻a0 φ[≻B ,≻−B ](a0) for some a0 ∈ B.

In words, a mechanism is group strategy-proof if no group of agents can jointly misreport pref-
erences in such a way to make some member strictly better off while no one in the group is
made worse off.

5.21 Theorem: The simple serial dictatorship induced by an ordering f is group strategy-proof.

Proof. An intuition is that the mechanism only uses preference information of an agent when it
is her turn to choose, so the best she can do is to report her true favorite remaining good as her
favorite choice. Whenever she does so, the subsequent part of the mechanism proceeds exactly
as when she reports true preferences.
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5.4 Neutrality

5.22 Letσ be a permutation (relabeling) of houses. Let≻σ be the preference profile where each house
h is renamed to σ(h). That is, g ≻σ

a h if and only if σ−1(g) ≻a σ
−1(h).

Definition: A mechanism φ is neutral if, for any house allocation problem and permutation σ,�

φ[≻σ](a) = σ
(
φ[≻](a)

)
for all a ∈ A.

M M

P P

σ

σ

φ φ

Figure 5.1

This means that the “real” outcome of a neutral mechanism is independent of the names of the
indivisible goods.

5.23 Example (Example in Svensson (1999)): Let A = {1, 2, 3} and H = {a, b, c}. Let φ be a
mechanism defined so that if a is the best element in H according to ≻2, then φ[≻](1) is the
best element in {b, c} according to ≻1, φ[≻](2) = a and φ[≻](3) is the remaining element. If
all other cases, φ[≻](1) is the best element in H according to ≻1, φ[≻](2) is the best element
inH \ {φ[≻](1)} according to≻2 and φ[≻](3) is the remaining element.

Hence, the mechanism φ is serially dictatorial for all preference profiles except for those where
individual 2 has a as the best element.

This mechanism is obviously not neutral—the element a has a special position.

Consider the following preference profile≻:

1 2 3
a a a
b b b
c c c

Table 5.1

Then the matching produced by φ is

µ =

[
1 2 3

b a c

]
.
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Now consider the permutation σ: σ(a) = b, σ(b) = c and σ(c) = a. Then σ
(
φ[≻](2)

)
= b.

On the other hand, the new preference profile≻σ is as follows:

1 2 3
b b b
c c c
a a a

Table 5.2

Then the matching produced by φ is

µ′ =

[
1 2 3

b c a

]
.

Thus, φ[≻σ](2) = c ̸= b = σ
(
φ[≻](2)

)
.

5.24 Example: One-sided DA is not neutral.

i j k a b
b a a i k
a b j i

k

Table 5.3

The matching produced by DA is

µ =

[
i j k

a ∅ b

]
.

If we exchange the labels of a and b, the problem becomes

i j k a b
a b b i k
b a j i

k

Table 5.4

The matching produced by DA is

µ =

[
i j k

a ∅ b

]
.

Thus, one-sided DA is not neutral.
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5.25 Definition: A mechanism φ is non-bossy if for any≻, a ∈ A and≻′
a,�

φ[≻](a) = φ[≻′
a,≻−a](a) implies φ[≻] = φ[≻′

a,≻−a].

5.26 Lemma (Lemma 1 in Svensson (1999)): Letφ be a strategy-proof and non-bossymechanism,≻
and≻′ two preference profiles such that for h ∈ H and a ∈ A, φ[≻](a) ≻′

a h if φ[≻](a) ≻a h.
Then φ[≻] = φ[≻′].

Proof. Step 1: To prove φ[≻] = φ[≻′
a,≻−a].

(1) From strategy-proofness, it follows that

φ[≻](a) %a φ[≻′
a,≻−a](a).

(2) By the assumption of the lemma,

φ[≻](a) %′
a φ[≻′

a,≻−a](a).

(3) Strategy-proofness also implies that

φ[≻′
a,≻−a](a) %′

a φ[≻](a).

(4) Hence
φ[≻](a) = φ[≻′

a,≻−a](a).

(5) Finally non-bossiness implies

φ[≻] = φ[≻′
a,≻−a].

Step 2:

(6) For ≻ and ≻′, let ≻r= (≻′
1,≻′

2, . . . ,≻′
r−1,≻r, . . . ,≻n) a preference profile for each

r = 1, 2, . . . , n+ 1.

(7) Then it follows that

φ[≻r] = φ[≻r,≻r
−r] = φ[≻′

r,≻r
−r] = φ[≻r+1].

(8) Since φ[≻] = φ[≻1] and φ[≻′] = φ[≻n+1], they are same.
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5.27 Theorem (Theorem 1 in Svensson (1999)): A mechanism φ is strategy-proof, non-bossy and
neutral mechanism if and only if it is a simple serial dictatorship.

Proof. It suffices to prove the “only if ” direction.

Step 1: Consider the preference profile ≻ where all agents share the common preference and
h1 ≻a h2 ≻a · · · ≻a hn for all a ∈ A.

(1) Let f : {1, 2, . . . , n} → A be an ordering given by

f(j) = (φ[≻])−1(hj).

(2) Clearly, φ[≻](f(j)) is the best element in

H \
{
φ[≻](f(1)), φ[≻](f(2)), . . . , φ[≻](f(j − 1))

}
,

according to the common preference.

(3) Then it is obvious that φ and φf coincide on the set of such preference profiles.

Step 2: Consider the preference profile ≻′ where all agents share the common preference and
hi1 ≻′

a hi2 ≻′
a · · · ≻′

a hin for all a ∈ A.

(4) Define a permutation σ onH as follows: σ(hj) = hij for all hj .

(5) Then≻′=≻σ .

(6) Neutrality implies φ[≻′](a) = φ[≻σ](a) = σ
(
φ[≻](a)

)
for all a ∈ A.

(7) Therefore,

φ[≻′](a) = hij ⇐⇒ σ
(
φ[≻](a)

)
= hij ⇐⇒ φ[≻](a) = σ−1(hij ) = hj ⇐⇒ a = f(j),

that is, agent a gets the j-th favorite house under φ[≻′] if and only if she is the j-th turn
to choose in the procedure φf .

(8) Thus, φ[≻′](a) = hij ⇐⇒ φf [≻′] = hij .

(9) Hence, φ = φf coincide on the set of such preference profiles.

Step 3: Consider a general preference profile≻′.

(10) Define {hij}nj=1 according to:

hij is the best element inH \ {hi1 , hi2 , . . . , hij−1
} according to ≻′

f(j) .



Do
No
t C
op
y o
r D
istr
ibu
te

5.5. Consistency 112

(11) Let≻′′ be a preference profile where all agents share the common preference, and satisfy:

hi1 ≻′′
a hi2 ≻′′

a · · · ≻′′
a hin .

(12) From Step 2, φ[≻′′] = φf [≻′′].

(13) Clearly, φf [≻′′](f(j)) = hij = φf [≻′](f(j)) for each j = 1, 2, . . . , n. Thus, φf [≻′′] =

φf [≻′].

(14) It remains to show that φ[≻′′] = φ[≻′].

(15) Let h ∈ H and hij = φf [≻′′](f(j)) = φ[≻′′](f(j)) %′′
f(j) h.

(16) Then h ∈ H \ {hi1 , hi2 , . . . , hij−1
}.

(17) By the definition of {hij}, we have

φ[≻′′](f(j)) = hij %′
f(j) h.

(18) By Lemma 5.26, we have φ[≻′′] = φ[≻′].

5.28 Corollary: A mechanism φ is group strategy-proof and neutral mechanism if and only if it is a
simple serial dictatorship.

Proof. It follows immediately from Theorem 8.18 and Theorem 5.27.

5.5 Consistency

5.29 For any problem Γ = ⟨A,H,≻⟩, any non-empty subset A′ of A, and any allocation µ, the
reduced problem of Γ with respect to A′ under µ is

rµA′(Γ) = ⟨A′, µ(A′), (≻i |µ(A′))i∈A′⟩,

where µ(A′) is the remaining houses after the agents in A \ A′ have left with their assigned
houses, and≻i |µ(A′) is the restriction of agent i’s preference to the remaining houses.

5.30 Definition: A mechanism φ is consistent1 if for each problem Γ = ⟨A,H,≻⟩ and for each�

non-empty subset A′ of A, one has

φ[Γ](a) = φ[r
φ[Γ]
A′ (Γ)](a) for each a ∈ A′.

1Amechanism is consistent if the assignment is unchanged if the mechanism is implemented on a sub-problem after one
removes some agents and their assignment.
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Amechanismφ is pairwise consistent if for any problem Γ = ⟨A,H,≻⟩, any non-empty subset
A′ of A with even cardinality, and any allocation µ, one has

φ[Γ](a) = φ[r
φ[Γ]
A′ (Γ)](a) for each a ∈ A′.

5.31 Example: DA is not consistent.

i j k a b
b a a i k
a b j i

k

Table 5.5

5.32 Definition: In the problem Γ = ⟨A,H,≻⟩, the allocation µ′ strongly Pareto dominates µ if�

every agent in A is strictly better off under µ′ than under µ.

A mechanism is weakly Pareto optimal if it never chooses allocations that are strongly Pareto
dominated.

5.33 Theorem (Corollary 1 in Ergin (2000)): If a mechanism is weakly Pareto optimal, pairwise con-�

sistent, and pairwise neutral, then it is a simple serial dictatorship.

Proof. Omitted.

5.6 Random house allocation

5.34 Question: How about the fairness of simple serial dictatorship and core from assigned endow-
ments?

5.35 A lottery p is a probability distribution over matchings,

p = (p1, p2, . . . , pn!),

with
∑

k pk = 1 and pk ≥ 0 for all k.

We denote the lottery that assigns probability 1 to matching µ by pµ. Let ∆(M) be the set of
all lotteries.

5.36 Random priority (or random serial dictatorship):

Phase 1: Draw each orderings of the agents with equal probability.
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Phase 2: Run simple serial dictatorship according to the selected ordering.

Mathematically, random priority is defined as

RP[≻] = 1

n!

∑
f∈F

pSD
f [≻] for each≻,

where pSDf [≻] is the lottery that assigns probability 1 to matching SDf [≻].

5.37 Core from random endowments:

Phase 1: Draw each initial assignment with equal probability.

Phase 2: Run TTC according to the selected initial assignment.

Mathematically, core from random endowments is defined as

φcre[≻] = 1

n!

∑
µ∈M

pTTC
µ[≻] for each≻,

where pTTCµ[≻] is the lottery that assigns probability 1 to matching TTCµ[≻].

5.38 Theorem (Theorem 2 in Abdulkadiroğlu and Sönmez (1998)): Random priority and core from
random endowments coincide.

Proof. We have n! simple serial dictatorships and n! cores from assigned endowments. By The-
orem 5.9 the members of both classes select Pareto efficient matchings and by Theorem 5.13 the
number of simple serial dictatorships selecting a particular Pareto efficient matching ν is the
same as the number of cores from assigned endowments selecting ν. Therefore random serial
dictatorship which randomly selects a simple serial dictatorship with uniform distribution leads
to the same lottery as the core from random endowments which randomly selects a core from
assigned endowment with uniform distribution.
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House allocation with existing tenants

Contents
6.1 The former model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Real-lief mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1 Random serial dictatorship with squatting rights . . . . . . . . . . . . . . 117

6.2.2 Random serial dictatorship with waiting list . . . . . . . . . . . . . . . . . 117

6.2.3 MIT-NH4 mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Top trading cycles algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 You request my house—I get your turn algorithm . . . . . . . . . . . . . . . . . 126

6.5 Axiomatic characterization of YRMH-IGYT . . . . . . . . . . . . . . . . . . . . 133

6.6 Random house allocation with existing tenants . . . . . . . . . . . . . . . . . . 133

6.1 The former model

6.1 Motivated by real-life on-campus housing practices, Abdulkadiroğlu and Sönmez (1999) intro-
duced a house allocation problem with existing tenants: A set of houses shall be allocated to a
set of agents by a centralized clearing house. Some of the agents are existing tenants, each of
whom already occupies a house, referred to as an occupied house, and the rest of the agents
are newcomers. Each agent has strict preferences over houses. In addition to occupied houses,
there are vacant houses. Existing tenants are entitled not only to keep their current houses but
also to apply for other houses.

The model is a generalization of both the housing market and the house allocation problem.

115



Do
No
t C
op
y o
r D
istr
ibu
te

6.1. The former model 116

6.2 Definition: Ahouse allocation problemwith existing tenants, denoted by ⟨AE , AN ,HO,HV ,≻�

⟩, consists of

• a finite set of existing tenants AE ,

• a finite set of new applicants AN ,

• a finite set of occupied housesHO = {hi : ai ∈ AE},

• a finite set of vacant housesHV , and

• a strict preference profile≻= (≻i)i∈AE∪AN
.

LetA = AE ∪AN denote the set of all agents andH = HO ∪HV ∪ {h0} denote the set of all
houses plus the null house.

Agent i’s strict preference≻i is onH . Let P be the set of all strict preferences onH . Let %i be
agent i’s induced weak preference. We assume that the null house h0 is the last choice for each
agent.

6.3 Definition: A matching µ : A→ H is an assignment of houses to agents such that�

• every agent is assigned one house, and

• only the null house h0 can be assigned to more than one agent.

For any agent a ∈ A, we refer to µ(a) as the assignment of agent i under µ. LetM be the set of
all matchings.

6.4 Definition: A direct mechanism is a procedure that assigns amatching for each house allocation�

problem with existing tenants ⟨AE , AN ,HO,HV ,≻⟩.

6.5 Definition: A matching is Pareto efficient if there is no other matching that makes all agents�

weakly better off and at least one agent strictly better off.

A mechanism is Pareto efficient if it always selects a Pareto efficient matching for each house
allocation problem with existing tenants.

6.6 Definition: A matching is individually rational if no existing tenant strictly prefers his endow-�

ment to his assignment.

A mechanism is individually rational if it always selects an individually rational matching for
each house allocation problem with existing tenants.

6.7 Definition: A mechanism φ is strategy-proof if for each house allocation problem with existing�

tenants ⟨AE , AN ,HO,HV ,≻⟩, for each a ∈ A, for each≻′
a, we have

φ[≻](a) %a φ[≻′
a,≻−a](a).
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6.2 Real-lief mechanisms

6.8 Given a groupB ⊆ Aof agents, an ordering of these agents is a one-to-one function f : {1, 2, . . . , |B|} →
B.

Given a group B ⊆ A of agents and a set G ⊆ H of houses, the serial dictatorship induced by
ordering f is defined as follows: The agent who is ordered first under f gets her top choice from
G, the next agent gets her top choice among remaining houses, and so on.

6.2.1 Random serial dictatorship with squatting rights

6.9 Random serial dictatorship with squatting rights:�

Phase 1: Every existing tenant a ∈ AE reports whether she is “In” or “Out” and a strict pref-
erence≻a.

Every new applicant a ∈ AN reports a strict preference≻a.

Phase 2: Every existing tenant a ∈ AE who reports “Out” is assigned her current house.

Phase 3: LetB = AN∪{a ∈ AE | a chooses “In”} andG = HV ∪{hi ∈ HO | ai chooses “In”}.

(1) An ordering f of agents inB is decided. The ordering may be randomly chosen from
a given distribution of orderings or may favor some subgroup of agents (for example,
seniors over juniors).

(2) Houses in G are assigned to these agents based on the simple serial dictatorship in-
duced by f under the reported preference profile.

6.10 Problems of random serial dictatorship with squatting rights:

• Since this algorithm does not guarantee each existing tenant a house that is at least as good
as her own, it may be not individual rational.

• Some of agents may choose to stay “Out” (i.e., use their squatting rights), and this may
result in the loss of potentially large gains from trade. Thus, the resulting matching may
not be Pareto efficient.

6.11 Exercise: How about the strategy-proofness of the random serial dictatorship with squatting
rights?

6.2.2 Random serial dictatorship with waiting list

6.12 Random serial dictatorship with waiting list, induced by a given ordering f of agents:�
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Start: Define the set of available houses for Step 1 to be the set of vacant houses.
Define the set of acceptable houses for agent a to be

• the set of all houses in case agent a is a new applicant, and
• the set of all houses better than her current house ha in case she is an existing tenant.

Step 1: The agent with the highest priority among those who have at least one acceptable avail-
able house is assigned her top available house and removed from the process.
Her assignment is deleted from the set of available houses for Step 2. In case she is an
existing tenant, her current house becomes available for Step 2.

Step k: The set of available houses for Step k is defined at the end of Step (k − 1).
The agent with the highest priority among all remaining agents who has at least one ac-
ceptable available house is assigned her top available house and removed from the process.
Her assignment is deleted from the set of available houses for Step (k + 1). In case she is
an existing tenant, her current house becomes available for Step (k + 1).

End: If there is at least one remaining agent and one available house that is acceptable to at least
one of them, then the process continues.
When the process terminates, those existing tenants who are not re-assigned keep their
current houses.

6.13 Example: Let AE = {a1, a2, a3}, AN = ∅, HO = {h1, h2, h3}, and HV = {h4}. Here the
existing tenant ai occupies the house hi for i = 1, 2, 3.

Let the agents be ordered as a1-a2-a3 and let the preferences be as follows:

a1 a2 a3
h2 h3 h1
h3 h1 h4
h1 h2 h3
h4 h4 h2
h0 h0 h0

Table 6.1

Start: The set of available houses is {h4}. The sets of acceptable available houses for agents a1
and a2 both are ∅. The set of acceptable available houses for agent a3 is {h4}.

Step 1: h4 is acceptable to only a3. So, a3 is assigned h4. The set of available houses becomes
{h3}.

Step 2: h3 is acceptable to both a1 and a2. Since a1 has the higher priority, a1 is assigned h3.
The set of available houses becomes {h1}.

Step 3: h1 is acceptable to a2, then a2 is assigned h1.
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End: Since there are no remaining agents at the end of Step 3, the process terminates and the
final matching is [

a1 a2 a3

h3 h1 h4

]
.

6.14 Random serial dictatorship with waiting list is inefficient.

Consider the example in the previous item. The outcome is Pareto dominated by[
a1 a2 a3

h2 h3 h1

]
.

6.15 Exercise: Is randomserial dictatorshipwithwaiting list individually rational and strategy-proof?

6.16 Question: How about the algorithm when agents are not removed?

6.2.3 MIT-NH4 mechanism

6.17 The following mechanism is used at the residence NH4 of MIT.

6.18 MIT-NH4 mechanism, given an ordering f , works as follows:�

Phase 1: The first agent is tentatively assigned his or her top choice among all houses, the next
agent is tentatively assigned his top choice among the remaining houses, and so on, until
a squatting conflict occurs.

Phase 2: A squatting conflict occurs if it is the turn of an existing tenant but every remaining
house is worse than his or her current house. That means someone else, the conflicting
agent, is tentatively assigned the existing tenant’s current house.

When this happens

(1) the existing tenant is assigned his or her current house and removed from the process,
and

(2) all tentative assignments starting with the conflicting agent and up to the existing
tenant are erased.

At this point the squatting conflict is resolved and the process starts over again with the
conflicting agent. Every squatting conflict that occurs afterwards is resolved in a similar
way.

End: The process is over when there are no houses or agents left. At this point all tentative
assignments are finalized.
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6.19 Example: Let AE = {a1, a2, a3, a4}, AN = {a5}, HO = {h1, h2, h3, h4} and HV = {h5}.
Here the existing tenant ak occupies the house hk for k = 1, 2, 3, 4. Let the ordering f order
the agents as a1-a2-a3-a4-a5 and let the preferences be as follows:

a1 a2 a3 a4 a5
h3 h4 h5 h3 h4
h4 h5 h3 h5 h5
h5 h2 h4 h4 h3
h1 h3 h2 h2 h1
h2 h1 h1 h1 h2
h0 h0 h0 h0 h0

Table 6.2

Step 1: First agent a1 is tentatively assigned h3, next agent a2 is tentatively assigned h4, next
agent a3 is tentatively assigned h5, and next its agent a4’s turn and a squatting conflict occurs.
The conflicting agent is agent a2 who was tentatively assigned h4. Agent a2’s tentative assign-
ment, as well as that of agent a3, is erased. Agent a4 is assigned his or her current house h4 and
removed from the process. This resolves the squatting conflict.

Step 2: The process starts over with the conflicting agent a2. Agent a2 is tentatively assigned
h5 and next it is agent a3’s turn and another squatting conflict occurs. The conflicting agent
is agent a1 who was tentatively assigned h3. His tentative assignment, as well as that of agent
a2 are erased. Agent a3 is assigned his current house h3 and removed from the process. This
resolves the second squatting conflict.

Step 3: The process starts over with the conflicting agent a1. He is tentatively assigned h5, next
agent a2 is tentatively assigned h2 and finally agent a5 is tentatively assigned h1. At this point
all tentative assignments are finalized.

Therefore the final matching is [
a1 a2 a3 a4 a5

h5 h2 h3 h4 h1

]
.

6.20 While it is innovative, the MIT-NH4 mechanism does not resolve the inefficiency problem.

Consider the example in the previous item, the outcome is Pareto dominated by both[
a1 a2 a3 a4 a5

h3 h2 h5 h4 h1

]
and

[
a1 a2 a3 a4 a5

h4 h2 h5 h3 h1

]
.

6.21 Exercise: Is the MIT-NH4 mechanism individually rational and strategy-proof?
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6.22 Question: Is there any other way to resolve the squatting conflict? In particular, how about the
way that a4 is assigned h5? Hint: Compare with TTCf in 6.23.

6.3 Top trading cycles algorithm

6.23 Top trading cycles algorithm, induced by a given ordering f of agents.�

Step 1: Define the set of available houses for this step to be the set of vacant houses.

• Each agent a points to her favorite house under her reported preference.
• Each occupied house points to its occupant.
• Each available house points to the agent with highest priority (i.e., f(1)).

Since the numbers of agents and houses are finite, there is at least one cycle, here a cycle is
an ordered list of agents and houses (j1, j2, . . . , jk) where j1 points to j2, j2 points to j3,
…, jk points to j1.
Every agent who participates in a cycle is assigned the house that she points to, and re-
moved with her assignment.
Whenever there is an available house in a cycle, the agent with the highest priority, f(1),
is also in the same cycle. If this agent is an existing tenant, then her house hf(1) can not
be in any cycle and it becomes available for Step 2.
All available houses that are not removed remain available.

Step k: The set of available houses for Step k is defined at the end of Step (k − 1).

• Each remaining agent a points to her favorite house among the remaining houses
under her reported preference.

• Each remaining occupied house points to its occupant.
• Each available house points to the agent with highest priority among the remaining

agents.

There is at least one cycle. Every agent in a cycle is assigned the house that she points to
and removed with her assignment.
If there is an available house in a cycle then the agent with the highest priority in this step
is also in the same cycle. If this agent is an existing tenant, then her house can not be in
any cycle and it becomes available for Step (k + 1).
All available houses that are not removed remain available.

End: If there is at least one remaining agent and one remaining house, then the process con-
tinues.

We use TTCf to denote the top trading cycles mechanism induced by the ordering f .
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6.24 Example: Let AE = {a1, a2, a3, a4}, AN = {a5}, HO = {h1, h2, h3, h4} and HV =

{h5, h6, h7}. Here the existing tenant ai occupies the house hi for i = 1, 2, 3, 4. Let the order-
ing f order the agents as a1-a2-a3-a4-a5 and let the preferences be as follows:

a1 a2 a3 a4 a5
h2 h7 h2 h2 h4
h6 h1 h1 h4 h3
h5 h6 h4 h3 h7
h1 h5 h7 h6 h1
h4 h4 h3 h1 h2
h3 h3 h6 h7 h5
h7 h2 h5 h5 h6
h0 h0 h0 h0 h0

Table 6.3

Step 1:

a1 h1 a2 h2

a3

h3

a4h4a5h5

h6

h7

Figure 6.1: Step 1

The set of available houses in Step 1 inHV = {h5, h6, h7}. The only cycle that is formed at this
step is

(a1, h2, a2, h7).

Therefore a1 is assigned h2 and a2 is assigned h7.

Step 2: The reduced preferences are as follows:
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a3 a4 a5
h1 h4 h4
h4 h3 h3
h3 h6 h1
h6 h1 h5
h5 h5 h6
h0 h0 h0

Table 6.4

a1 h1 a2 h2

a3

h3

a4h4a5h5

h6

h7

Figure 6.2: Step 2

Since a1 leaves in Step 1, house h1 becomes available in Step 2. Therefore the set of available
houses for Step 2 is {h1, h5, h6}. The available houses h1, h5 and h6 all point to agent a3, now
the highest ranking agent. There are two cycles (a3, h1) and (a4, h4). Therefore a3 is assigned
h1 and a4 is assigned her own house h4.

Step 3: The reduced preferences are as follows:

a5
h3
h5
h6
h0

Table 6.5
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a1 h1 a2 h2

a3

h3

a4h4a5h5

h6

h7

Figure 6.3: Step 3

Since a3 leaves in Step 2, house h3 becomes available for Step 3. Therefore the set of available
houses for Step 3 is {h3, h5, h6}. The available houses h3, h5, and h6 all point to the only
remaining agent a5. The only cycle is (a5, h3). Therefore a5 is assigned h3.

There are no remaining agents so the algorithm terminates and the matching it induces is:[
a1 a2 a3 a4 a5

h2 h7 h1 h4 h3

]

6.25 Theorem (Proposition 1 in Abdulkadiroğlu and Sönmez (1999)): For any ordering f , the in-�

duced top trading cycles mechanism TTCf is Pareto efficient.

Proof. (1) Consider the top trading cycles algorithm. Any agent who leaves at Step 1 is as-
signed his or her top choice and cannot be made better off.

(2) Any agent who leaves at Step 2 is assigned his or her top choice among those houses re-
maining at Step 2 and since the preferences are strict he or she cannot be made better off
without hurting someone who left at Step 1.

(3) Proceeding in a similar way, no agent can be made better off without hurting someone
who left at an earlier step. Therefore the mechanism TTCf is Pareto efficient.

6.26 Theorem (Proposition 2 in Abdulkadiroğlu and Sönmez (1999)): For any ordering f , the in-�

duced top trading cycles mechanism TTCf is individually rational.

Proof. (1) Consider the top trading cycles algorithm. For any existing tenant a ∈ AE , his or
her house ha points to him or her until he or she leaves.
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(2) Therefore the assignment of a cannot be worse than his endowment ha.

6.27 Theorem (Theorem 1 in Abdulkadiroğlu and Sönmez (1999)): For any ordering f , the induced�

top trading cycles mechanism TTCf is strategy-proof.

Proof. The proof is analogous to the proof of Theorem 4.27.

6.28 There is another version of TTC.

Top trading cycles algorithm, induced by a given initial endowment µ.�

Phase 1: Construct an initial allocation µ by

• assigning each existing tenant her own house,
• randomly assigning the vacant houses to newcomers with uniform distribution.

Phase 2: Run TTC for the induced housing market to determine the final outcome.

We use TTCµ to denote the top trading cycles mechanism induced by the initial endowment µ.

6.29 Unless otherwise mentioned, TTC always refers to TTC with an ordering rather than TTC with
an initial endowment.

6.30 It is clear that TTCµ is Pareto efficient, individual rational, and strategy-proof.

6.31 Exercise: What is the difference between TTCf and TTCµ.

Hint: There is a hidden bias in TTCµ. In TTCµ, an initial allocation is constructed by assigning
each existing tenant her current house and randomly assigning vacant houses to newcomers.
This might be interpreted as granting property rights of vacant houses to newcomers. Therefore
existing tenants who also have claims on vacant houses give up these claims under TTCµ.

Consider the following house allocation with existing tenants: AE = {a1, a2}, AN = {a3},
HO = {h1, h2}, andHV = {h3}. Here the existing tenantai occupies the househi for i = 1, 2.
Let the agents be ordered as a1 − a2 − a3 and let the preferences be as follows:

a1 a2 a3
h3 h3 h3
h2 h2 h2
h1 h1 h1

Table 6.6

Then TTCf [≻] =

[
a1 a2 a3

h3 h2 h1

]
.
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On the other hand, the unique possible initial endowmentµ is

[
a1 a2 a3

h1 h2 h3

]
, and the resulting

matching TTCµ[≻] is

[
a1 a2 a3

h1 h2 h3

]
. For agent a1, the outcome under TTCf [≻] is better than

the outcome under TTCµ[≻].

6.32 Theorem (Theorem 2 in Abdulkadiroğlu and Sönmez (1999)): Let f be an ordering, and φ a
mechanism that is Pareto efficient, individually rational, and strategy-proof. Ifφ[≻](f(i)) ≻f(i)

TTCf [≻](f(i)) for some≻ and i, then there exists≻′ and j < i such that TTCf [≻′](f(j)) ≻′
f(j)

φ[≻′](f(j)).

6.33 Interpretation:

• As far as agent f(1) is concerned, TTCf assigns him a house that is at least as good as the
assignment of any Pareto efficient, individual rational, and strategy-proof mechanism at
all preference profiles.

• Next consider all Pareto efficient, individual rational, and strategy-proof mechanisms that
perform equally well for agent f(1). TTCf assigns agent f(2) a house that is at least as
good as the assignment of any such mechanism at all preference profiles.

• In general, consider all Pareto efficient, individual rational, and strategy-proof mecha-
nisms that perform equally well for agents f(1), f(2), …, f(k) where k < |A|. TTCf

assigns agent f(k+1) a house that is at least as good as the assignment of any such mech-
anism at all preference profiles.

6.34 Remark: There are many applications where agents are naturally ordered based on their se-
niority. Let f denote this ordering. Then Theorem 6.32 shows that there is no Pareto efficient,
individually rational and strategy-proof mechanism which always better respects the seniority
of the agents than TTCf .

6.4 You request my house—I get your turn algorithm

6.35 You request my house—I get your turn (YRMH-IGYT) algorithm, induced by a given ordering�

f :

Phase 1: Assign the first agent her top choice, the second agent her top choice among the re-
maining houses, and so on, until someone demands the house of an existing tenant.

Phase 2: If at that point the existing tenant whose house is requested is already assigned another
house, then do not disturb the procedure.
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Otherwise, modify the remainder of the ordering by inserting this existing tenant before
the requestor at the priority order and proceed with the Phase 1 through this existing
tenant.
Similarly, insert any existing tenant who is not already served just before the requestor in
the priority order once her house is requested by an agent.

Phase 3: If at any point a cycle forms, it is formed by exclusively existing tenants and each of
them requests the house of the tenant who is next in the cycle. A cycle is an ordered list
(h1, a1, . . . , hk, ak) of occupied houses and existing tenants where agent a1 demands the
house a2, h2, agent a2 demands the house of agent a3, h3, . . . , agent ak demands the
house of a1, h1.
In such case, remove all agents in the cycle by assigning them the house they demand and
proceed similarly.

6.36 The YRMH-IGYT algorithm generalizes simple serial dictatorship and TTC:

• The YRMH-IGYT algorithm coincides with simple serial dictatorship when there are no
existing tenants: Without existing tenants, the “you request my house …” contingency
simply does not happen, so the mechanism coincides with simple serial dictatorship.

• The YRMH-IGYT algorithm coincides with TTC when all agents are existing tenants and
there is no vacant house: In this case, an agent’s request always points to a house owned
by someone, and the assignment of a house happens if and only if there is a cycle made of
existing tenants.

6.37 Example.

• AE = {a1, a2, . . . , a9} is the set of existing tenants,

• AN = {a10, a11, . . . , a16} is the set of new applicants, and

• HV = {h10, h11, . . . , h16} is the set of vacant houses.

Suppose that each existing tenant ak occupies hk for each k = 1, 2, . . . , 9. Let the preference
profile≻ be given as:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h15 h3 h1 h2 h9 h6 h7 h6 h11 h7 h2 h4 h6 h8 h1 h5

h4 h3 h12 h3 h4 h14 h13
h12 h16
h10

Table 6.7

Let f = (a13, a15, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9) be the ordering of
the agents.
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a1 a2 a3 a4 a5 a6 a7 a8 a9a10a16a12a14a11a15a13

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

Figure 6.4: Step 1

a1 a2 a3 a4 a5a6 a7 a8 a9a10a16a12a14a11a15a13

h1 h2 h3 h4 h5h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

Figure 6.5: Step 2

a1 a2 a3 a4 a5��ZZa6 a7 a8 a9a10a16a12a14a11a15a13

h1 h2 h3 h4 h5��@@h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

Figure 6.6: Step 3

a1 a2 a3 a4 a5��ZZa6 a7 a8 a9a10a16a12a14a11a15��HHa13

h1 h2 h3 h4 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14 h15 h16

Figure 6.7: Step 4

a1 a2 a3 a4 a5��ZZa6 a7 a8 a9a10a16a12a14a11a15��HHa13

h1 h2 h3 h4 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14 h15 h16

Figure 6.8: Step 5



Do
No
t C
op
y o
r D
istr
ibu
te

6.4. You request my house—I get your turn algorithm 129

��ZZa1 a2 a3 a4 a5��ZZa6 a7 a8 a9a10a16a12a14a11��HHa15��HHa13

��@@h1 h2 h3 h4 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14��HHh15 h16

Figure 6.9: Step 6

��ZZa1 a2 a3 a4 a5��ZZa6 a7 a8 a9a10a16a12a14a11��HHa15��HHa13

��@@h1 h2 h3 h4 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14��HHh15 h16

Figure 6.10: Step 7

��ZZa1 a2a3 a4 a5��ZZa6 a7 a8 a9a10a16a12a14a11��HHa15��HHa13

��@@h1 h2h3 h4 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14��HHh15 h16

Figure 6.11: Step 8

��ZZa1 a2��ZZa3 a4 a5��ZZa6 a7 a8 a9a10a16a12a14a11��HHa15��HHa13

��@@h1 h2��@@h3 h4 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14��HHh15 h16

Figure 6.12: Step 9
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��ZZa1 a2��ZZa3 a4 a5��ZZa6 a7 a8 a9a10a16a12a14a11��HHa15��HHa13

��@@h1 h2��@@h3 h4 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14��HHh15 h16

Figure 6.13: Step 10

��ZZa1 ��ZZa2��ZZa3 ��ZZa4 a5��ZZa6 a7 a8 a9a10a16a12a14a11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14��HHh15 h16

Figure 6.14: Step 11

��ZZa1 ��ZZa2��ZZa3 ��ZZa4 a5��ZZa6 a7 a8 a9a10a16a12a14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 h5��@@h6 h7 h8 h9 h10 h11 h12��HHh13 h14��HHh15 ��HHh16

Figure 6.15: Step 12

��ZZa1 ��ZZa2��ZZa3 ��ZZa4 a5��ZZa6 a7a8 a9a10a16a12a14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 h5��@@h6 h7h8 h9 h10 h11 h12��HHh13 h14��HHh15 ��HHh16

Figure 6.16: Step 13

��ZZa1 ��ZZa2��ZZa3 ��ZZa4 a5��ZZa6 a7��ZZa8 a9a10a16a12��HHa14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 h5��@@h6 h7��@@h8 h9 h10 h11��HHh12��HHh13 h14��HHh15 ��HHh16

Figure 6.17: Step 14
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��ZZa1 ��ZZa2��ZZa3 ��ZZa4 a5��ZZa6 a7��ZZa8 a9a10a16��HHa12��HHa14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 h5��@@h6 h7��@@h8 h9 h10 h11��HHh12��HHh13 ��HHh14��HHh15 ��HHh16

Figure 6.18: Step 15

��ZZa1 ��ZZa2��ZZa3 ��ZZa4 a5��ZZa6 a7��ZZa8 a9a10a16��HHa12��HHa14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 h5��@@h6 h7��@@h8 h9 h10 h11��HHh12��HHh13 ��HHh14��HHh15 ��HHh16

Figure 6.19: Step 16

��ZZa1 ��ZZa2��ZZa3 ��ZZa4 a5��ZZa6 a7��ZZa8 a9 a10a16��HHa12��HHa14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 h5��@@h6 h7��@@h8 h9 h10 h11��HHh12��HHh13 ��HHh14��HHh15 ��HHh16

Figure 6.20: Step 17

��ZZa1 ��ZZa2��ZZa3 ��ZZa4 ��ZZa5��ZZa6 a7��ZZa8 ��ZZa9 a10��HHa16��HHa12��HHa14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 ��@@h5��@@h6 h7��@@h8 ��@@h9 h10��HHh11��HHh12��HHh13 ��HHh14��HHh15 ��HHh16

Figure 6.21: Step 18
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��ZZa1 ��ZZa2��ZZa3 ��ZZa4 ��ZZa5��ZZa6 a7��ZZa8 ��ZZa9 a10��HHa16��HHa12��HHa14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 ��@@h5��@@h6 h7��@@h8 ��@@h9 h10��HHh11��HHh12��HHh13 ��HHh14��HHh15 ��HHh16

Figure 6.22: Step 19

��ZZa1 ��ZZa2��ZZa3 ��ZZa4 ��ZZa5��ZZa6 ��ZZa7��ZZa8 ��ZZa9 a10��HHa16��HHa12��HHa14��HHa11��HHa15��HHa13

��@@h1 ��@@h4��@@h3 ��@@h2 ��@@h5��@@h6 ��@@h7��@@h8 ��@@h9 h10��HHh11��HHh12��HHh13 ��HHh14��HHh15 ��HHh16

Figure 6.23: Step 20

The outcome of the algorithm is[
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

h15 h4 h3 h2 h9 h6 h7 h12 h11 h10 h16 h14 h13 h8 h1 h5

]
.

6.38 Theorem (Theorem 3 in Abdulkadiroğlu and Sönmez (1999)): For a given ordering f , the�

YRMH-IGYT algorithm yields the same outcome as the top trading cycles algorithm.

Proof. For any set B of agents and set G of houses remaining in the algorithm, YRMH-IGYT
algorithm assigns the next series of houses in one of two possible ways.

• Case 1: There is a sequence of agents a1, a2, . . . , ak (which may consist of a single agent)
where agent a1 has the highest priority inB and demands house of a2, agent a2 demands
house of a3, …, agent ak−1 demands house of ak, and ak demands an available house
h. At this point agent ak is assigned house h, the next agent ak−1 is assigned house hk
(which just became available), …, and finally agent a1 is assigned house h2. Note that the
ordered list (h, a1, h2, a2, . . . , hk, ak) is a (top trading) cycle for the pair (B,G).

• Case 2: There is a loop (a1, a2, . . . , ak) of agents. When that happens agent a1 is assigned
the house of a2, agent a2 is assigned house of a3, …, agent ak is assigned house of a1. In
this case (h1, a1, h2, a2, . . . , hk, ak) is a (top trading) cycle for the pair (B,G).

Hence the YRMH-IGYT algorithm locates a cycle and implements the associated trades for any
sets of remaining agents and houses.
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6.5 Axiomatic characterization of YRMH-IGYT

6.39 Let σ : H → H be a permutation for vacant houses. That is, σ is a bijection such that σ(h) = h

for any h ∈ HO ∪ {h0}.

Given a preference profile≻, let≻σ be a preference profile where σ is a permutation for vacant
houses. That is, g ≻σ

a h if and only if σ−1(g) ≻a σ
−1(h).

6.40 Definition: A mechanism is weakly neutral if labeling of vacant houses has no effect on the�

outcome of the mechanism.

Formally, a mechanism φ is weakly neutral if for any house allocation problem with existing
tenants and any permutation for vacant houses, we have

φ[≻σ](a) = σ
(
φ[≻](a)

)
for any a ∈ A.

6.41 For any problem Γ = ⟨AE , AN ,HO,HV ,≻⟩, any A′ ⊆ A, anyH ′ ⊆ H , and any matching µ,
the reduced problem of Γ with respect to A′ andH ′ under µ is

rµA′,H′ [Γ] = ⟨A′
E , A

′
N ,H

′
O,H

′
V , (≻a |H′)a∈A′⟩

when
(
µ(A \ A′) ∪ (H \ H ′)

)
∩ {ha}a∈A′

E
= ∅, where A′

E = A′ ∩ AE , A′
N = A′ ∩ AN ,

H ′
O =

(
H ′ \ µ(A \A′)

)
∩HO ,H ′

V =
(
H ′ \ µ(A \A′)

)
∩HV , and≻a |H′ is the restriction

of agent i’s preference to the remaining houses.

6.42 Definition: A mechanism φ is consistent if for any problem Γ = ⟨AE , AN ,HO,HV ,≻⟩, any�

A′ ⊆ A, anyH ′ ⊆ H , and any matching µ, one has

φ[Γ](a) = φ
[
r
φ[Γ]
A′,H′(Γ)

]
(a) for each a ∈ A′.

6.43 Theorem (Theorem 1 in Sönmez and Ünver (2010)): A mechanism is Pareto efficient, individ-�

ually rational, strategy-proof, weakly neutral, and consistent if and only if it is a YRMH-IGYT
mechanism.

Proof. Omitted.

6.6 Random house allocation with existing tenants

6.44 Here we assume that |AE | = n and |AN | = |HV | = m.
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6.45 LetM∗ = {µ ∈ M | µ(a) = ha for all a ∈ AE} be the set of matchings which assign each�

existing tenant her current house.

Core from random endowments, φcre, is defined as

φcre =
1

m!

∑
µ∈M∗

TTCµ .

6.46 Let F∗ = {f is an ordering of agents | f−1(a) < f−1(a′) for all a ∈ AN and a′ ∈ AE}.

Define a new mechanism as follows

ψ =
1

n!m!

∑
f∈F∗

TTCf .

6.47 Theorem (Theorem 1 in Sönmez and Ünver (2005)): φcre and ψ are equivalent.

Proof. Omitted.

6.48 The TTC induced by initial endowments is equivalent to an extreme case of TTC induced by or-
derings where newcomers are randomly ordered first and existing tenants are randomly ordered
next.

6.49 Question: Let F be the set of all orderings. Are 1
(m+n)!

∑
f∈F TTCf and 1

n!m!

∑
f∈F∗ TTCf

equivalent?
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Random assignment mechanism

Contents
7.1 Random assignment problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Random priority mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Simultaneous eating algorithm and probabilistic serial mechanism . . . . . . . . 139

7.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.2 Ordinal efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.3 Efficiency of RP and PS . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.1 Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.2 Envy-freeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.5.3 Equal treatment of equals . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.6 Incentive compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.7 RP vs PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.8 Impossibility results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.9 Large markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.10 Implementing random assignments . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 Random assignment problem

7.1 A random assignment problem, denoted by Γ = ⟨N,O,≻⟩, consists of�
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• N = {1, 2, . . . , n} is a finite set of agents,

• O = {o1, o2, . . . , on} is a finite set of indivisible objects, where |N | = |O| = n, and

• ≻= (≻i)i∈N , where≻i is agent i’s strict preference. We write a %i b if and only if a ≻i b

or a = b.

7.2 A deterministic assignment (or simply assignment) is a one-to-one mapping from N to O; it�

will be uniquely represented as a permutation matrixX = (Xio) (an n×nmatrix with entries
0 or 1 and exactly one non-zero entry per row and one per column).

We identify rows with agents and columns with objects.

Xio =

1, if agent i receives object o under the assignmentX;

0, if agent i does not receive object o under the assignmentX.

LetD denote the set of deterministic assignments.

An example for deterministic assignment:

X =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

Here agent 1 gets object 1, agent 2 gets object 3, agent 3 gets object 2, and agent 4 gets object 4.

7.3 A random assignment is a bistochastic matrix P = (Pio)i∈N,o∈O (a matrix with non-negative�

entries, with each row and column summing to 1). The value Pio describes the probability that
the agent i receives the object o.

LetR denote the set of random assignments.

An example for random assignment:

P =


5
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

5
12

 .

Here agent 1 gets object 1 with probability 5
12 , object 2 with probability 1

12 , object 3 with prob-
ability 5

12 , and object 4 with probability 1
12 .

7.4 For each agent, a lottery of objects1 is a probability distribution over the set of objects.
1In expected utility theory, a lottery is a discrete distribution of probability on a set of states of nature. The elements of a

lottery correspond to the probabilities that each of the states of nature will occur.
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Since there are n objects, a lottery can be written as a n-dimensional vector such that the j-th
component is the probability that agent receives the j-th object.

For each random assignment P , the i-th row Pi is clearly an agent i’s lottery of objects.

7.5 A random assignment mechanism is a procedure the assigns a random assignment P for each�

random assignment problem ⟨N,O,≻⟩.

7.6 A von Neumann-Morgenstern utility function2 ui is a real-valued mapping fromO to R.

We extend the domain of ui to the set of lotteries as follows. Agent i’s expected utility for the
lottery Pi is

ui(Pi) =
∑
o∈O

Pio · ui(o) = Pi · ui,

where ui =
(
ui(o1), ui(o2), · · · , ui(on)

)
.

We say that ui is consistent/compatible with≻i when ui(a) > ui(b) if and only if a ≻i b.3

Example: There are three objects {a, b, c} and agent 1’s preference is a ≻ b ≻ c. Then (1, 13 , 0)

and (1, 23 , 0) are two consistent utility functions.

7.2 Random priority mechanism

7.7 An ordering f : {1, 2, . . . , n} → N is a one-to-one and onto function.

LetF be the set of orderings. Given an ordering f and a preference profile≻, the corresponding
simple serial dictatorship assignment is denoted by SDf [≻], defined as usual.

7.8 Random priority (or random serial dictatorship):

Step 1: Draw each orderings of the agents with equal probability.

Step 2: Run simple serial dictatorship according to the selected ordering.

Mathematically, random priority is defined as

RP =
1

n!

∑
f∈F

SDf .

2In decision theory, the vonNeumann-Morgenstern utility theorem shows that, under certain axioms of rational behavior
(completeness, transitivity, continuity, and independence), a decision-maker faced with risky (probabilistic) outcomes of
different choices will behave as if he is maximizing the expected value of some function defined over the potential outcomes
at some specified point in the future. This function is known as the vonNeumann-Morgenstern utility function. The theorem
is the basis for expected utility theory.

3In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. The
ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to
ask how much better it is or how good it is. All of the theory of agent decision-making under conditions of certainty can be,
and typically is, expressed in terms of ordinal utility.
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7.9 Core from random endowments:

Step 1: Draw each initial assignment with equal probability.

Step 2: Run TTC according to the selected initial assignment.

Mathematically, core from random endowments is defined as

φcre =
1

n!

∑
µ∈M

TTCµ .

7.10 Theorem (Theorem 2 in Abdulkadiroğlu and Sönmez (1998)): Random priority and core from
random endowments are equivalent.

7.11 Example: There are four agents {1, 2, 3, 4} and four objects {a, b, c, d}. The preferences are as
follows:

1 and 2 3 and 4
a b
b a
c d
d c

Table 7.1

The matching produced by RP is

P =


5
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

5
12

 .

7.12 The summary of RP:

• Easy to implement and widely used in practice.

• Ex post efficient (but not ex ante efficient or ordinally efficient).

• Fair (equal treatment of equals).

• Strategy-proof.

7.13 Other related mechanisms: Pathak and Sethuraman (2011).
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7.3 Simultaneous eatingalgorithmandprobabilistic serialmechanism

7.14 Let ωi : [0, 1]→ R+ be agent i’s eating speed function, that is, ωi(t) is the speed at which agent
i is allowed to eat at time t.

The speed ωi(t) is non-negative and the total amount that agent i will eat between t = 0 and
t = 1 (the end time of the algorithm) is one:∫ 1

0

ωi(t) dt = 1.

LetW denote the set of eating speed functions:

W =

{
ωi : [0, 1]→ R+

∣∣∣∣∣ ωi is measurable and
∫ 1

0

ωi(t) dt = 1

}
.

7.15 Simultaneous eating algorithm. Given the profile of eating speeds ω = (ωi)i∈N and the pref-
erence profile ≻, the algorithm lets each agent i eat her best available good at the pre-specified
speeds.

For each o ∈ O′ ⊆ O, letN(o,O′) = {i ∈ N | o ≻i b for all b ∈ O′, b ̸= o}—the set of agents�

who are eating o.

Given the profile of eating speeds ω = (ωi)i∈N and the preference profile ≻, the outcome of
simultaneous eating algorithm is defined by the following recursive procedure.

Step 0: Let t0 = 0,O0 = O, P 0 = 0 (the n× nmatrix of zeros).

Step k: Suppose that t0,O0, P 0, …, tk−1,Ok−1, P k−1 are already defined.

• For each o ∈ Ok−1, define

tk(o) =


min

t
∣∣∣∣∣∣

∑
i∈N(o,Ok−1)

∫ t

tk−1

ωi(s) ds+
∑
i∈N

P k−1
io = 1

 , ifN(o,Ok−1) ̸= ∅,

+∞, ifN(o,Ok−1) = ∅.

Each agent in N(o,Ok−1) will eat the object o immediately after time instant t =

tk−1, and tk(o) specifies the time instant when the object o will be eaten away given
that no new agent enters.

• Define
tk = min

o∈Ok−1
tk(o).

From tk−1 onwards, once an object is eaten away, then this time instant is denoted as
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tk. Note that, at the time instant tk, there could be more than one objects which are
eaten away.

• Define
Ok = Ok−1 \ {o | tk(o) = tk}.

The set {o | tk(o) = tk} is exactly the set of objects which are eaten away at time
instant tk, and the setOk denotes the set of objects which remain after tk.

• Define P k = (P k
io):

P k
io =


P k−1
io +

∫ tk

tk−1

ωi(s) ds, if i ∈ N(o,Ok−1),

P k−1
io , otherwise.

Between tk−1 and tk, if agent i eats object o (no matter whether o is eaten away at
time instant tk), then she will obtain a quantity

∫ tk

tk−1 ωi(s) ds of object o.
The relation

∫ 1

0
ωi(s) ds ≤ 1 guarantees that P k

io ≤ 1.

t0 = 0

O0 = O
O0 \O1

t1

O1

tk−1

Ok−1

Ok \Ok−1

tk

Ok

Ok+1 \Ok

tk+1

Ok+1

Figure 7.1

7.16 By the construction,Ok $ Ok−1 for each k,On = ∅, and Pn = Pn+1 = · · · .

The matrix Pn is the random assignment corresponding to the profile of eating speed functions
ω = (ωi)i∈N and the preference profile≻: Pω[≻] = Pn.

7.17 The probabilistic serial mechanism PS: Simultaneous eating algorithm with uniform eating
speeds ωi(t) = 1 for all i ∈ N , all t ∈ [0, 1].

7.18 Example: There are four agents {1, 2, 3, 4} and four objects {a, b, c, d}. The preferences are as
follows:

1 and 2 3 and 4
a b
b a
c d
d c

Table 7.2

The process of PS is illustrated below
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Time
t0 = 0 t1 = 1

2
t2 = 1

1 a c

2 a c

3 b d

4 b d

Thus, PS produces the matching

Q =


1
2 0 1

2 0
1
2 0 1

2 0

0 1
2 0 1

2

0 1
2 0 1

2

 .

7.19 Example: There are four agents {1, 2, 3, 4} and four objects {a, b, c, d}. The preferences are as
follows:

1 2 3 4
a a b a
c b a b
b c d c
d d c d

Table 7.3

The process of PS is illustrated below
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Time
t0 = 0 t1 = 1

3 t2 = 5
9 t3 = 22

27
t4 = 1

1 a c d

2 a b c d

3 b d

4 a b c d

Thus, PS produces the matching

Q =


1
3 0 13

27
5
27

1
2

2
9

7
27

5
27

0 5
9 0 4

9
1
3

2
9

7
27

5
27

 .

7.20 Summary of PS:

• Easy to implement.

• Ordinally efficient (not ex ante efficient).

• Fair (envy-free, equal treatment of equals).

• Not strategy-proof.

7.4 Efficiency

7.4.1 Basics

7.21 Given a preference profile ≻, a deterministic assignment X Pareto dominates another deter-�

ministic assignment Y at≻ if

Xi %i Yi for all i ∈ N andXi0 ≻i0 Yi0 for some i0 ∈ N ,

whereXi denotes the object agent i receives underX .

A deterministic assignment X is Pareto efficient at ≻ if there is no deterministic assignment
that Pareto dominates it at≻.
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7.22 Given a preference profile≻ and a profile of von Neumann-Morgenstern utilities u.�

• A random assignment P is ex ante efficient at u, if P is Pareto optimal inR at u. That is,
there is no random assignmentQ such that

Qi · ui ≥ Pi · ui for all i ∈ N andQi0 · ui0 > Pi0 · ui0 for some i0 ∈ N .

• A random assignment P is ex post efficient at ≻, if it is a convex combination of Pareto
efficient deterministic assignments (at≻). That is, it takes the form

P =
∑
γ∈Γ

αγ ·Xγ ,

where {αγ}γ∈Γ is a convex system of weights and eachXγ is a Pareto efficient determin-
istic assignment at≻.

By Theorem 5.9, P is ex post efficient at≻ if and only if it takes the form

P =
∑
f∈F

αf · SDf [≻] for some convex system of weights αf ,

where SDf is the simple serial dictatorship induced by the ordering f .

7.23 Example: There are four agents {1, 2, 3, 4} and four objects {a, b, c, d}. The preferences are as
follows:

1 and 2 3 and 4
a b
b a
c d
d c

Table 7.4

The randomassignmentQ =


1
2 0 1

2 0
1
2 0 1

2 0

0 1
2 0 1

2

0 1
2 0 1

2

 is ex post efficient sinceQ = 1
2


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

+

1
2


0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

, where


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 and


0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

 are Pareto efficient at≻.

7.24 Question: In the example above,
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(i) is it possible that Q has a form
∑

γ∈Γ αγ · Xγ such that {αγ}γ∈Γ is a convex system of
weights and someXγ is not a Pareto efficient deterministic assignment at≻?

(ii) is the random assignment P =


5
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

5
12

 ex post efficient?

7.4.2 Ordinal efficiency

7.25 Given agent i’s preference ≻i, a lottery Pi first-order stochastically dominates another lottery�

Qi with respect to≻i, denoted by Pi %sd
i Qi, if∑

k : ok%ioj

Pik ≥
∑

k : ok%ioj

Qik for all j.

That is, Pi first-order stochastically dominatesQi if and only if

• the probability of receiving the favorite object is at least as much in Pi as in Qi, and in
general,

• for any j, the probability of receiving one of top j favorite objects is at least as much in Pi

as inQi.

7.26 Proposition: Pi first-order stochastically dominates Qi with respect to ≻i if and only if ui ·
Pi ≥ ui · Qi for any von Neumann-Morgenstern utility function ui consistent with ≻i. Here
ui =

(
ui(o1), ui(o2), . . . , ui(on)

)
.

Moreover, Pi ̸= Qi implies that the corresponding inequality is strict.

Proof. “⇒”: Suppose that Pi first-order stochastically dominatesQi with respect to≻i.

(1) Without loss of generality, we assume that o1 ≻i o2 ≻i · · · ≻i on.

(2) Then we have
j∑

k=1

Pik ≥
j∑

k=1

Qik for all j = 1, 2, . . . , n.

(3) For any von Neumann-Morgenstern utility function ui which is consistent with ≻i, we
have ui(oj)− ui(oj+1) ≥ 0 for all j = 1, . . . , n− 1, and hence

ui · Pi =

n∑
k=1

ui(ok)Pik



Do
No
t C
op
y o
r D
istr
ibu
te

7.4. Efficiency 145

= ui(on)

n∑
k=1

Pik + [ui(on−1)− ui(on)]
n−1∑
k=1

Pik + [ui(on−2)− ui(on−1)]

n−2∑
k=1

Pik + · · ·

+ [ui(oj)− ui(oj+1)]

j∑
k=1

Pik + · · ·+ [ui(o1)− ui(o2)]
1∑

k=1

Pik

≥ ui(on)
n∑

k=1

Qik + [ui(on−1)− ui(on)]
n−1∑
k=1

Qik + · · ·+ [ui(o1)− ui(o2)]
1∑

k=1

Qik

= ui ·Qi

“⇐”: Suppose that ui · Pi ≥ ui · Qi for any von Neumann-Morgenstern utility function ui
consistent with≻i.

(1) Without loss of generality, we assume o1 ≻i o2 ≻i · · · ≻i on. Then it suffices to show
that

j∑
k=1

Pik ≥
j∑

k=1

Qik for all j = 1, 2, . . . , n.

(2) Assume that 1 ≤ ℓ ≤ n is the first number such that
∑ℓ

k=1 Pik <
∑ℓ

k=1Qik.

(3) Take ε > 0 and construct a von Neumann-Morgenstern utility function ui such that

0 < ui(oj)− ui(oj+1)

< ε, if j ̸= ℓ

> n−1∑ℓ
k=1(Qik−Pik)

ε if j = ℓ
.

(4) Therefore, we have

ui · Pi − ui ·Qi < ε ·
∑
j ̸=ℓ

j∑
k=1

[Pik −Qik]− (n− 1)ε < 0,

which contradicts the hypothesis.

7.27 Given a preference profile ≻, a random assignment P ordinally dominates (or stochastically�

dominates) another random assignment Q at ≻ if P ̸= Q and for each agent i, the lottery Pi

first-order stochastically dominates the lottery Qi with respect to ≻i, where Pi is the i-th row
of the matrix P which represents the lottery allocation of agent i.

The random assignment P is ordinally efficient at≻ if it is not ordinally dominated at≻ by any
other random assignment.

In environments where only ordinal preferences can be used, ordinal efficiency is a natural ef-
ficiency concept.
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7.28 Given a preference profile ≻ and a random assignment P , we define a binary relation τ(P,≻)
onO as follows:

aτ(P,≻)b⇔ there exists i ∈ N such that a ≻i b and Pib > 0.

7.29 Proposition (Lemma 3 in Bogomolnaia and Moulin (2001)): The random assignment P is or-
dinally efficient at profile≻ if and only if the relation τ(P,≻) is acyclic.

Proof. “⇒”: Suppose that P is ordinally efficient.

(1) Assume that the relation τ(P,≻), denoted τ for simplicity, has a cycle:

oKτoK−1τ · · · τo2τo1 = oK .

(2) Without loss of generality, we assume that the objects ok, k = 1, 2, . . . ,K − 1 are all
different.

(3) By definition of τ , we can construct a sequence i1, i2, . . . , iK−1 inN such that:

Pikok > 0 and ok+1 ≻ik ok for all k = 1, 2, . . . ,K − 1.

(4) Choose δ > 0 such that

δ ≤ Pikok for all k = 1, 2, . . . ,K − 1.

(5) Define a matrix ∆ = (δio) as follows:
δikok = −δ, for k = 1, 2, . . . ,K − 1,

δikok+1
= δ, for k = 1, 2, . . . ,K − 1,

0, otherwise.

(6) Define a matrixQ = P +∆.

(7) By construction,Q is a bistochastic matrix and hence a random assignment.

(8) Moreover, Q stochastically dominates P , because one goes from Pik to Qik by shifting
some probability from object ok to the preferred object ok+1.

“⇐”: Suppose that the relation τ(P,≻) is acyclic.

(1) Assume that P is stochastically dominated at≻ byQ.

(2) Let i1 be an agent such that Pi1 ̸= Qi1 .
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(3) Since Qi1 first-order stochastically dominates Pi1 , there exist two objects o1 and o2 such
that

o2 ≻i1 o1, Pi1o1 > Qi1o1 ≥ 0, and Pi1o2 < Qi1o2 .

(4) In particular, o2τ(P,≻)o1.

(5) By feasibility ofQ, there exists an agent i2 such that Pi2o2 > Qi2o2 ≥ 0.

(6) Since P is stochastically dominated at≻ byQ, there exists o3, such that

o3 ≻i2 o2 and Pi2o3 < Qi2o3 .

(7) Hence, o3τo2, and so on, until by finiteness ofN andO we find a cycle of the relation τ .

7.30 Proposition (Lemma 2 in Bogomolnaia and Moulin (2001)): Given a random assignment P , a�

preference profile≻, and a profile u of von Neumann-Morgenstern utilities consistent with≻.

(i) If P is ex ante efficient at u, then it is ordinally efficient at≻; the converse statement holds
for n = 2 but fail for n ≥ 3.

(ii) If P is ordinally efficient at≻, then it is ex post efficient at≻; the converse statement holds
for n ≤ 3 but fail for n ≥ 4.

7.31 Proof of Proposition 7.30, Statement (i). Part 1: Suppose that P is ex ante efficient at u. We
want to show that P is ordinally efficient at≻.

(1) Suppose that P is not ordinally efficient at≻.

(2) Then there exists another random assignmentQ which ordinally dominates P at≻.

(3) Then by Proposition 7.26, we have ui ·Qi ≥ ui · Pi for all i.

(4) Moreover, Pi ̸= Qi for some i, and hence the corresponding inequality is strict so that P
is ex ante Pareto inferior toQ.

Part 2: Suppose that n = 2 and P is ordinally efficient at≻. We want to show that P is ex ante
efficient at u.

(1) Suppose that P =

(
x 1− x

1− x x

)
is not ex ante efficient at u.

(2) Then there existsQ =

(
y 1− y

1− y y

)
such that ui ·Pi ≤ ui ·Qi for all i and ui0 ·Pi0 <

ui0 ·Qi0 for some i0.
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(3) By simple calculation, we have

(u11 − u12)(x− y) ≤ 0, (u22 − u21)(x− y) ≤ 0.

(4) Case 1: agent 1 prefers o1 to o2. Then u11 > u12, x < y, and u22 > u21. In this case, P

is stochastically dominated by

(
1 0

0 1

)
. It is a contradiction.

(5) Case 2: agent 1 prefers o2 to o1. Then u11 < u12, x > y, and u22 < u21. In this case, P

is stochastically dominated by

(
0 1

1 0

)
. It is a contradiction.

Part 3: Suppose thatn ≥ 3. Wewant to show that in some particular caseP is ordinally efficient
at≻, but is not ex ante efficient at u.

(1) Consider the following example: there are three agents {1, 2, 3}, three objects {a, b, c},
unanimous ordinal preferencesa ≻i b ≻i c, and the consistent vonNeumann-Morgenstern
utilities:

u1(x) =


1, if x = a

0.8, if x = b

0, if x = c

, u2(x) = u3(x) =


1, if x = a

0.2, if x = b

0, if x = c

.

(2) It is clear that the random assignment P = (Pik) is not ex ante efficient, where Pik = 1
3 .

P leads to a utility profile (0.6, 0.4, 0.4), and the random assignment Q = (Qik) yields
to a utility profile (0.8, 0.5, 0.5), whereQ1b = 1,Q2a = Q2c = Q3a = Q3c =

1
2 .

(3) Claim: Every random assignment here is ordinally efficient.

(4) Suppose that a random assignmentR is not ordinally efficient, and is stochastically dom-
inated byR′.

(5) ThenR ̸= R′, and
∑

k : ok%ioj
R′

ik ≥
∑

k : ok%ioj
Rik for all i and j.

(6) Then, ∑
i

∑
k : ok%ioj

R′
ik ≥

∑
i

∑
k : ok%ioj

Rik for all j.

(7) Since three agents have the same ordinal preference, we have∑
i

∑
k : ok%ioj

R′
ik =

∑
k : ok%ioj

∑
i

R′
ik =

∑
k : ok%ioj

1 =
∑

k : ok%ioj

∑
i

Rik =
∑
i

∑
k : ok%ioj

Rik for all j,

which leads to a contradiction.
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7.32 Proof of Proposition 7.30, Statement (ii).

Part 1: If P is ordinally efficient at≻, then it is ex post efficient at≻.

(1) Suppose that P is not ex post efficient at≻.

(2) Consider a decomposition of P as a convex combination of deterministic assignments:

P =
∑
X

p(X) ·X.

(3) Then there is an elementX that is Pareto inferior at≻ and such that p(X) > 0.

(4) Let Y be a deterministic assignment Pareto superior toX .

(5) Upon replacingX by Y in the summation, we obtain a random assignment that stochas-
tically dominates P (note that the stochastic dominance is preserved by convex combina-
tions).

Part 2: When n ≤ 3, if P is ex post efficient at ≻, then it is ordinally efficient at ≻. (Ques-
tion. Hint: Consider different preference profiles and check the corresponding ex post efficient
assignments)

Part 3: When n ≥ 4, P may not be ordinally efficient at≻, if it is ex post efficient at≻.

(1) Consider the following example: there are four agents {1, 2, 3, 4}, four objects {a, b, c, d}.
The preferences are as follows:

1 and 2 3 and 4
a b
b a
c d
d c

Table 7.5

(2) Consider the following two random assignments

P =


5
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

5
12

 andQ =


1
2 0 1

2 0
1
2 0 1

2 0

0 1
2 0 1

2

0 1
2 0 1

2

 .

(3) Every agent gets her first choice with probability 1
2 underQ, and first choice with 5

12 and
second choice with 1

12 under P .
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Every agent gets her third choice with probability 1
2 under Q, and third choice with 5

12

and fourth choice with 1
12 under P .

Therefore, P is stochastically dominated byQ, and hence not ordinally efficient.

(4) It is straightforward to check that P =
∑

f∈F
1
n! SD

f [≻], so P is ex post efficient.

7.33 Proposition (Theorem 1 in McLennan (2002)): If P is ordinally efficient at ≻, then there is a
profile u of von Neumann-Morgenstern utilities which is consistent with ≻, such that P is ex
ante efficient at u.

7.4.3 Efficiency of RP and PS

7.34 Recall Theorem 5.9 (Lemma 1 in Abdulkadiroğlu and Sönmez (1998)): Simple serial dictator-
ship is Pareto efficient. Thus, RP is ex post efficient.

7.35 RP is not ordinally efficient or ex ante efficient: See the example in the proof of Proposition 7.30,
Statement (ii), Part 3.

7.36 Theorem (Theorem 1 in Bogomolnaia and Moulin (2001)): Fix a preference profile≻.�

(i) For every profile of eating speed functions ω = (ωi)i∈N , the random assignment Pω[≻]
is ordinally efficient.

(ii) Conversely, for every ordinally efficient random assignment P at ≻, there exists a profile
ω = (ωi)i∈N such that P = Pω[≻].

7.37 Intuition: At each instant, everyone is eating her favorite available object. If agent i likes a better
than b but eats b, then a was already eaten away.

7.38 Proof of Theorem 7.36, Statement (i).

(1) Assume that for some ω, Pω[≻] is not ordinally efficient.

(2) By Proposition 7.29, we can find a cycle in the relation τ :

o0τo1τ · · · τok−1τokτ · · · τoKτo0.

(3) For each k, let ik be an agent such that

ok−1 ≻ik ok and Pikok > 0.

(4) Let tk be the first time instant in simultaneous eating algorithm when the agent ik starts
to acquire good ok, i.e., the least t for which P t

ikok
̸= 0.
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(5) For agent ik, since ok−1 ≻ik ok, at instant tk, the object ok−1 has already been fully
distributed, i.e., ok−1 /∈ Otk .

(6) Thus tk−1 < tk for all k = 1, 2, . . . ,K + 1, which is a contradiction since o0 = oK+1.

7.39 Proof of Theorem 7.36, Statement (ii).

(1) Let P be an ordinally efficient assignment.

(2) Let
Ō0 = O andB1 = {o ∈ Ō0 |̸ ∃b ∈ Ō0 such that bτo},

that is,B1 is the set of maximal elements of Ō0 under τ .

(3) For each k ≥ 1, let

Ōk = Ōk−1 \Bk andBk+1 = {o ∈ Ōk |̸ ∃b ∈ Ōk such that bτo}.

It is clear that this sequence will stop in finite steps. Suppose that this sequence stops at
StepK , for which ŌK = ∅ andBK = ŌK−1.

Note that {B1, B2, . . . , BK} forms a partition ofO.

(4) For all k = 1, 2, . . . ,K , when k−1
K ≤ t ≤ k

K ,

ωi(t) ,

K · Pio, if o ∈ Bk and i ∈ N(o, Ōk−1),

0, otherwise.

We will check that P is the result of the simultaneous eating algorithm with eating speeds
ω and that Ō0, Ō1, . . . , ŌK coincide withO0, O!, . . . , OK from this algorithm.

(5) Claim: For each k = 1, 2, . . . ,K , and for any o and o′ in Bk, if Pio > 0, then Pio′ = 0.
Assume that Pio′ > 0. Without loss of generality, assume that o ≻i o

′. Then oτo′, which
contradicts the fact that o′ ∈ Bk.

This claim guarantees that each agent eats at most one object between k−1
K and k

K .

(6) Claim: For each k = 1, 2, . . . ,K , if o ∈ Bk and Pio > 0, then i ∈ N(o, Ōk−1). Assume
that i /∈ N(o, Ōk−1). Then there exists o′ ∈ Ōk−1 such that o′ ≻i o. Thus, o′τo and
o /∈ Bk, which leads to a contradiction.

This claim guarantees that agent i with Pio > 0 will eat object o ∈ Bk between k−1
K and

k
K .

(7) Therefore, from k−1
K to k

K , only objects in the set Bk will be eaten in the simultaneous
eating algorithm.
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0

Ō0

B1

1

Ō1

B2

2

Ō2

k − 2

Ōk−2

Bk−1

k − 1

Ōk−1

Bk

k

Ōk

Figure 7.2

(8) From 0 to 1
K , for each object o ∈ B1,

• every agent i with Pio > 0 will eat object o with the speedK · Pio, and

• every agent i with Pio = 0 will not eat object o.

At the instant 1
K , every object o inB1 will be eaten away since

∑
iK · Pio · 1

K = 1.

(9) Hence, t1 = 1
K ,O1 = Ō1, and P 1 is as follows:

P 1
io =

Pio, if o ∈ B1,

0, if o ̸∈ B1.

(10) We proceed by induction. Suppose that

tk−1 =
k − 1

K
, Ok−1 = Ōk−1, and P k−1

io =

Pio, if o ∈ B1 ∪B2 ∪ · · · ∪Bk−1,

0, otherwise.

(11) For any o ∈ Ōk−1, we have o ̸∈ B1 ∪B2 ∪ · · · ∪Bk−1, and hence P k−1
io = 0.

(12) Therefore, we have

∑
i∈N(o,Ōk−1)

∫ t

k−1
K

ωi(s) ds+
∑
i∈N

P k−1
io︸ ︷︷ ︸

=0

=



∑
i∈N(o,Ōk−1)

∫ t

k−1
K

K · Pio ds = [Kt− (k − 1)] ·
∑

i∈N(o,Ōk−1)

Pio︸ ︷︷ ︸
=1

= Kt− (k − 1), if o ∈ Bk,

0, if o ̸∈ Bk.

(13) So,

tk(o) =

 k
K , if o ∈ Bk,

+∞, otherwise.
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(14) Thus, tk = k
K ,Ok = Ōk, and

P k
io =

Pio, if o ∈ B1 ∪B2 ∪ · · · ∪Bk,

0, otherwise.

7.5 Fairness

7.5.1 Anonymity

7.40 A mechanism φ is anonymous if the mapping ≻7→ φ[≻] is symmetric from the n preferences
to the n assignments.

7.41 Remark: In view of Theorem 7.36, the PS assignment is the simplest fair (anonymous) selection
from the set of ordinally efficient assignments at a given preference profile.

The following result shows that whenever we use a simultaneous eating algorithm to construct
an anonymous assignment rule, we must end up with the PS mechanism.

7.42 Proposition (Lemma 4 in Bogomolnaia and Moulin (2001)): Fix at profile of eating speeds ω.
Letφ be themechanism derived fromω at all profiles. φ is anonymous if and only if it coincides
with PS.

7.43 Proof. We only prove “only if ” direction.

(1) Let φ be mechanism derived from ω. Suppose that φ is anonymous.

(2) We fix a preference profile≻, and let P = φ[≻].

(3) The partial assignment obtained under PS at any moment t ∈ [0, 1] is anonymous, so
under ≻= (≻i) or its permutations, objects o1, o2, . . . , ok, . . . , on are eaten away in the
same order and at the same instants 0 = x0 < x1 ≤ x2 ≤ · · · ≤ xk ≤ · · · ≤ xn = 1.

(4) Under PS, an agent can change the good she eats only at one of the instants xk, and the set
of agents who eat a given good can only expand with time.

(5) Let N(ok) be the set of agents who eat good ok in [xk−1, xk]. If |N(ok)| = 1, then ok is
entirely assigned to one agent and xk = 1 = xn. Thus, |N(ok)| ≥ 2 whenever xk < xn.

(6) Claim: Suppose there exists instants 0 = y0 < y1 ≤ y2 ≤ · · · ≤ yk ≤ · · · ≤ yn = 1

such that at yk all agents get under φ exactly the xk fraction of their unit share of goods,
i.e.,

∫ yk

0
ωi(t) dt = xk for all i and k. Then φ coincides with PS.
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(i) Suppose that assignments are the same at x1, . . . , xk−1 under PS and at y1, . . . , yk−1

under φ.
(ii) Under PS during [xk−1, xk] each agent eats her best among the objects still available

ok, . . . , on, and the fraction xk−xk−1 eaten by everyone will not exhaust any object
before xk.

(iii) Since xk − xk−1 is exactly the fraction each agent eats during the interval [yk−1, yk]

under φ, the set of objects which are eat during [xk−1, xk] under PS is the same as
that during [yk−1, yk] underφ, and hence they will end up at yk with the same partial
assignment as at xk under PS.

(7) In the following, we will check that such y1, y2, . . . , yn exist.

(8) Define

t̄i(k) = max

{
t

∣∣∣∣∣
∫ t

0

ωi(s) ds ≥ xk

}
, ti(k) = min

{
t

∣∣∣∣∣
∫ t

0

ωi(s) ds ≥ xk

}
t̄(k) = min

i
t̄i(k), t(k) = max ti(k),

that is, [ti(k), t̄i(k)] is the largest interval during which the total fraction of objects eaten
by an agent i stays equal to xk.

(9) Proceed by induction on k. Suppose that underφ all agents are able to eat exactly the frac-
tions x1, . . . , xk−1 by the instants y1, . . . , yk−1 respectively. If t(k) ≤ t̄(k) then choose
any yk ∈ [t(k), t̄(k)].

(10) In the following, we will show that t(k) > t̄(k) is impossible by contradiction.

(11) Since |N(ok)| ≥ 2 whenever xk < xn, we focus on the case such that |N(ok)| ≥ 2.

(12) Consider the permutations≻1 and≻2 of≻, such that agents 1 and 2 are inN(ok),

t̄(k) = t̄1(k) and t(k) = t2(k) under ≻1,

and≻2 is obtained from≻1 by exchanging agents 1 and 2.

t1(k)

t̄(k)

t̄1(k)

t(k)

t2(k) t̄2(k)

Figure 7.3

(13) We have

∑
i∈N(ok)

∫ t̄(k)

yk−1

ωi(s) ds at t̄(k) < t(k) = t2(k), agent 2 is still eating ok
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< |N(ok)| · (xk − xk−1) amount of ok left after yk−1

<
∑

i∈N(ok)

∫ t(k)

yk−1

ωi(s) ds at t(k) > t1(k), agent 1 starts to eat another object

(14) For any object oj with j > k, we have

∑
i∈N(oj)

∫ t̄(k)

yk−1

ωi(s) ds ≤ |N(oj)| · (xk − xk−1) ≤ amount of oj left after yk−1.

Moreover, the equality is possible only if xj = xk.

(15) Thus under≻1 and≻2, no object among ok, . . . , on is eaten away before t̄(k), and ok will
be exhausted at some instants s1 and s2 respectively, where s1, s2 ∈

(
t̄(k), t(k)

)
.

(16) For any s ∈
(
t̄(k), t(k)

)
,

• under ≻1, the fraction of objects agent 1 gets by time s is larger than xk, while the
fraction of objects agent 2 gets by the time s is smaller than xk, and

• under ≻2, the fraction of objects agent 2 gets by time s is larger than xk, while the
fraction of objects agent 1 gets by the time s is smaller than xk.

(17) By induction hypothesis, all agents get exactly the same partial assignment at xk−1 under
PS and at yk−1 under φ.

(18) As a result,

• agent 1 will get more and agent 2 less than xk of objects under≻1, and
• agent 2 will get more and agent 1 less than xk of objects under≻2.

This contradicts the anonymity of φ.

7.5.2 Envy-freeness

7.44 A random assignment P is envy-free at a profile≻ if Pi %sd
i Pj for all i, j ∈ N .

A random assignment P is weakly envy-free at a profile≻ if for all i, j ∈ N ,

Pj %sd
i Pi ⇒ Pi = Pj .

7.45 Proposition (Proposition 1 in Bogomolnaia and Moulin (2001)): For any preference profile≻,

(i) the assignment PS[≻] is envy-free;

(ii) the assignment RP[≻] is weakly envy-free;
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(iii) the assignment RP[≻] is envy-free for n = 2;

(iv) the assignment RP[≻] may not be envy-free for n ≥ 3.

7.46 Intuition: At each instant, everyone is eating her favorite available object. So everyone has
chance to eat a better (from her viewpoint) object than anyone else, so at the end, no one envies
assignment someone else.

7.47 Proof of 7.45, Statement (i). (1) Fix a preference profile≻ and an agent i, and label the objects
in such a way that

o1 ≻i o2 ≻i · · · ≻i on.

Let P = PS[≻].

(2) It suffices to show

t∑
k=1

Piok ≥
t∑

k=1

Pjok for all j ∈ N and t = 1, 2, . . . , n.

(3) Keep in mind that ωi(t) = 1 for all i ∈ N and t ∈ [0, 1].

(4) Let k1 be the step at which o1 is fully allocated, namely

a ∈ Ok1−1 \Ok1 .

(i) Because o1 is top-ranked in i’s preference list, we have i ∈ N(o1, O
k) for all k ≤

k1 − 1.

(ii) Since from t = 0 to t = tk1 , agent i eats object o1, we have

P k1
io1

= tk1 ≥ P k1
jo1

for all j ∈ N.

(iii) Since o1 is fully allocated at instant k1, we have

Pio1 = P k1
io1
≥ P k1

jo1
= Pjo1 for all j ∈ N.

(5) Let k2 be the step at which {a, b} is fully allocated, that is,

{a, b} ∩Ok2−1 ̸= ∅, and {a, b} ∩Ok2 = ∅.

(i) Note that k1 ≤ k2, and that i ∈ N(o1, O
k) ∪N(o2, O

k) for all k ≤ k2 − 1.

(ii) Hence we have

Pio1 + Pio2 = P k2
io1

+ P k2
io2

= tk2 ≥ P k2
jo1

+ P k2
jo2

= Pjo1 + Pjo2 for all j ∈ N.
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(6) Repeating this argument we find that Pi first-order stochastically dominates Pj at ≻i, as
desired.

7.48 Proof of 7.45, Statement (ii). (1) Let ≻ be a preference profile at which P2 ≻sd
1 P1, we will

show that P2 = P1, where P = RP.

(2) Label the objects as follows
o1 ≻1 o2 ≻1 · · · ≻1 on.

(3) For any ordering f where 1 precedes 2, let f̄ be the ordering obtained from f by permuting
1 and 2. Clearly

{
{f, f̄} | f ∈ F

}
forms a partition of F .

(4) Since≻ is fixed, we omit it in φ[≻].

(5) Consider o1:

(i) If 2 gets o1 in φf̄ , so does 1 in φf .
In φf , 2 can not get o1 since 1 would get o1 before 2 anyway.


1 2

φf o1 ��ZZo1
↖

φf̄ o1? o1


(ii) Therefore in the random assignmentQ = (Qio) , φf+φf̄

2 , we haveQ2o1 ≤ Q1o1 .

(iii) Since P = RP is a convex combination of such assignments, P2o1 ≤ P1o1 .

(iv) From assumption P2 ≻sd
1 P1, we haveQ2o1 = Q1o1 for all pairs f and f̄ , and hence

for such pair

• either 1 gets o1 in φf and 2 gets o1 in φf̄ ,

( 1 2

φf o1 ��ZZo1
φf̄

��ZZo1 o1

)
(7.1)

• or none of 1, 2 gets o1 in any of φf or φf̄ .

( 1 2

φf
��ZZo1 ��ZZo1

φf̄
��ZZo1 ��ZZo1

)
(7.2)

(6) Consider o2:
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(i) If 2 gets o2 in φf̄ , then by Equation (7.2), 1 can not get o1 in φf , and hence 1 gets o2
in φf .


1 2

φf o2

↖
φf̄ o2


(ii) If 2 gets o2 in φf , then 1 gets o1 in φf since in φf 1 precedes 2.

By Equation (7.1), 2 gets o1 in φf̄ .
In φf , 2 gets o2, so in φf̄ , when 2 has already got o1, 1 should get o2.


1 2

φf o1 ← o2

↘
φf̄ o2 ← o1


(iii) ThereforeQ2o2 ≤ Q1o2 inQ, and hence P2o2 ≤ P1o2 .

(iv) By the assumption P2o1 + P2o2 ≥ P1o1 + P1o2 and the fact P2o1 = P1o1 , we have
P2o2 = P1o2 andQ2o2 = Q1o2 for all pairs f and f̄ .

(v) Therefore, for any pair f and f̄ , the allocations of o1, o2,O\{o1, o2} are “symmetric”
between f and f̄ , that is, if φf has 1 → x and 2 → y where x and y are o1, o2 or
O \ {o1, o2}, then φf̄ has 1→ y and 2→ x. Here x is O \ {o1, o2}means that x is
some element ofO \ {o1, o2}.

(7) We proceed by induction. Let P1oi = P2oi for all i = 1, 2, . . . , k − 1. Suppose also that
for any x, y ∈

{
o1, o2, . . . , ok−1, O \ {o1, o2, . . . , ok−1}

}
, whenever 1 receives x and 2

receives y in φf , 1 receives y and 2 receives x in φf̄ .

(8) If 2 gets ok inφf̄ , then by inductionhypothesis 1 gets an object fromO\{o1, o2, . . . , ok−1}
in φf . Since ok is the best for her in this set and it is available, 1 gets ok in φf .


1 2

φf ok

↖
φf̄ ok


(9) If 2 gets ok in φf , then 1 gets oℓ with ℓ < k in φf . Then by induction hypothesis, 2 gets

oℓ in φf̄ . Hence ok is available for 1 in φf̄ . But by induction hypothesis, 1 has to get some
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object fromO \ {o1, o2, . . . , ok−1} in φf̄ , so she gets ok.


1 2

φf oℓ ← ok

↘
φf̄ ok ← oℓ


(10) It follows thatQ2ok ≤ Q1ok , and hence P2ok ≤ P1ok .

(11) Since
∑k

i=1 P2oi ≥
∑k

i=1 P1oi by assumption and P1oi = P2oi (i = 1, 2, . . . , k − 1) by
the induction hypothesis, we deduce as above P2ok = P1ok .

7.49 Proof of 7.45, Statement (iii). Consider the case where |N | = |O| = 2.

(1) If agents’ top choices are difference, then RP = PS.

(2) If agents’ top choices are same, then it is easy to show that RP = PS.

(3) Therefore, RP is envy-free in this case.

7.50 Proof of 7.45, Statement (iv). (1) Consider the example with three agents 1, 2, 3 and three ob-
jects a, b, c, and the preferences are as follows:

1 2 3
a a b
b c a
c b c

Table 7.6

(2) It is clear that

RP = RP[≻] =


1
2

1
6

1
3

1
2 0 1

2

0 5
6

1
6


(3) Consider the following consistent vonNeumann-Morgenstern utilityu1(a) = 10,u1(b) =

9 and u1(c) = 0, then we have

u1 · RP3 =
5

6
u1(b) +

1

6
u1(c) = 7.5 > 6.5 =

1

2
u1(a) +

1

6
u1(b) +

1

3
u1(c) = u1 · RP1 .

That is, in the RP assignment, agent 1 envy the allocation of agent 3.
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(4) By Proposition 7.26, RP1 ≻sd
1 RP3 does not hold. Hence, RP is not envy-free.

7.5.3 Equal treatment of equals

7.51 Definition: A mechanism φ : ≻7→ φ[≻] has the property “equal treatment of equals” if

≻i=≻j⇒ φi[≻] = φj [≻].

7.52 Proposition: PS and RP have the property “equal treatment of equals.”

7.6 Incentive compatibility

7.53 Definition: Amechanismφ is strategy-proof if for each random assignment problem ⟨N,O ≻⟩,
for each i ∈ N , and for each≻′

i, we have

φi[≻] ≻sd
i φi[≻−i,≻′

i].

7.54 Definition: A mechanism φ is weakly strategy-proof if for each random assignment problem
⟨N,O ≻⟩, for each i ∈ N , and for each≻′

i, we have

φi[≻−i,≻′
i] ≻sd

i φi[≻]⇒ φi[≻−i,≻′
i] = φi[≻].

7.55 Proposition (Proposition 1 in Bogomolnaia and Moulin (2001)):

(i) RP is strategy-proof;

(ii) PS is weakly strategy-proof;

(iii) PS is strategy-proof for n = 2;

(iv) PS is not strategy-proof for n ≥ 3.

7.56 Proof of Proposition 7.55, Statement (i). For any ordering f , the priority mechanism≻7→ φf [≻
] is obviously strategy-proof. This property is preserved by convex combinations.

7.57 Proof of Proposition 7.55, Statement (ii). (1) LetN(o, t) be the (possibly empty) set of agents
who eat object o at time t. Thus, if t is such that ts−1 ≤ t < ts for some k = 1, 2, . . . , n,
then

N(o, t) =

O(o,Ok−1), if o ∈ Ok−1,

∅, if o ̸∈ Ok−1.
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(2) Let n(o, t) = |N(o, t)|, and

t(o) = sup{t | n(o, t) ≥ 1},

that is, t(o) is the time at which o is eaten away.

(3) Note that n(o, t) is non-decreasing in t on [0, t(o)), because once agent i joins N(o, t),
she keeps eating object o until its exhaustion.

(4) Moreover, ∫ t(o)

0

n(o, t) dt = 1,

because one unit of object o is allocated during the entire algorithm.

(5) Fix≻, and agent denoted as agent 1, and a misreport≻∗
1 by this agent.

(6) Let P = PS[≻] and P ∗ = PS[≻−1,≻∗
1], and similarlyN(o, t),N∗(o, t), and so on.

(7) Label the objects so that a ≻1 b ≻1 c ≻ · · · .

(8) Assume P ∗
1 ≻sd

1 P1 and show P ∗
1 = P1.

(9) If P1a = 1, it is trivial that P ∗
1 = P1. So we assume P1a < 1 from now on.

(10) At profile≻, agent 1 is eating o during the whole interval [0, t(a)), and hence t(a) = P1a.

(11) At profile ≻∗, agent 1 eats o on a subset of [0, t∗(a)), and hence t(a) = P1a ≤ P ∗
1a ≤

t∗(a).

(12) Claim: for all t ∈ [0, t(a)) and all agents i ̸= 1, we have

i ∈ N(a, t)⇒ i ∈ N∗(a, t).

(13) Thus we haveN(a, t) \ {1} ⊆ N∗(a, t) \ {1}, and hence

∫ t(a)

0

|N(a, t) \ {1}| dt+ P1a =

∫ t(a)

0

n(a, t) dt = 1

=

∫ t∗(a)

0

n∗(a, t) dt =
∫ t∗(a)

0

|N∗(a, t) \ {1}| dt+ P ∗
1a.

(14) Therefore, t(a) = t∗(a) andN(a, t) = N∗(a, t) for all t ∈ [0, t(a))

(15) Thus,P1a = P ∗
1a and the PS algorithms under≻ and≻∗ coincide on the interval [0, t(a)).

(16) It should be clear that the above argument can be repeated: the assumption P ∗
1 ≻sd

1 P1

givesP ∗
1b ≥ P1b and we show successively t(b) ≥ t∗(b), thenN(b, t)\{1} ⊆ N∗b, t\{1}

on the interval [0, t(b)), implying t(b) = t∗(b) and so on.
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[≻] :

[≻∗] :

t(z)

t′
t∗(z)

t(y)

t∗(y)

t(x)

t
t∗(x)

t(a)

y → j

z ≻j y

z → j

a → i

x ≻i a

x → i

Figure 7.4

7.58 Proof of Claim.

(1) Suppose there is an agent i ̸= 1 and a time t ∈ [0, t(a)) such that

i ∈ N(a, t) and i ∈ N∗(x, t) for some object x ̸= a.

(2) Under≻∗, since t < t(a) ≤ t∗(a), the object a is available, and hence x ≻∗
i a.

(3) Since≻∗
i=≻i, we have x has been eaten away at t under≻, and hence t(x) ≤ t < t∗(x).

(4) Let B be the set of objects x such that x ̸= a and t(x) < t∗(x). By the argument above,
B ̸= ∅.

(5) Take y ∈ B, such that t(y) is minimal. Note that t(y) ≤ t(x) ≤ t < t(a).

(6) Since t(y) < t∗(y), we have at some time t′ < t(y), there is an agent j such that

j ∈ N(y, t) and j ̸∈ N∗(j, t).

Otherwise,N(y, t) ⊆ N∗(y, t) for some t ∈ [0, t(y)). Combined with

∫ t(y)

0

n(y, t) dt = 1 =

∫ t∗(y)

0

n∗(y, t) dt,

and the fact that n∗(y, t) is non-decreasing in t, we have t(y) = t∗(y), which contradicts
the definition ofB: t(y) < t∗(y).

(7) Since t′ < t(y) < t(a) and agent 1 eats a over the whole interval [0, t(a)) under ≻, we
have agent j can not be agent 1.

(8) Let z be the object that agent j eats at t′ under≻∗: j ∈ N∗(z, t′).

(9) Since t′ < t(y) < t∗(y), y is available at t′ under≻∗, and hence z ≻j y.

(10) Since j eats y at t′ under ≻ and ≻∗
j=≻j , z is no longer available at t′ under ≻. Hence

t(z) ≤ t′ < t∗(z).
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(11) Since t(z) ≤ t′ < t(y) ≤ t(x) < t(a), we have z = a, and hence z ∈ B, which
contradicts the definition of y.

7.59 Proof of Proposition 7.55, Statement (iv). There are three goods {a, b, c}, three agents {1, 2, 3}.
The preference profile is as follows:

1 2 3
a a b
b c a
c b c

The process of PS is illustrated below

Time
t0 = 0 t1 = 1

2 t2 = 3
4

t3 = 1

1 a b c

2 a c

3 b c

Thus, PS produces the matching

P =


1
2

1
4

1
4

1
2 0 1

2

0 3
4

1
4

 .

However, if agent 3 misreports her preference as a ≻′
3 b ≻′

3 c, then the process of PS is illus-
trated below
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Time
t0 = 0 t1 = 1

3 t2 = 5
6
t3 = 1

1 a b c

2 a c

3 a b c

Thus, PS produces the matching

Q =


1
3

1
3

1
3

2
3 0 1

3
1
3

1
2

1
6

 .

Agent 3may be better off: Consider the following consistent vonNeumann-Morgenstern utility
u3 = (9, 10, 0). Then P3 · u3 = 15

2 < 8 = Q3 · u3.

By Proposition 7.26, P3 %sd
3 Q3 does not hold. Hence, PS is not strategy-proof.

7.60 Question: Is there a random assignment problem such that the assignment of some agent i0
under the true preference profile is first-order stochastically dominated by the assignment under
the misreported preference profile?

7.7 RP vs PS

7.61 Comparison of RP and PS:

RP PS
Ex ante efficiency × Question
Ordinal efficiency ×

√

Ex post efficiency
√ √

Envy-freeness ×
√

Weak envy-freeness
√ √

Equal treatment of equals
√ √

Strategy-proofness
√

×
Weak strategy-proofness

√ √

Table 7.7
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7.62 Proposition (Proposition 2 in Bogomolnaia and Moulin (2001)):

• Fix n = 3. RP is characterized by the combination of three axioms: ordinal efficiency,
equal treatment of equals, and strategy-proofness.

• PS is characterized by the combination of three axioms: ordinal efficiency, envy-freeness,
and weak strategy-proofness.

7.63 Theorem (Theorem 1 in Kesten (2009)):

7.8 Impossibility results

7.64 Theorem (Zhou (1990)): Incompatibility of ex ante efficiency, equal treatment of equals, and
strategy-proofness.

7.65 Theorem (Theorem 2 in Bogomolnaia and Moulin (2001)): Fix n ≥ 4. Then there is no mech-
anism meeting the following three requirements: ordinal efficiency, equal treatment of equals,
and strategy-proofness.

7.66 Theorem (Proposition 1 in Erdil (2014)): If a strategy-proof mechanism is non-wasteful, then
it is not (FSD) dominated by any other strategy-proof mechanism.

7.67 Theorem (Theorem 1 in Martini (2016)): Let there be n ≥ 4 agents and m ≥ 3 objects.
Then there is no mechanism that is strategy-proof, non-wasteful and satisfies equal treatment
of equals.

7.9 Large markets

7.68 Kojima and Manea (2010) show that for any given utility functions of the agents, when there
are sufficiently many copies of each object, PS will be strategy-proof.

7.69 Che and Kojima (2010) show that PS and RP are asymptotically equivalent, as the size of the
market increases.

7.70 Manipulations have two effects: (1) given the same set of available objects, reporting false pref-
erencesmay prevent the agent from eating hismost preferred available object; (2) reporting false
preferences can affect expiration dates of each good. (1) always hurts the manipulating agent,
while (2) can benefit the agent.

Intuitively, the effect (2) becomes small as the market becomes large.
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7.10 Implementing random assignments

7.71 A lottery assignment is a probability distribution p over the set of deterministic assignments,�

where p(X) denotes the probability of the deterministic assignmentX .

An example for lottery assignment:

p = 5
12


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⊕ 1
12


0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

⊕ 5
12


0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

⊕ 1
12


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 .

7.72 Relationship between random assignments and lottery assignments.

We associate to each lottery assignment p a random assignment P is the following way:

P =
∑
X∈D

p(X) ·X.

On the other hand, by the classical Birkhoff-von Neumann theorem (see Pulleyblank (1995),
page 187–188), any bistochastic matrix can be written (not necessarily uniquely) as a convex
combination of permutation matrices.

Henceforth, we identify lottery assignments with the corresponding random assignments and
use these terms interchangeably.

7.73 Lemma: Let P be a bistochastic matrix that is not a permutation matrix. Then it can be written
as a convex combination of two bistochastic matrices,

P = λP 1 + (1− λ)P 2,

where P 1 and P 2 has the following properties:

(i) If Pio is an integer, then P 1
io and P 2

io are integers.

(ii) P 1 and P 2 has at least one more integer entry than P .

Proof. See Hylland and Zeckhauser (1979).

7.74 The equivalence implies that any random assignment is induced by a lottery assignment. Thus,
any random assignment can be implemented.
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Introduction to school choice

Contents
8.1 The former model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2 Boston school choice mechanism (immediate acceptance mechanism) . . . . . . 173

8.3 Deferred acceptance algorithm and student-optimal stable mechanism . . . . . 176

8.4 Top trading cycles mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.5 Case study: Chinese college admissions . . . . . . . . . . . . . . . . . . . . . . 184

8.1 The former model

8.1 A school choice problem is a five-tuple ⟨I, S, q, P,%⟩, where�

• I = {i1, i2, . . . , in} is a finite set of students,

• S = {s1, s2, . . . , sm} is a finite set of schools,

• q , (qs)s∈S is a quota profiles for schools where qs ∈ Z+ is the quota of school s,

• P , (Pi)i∈I is a strong preference profile for students where Pi is a strict preference
relation over S ∪ {∅}, denoting the strict preference relation of student i,

• %, (%s)s∈S is a weak priority profile for schools where %s is a weak priority relation
over I ∪ {∅}, denoting the weak priority of school s.

Here ∅ represents remaining unmatched.

For each i ∈ I , let Ri be the symmetric extension of Pi, that is, sRis
′ if and only if sPis

′ or
s = s′.

169
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8.2 In school choice problem, the priorities of schools are exogenous, that is, students are strategic
agents but schools are simply objects to be consumed. So a school choice problem can be re-
garded as a one-sidedmatching problem. It is one difference between the school choice problem
and the college admission problem.

If each school has a strong priority relation ≻s, then it is clear that a school choice problem
naturally associates with an isomorphic college admission problem by letting each school s’s
preference relation be its priority relation≻s.

It is an important issue that the priority of each school is weak. However, we will only consider
the strict priorities in this chapter unless otherwise mentioned.

8.3 In a school choice problem ⟨I, S, q, P,%⟩, a matching is a function µ : I → S ∪ {∅} such that�

for each school s ∈ S, |µ−1(s)| ≤ qs.

LetM denote the set of all the matchings.

8.4 Amechanism is a systematic procedure that determines amatching for each school choice prob-�

lem.

8.5 In school choice problem, we allow only students to report preferences, and schools’ priorities
are exogenously given and publicly known.1

Thus, when I , S, q, and≻ are given, a mechanism φ≻, or simply φ, becomes a function

φ : P |I| →M,

where P is the set of all the possible preferences for students.

8.6 Typical goals of school authorities are:

• efficient placement,

• fairness of outcomes,

• strategy-proof,

• easy for participants to understand and use, etc.

8.7 In a school choice problem ⟨I, S, q, P,≻⟩, a matching µ′ Pareto dominates µ if for all i ∈ I ,�

µ′(i)Riµ(i) and for some i′ ∈ I , µ′(i)Piµ(i).

A matching is Pareto efficient if it is not dominated.

A mechanism φ is Pareto efficient if it always selects a Pareto efficient matching for each school
choice problem.

1In many school districts, schools are not allowed to submit their own preferences; Instead, school priorities are set by
law.
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Exercise: Compare this definition of Pareto efficient matchings with that in Definitions 2.7.
Why is there a difference?

8.8 A mechanism (Pareto) dominates another mechanism if for every school choice problem, the
outcome of the first weakly dominates that of the latter, with strict dominance for at least one
school choice problem.

8.9 In a school choice problem ⟨I, S, q, P,≻⟩, a matching µ is individually rational if no student�

prefers being unmatched to her assignment.

A mechanism φ is individually rational if it always selects a individually rational matching for
each school choice problem.

8.10 In a school choice problem ⟨I, S, q, P,≻⟩, a matching µ is non-wasteful if no student prefers a�

school with one or more empty seats to her assignment. That is, µ is non-wasteful if, whenever
i prefers s to her assignment µ(i), |µ−1(s)| = qs.

A mechanism φ is non-wasteful if it always selects a non-wasteful matching for each school
choice problem.

8.11 We say that student i desires school s at µ if sPiµ(i).�

In a school choice problem ⟨I, S, q, P,≻⟩, a matching µ eliminates justified envy if no student
i prefers the assignment of another student j while at the same time having higher priority at
school µ(j).

A mechanism φ eliminates justified envy if it always selects a matching that eliminates justified
envy for each school choice problem.

8.12 Lemma (Lemma 2 in Balinski and Sönmez (1999)): Assume that each school has a strict priority
relation. A matching is individually rational, non-wasteful, and eliminates justified envy if and
only if it is stable for its associated college admissions problem.

8.13 Remark: In school choice, stability can be understood as a fairness criterion.

8.14 In a school choice problem ⟨I, S, q, P,%⟩, a matching µ is constrained efficient if it is stable and
is not Pareto dominated by any other stable matching.

8.15 A mechanism φ is strategy-proof if no student can benefit from misreporting for each school�

choice problem, i.e., truth-telling is a weakly dominant strategy for all students under themech-
anism φ.

Formally, for each ⟨I, S, q, P,≻⟩, for each i ∈ I , and for each P ′
i , we have

φ[Pi, P−i](i)Riφ[P
′
i , P−i](i).
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8.16 A mechanism φ is group strategy-proof if for any ⟨I, S, q, P,≻⟩, there do not exist J ⊆ I and
P ′
J = (P ′

i )i∈J such that

φ[P ′
J , P−J ](i)Riφ[P ](i) for all i ∈ J and φ[P ′

J , P−J ](j)Pjφ[P ](j) for some j ∈ J.

8.17 A mechanism φ is non-bossy if for each ⟨I, S, q, P,≻⟩, for each i ∈ I , and for each P ′
i ,�

φ[P ](i) = φ[P ′
i , P−i](i) implies φ[P ] = φ[P ′

i , P−i].

Non-bossiness ensures that students can not be bossy, that is, change the matching for others,
by reporting different preferences, without changing their own.

8.18 Theorem (Lemma 1 in Pápai (2000)): A mechanism φ is group strategy-proof if and only if it is�

strategy-proof and non-bossy.

Proof. It is obvious that group strategy-proofness implies strategy-proofness andnon-bossiness.
So it suffices to show the other direction.

(1) Suppose that the mechanism φ is strategy-proof and non-bossy.

(2) Let ⟨I, S, q, P,≻⟩, J ⊆ I , and P ′
J be such that for all i ∈ J ,

φ[P ′
J , P−J ](i)Riφ[P ](i).

We will show that φ[P ′
J , P−J ] = φ[P ].

(3) Without loss of generality, let J = {1, 2, . . . , k}.

(4) For all i ∈ J , letP ′′
i preserve the orderPi, except, let top-ranked school beφ[P ′

J , P−J ](i).

Pi

φ[P ′
J , P−J ](i) ∅

P ′′
i

φ[P ′
J , P−J ](i) ∅

(5) Strategy-proofness implies that φ[P ](1)R1φ[P
′′
1 , P−1](1).

• If φ[P ′
J , P−J ](1)P1φ[P ](1).

(i) Thenφ[P ′
J , P−J ](1) ̸∈ o1(P−1), where the student i’s option set atP−i is defined

by

oi(P−i) ,
{
s ∈ S : there exists P ′′′

i such that φ[P ′′′
i , P−i](i) = s

}
.
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Otherwise, φ[P ′′′
1 , P−1](1) = φ[P ′

J , P−J ](1)P1φ[P ](1) for some P ′′′
1 , which

violates the strategy-proofness.
(ii) Hence, given P−1, student 1 can not get φ[P ′

J , P−J ](1).
(iii) That is, the top-ranked object of P ′′

1 can not be obtained.
(iv) Therefore, by comparing P1 and P ′′

1 , we have φ[P ′′
1 , P−1](1) = φ[P ](1).

• If φ[P ′
J , P−J ](1) = φ[P ](1).

(i) By definition of P ′′
1 , φ[P ](1) is student 1’s top-ranked school.

(ii) Therefore φ[P ′′
1 , P−1](1) = φ[P ](1).

(6) By non-bossiness, we have φ[P ′′
1 , P−1] = φ[P ].

(7) Repeating the same argument for students 2, 3, . . . , k, we get φ[P ′′
J , P−J ] = φ[P ]:

φ[P ′′
1 , P

′′
2 , P−{1,2}](2) = φ[P ′′

1 , P2, P−{1,2}](2).

(8) Under the preference P ′′
i , φ[P ′

J , P−J ](i) is student i’s top-ranked school, so no school is
ranked above it.

(9) Therefore, for all i ∈ J and s ∈ S, sR′′
i φ[P

′
J , P−J ](i) implies sR′

iφ[P
′
J , P−J ](i).

(10) By strategy-proofness, we haveφ[P ′′
i , P

′
J\{i}, P−J ](i)R

′′
i φ[P

′
i , P

′
J\{i}, P−J ](i), andhence

φ[P ′′
i , P

′
J\{i}, P−J ](i)R

′
iφ[P

′
i , P

′
J\{i}P−J ](i).

(11) By strategy-proofness again, we have φ[P ′′
i , P

′
J\{i}, P−J ](i) = φ[P ′

J , P−J ](i).

(12) By non-bossiness, φ[P ′′
i , P

′
J\{i}, P−J ] = φ[P ′

J , P−J ].

(13) By the similar argument above, we have φ(P ′′
J , P−J) = φ(P ′

J , P−J).

(14) Therefore we have
φ[P ′

J , P−J ] = φ[P ],

which implies that φ is group strategy-proof.

8.19 Remark: Theorem 8.18 is a general result for one-sided matchings.

8.2 Boston school choice mechanism (immediate acceptance mecha-
nism)

8.20 The most commonly used school choice mechanism is that used by the Boston Public School
until 2005.
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The Boston mechanism attempts to assign as many students as possible to their first choice
school, and only after all such assignments have been made does it consider assignments of
students to their second choices, and so on.

8.21 The Boston mechanism.2�

Round 1: For each school, a priority ordering is exogenously determined. (In case of Boston,
priorities depend on home address, whether the student has a sibling already attending a
school, and a lottery number to break ties.)

Round 2: Each student submits a preference ranking of the schools.

Round 3: The final round is the student assignment based on preferences and priorities:

Step 1: In Step 1 only the top choices of the students are considered. For each school,
consider the students who have listed it as their top choice and assign seats of the
school to these students one at a time following their priority order until either there
are no seats left or there is no student left who has listed it as her top choice.

Step k: Consider the remaining students. In Step k only the k-th choices of these students
are considered. For each school still with available seats, consider the students who
have listed it as their k-th choice and assign the remaining seats to these students one
at a time following their priority order until either there are no seats left or there is no
student left who has listed it as her k-th choice.

End: The algorithm terminates when no more students are assigned. At each step, every
assignment is final.

8.22 In Boston, students have priorities at schools set by the school system:

(i) Students who already attend the school,

(ii) Students who live in a walk zone and have their siblings already attending the school,

(iii) Students whose siblings are already attending the school,

(iv) Students who live in a walk zone,

(v) All other students.

Priorities are weak, i.e., there are many students in each priority class: This is going to be im-
portant but for now let us ignore the issue.

8.23 Example: Consider the school choice problem ⟨I, S, q, P,≻⟩, where I = {i, j, k}, S = {a, b},
qa = qb = 1, and the preferences and priorities are as follows:

2This name came from the fact that it was in use for school choice in Boston Public Schools before it was replaced by the
student-proposing DA.
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i j k a b
b a a i k
a b j i

k

Table 8.1

The procedure of the Boston mechanism is

Step 1 End
a j, �Ak j
b i i
∅ k k

Table 8.2

Student i is on the list of school b, and students j and k are on the list of schools a where j has
higher priority. So i is assigned to b, j is assigned to a, and k remains unmatched.

The resulting matching is

µ =

[
i j k

b a ∅

]
.

8.24 The Boston mechanism is not necessarily stable.

Consider Example 8.23. The matching µ is blocked by the pair (k, b).

8.25 The Boston mechanism is not strategy-proofness.

Consider Example 8.23, if k misreports her preference as P ′
k : b, a, ∅ instead, the Boston mech-

anism produces the following matching

µ′ =

[
i j k

∅ a b

]
,

and student k benefits from submitting a false preference.

8.26 As seen in Example 8.23, a student (for example, k) who ranks a school (b) as her second choice
loses her priority to students (i) who rank it as their first choice. Thus, it is risky for the student
to use her first choice at a highly sought-after school if she has relatively low priority there. If
she does not receive her first choice, she might drop far down list.

Besides, the Boston mechanism gives students incentive to misreport their preferences by im-
proving the ranking of schools in their choice lists for which they have high priority. Chen and
Sönmez (2006) found the experimental evidence on preference manipulation under Boston
mechanism.
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8.27 Worries in Boston mechanism is real.

St. Petersburg Times (14 September 2003):

Make a realistic, informed selection on the school you list as your first choice. It’s the
cleanest shot you will get at a school, but if you aim too high you might miss. Here’s
why: If the random computer selection rejects your first choice, your chances of
getting your second choice school are greatly diminished. That’s because you then fall
in line behind everyone who wanted your second choice school as their first choice.
You can fall even farther back in line as you get bumped down to your third, fourth
and fifth choices.

The 2004–2005 BPS School Guide:

For a better choice of your ‘first choice’ school …consider choosing less popular
schools.

Advice from the West Zone Parents Group3 meeting (27 October 2003)

One school choice strategy is to find a school you like that is undersubscribed and
put it as a top choice, OR, find a school that you like that is popular and put it as a
first choice and find a school that is less popular for a “safe” second choice.

8.28 Abdulkadiroğlu et al. (2006) found that of the 15135 students, 19% (2910) listed two over-
demanded schools as their top two choices, and about 27% (782) of these ended up unassigned.

8.29 Since priorities are set by law for Boston schools, Abdulkadiroğlu et al. (2006) recommended
not only DA but also TTC: remember TTC is more efficient than DA.

However, the school system finally chose DA: the story says the idea of “trading priorities” in
TTC did not appeal to policy makers.

For Boston Public School system, the Boston mechanism was replaced by DA in 2006.

8.30 Question: How about the efficiency of the Boston mechanism?

8.3 Deferred acceptance algorithm and student-optimal stablemech-
anism

8.31 In a school choice problem ⟨I, S, q, P,≻⟩with given strict priorities≻, let DA (orDA≻ in some
environments) denote the student-optimal stable mechanism, which is produced by Gale and
Shapley’s student-proposing deferred acceptance algorithm.

3This group is a well-informed group of approximately 180 members who meet regularly prior to admissions time to
discuss Boston school choice for elementary school, recommends two types of strategies to its members.
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8.32 Theorem: For each school choice problem, DA produces a stablematching, which is also at least
as good for every student as any other stable matching.

Proof. Recall Theorem 3.23 and Corollary 3.26.

The welfare is maximized by student-proposing DA, subject to stability.

8.33 Theorem: DA is strategy-proof.

Proof. Recall Theorem 3.61.

8.34 Theorem (Theorem3 inAlcalde andBarberà (1994)): DA is the unique stable and strategy-proof�

mechanism in school choice problems.

Proof. We will show that any stable mechanism φ which does not always choose the matching
resulting from the student-proposing DA will be manipulable.

(1) Suppose that φ(̸= DA) is another stable and strategy-proof mechanism in school choice
problems.

(2) Thus, there exists a school choice problem ⟨I, S, q, P,≻⟩ such that φ[P ] ̸= DA[P ].

(3) There will then be some student i ∈ I who is not assigned to her optimal school DA[P ](i).

(4) It is clear that DA[P ](i)Piφ[P ](i), and hence DA[P ](i) ̸= ∅.

(5) Consider a new preference P ′
i of i: P ′

i keeps the same ranking among schools and sets the
schools behind DA[P ](i) unacceptable.

Pi

DA[P ](i)
∅

P ′
i

DA[P ](i) ∅

(6) Clearly, DA[P ] is stable under [P ′
i , P−i].

(7) By Theorem 3.30, we know that the set of students remaining unassigned is the same at all
stable matchings for the given preference profile [P ′

i , P−i].

(8) Since φ[P ′
i , P−i] is another stable matching under [P ′

i , P−i], φ[P ′
i , P−i](i) ̸= ∅.

(9) Thus, we have φ[P ′
i , P−i](i)P

′
i∅, and hence φ[P ′

i , P−i](i)R
′
i DA[P ](i).

(10) Since P ′
i and Pi share the same ranking among schools from the top-ranked school to

DA[P ](i), we have φ[P ′
i , P−i](i)Ri DA[P ](i).
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(11) Since DA[P ](i)Piφ[P ](i), we have

φ[P ′
i , P−i](i)Ri DA[P ](i)Piφ[P ](i),

that is, i can manipulate φ at P via P ′
i . It contradicts the fact that φ is strategy-proof.

8.35 The major drawback of DA is its lack of Pareto efficiency.

Consider the school choice problem ⟨I, S, q, P,≻⟩, where I = {i, j, k}, S = {a, b}, qa = qb =

1, and the preferences and priorities are as follows:

i j k a b
b a a i k
a b j i

k

Table 8.3

The procedure of DA is

Step 1 2 3 End
a j, �Ak j ��AAj, i i
b i �Ci, k k k
∅ k i j j

Table 8.4

and the resulting matching is

µ =

[
i j k

a ∅ b

]
.

It is clear that µ is Pareto dominated by the matching

µ′ =

[
i j k

b ∅ a

]
.

The efficiency of DA will be detailedly discussed in Chapter 9.

8.36 Remark: DA is strategy-proof and stable, but not Pareto efficient. Are there mechanisms that
improve the efficiency of students without sacrificing the other two properties?

• Stability will be lost for sure, since DA produces the student-optimal stable matching.
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• Strategy-proofness will also be lost, due to the following impossibility result.

8.37 Theorem (Proposition 1 in Kesten (2010), Theorem 1 in Abdulkadiroğlu et al. (2009), Proposi-�

tion 1 in Erdil (2014)): If φ is a strategy-proof and stable mechanism, then there is no strategy-
proof mechanism that dominates φ.

Proof. (1) Suppose that there exists a strategy-proof mechanism ψ that dominates φ. Then
there exists a school choice problem ⟨I, S, q, P,≻⟩ such that ψ[P ](i)Riφ[P ](i) for all
i ∈ I and ψ[P ](j)Pjφ[P ](j) for some j ∈ I .

(2) Let s = ψ[P ](j). Consider a new preference P ′
j of j: P ′

j : s, ∅.

Pj

ψ[P ](j) = s ∅

P ′
j s ∅

(3) Since φ is strategy-proof, φ[P ′
j , P−j ](j) = ∅; otherwise φ[P ′

j , P−j ](j) = s will lead j to
misreport P ′

j when her true preference is Pj :

φ[P ′
j , P−j ](j) = s = ψ[P ](j)Pjφ[P ](j).

(4) Since φ[P ′
j , P−j ] is Pareto dominated by ψ[P ′

j , P−j ], the same set of students is matched;
see Lemma 8.38.

(5) Thus, ψ[P ′
j , P−j ](j) = ∅.

(6) However, under the mechanism ψ, j will have incentive to report Pj when her true pref-
erence is P ′

j , when others have preferences P−j :

ψ[Pj , P−j ](j) = sP ′
j∅ = ψ[P ′

j , P−j ](j).

This violates the strategy-proofness of ψ.

8.38 Lemma (Lemma 1 in Erdil and Ergin (2008) and Claim in Abdulkadiroğlu et al. (2009)): In a
school choice problem ⟨I, S, q, P,≻⟩, suppose that µ is a stable matching4 that is Pareto domi-
nated by a (not necessarily stable) matching ν. Let I ′ denote the set of students who are strictly
better off under ν and let S′ = µ(I ′) be the set of schools to which students in I ′ are assigned
under µ. Then we have:

4Indeed, we only require that µ is individually rational (for students) and non-wasteful.
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(i) Students who are not in I ′ have the same match under µ and ν;

(ii) The number of students in I ′ who are assigned to a school s are the same in µ and ν; in
particular, S′ = ν(I ′);

(iii) Each student in I ′ is assigned to a school in µ and in ν.

Proof. (i) For each i ∈ I \ I ′, i is indifferent between µ(i) and ν(i). Thus, µ(i) = ν(i).

(ii) We first show that |I ′ ∩ µ−1(s)| ≥ |I ′ ∩ ν−1(s)| for any school s.

(1) Suppose that |I ′ ∩ µ−1(s)| < |I ′ ∩ ν−1(s)| for some school s.

(2) Together with (i), this implies that the number of students in I who are assigned to s
under µ is less than the number of students who are assigned to s under ν.

(3) Hence, smust have empty seats under µ.

(4) For any i ∈ I ′ ∩ ν−1(s), s = ν(i)Piµ(i), that is, i desires s which has empty seats
under µ, a contradiction to the non-wastefulness of µ.

Now suppose the inequality |I ′ ∩ µ−1(s)| ≥ |I ′ ∩ ν−1(s)| holds strictly for some school
s∗.

(5) Summing across all schools we have∑
s∈S

|I ′ ∩ µ−1(s)| >
∑
s∈S

|I ′ ∩ ν−1(s)|.

(6) Hence, the number of students in I ′ who are assigned to some school under µ is more
than the number of students in I ′ who are assigned to some school in ν.

(7) There exists a student i ∈ I ′ who is assigned to a school under µ, but not under ν.

(8) Since ∅ = ν(i)Piµ(i), this contradicts the individual rationality of µ.

(iii) (1) From (ii), we have

|I ′| ≥
∑
s∈S

|I ′ ∩ µ−1(s)| =
∑
s∈S

|I ′ ∩ ν−1(s)|.

(2) It suffices to show that the inequality above cannot hold strictly.

(3) Suppose for a contradiction that

|I ′| >
∑
s∈S

|I ′ ∩ µ−1(s)| =
∑
s∈S

|I ′ ∩ ν−1(s)|.

(4) Hence, there exists a student i ∈ I ′ who is unmatched under ν.

(5) Note that i has to be matched under µ; otherwise, she would be indifferent between
µ and ν, a contradiction to her being in I ′.
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(6) But then ∅ = ν(i)Piµ(i), a contradiction to the individual rationality of µ.

This result implies that anyPareto improvement upon a stablematchingmust be through trading
cycles.

8.39 Corollary: Given strict school priorities, no Pareto efficient and strategy-proof mechanism
dominates DA.

8.40 It has been empirically documented that the efficiency loss of DA can be significant in prac-
tice; see Abdulkadiroğlu et al. (2009). This creates a trade-off between efficiency and strategy-
proofness.

8.41 The efficiency improvement of DA will be detailedly discussed in Chapter 10.

8.42 DA was implemented in Boston in 2006 and is in use. Its variation is used in New York City.

8.4 Top trading cycles mechanism

8.43 Top trading cycles mechanism.�

Assign a counter for each school which keeps track of how many seats are still available at the
school. Initially set the counters equal to the capacities of the schools.

Step 1: Each student points to her favorite school under her announced preferences. Each
school points to the student who has the highest priority for the school.
Since the number of students and schools are finite, there is at least one cycle. (A cycle is
an ordered list of distinct schools and distinct students (s1, i1, s2, i2, . . . , sk, ik)where s1
points to i1, i1 points to s2, …, sk points to ik, ik points to s1.) Moreover, each school
can be part of at most one cycle. Similarly, each student can be part of at most one cycle.
Every student in a cycle is assigned a seat at the school she points to and is removed.
The counter of each school in a cycle is reduced by one and if it reduces to zero, the school
is also removed. Counters of all other schools stay put.

Step k: Each remaining student points to her favorite school among the remaining schools and
each remaining school points to the student with highest priority among the remaining
students.
There is at least one cycle. Every student in a cycle is assigned a seat at the school that she
points to and is removed.
The counter of each school in a cycle is reduced by one and if it reduces to zero the school
is also removed. Counters of all other schools stay put.
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End: The algorithm terminates when no more students are assigned. At each step, every as-
signment is final.

8.44 The intuition for this mechanism is that it starts with students who have the highest priorities,
and allows them to trade the schools for which they have the highest priorities in case a Pareto
improvement is possible.

8.45 Theorem (Proposition 3 in Abdulkadiroğlu and Sönmez (2003)): TTC is Pareto efficient.

Proof. Recall Theorem 4.16.

8.46 Theorem (Proposition 4 in Abdulkadiroğlu and Sönmez (2003)): TTC is strategy-proof.

Proof. Recall Theorem 4.27.

8.47 TTC does not completely eliminate justified envy.

Consider the school choice problem ⟨I, S, q, P,≻⟩, where I = {i, j, k}, S = {a, b}, qa = qb =

1, and

i j k a b
b a a i k
a b j i

k

Table 8.5

The matching produced by TTC is

µ =

[
i j k

b ∅ a

]
.

It is clear that k violates j’s priority at school a, since j ≻a k and µ(k) = aPj∅ = µ(j).

8.48 Remark: Although TTC is Pareto efficient and DA is not, the two are not Pareto ranked in
general.

Consider the school choice problem ⟨I, S, q, P,≻⟩, where I = {i, j, k}, S = {s1, s2, s3},
qs1 = qs2 = qs3 = 1, and
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i j k s1 s2 s3
s2 s1 s1 i j j
s1 s2 s2 k i i
s3 s3 s3 j k k

Table 8.6

The outcomes of DA and TTC are

µDA =

[
i j k

s2 s3 s1

]
and µTTC =

[
i j k

s2 s1 s3

]
,

where neither matching Pareto dominates the other one.

8.49 For school choice problems, TTC andDA are two competingmechanisms. However, the school
system finally chose DA: the story says the idea of “trading priorities” in TTC did not appeal to
policy makers.

8.50 Question: How to improve the fairness of TTC?

Hint (Hakimov and Kesten (2014)): Consider the school choice problem ⟨I, S, q, P,≻⟩, where
I = {i, j, k}, S = {a, b}, qa = 1, qb = 2, and the priorities for the schools and the preferences
of the students are given as follows

i j k a b
b a a i k
a b b j j

k i

Table 8.7

When we apply TTC to this problem, student i who has the highest a-priority, exchanges one
slot at school a in return for one slot at school b from student k who has the highest b-priority.
This allocation is Pareto efficient. However, the priority of student j for school a is violated by
student k, i.e., j has justified envy over k.

TTC gives student k ownership over both slots of school b before student j enters the market.
But then student i has no choice but to trade with student k, which in turn leads to the violation
of the priority of student j for school a. However, had student i traded his right for one slot
at school a with student j for his right for one slot at school b, there would not be any priority
violations. Indeed, such a trade would have led to the Pareto efficient and stable allocation
underlined in the above profile.
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8.5 Case study: Chinese college admissions

8.51 Main reference: Chen and Kesten (2017).

8.52 To alleviate the problem of high-scoring students not being accepted by any universities, the
parallel mechanism was proposed by Zhenyi Wu (吴振一). A Chinese parallel mechanism was
first implemented inHunan tier 0 college admissions in 2001. From2001 to 2012, variants of the
mechanism have been adopted by 28 provinces to replace Boston mechanisms; Wu and Zhong
(2014).

8.53 Chinese parallel mechanism with a parameter e ∈ {1, 2, . . . ,∞},5 denoted by φe:�

Round 1: Step 1: Each student applies to his first choice. Each school s considers its applicants.
Those students with the highest s-priority are tentatively assigned to school s up to
its quota. The rest are rejected.

Step k: Each rejected student, who is yet to apply to his e-th choice school, applies to his
next choice. If a student has been rejected from all his first e choices, then he remains
unassigned in this round and does not make any applications until the next round.
Each school s considers its applicants. Those students with highest s-priority are
tentatively assigned to school s up to its quota. The rest of the applicants are rejected.

End: The round terminates whenever each student is either assigned to a school or is
unassigned in this round, i.e., he has been rejected by all his first e choice schools.
At this point, all tentative assignments become final and the quota of each school is
reduced by the number of students permanently assigned to it.

Round t: Step 1: Eachunassigned student from the previous round applies to his
(
(t− 1)e+ 1

)
-

st choice school. Each school s considers its applicants. Those students with the
highest s-priority are tentatively assigned to school s up to its quota. The rest of the
applicants are rejected.

Step k: Each rejected student, who is yet to apply to his
(
(t− 1)e+ e

)
-th choice school,

applies to his next choice. If a student has been rejected fromall his first
(
(t− 1)e+ e

)
choices, then he remains unassigned in this round and does not make any applica-
tions until the next round.
Each school s considers its applicants. Those students with the highest s-priority are
tentatively assigned to school s up to its quota. The rest of the applicants are rejected.

End: The round terminates whenever each student is either assigned to a school or is
unassigned in this round, i.e., he has been rejected by all his first (t− 1)e+ e choice

5For example, e = 2 for Heilongjiang, e = 3 for Jiangsu, e = 4 for Anhui, e = 5 for Hebei, e = 6 for Hainan, e = 10
for Tibet.
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schools. At this point, all tentative assignments become final and the quota of each
school is reduced by the number of students permanently assigned to it.

End: The algorithm terminates when each student has been assigned to a school. At this point,
all the tentative assignments become final.

8.54 Remark: There are two limiting cases:

• TheChinese parallelmechanismwith a parameter e = 1 is equivalent to the Bostonmech-
anism.

• The Chinese parallel mechanism with a parameter e =∞ is equivalent to DA.

8.55 Proposition (Proposition 1 in Chen and Kesten (2017)): Within the family Chinese parallel
mechanisms, that is, e ∈ {1, 2, . . . ,∞},

(i) there is exactly one member that is Pareto efficient; this is the Boston mechanism;

(ii) there is exactly one member that is strategy-proof; this is the DA mechanism;

(iii) there is exactly one member that is stable; this is the DA mechanism.

8.56 Theorem (Theorem 1 in Chen and Kesten (2017)): For any e, φe is more manipulable than φe′ ,
where e′ > e.

Amechanismψ is said to bemanipulable at a problem ⟨P,≻⟩ if there exists some student j such
thatψ is manipulable by student j at ⟨P,≻⟩. We considermechanismφ to bemoremanipulable
than mechanism ψ if (i) at any problem ψ is manipulable, then φ is also manipulable; and (ii)
there is at least one problem at which φ is manipulable but ψ is not.

8.57 Proposition (Proposition 2 in Chen and Kesten (2017)): Let e′ > e.

(i) If e′ = ke for some k ∈ N ∪ {∞}, then φe′ is more stable than φe.

(ii) If e′ ̸= ke for any k ∈ N ∪ {∞}, then φe′ is not more stable than φe.

A mechanism φ to be more stable than mechanism ψ if (i) at any problem ψ is stable, φ is also
stable; and (ii) there is at least one problem at which φ is stable but ψ is not.
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Acyclicity

Contents
9.1 Cycles and efficiency of deferred acceptance algorithm . . . . . . . . . . . . . . 187
9.2 Robust stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.1 Cycles and efficiency of deferred acceptance algorithm

9.1 Consider the school choice problem ⟨I, S, q, P,≻⟩ in Example 8.35, where I = {i, j, k}, S =

{a, b}, qa = qb = 1, and

i j k a b
b a a i k
a b j i

k

Table 9.1

The matching produced by DA is

µ =

[
i j k

a ∅ b

]
.

Amutually beneficial agreement between i and k would be to get schools a and b respectively by
exercising their priority rights, and then to make an exchange so that finally i gets b and k gets
a. However, the final matching would violate the priority of j for a, contradicting the allocation
on the basis of specified priorities.

187
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Here the priority structure is cyclic, since j may block a potential matching between i and k
without affecting his own position, that is

i ≻a j ≻a k ≻b i.

Because of such a cycle, in DA,

(1) k applies to her favorite a but j displaces k,

(2) k is forced to apply to her second choice b, displacing i from his favorite b,

(3) i is forced to apply to his second choice a, displacing j.

In the end, j is displaced by school a anyway, with the result being just causing more rejections
and making i and k worse off.

9.2 Definition (Definition 1 in Ergin (2002)): Given a priority structure ≻ and quota profile q, a�

cycle is a, b ∈ S, i, j, k ∈ I such that the following are satisfied:

(C) Cycle condition: i ≻a j ≻a k ≻b i.

(S) Scarcity condition: There exist (possibly empty) disjoint sets of students Ia, Ib ⊆ I\{i, j, k}
such that |Ia| = qa − 1, |Ib| = qb − 1, i′ ≻a j for every i′ ∈ Ia, and i′′ ≻b i for every
i′′ ∈ Ib.

A priority structure≻ (or (≻, q)) is acyclic if there exists no cycle.

9.3 Remark: The scarcity condition requires that there are enough people with higher priority for
a and b such that there may be instants when i, j, and k would compete for admission in either
a or b.

9.4 For any problem Γ = ⟨I, S, q, P,≻⟩, any I ′ ⊆ I , and any matching µ, the reduced problem of
Γ with respect to I ′ and q′ under µ is

rµI′(Γ) = ⟨I ′, S, q′, PI′ ,≻|I′⟩,

where q′s = qs − |µ−1(s) \ I ′|.

It is the smaller problem consisting of students I ′ and remaining positions after students I \ I ′

have left with their matchings under the matching µ.

9.5 Definition: A mechanism φ is consistent is consistent if for any problem Γ = ⟨I, S, q, P,≻⟩,�

for any nonempty subset I ′ ⊆ I , and for any i ∈ I ′,

φ[Γ](i) = φ
[
r
φ[Γ]
I′ (Γ)

]
(i).
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9.6 Remark: Consistency requires that once a matching is determined and a group of students re-
ceive their colleges before the others, the rule should not change the matching of the remaining
students in the reduced problem involving the remaining students and colleges.

9.7 Theorem (Theorem 1 in Ergin (2002)): For any≻ and q, the following are equivalent:�

(i) ≻ is acyclic.

(ii) DA≻ is Pareto efficient.

(iii) DA≻ is consistent.

(iv) DA≻ is group strategy-proof.

9.8 This theorem is bad news for school systems, because most priority structures are cyclic.

9.9 Definition: Given a priority structure≻, a generalized cycle is constituted of distinct s0, s1, . . . , sn−1 ∈
S and i′, i0, i1, . . . , in−1 ∈ I with n ≥ 2 such that the following are satisfied:

(C’) i0 ≻s0 i
′ ≻s0 in−1 ≻sn−1

in−2 ≻sn−2
· · · ≻s3 i2 ≻s2 i1 ≻s1 i0.

(S’) There exist disjoint sets of agents Is0 , Is1 , . . . , Isn−1
⊆ I \ {i′, i0, i1, . . . , in−1} such that

Is0 ⊆ Us0(i
′), Is1 ⊆ Us1(i0), Is2 ⊆ Us2(i1), . . . , Isn−2

⊆ Usn−2
(in−3), Isn−1

⊆ Usn−1
(in−2),

and |Isl | = qsl − 1 for all l = 0, 1, . . . , n− 1, where Us(i) , {j ∈ I | j ≻s i}.

9.10 Lemma: If DA is not Pareto efficient, then≻ has a generalized cycle.

Proof.

Part 1: Suppose that DA is not Pareto efficient, that is, there exist P and µ′, such that µ′ Pareto
dominates µ = DA[P ]. We will show that there exist students

i0, i1, . . . , in−1, in = i0 ∈ I

with n ≥ 2, such that each student envies the next under µ.

(1) Let J = {i ∈ I | µ′(i)Piµ(i)}, since µ′ Pareto dominates µ, J ̸= ∅.

(2) Moreover, for any student i ∈ I \ J , he/she should be indifferent between µ(i) and µ′(i),
and hence I \ J = {i ∈ I | µ′(i) = µ(i)}.

(3) For each i ∈ J , we also have µ′(i) ∈ S, since µ′(i)Piµ(i)Ri∅.

(4) For each i ∈ J , since µ′(i)Piµ(i), i has been rejected by µ′(i) at a step under µ. So at that
step µ′(i)’s waiting list must be full, and therefore at last the school µ′(i) has full quota,
i.e., |µ−1(µ′(i))| = qµ′(i).
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(5) Fix i ∈ J . Claim: There is some student in J who was assigned to µ′(i) under µ.

(i) Otherwise the set of qµ′(i) students who were assigned to µ′(i) under µ would be
a subset of I \ J , and hence they would be assigned to µ(i) also under µ′, since
I \ J = {i ∈ I | µ′(i) = µ(i)}.

(ii) Since i ∈ J is also assigned to µ′(i) under µ′, there are at least qµ′(i) + 1 students
assigned to µ′(i) under µ′, which leads to a contradiction.

(6) Define the correspondence π : J � J by π(i) = µ−1(µ′(i))∩J . By the above argument,
π is non-empty valued.

(7) We can choose a selection π̄ of π such that for any i, j ∈ J with µ′(i) = µ′(j), we have
π̄(i) = π̄(j) ∈ J . Hence we have µπ̄ = µ′.

(8) For each i ∈ J , since µ(i) ̸= µ′(i), we have π̄(i) ̸= i. Therefore there is n ≥ 2 and n
distinct students

i1, i2, . . . , in = i0 ∈ J

with ir = π̄(ir−1) for r = 1, 2, . . . , n.

(9) Set sr = µ(ir) for r = 1, 2, . . . , n. Then sr = µ(ir) = µ(π̄(ir−1)) = µ′(ir−1) for
r = 1, 2, . . . , n.

(10) Since i1, i2, . . . , in = i0 are distinct, s1, s2, . . . , sn = s0 are also distinct by the particular
choice of the selection π̄.

(11) Now we have showed that sr = µ(ir) = µ′(ir−1)Pir−1
µ(ir−1) for r = 1, 2, . . . , n.

(12) Since µ is stable, we have ir ≻sr ir−1 for r = 1, 2, . . . , n. Therefore we have

i0 ≻s0 in−1 ≻sn−1
in−2 ≻sn−2

· · · ≻s3 i2 ≻s2 i1 ≻s1 i0.

Part 2:

(1) Let k be the latest step under µ when someone in {i0, i1, . . . , in−1} applies to (and is
accepted) the school to which he is assigned under µ.

(2) Without loss of generality, suppose that i0 applies to s0 = µ(i0) at this step.

(3) After that step, all students in {i0, i1, . . . , in−1} never get rejected again, since they are in
the waiting list of their final allocation.

(4) For r = 0, 1, . . . , n− 1, since srPir−1
sr−1, ir−1 was rejected by sr at an earlier step than

when he applied to sr−1, which is earlier than Step k.

(5) Therefore at the end of Step k − 1, sr ’s waiting list must be full, for r = 0, 1, . . . , n− 1.

(6) Note that at the endof Stepk−1, s0’s waiting list does not include any ir ∈ {i1, i2, . . . , in−1}.
Otherwise ir would apply to sr at a step later k, a contradiction.



Do
No
t C
op
y o
r D
istr
ibu
te

9.1. Cycles and efficiency of deferred acceptance algorithm 191

(7) We can find i′ ∈ I distinct from i0, i1, . . . , in−1 such that he is rejected by s0 at Step k.

(8) Since i′ is accepted to the waiting list of s0 when in−1 is rejected by i0, we have i0 ≻s0

i′ ≻s0 in−1.

(9) For any r ∈ {0, 1, . . . , n− 1}, let Isr be the set of students in the waiting list of sr other
than ir at the end of Step k. It is now straightforward to see that condition (S’) is also
satisfied.

9.11 Lemma (Lemma in Narita (2009)): If≻ has a generalized cycle, then≻ has a cycle.

Proof. Suppose that≻ and q have a generalized circle and let the size of the shortest generalized
cycle be n > 2, that is, s0, s1, . . . , sn−1 ∈ S, i′, i0, i1, . . . , in−1 ∈ I and Is0 , Is1 , . . . , Isn−1 ⊆
I \ {i′, i0, i1, . . . , in−1} constitute the shortest generalized cycle of size n > 2.

i0 ≻s0 i
′ ≻s0 in−1 ≻sn−1

in−2 ≻sn−2
· · · ≻s3 i2 ≻s2 i1 ≻s1 i0.

Case (1-1): Suppose i0 ≻s2 i2 and for all i ∈ Is2 , i ≻s2 i2.

(1) We have i0 ≻s2 i2 ≻s2 i1 ≻s1 i0.

(2) Is1 , Is2 ⊆ I \ {i0, i1, i2} are disjoint sets satisfying

Is2 ⊆ Us2(i2), Is1 ⊆ Us1(i0), |Is2 | = qs2 − 1, |Is1 | = qs1 − 1.

(3) Therefore, s2, s1 ∈ S, i0, i2, i1 ∈ I and Is2 , Is1 ⊆ I \ {i0, i2, i1} constitute a cycle, i.e., a
generalized cycle of size 2, which is a contradiction.

Case (1-2): Suppose i0 ≻s2 i2 and there exists i ∈ Is2 such that i2 ≻s2 i.

(1) Since i ∈ Is2 ⊆ Us2(i1), we have i ≻s2 i1, and hence i2 ≻s2 i ≻s2 i1.

(2) Let i′ be the minimum element in Is2 with respect to≻s2 , and I ′s2 = Is2 ∪ {i2} \ {i′}.

(3) Then, i0 ≻s2 i2 ≻s2 i
′ ≻s2 i1 ≻s1 i0.

(4) Is1 , I ′s2 ⊆ I \ {i0, i1, i
′} are disjoint sets satisfying

I ′s2 ⊆ Us2(i
′), Is1 ⊆ Us1(i0), |Is1 | = qs1 − 1, |I ′s2 | = qs2 − 1.

(5) Therefore, s2, s1 ∈ S, i0, i′, i1 ∈ I , and I ′s2 , Is1 constitute a cycle, which is a contradic-
tion.

Case (2-1): Suppose i2 ≻s2 i0, and for all i ∈ Is2 , i ≻s2 i0.
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(1) Then we have

i0 ≻s0 i
′ ≻s0 in−1 ≻sn−1

in−2 ≻sn−2
· · · ≻s3 i2 ≻s2 i0.

(2) Is0 , Is2 , Is3 , . . . , Isn−1 ⊆ S \ {i′, i0, i2, i3, . . . , in−1} are disjoint sets satisfying

Is0 ⊆ Us0(i
′), Is2 ⊆ Us2(i0), Is3 ⊆ Us3(i2), . . . , Isn−2

⊆ Usn−2
(in−3), Isn−1

⊆ Usn−1
(in−2).

(3) We also have |Isr | = qsr − 1 for all r = 0, 2, 3, . . . , n− 1.

(4) Therefore, s0, s2, s3, . . . , sn−1 ∈ S, i′, i0, i2, i3, . . . , in−1 ∈ I and Is0 , Is2 , Is3 , . . . , Isn−1

constitute a generalized cycle of size n− 1, which is a contradiction.

Case (2-2): Suppose i2 ≻s2 i0, and there exists i ∈ Is2 such that i0 ≻s2 i.

(1) Since i ∈ Is2 ⊆ Us2(i1), we have i ≻s2 i1, and hence i0 ≻s2 i ≻s2 i1.

(2) Let i′′ be the minimum element in Is2 with respect to≻s2 , and I ′′s2 = Is2 ∪ {i2} \ {i′′}.

(3) Then, i0 ≻s2 i
′′ ≻s2 i1 ≻s1 i0.

(4) Is1 , I ′′s2 ⊆ I \ {i0, i1, i
′′} are disjoint sets satisfying

I ′′s2 ⊆ Us2(i
′′), Is1 ⊆ Us1(i0), |Is1 | = qs1 − 1, |I ′′s2 | = qs2 − 1.

(5) Therefore, s2, s1 ∈ S, i0, i′′, i1 ∈ I , and I ′′s2 , Is1 constitute a cycle, which is a contradic-
tion.

9.12 Proof of Theorem 9.7, Part 1: “acyclicity implies Pareto efficiency”. It follows immediately from two
lemmas above.

9.13 Proof of Theorem 9.7, Part 2: “Pareto efficiency implies consistency”.

(1) Assume DA is not consistent.

(2) Then, there is ⟨I, S, q, P,≻⟩ and ∅ ̸= I ′ $ I such that

µ|I′ ̸= µ′,

where µ = DA[I, S, q, P,≻] and µ′ = DA[rµI′(I, S, q, P,≻)].

(3) Then by Corollary 3.26, µ′ Pareto dominates µ|I′ in the reduced problem.
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(4) Then the matching ν defined by

ν(i) =

µ′(i), if i ∈ I ′,

µ(i), otherwise.

Pareto dominates µ, contradiction.

9.14 Proof of Theorem 9.7, Part 3: “consistency implies group strategy-proofness”.

(1) By Corollary 3.26, DA is strategy-proof.

(2) By Theorem 8.18, it suffices to show that DA is nonbossy.

(3) Suppose that DA is consistent.

(4) Let i, P and P ′
i be given and set

µ = DA[I, S, q, P,≻], and ν = DA[I, S, q, P ′
i , P−i,≻].

(5) Assumeµ(i) = ν(i), then two reducedproblems rµI\{i}(I, S, q, P,≻) and r
ν
I\{i}(I, S, q, P

′
i , P−i,≻

) are same.

(6) By consistency of DA,

µ|I\{i} = DA[I, S, q, P,≻]|I\{i} = DA[rµI\{i}(I, S, q, P,≻)],

ν|I\{i} = DA[I, S, q, P ′
i , P−i,≻]|I\{i} = DA[rνI\{i}(I, S, q, P

′
i , P−i,≻)].

(7) Therefore, µ|I\{i} = ν|I\{i}.

(8) Since µ(i) = ν(i) and µ|I\{i} = ν|I\{i}, we conclude that µ = ν.

9.15 Proof of Theorem 9.7, Part 4: “group strategy-proofness implies acyclicity”.

(1) Suppose that≻ has a cycle with a, b, i, j, k (i ≻a j ≻a k ≻b i), Ia and Ib.

(2) Consider the preference profile P , where

• students in Ia and Ib respectively rank a and b as their top choice,

• the preferences of i, j and k are as follows,

• students outside Ia ∪ Ib ∪ {i, j, k} prefer not to be assigned to any school.

(3) Let I ′ = {i, j, k}, P−j = P−j , and P ′
j rank ∅ at the top.
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i j k
b a a
a b

Table 9.2

(4) Then we have

DA[I, S, q, PI\I′ , PI′ ,≻] =

[
i j k

a ∅ b

]
, and DA[I, S, q, PI\I′ , P ′

I′ ,≻] =

[
i j k

b ∅ a

]
,

which contradicts the group strategy-proofness of DA under the true preferences P .

9.16 Proof of Theorem 9.7, Part 5: “consistency implies acyclicity”.

(1) Suppose that≻ has a cycle with a, b, i, j, k (i ≻a j ≻a k ≻b i), Ia and Ib.

(2) Consider the preference profile P , where

• students in Ia and Ib respectively rank a and b as their top choice,

• the preferences of i, j and k are as follows,

i j k
b a a
a b

Table 9.3

• students outside Ia ∪ Ib ∪ {i, j, k} prefer not to be assigned to any school.

(3) Then, the student-optimal stable mechanism outcome µ for ⟨I, S, q, P,≻⟩ is

µ =

[
a b

Ia ∪ {i} Ib ∪ {j}

]
.

(4) Consider the reduced problem

rµ{i,k}(I, S, q, P,≻) = ⟨{i, k}, S, q
′, P{i,k},≻|{i,k}⟩,

is such that the preferences of i and k are as above, q′a = q′b = 1, and q′s = qs for any
s ∈ S \ {a, b}.
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(5) The student-optimal stable mechanism outcome µ′ of this reduced problem is

µ′ =

[
a b

k i

]
.

(6) Since µ′ ̸= µ|{i,k}, DA is not consistent.

9.17 Theorem (Theorem 2 in Ergin (2002)): (≻, q) is cyclical if and only if there exist student i and
schools s1, s2 such that i’s rank is larger than qs1 + qs2 at s1 or s2, and |rs1(i) − rs2(i)| > 1,
where rs(i) is the rank of student i at school s.

Proof. Omitted.

9.2 Robust stability

9.18 In school choice problems, DA is both stable (fair) and strategy-proof. This makes it a good
mechanism.

What about a combined manipulation? That is, first misreport preferences and then file for a
re-matching?

This issue is intended tomodel appeals processes: In NYC, about 5000 students out of 90000 file
for appeals under DA; 300 among them are from those who were matched to their first choices.

9.19 Consider the school choice problem ⟨I, S, q, P,≻⟩, where I = {i, j, k}, S = {a, b}, qa = qb =

1, and

i j k a b
b a a i k
a b j i

k

Table 9.4

The matching produced by DA is

µ =

[
i j k

a ∅ b

]
.

Suppose that j misreports that ∅ is her first choice. Then the matching of DA is

µ′ =

[
i j k

b ∅ a

]
.
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Because j ≻a k, j could ask to be admitted to a; if granted, j is made better off.

9.20 Amechanismφ is immune to combinedmanipulations if for any school choice problem ⟨I, S, q, P,≻
⟩, there exist no i ∈ I , s ∈ S, and P ′

i such that

• sPiφ[P ](i), and

• i ≻s i
′ for some i′ ∈ φ[P ′

i , P−i](s) or |φ[P ′
i , P−i](s)| < qs. (a student first misrep-

resents her preferences and then blocks the matching that is produced by the centralized
mechanism)

Definition (Definition 1 in Kojima (2011)): A mechanism φ is robustly stable if the following�

conditions are satisfied:

(1) φ is stable.

(2) φ is strategy-proof.

(3) φ is immune to combined manipulations.

9.21 Theorem (Theorem 1 in Kojima (2011)): There exists a priority structure≻ and a quote profile
q for which there is no robustly stable mechanism.

Proof. (1) DA is the unique stable and strategy-proof mechanism for school choice problems;
see Theorem 8.34.

(2) It suffices to show that DA is not immune to combined manipulations.

(3) Consider a problem with I = {i, j, k}, S = {a, b}, qa = qb = 1, and

i j k a b
b a a i k
a b j i

k

Table 9.5

(4) Under the true preferences (Pj , P−j), the DA produces[
i j k

a ∅ b

]
.

(5) Now consider a false preference P ′
j : ∅. Then, under (P ′

j , P−j), DA produces[
i j k

b ∅ a

]
.
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(6) Since aPj∅ = DA[Pj , P−j ](j) and j ≻a k ∈ DA[P ′
j , P−j ](a), DA is not robustly stable.

More specifically, student j has incentives to first report P ′
j and then block DA[P ′

j , P−j ].

9.22 Theorem (Theorem 2 in Kojima (2011)): Given ⟨I, S, q, P,≻⟩, DA is robustly stable if and only�

if the priority structure (≻, q) is acyclic.

9.23 Once the priority structure (≻, q) is acyclic, DA is the unique robustly stable mechanism.

This theorem seems to be bad news for school systems: most priority structures violate acyclic-
ity.

9.24 Proof of Theorem 9.22, Part 1: “robust stability implies acyclicity”. We show the claim by contra-
position.

(1) Suppose that the priority structure is not acyclic. Then, by definition, there exist a, b ∈ S,
i, j, k ∈ I such that

• i ≻a j ≻a k ≻b i,
• there exist disjoint sets Ia, Ib ⊆ I \ {i, j, k} such that |Ia| = qa − 1, |Ib| = qb − 1,
i′ ≻a j for all i ∈ Ia, and i′′ ≻b i for all i ∈ Ib.

(2) Consider the following preference profile P of students:

i j k i′ ∈ Ia i′′ ∈ Ib i ∈ I \ [{i, j, k} ∪ Ia ∪ Ib]
b a a a b
a b

Table 9.6

It is easy to see that DA[P ](j) = ∅.

(3) Now consider a false preference of student j, P ′
j : ∅.

(4) We have DA[P ′
j , P−j ](k) = a. Since

aPj∅ = DA[P ](j) and j ≻a k ∈ DA[P ′
j , P−j ](a),

DA is not robustly stable.

9.25 Proof of Theorem 9.22, Part 2: “acyclicity implies robust stability”. Prove by contradiction.

(1) Assume that DA is not robustly stable. Since DA is stable and strategy-proof, we will have
the following condition: Condition A: There exists s ∈ S, c ∈ C , P ∈ P |S| and P ′

s ∈ P ,
such that
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• cPs DA[P ](s);

• s ≻c s
′ for some s′ ∈ DA[P ′

s, P−s](c) or |DA[P ′
s, P−s](c)| < qc.

(2) Let P ′ = (P ′
s, P−s).

(3) Case 1: Suppose DA[P ′](s) = ∅.

(i) Let
P ′′
s : c, ∅, P ′′ = (P ′′

s , P−s).

(ii) If DA[P ′′](s) = c. Since we have

DA[P ′′](s) = cPs DA[P ](s),

this is a contradiction to strategy-proofness of DA.

(iii) If DA[P ′′](s) = ∅ which equals to DA[P ′](s)).
Then, by definition of P ′′

s , we have

cP ′′
s ∅ = DA[P ′′](s). (9.1)

Since (≻, q) is acyclic, DA is nonbossy, and hence DA[P ′′] = DA[P ′].
By Condition A, we will have s ≻c s

′ for some s′ ∈ DA[P ′](c) = DA[P ′′](c), or
|DA[P ′′](c)| = |DA[P ′](c)| < qc.
This and relation (9.1) means that DA[P ′′] is unstable under P ′′, contradicting the
fact that DA is a stable mechanism.

(4) Case 2: Suppose DA[P ′](s) ̸= ∅. Let

P ′′
s : ∅, P ′′ = (P ′′

s , P−s).

By the comparative statics, |DA[P ′](c)| > |DA[P ′′](c)|, and if |DA[P ′](c)| = |DA[P ′′](c)| =
qc, then there exists s′′ ∈ DA[P ′′](c), such that s′ %c s

′′ for all s′ ∈ DA[P ′](c).

Therefore Condition A is satisfied with respect to s, c and P ′′
s and, since DA[P ′′](s) = ∅,

the analysis reduces to Case 1.

9.26 Remark: Given that DA is the unique stable and strategy-proof mechanism (see Theorem 8.34),
this theorem implies that, given themarket, there exists a robustly stable mechanism if and only
if the priority structure is acyclic.

9.27 Afacan (2012) complemented the above results by considering group robustly stability that in-
volves combined manipulations by groups of students.
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As in the case with Pareto efficiency and group strategy-proofness, there could be (at least) two
definitions of group robust stability, requiring that there is no group manipulation causing

• strict improvement for everyone in the manipulating coalition, or

• weak improvement for everyone, with at least one strict.

For the first concept (weaker requirement), it turns out that acyclicity is also a necessary and
sufficient condition for group robust stability.

For the second concept (stronger requirement), the mechanism may be manipulable even with
acyclic priority structures.
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Efficiency improvement on
student-optimal stable mechanism

Contents
10.1 Efficiency-adjusted deferred acceptance algorithm . . . . . . . . . . . . . . . . 201

10.2 Simplified efficiency-adjusted deferred acceptance algorithm . . . . . . . . . . . 209

10.3 Stable improvement cycle algorithm . . . . . . . . . . . . . . . . . . . . . . . . 215

10.1 When the priority structure contains cycles, DA is not Pareto efficient as shown in Theorem 9.7.
In Remark 8.36 and Corollary 8.39, we also show that we can not improve the efficiency of
students without sacrificing the stability and strategy-proofness. In this chapter, we will focus
on how to improve the efficiency with minimal hurt on stability and strategy-proofness.

10.1 Efficiency-adjusted deferred acceptance algorithm

10.2 Example: Consider the school choice problem ⟨I, S, q, P,≻⟩, where I = {i, j, k},S = {s1, s2},
qs1 = qs2 = 1, and

The matching produced by DA is [
i j k

s1 ∅ s2

]
,

and the procedure is

201
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i j k s1 s2
s2 s1 s1 i k
s1 s2 j i

k

Table 10.1

Step 1 2 3 End
s1 j, �Ak j ��AAj, i i
s2 i �Ci, k k k
∅ k i j j

Table 10.2

10.3 In Example 10.2, when the DA algorithm is applied to this problem, student j causes student k
to be rejected from school s1 and starts a chain of rejections that ends back at school s1, forming
a full cycle and causing student j himself to be rejected. There such a cycle has resulted in loss
of efficiency.

By applying to school s1, student j “interrupts” a desirable settlement between students i and k
without affecting her own placement and artificially introduces inefficiency into the outcome.
The key idea behind themechanism produced by Kesten (2010) is based on preventing students
such as student j of this example from interrupting settlements among other students.

10.4 Coming back to Example 10.2, suppose that student j consents to give up her priority at school
s1, i.e., if she is okay with accepting the the unfairness caused by matching k to s1. Thus, school
s1 is to be removed from student j’s preferences without affecting the relative ranking of the
other schools in her preferences.

Note that, when we rerun DA, replacing the preferences of student j with her new preferences,
there is no change in the placement of student j. But, because the previously mentioned cycle
now disappears, students i and k each move one position up in their preferences. Moreover, the
new matching is now Pareto efficient. To be more detailed, the preference profiles become

i j k s1 s2
s2 s1 i k
s1 s2 j i

k

Table 10.3

The matching produced by DA is [
i j k

s2 ∅ s1

]
,
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and the procedure is

Step 1 End
s1 k k
s2 i i
∅ j j

Table 10.4

10.5 Definition: Given a problem to which DA is applied, let i be a student who is tentatively placed�

at a school s at some Step t and rejected from it at some later Step t′. If there is at least one other
student who is rejected from school s after Step t−1 and before Step t′, that is, rejected at a Step
l ∈ {t, t+ 1, . . . , t′−1}, then we call student i an interrupter for school s and the pair (i, s) an
interrupting pair of Step t′.

10.6 In real-life applications, it is imperative that each student be asked for permission to waive her
priority for a critical school in cases similar to Example 10.2. We incorporate this aspect of the
problem into the procedure by dividing the set of students into two groups: those students who
consent to priority waiving and those who do not.

10.7 Lemma: If the outcome of DA is inefficient for a problem, then there exists one interrupting pair
in DA. However, the converse is not necessarily true, i.e., an interrupting pair does not always
result in efficiency loss.

Proof. (1) Fix a school choice problem. Let α denote the outcome of DA, which is Pareto
dominated by another matching β.

(2) There exists a student i1 such that β(i1)Pi1α(i1).

(3) Under the matching α, all the seats of school β(i1) are full.

(4) Since β Pareto dominates α, there is a student i2 who is placed at school β(i1) under α,
and who is placed at a better school β(i2) under β.

(5) Under the matching α, all the seats of school β(i2) are full.

(6) Since β Pareto dominates α, there is a student i3 who is placed at school β(i2) under α,
and who is placed at a better school β(i3) under β.

(7) Continuing in a similar way, we conclude that because matching β Pareto dominates
matching α, there is a student ik who is placed at school β(ik−1) under α, and who is
placed at the school β(i1) under β, which is better for her.

(8) That is, there is a cycle of students (i1, i2, . . . , ik) (k ≥ 2), such that each student prefers
the school the next student in the cycle (for student ik it is i1) is placed at under α to the
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school she is placed at under the same matching:

α(iℓ+1) = β(iℓ)Piℓα(iℓ) = β(iℓ−1).

(9) Let iℓ ∈ {i1, i2, . . . , ik} be the student in this cycle who is the last (or, one of the last, if
there are more than one such students) to apply to the school that she is placed at the end
of DA.

(10) Then the student iℓ−1 in the above cycle who prefers school α(iℓ) to the school α(iℓ−1)

she is placed at under α was rejected from α(iℓ) at an earlier step.

(11) Then, when student iℓ applies to school α(iℓ), all the seats are already full and because
student α(iℓ) is placed at this school at the end of DA, some student i′ is rejected.

(12) Thus, student i′ is an interrupter for school α(iℓ).

Consider an interrupting pair (i, s): it is possible that student i’s rejection from school s (at
Step t′ according to the definition) could be caused by some student j whose application to
school s has not been directly or indirectly triggered by the student that student i displaced
from school s when she is tentatively admitted. In such cases as these, the DA outcome does
not suffer efficiency loss due to the presence of an interrupter. (Exercise)

10.8 Efficiency-adjusted deferred acceptance mechanism (EADAM):�

Round 0: Run DA for the school problem.

Round k: (1) Find the last step of DA in Round (k − 1) in which a consenting interrupter is
rejected from the school for which she is an interrupter.

(2) Identify all interrupting pairs of that step each of which contains a consenting inter-
rupter.

(3) For each identified interrupting pair (i, s), remove school s from the preferences of
student i without changing the relative order of the remaining schools. Do not make
any changes in the preferences of the remaining students.

(4) Rerun DA with the new preference profile.

End: If there are no interrupting pairs, then stop.

When we say student i is an interrupter of Round t, this means that student i is identified as an
interrupter during Round (t+ 1) in DA that was run at the end of Round t.

10.9 Example (Example 5 in Kesten (2010)): Let I = {i1, i2, i3, i4, i5, i6} and S = {s1, s2, . . . , s5},
where qs1 = qs2 = qs3 = qs4 = 1 and qs5 = 2. The priorities for the schools and the
preferences of the students are given as follows: Suppose that all students consent.
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s1 s2 s3 s4 s5 i1 i2 i3 i4 i5 i6

i2 i3 i1 i4
... s2 s3 s3 s1 s1 s4

i1 i6 i6 i3 s1 s1 s4 s2 s5 s1

i5 i4 i2 i6 s3 s5 s2 s4
... s3

i6 i1 i3
...

...
...

... s2

i4
...

... s5
i3

Table 10.5

Step 1 2 3 4 5 6 7 8 9 10 End
s1 ��SSi4, i5 i5 i1,��SSi5,��SSi6 i1 ��SSi1, i2 i2 i2 i2 i2 i2 i2
s2 i1 ��SSi1, i4 i4 i4 i4 i4 ��SSi4, i6 i6 i3,��SSi6 i3 i3
s3 i2,��SSi3 i2 i2 ��SSi2, i6 i6 i1,��SSi6 i1 i1 i1 i1 i1
s4 i6 i3,��SSi6 i3 i3 i3 i3 i3 ��SSi3, i4 i4 i4 i4
s5 i5 i5 i5 i5 i5 i5 i5, i6 i5, i6
∅ i3, i4 i1, i6 i5, i6 i2 i1 i6 i4 i3 i6

Table 10.6

Round 0:

Round 1: The last step in which an interrupter is rejected from the school she is an interrupter
for is Step 9, where the interrupting pair is (i6, s2). We remove school s2 from the preferences
of student i6. We then rerun DA with the new preference profile:

Step 1 2 3 4 5 6 7 End
s1 ��SSi4, i5 i5 i1,��SSi5,��SSi6 i1 ��SSi1, i2 i2 i2 i2
s2 i1 ��SSi1, i4 i4 i4 i4 i4 i4 i4
s3 i2,��SSi3 i2 i2 ��SSi2, i6 i6 i1,��SSi6 i1 i1
s4 i6 i3,��SSi6 i3 i3 i3 i3 i3 i3
s5 i5 i5 i5 i5, i6 i5, i6
∅ i3, i4 i1, i6 i5, i6 i2 i1 i6

Table 10.7

Round 2: The last step in which an interrupter is rejected from the school she is an interrupter
for is Step 6, where the interrupting pair is (i6, s3). We remove school s3 from the (updated)
preferences of student i6. We then rerun DA with the new preference profile:
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Step 1 2 3 4 End
s1 ��SSi4, i5 i5 i1,��SSi5,��SSi6 i1 i1
s2 i1 ��SSi1, i4 i4 i4 i4
s3 i2,��SSi3 i2 i2 i2 i2
s4 i6 i3,��SSi6 i3 i3 i3
s5 i5, i6 i5, i6
∅ i3, i4 i1, i6 i5, i6

Table 10.8

Round 3: The last step in which an interrupter is rejected from the school she is an interrupter
for is Step 3, where the interrupting pair is (i5, s1). We remove school s1 from the preferences
of student i5 and keep the preferences of the remaining students the same. We then rerun DA
with the new preference profile:

Step 1 2 3 4 5 6 End
s1 i4 i4 ��SSi4, i6 i6 i1,��SSi6 i1 i1
s2 i1 i1 i1 ��SSi1, i4 i4 i4 i4
s3 i2,��SSi3 i2 i2 i2 i2 i2 i2
s4 i6 i3,��SSi6 i3 i3 i3 i3 i3
s5 i5 i5 i5 i5 i5 i5, i6 i5, i6
∅ i3 i6 i4 i1 i6

Table 10.9

Round 4: The last step in which an interrupter is rejected from the school she is an interrupter
for is Step 5, where the interrupting pair is (i6, s1). We remove school s1 from the (updated)
preferences of student i6. We then rerun DA with the new preference profile:

Step 1 2 3 End
s1 i4 i4 i4 i4
s2 i1 i1 i1 i1
s3 i2,��SSi3 i2 i2 i2
s4 i6 i3,��SSi6 i3 i3
s5 i5 i5 i5, i6 i5, i6
∅ i3 i6

Table 10.10

End: There are no interrupting pairs; hence we stop.

10.10 Because the numbers of schools and students are finite, the algorithm eventually terminates in a
finite number of steps. Since DA runs in two consecutive rounds of EADAM are identical until
the first step a consenting interrupter applies to the school for which she is an interrupter, in
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practice the EADAMoutcome can be computed conveniently by only rerunning the relevant last
steps of DA. Note also that each round of EADAM consists of a run of DA that is a polynomial-
time procedure (e.g., see Gusfield and Irving (1989)). Then because a student can be identified
as an interrupter at most |S| times, these iterations need to be done at most |I| · |S| times, giving
us a computationally simple polynomial-time algorithm.

10.11 Remark: Why shall we start with the last interrupter(s) in the algorithm?

Case 1: Handle all the interrupters simultaneously.

Let I = {i1, i2, i3} and S = {s1, s2, s3}, where each school has only one seat. The priorities
for the schools and the preferences of the students are given as follows:

i j k s1 s2 s3

s1 s1 s2 k i
...

s2 s2 s1 i j
s3 s3 s3 j k

Table 10.11

The procedure of DA is

Step 1 2 3 4 5 End
s1 i,��AAj i �Ci, k k k k
s2 k j, �Ak j i,��AAj i i
s3 j j
∅ i k i j

Table 10.12

The outcome of DA for this problem is not Pareto efficient. There are two interrupting pairs
within the algorithm: (i, s1) and (j, s2).

Now consider the revised problem where we remove school s1 from student i’s preferences and
school s2 from those of student j. The procedure of DA to the revised problem is as follows:

Step 1 2 3 End
s1 j ��AAj, k k k
s2 i, �Ak i i i
s3 j j
∅ k j

Table 10.13

The outcome does not change (i.e., still inefficient) even though there are no interrupters left in
the new algorithm.
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Case 2: Start with the earliest interrupter.

Consider the example above. Note that student iwas identified as an interrupter at Step 3 before
student j, who was identified at Step 4. Thus, let us then consider the revised problem where we
only remove school s1 from student i’s preferences. The procedure of DA to the revised problem
is as follows:

Step 1 2 3 4 End
s1 j ��AAj, k k k k
s2 i, �Ak i i,��AAj i i
s3 j j
∅ k j j

Table 10.14

Once again, there is no change in the outcome. Hence, this approach does not work either.

10.12 Theorem (Theorem 1 in Kesten (2010)): The EADAM Pareto dominates the DA as well as any�

mechanism which eliminates justified envy. If no student consents, the two mechanisms are
equivalent. If all students consent, then the EADAMoutcome is Pareto efficient. In the EADAM
outcome all nonconsenting students’ priorities are respected; however, there may be consenting
students whose priorities for some schools are violated with their permission.

10.13 Lemma (Lemma A.1 in Kesten (2010)): Given a problem, the matching obtained at the end of�

Round r (r ≥ 1) of EADAM places each student at a school that is at least as good for her as
the school she was placed at at the end of Round (r − 1).

Proof. (1) Suppose by contradiction that there are a problem, a Round r (r ≥ 1), of EADAM,
and a student i1 such that the school student i1 is placed at in Round r is worse for her
than the school sr−11 she was placed at in Round (r − 1).

(2) This means that when we run DA in Round r, student i1 is rejected from school sr−11 .

(3) Then there is a student i2 ∈ I \{i1}who is placed at school sr−11 in Round r and who was
placed at a different school sr−12 (in Round (r−1)).

(4) This means there is a student i3 ∈ I \{i1, i2}who is placed at school sr−12 in Round r and
who was placed at a different school sr−1

3 , and so on.

(5) Thus, there must be a student ik ∈ I \ {i1, . . . , ik−1} who is the first student to apply to a
school sr−1k−1 that is worse for her than the school sr−1k she was placed at in Round (r−1).

(6) Case 1: Student ik is not an interrupter of Round (r−1).

(i) The preferences of student ik are the same in Rounds r and (r−1).
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(ii) Thus, there is a student who is placed at school sr−1k in Round r andwho did not apply
to it in Round (r−1).

(iii) This contradicts the assumption that student ik is the first student to apply to a school
that is worse for her than the school she was placed at in Round (r−1).

(7) Case 2: Student ik is an interrupter of Round (r−1).

(i) In Round r, student ik, instead of applying to the school she is an interrupter for,
applied to her next choice, say school s∗.

(ii) Student ik also applied to school s∗ in Round (r−1).

(iii) Thus, there is a student who is placed at school sr−1k in Round r andwho did not apply
to it in Round (r−1).

(iv) But then, this again contradicts the assumption that student ik is the first student to
apply to a school that isworse for her than the school shewas placed at inRound (r−1).

10.14 Corollary (Corollary 1 inKesten (2010)): If all students consent, thenEADAMselects the Pareto
efficient matching which eliminates justified envy whenever it exists.

10.15 Proposition (Proposition 3 in Kesten (2010)): The placement of a student does not change
whether she consents or not.

This result makes sure that the students do not have incentive to not consent.

10.2 Simplified efficiency-adjusted deferred acceptance algorithm

10.16 When will a student consent to give up their own hope to help others? The simple answer is:
when a student find herself cannot be Pareto improved anymore.

So, which students are Pareto unimprovable?

10.17 Definition: A school s is underdemanded at a matching µ if no student prefers s to her assign-�

ment under µ.

It is straightforward to see that a school is underdemanded at the DA matching if and only if it
never rejects any student throughout the DA procedure.

10.18 Example (Example 1 in Tang and Yu (2014)): There are four schools {s1, s2, s3, s4}, each with
one seat, and four students {i1, i2, i3, i4}. Their priorities and preferences are as follows:

The DA procedure is
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s1 s2 s3 s4 i1 i2 i3 i4
i1 i3 i2 i4 s2 s1 s1 s3

i2 i1 i4
... s1 s3 s2 s4

i3
...

...
...

...
...

...
...

Table 10.15

Step 1 2 3 4 5 End
s1 i2,��SSi3 i2 i1,��SSi2 i1 i1 i1
s2 i1 ��SSi1, i3 i3 i3 i3 i3
s3 i4 i4 i4 i2,��SSi4 i2 i2
s4 i4 i4
∅ i3 i1 i2 i4

Table 10.16

and the resulting matching is [
i1 i2 i3 i4

s1 s4 s2 s3

]
.

Thus, school s4 is underdemanded at theDAmatching, since it never rejects any student through-
out the DA procedure.

10.19 Definition: A school is tier-0 underdemanded at matching µ if it is underdemanded at µ.�

For any positive integer k, a school is tier-k underdemanded at matching µ if

• it is desired only by students matched with lower-tier underdemanded schools at µ, and

• it is desired by at least one of the studentsmatchedwith tier-(k−1)underdemanded schools
at µ.

In the previous example, school s3 is tier-1 underdemanded at the DA matching.

10.20 Definition: School s is essentially underdemanded at matching µ if it is tier-k underdemanded�

at µ for some integer k ≥ 0.

In the previous example, it is clear that s1 and s2 are not essentially underdemanded.

10.21 The set of essentially underdemanded schools at theDAmatching can also be identified through
a recursive process, by reviewing the DA procedure that produces this DA matching. Tier-0
underdemanded schools are the schools that never reject any student throughout the DA pro-
cedure. After removing tier-0 underdemanded schools and the students matched with them,
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tier-1 underdemanded schools are the remaining schools that never reject any remaining stu-
dents throughout the DA procedure, and so on.

10.22 Definition: Student i is not Pareto improvable (or, simply, unimprovable) at DA[P,≻] if for
every matching µ that Pareto dominates DA[P,≻], µ(i) = DA[P,≻](i).

10.23 Lemma (Lemma 1 in Tang and Yu (2014)): At the DA matching, all students matched with
essentially underdemanded schools are not Pareto improvable.

Therefore, the concept of (essentially) underdemanded schools offers us a convenient way to
identify a large set of unimprovable students. The lemma above still holds if the DA matching
is replaced with any non-wasteful matching.

10.24 Lemma: At the DA matching, if all the students are matched, then there exists an underde-
manded school.

Proof. Let µ be the DA matching. Let the last step of DA be Step k. Consider a student i who
applies µ(i) at Step k under DA. Clearly, µ(i) is an underdemanded school.

10.25 Simplified EADAM:�

Round 0: Run DA for the school choice problem.

Round k: This round consists of three steps:

(1) Identify the schools that are underdemanded at the round-(k−1) DA matching, set-
tle thematching at these schools, and remove these schools and the students matched
with them. If all the schools are not underdemanded at the round-(k−1)DAmatch-
ing, then remove the students who are unmatched.

(2) For each removed student i who does not consent, each remaining school s that stu-
dent i desires and each remaining student j such that i ≻s j, remove s from j’s
preference.

(3) Rerun DA (the round-k DA) for the subproblem that consists of only the remaining
schools and students.

End: Stop when all schools are removed.

10.26 Example: Consider the school choice problem ⟨I, S, q, P,≻⟩, where I = {i, j, k},S = {s1, s2},
qs1 = qs2 = 1, and
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i j k s1 s2
s2 s1 s1 i k
s1 s2 j i

k

Table 10.17

Suppose that j consents.

Round 0: The process of DA is

Step 1 2 3 End
s1 j, �Ak j ��AAj, i i
s2 i �Ci, k k k
∅ k i j j

Table 10.18

Round 1: No underdemanded school exists. Remove j. Rerun DA:

Step 1 End
s1 k k
s2 i i
∅

Table 10.19

Round 2: s1 and s2 are underdemanded. Remove them with the matched students.

10.27 Example (Examples 2 and 3 in Tang and Yu (2014)): Let I = {i1, i2, i3, i4, i5, i6} and S =

{s1, s2, . . . , s5}, where qs1 = qs2 = qs3 = qs4 = 1 and qs5 = 2. The priorities for the schools
and the preferences of the students are given as follows:



Do
No
t C
op
y o
r D
istr
ibu
te

10.2. Simplified efficiency-adjusted deferred acceptance algorithm 213

s1 s2 s3 s4 s5 i1 i2 i3 i4 i5 i6

i2 i3 i1 i4
... s2 s3 s3 s1 s1 s4

i1 i6 i6 i3 s1 s1 s4 s2 s5 s1

i5 i4 i2 i6 s3 s5 s2 s4
... s3

i6 i1 i3
...

...
...

... s2

i4
...

... s5
i3

Table 10.20

Suppose that all students consent.

Round 0:

Step 1 2 3 4 5 6 7 8 9 10 End
s1 ��SSi4, i5 i5 i1,��SSi5,��SSi6 i1 ��SSi1, i2 i2 i2 i2 i2 i2 i2
s2 i1 ��SSi1, i4 i4 i4 i4 i4 ��SSi4, i6 i6 i3,��SSi6 i3 i3
s3 i2,��SSi3 i2 i2 ��SSi2, i6 i6 i1,��SSi6 i1 i1 i1 i1 i1
s4 i6 i3,��SSi6 i3 i3 i3 i3 i3 ��SSi3, i4 i4 i4 i4
s5 i5 i5 i5 i5 i5 i5 i5, i6 i5, i6
∅ i3, i4 i1, i6 i5, i6 i2 i1 i6 i4 i3 i6

Table 10.21

Round 1: At round-0 DA matching, s5 is the only underdemended school, and students i5 and
i6 are matched with it. Remove s5 together with i5 and i6, and rerun DA with the rest of the
schools and students. The procedure of round-1 DA is illustrated in the following table:

Step 1 2 End
s1 i4 i4 i4
s2 i1 i1 i1
s3 i2,��SSi3 i2 i2
s4 i3 i3
∅ i3

Table 10.22

Round 2: At the end of Round 1, all schools are underdemanded except for s3. So in Round 2,
we first remove all other schools and their matched students, and then run DA for s3 and i2.
The round-2 DA is trivial and the algorithm stops immediately afterward. The final matching
is the same as the round-1 DA matching.

10.28 Revisit the above example and suppose that student i5 does not consent.
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In Round 1, after removing i5 and i6, we have tomodify the preferences for remaining students:

s1 s2 s3 s4 i1 i2 i3 i4
i2 i3 i1 i4 s2 s3 s3 ��s1
i1 ��SSi6 ��SSi6 i3 s1 s1 s4 s2

��SSi5 i4 i2 ��SSi6 s3 ��ZZs5 s2 s4

��SSi6 i1 i3
...

...
...

...

i4
...

...
i3

Table 10.23

Rerun DA:

Step 1 2 3 End
s1 ��SSi4 i1 i1
s2 i1 ��SSi1, i4 i4 i4
s3 i2,��SSi3 i2 i2 i2
s4 i3 i3 i3
∅ i3, i4 i1

Table 10.24

Round 2: At the end of Round 1, s4 is the only underdemanded school, and i3 is matched with
it. Remove s4 together with i3, and rerun DA with the rest of the schools and students. The
procedure of round-2 DA is illustrated in the following table:

Step 1 End
s1 i2 i2
s2 i4 i4
s3 i1 i1
∅

Table 10.25

The final matching is the round-2 DA matching.

10.29 The simplified EADAMpreserves the iterative structure of Kesten’s EADAM,while taking a new
perspective by focusing on unimprovable students instead of (only) interrupters.

The new perspective leads to several differences.

• First, at the end of each round, we remove all students matched with underdemanded
schools, and thereby remove all of their desired applications instead of removing only the
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last interruption.

• Second, after the removal of non-consenting students—sincewe already knowwhichmatch-
ings among the remaining schools and students would violate their priorities—we modify
the preferences of the remaining students accordingly to avoid violations of their priorities
in future rounds of the algorithm.

10.30 Lemma (Lemma 2 in Tang and Yu (2014)): For each k ≥ 1, the round-k DA matching of the�

simplified EADAM weakly Pareto dominates that of round-(k−1).

10.31 Lemma (Proposition 1 in Tang and Yu (2014)): The simplified EADAM is well-defined and
stops within |S ∪ {∅}|+ 1 = m+ 2 rounds.

10.32 Theorem (Theorem 1 in Tang and Yu (2014)): The simplified EADAM is Pareto efficient when�

all students consent and is constrained efficient otherwise.

10.33 Theorem (Theorem 2 in Tang and Yu (2014)): Under the simplified EADAM, the assignment of
any student does not change whether she consents or not.

10.34 Lemma (Lemma 3 in Tang and Yu (2014)): The lastly rejected interrupters of the DA procedure
are matched with essentially underdemanded schools at the DA matching, and hence they are
Pareto unimprovable.

10.35 Theorem (Theorem 3 in Tang and Yu (2014)): For every school choice problem with consent,�

the simplified EADAM produces the same matching as Kesten’s EADAM does.

10.3 Stable improvement cycle algorithm

10.36 In a school choice problem ⟨I, S, q, P,≻⟩ with a given matching µ, for each school s, let ds be
the highest≻s-priority student among those who desire s (i.e., who prefers s to her assignment
under µ).

10.37 Definition: A stable improvement cycle consists of distinct students i1, i2, . . . , in = i0 (n ≥ 2)�

such that for each ℓ = 0, 1, . . . , n− 1,

(1) iℓ is matched to some school under µ;

(2) iℓ desires µ(iℓ+1); and

(3) iℓ = dµ(iℓ+1).

10.38 Given a stable improvement cycle, define a new matching µ′ by:

µ′(j) =

µ(j), if j ̸∈ {i1, i2, . . . , in};

µ(iℓ+1), if j = iℓ.
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Note that the matching µ′ continues to be stable and it Pareto dominates µ.

10.39 Theorem (Theorem 1 in Erdil and Ergin (2008)): In a school choice problem ⟨I, S, q, P,≻⟩, let�

µ be a stable matching. If µ is Pareto dominated by another stable matching ν, then it admits a
stable improvement cycle.

10.40 Proof of Theorem 10.39.

(1) Suppose that µ and ν are stable matchings and that ν Pareto dominates µ.

(2) Let I ′ denote the set of students who are strictly better off under ν. Let S′ = µ(I ′) be the
set of schools to which students in I ′ are assigned to under µ.

(3) Lemma 8.38 implies that µ(I ′) = ν(I ′) = S′.

(4) Thus, for each s ∈ S′, there exists a student i such that s = ν(i)Piµ(i), i.e., i desires s at
µ and is assigned to s under ν.

(5) For each s ∈ S′, let is denote the highest≻s-priority student among those in I ′ that desire
s at µ.

(6) Let school µ(is) point to s.

(7) By Lemma 8.38, µ(is) ∈ S′.

(8) Since is desires s at µ, µ(is) ̸= s.

(9) Thus, we can repeat this for each school s ∈ S′ and find a school t ∈ S′ \ {s} that points
to s.

(10) Since each school in S′ is pointed to by a different school in S′, there exists a cycle of
distinct schools s1, s2, . . . , sn = s0 (n ≥ 2) in S′, where sℓ points to sℓ+1 for ℓ =

0, 1, . . . , n− 1.

(11) Let iℓ = isℓ+1
for ℓ = 0, 1, . . . , n− 1. Then µ(iℓ) = sℓ, and iℓ desires sℓ+1 = µ(iℓ+1) at

µ.

µ(is)→ s = ν(is)⇒ µ(iℓ) = µ(isℓ+1
) = sℓ → sℓ+1 = ν(isℓ+1

) = ν(iℓ) = µ(iℓ+1).

(12) Let ds denote the highest ≻s-priority students among those who desire s at µ. In the
following, we will show that iℓ = dµ(iℓ+1). For simplicity, denote dµ(iℓ+1) by j.

(13) Suppose iℓ ̸= j. Thus, j /∈ I ′ and j ≻µ(iℓ+1) iℓ.

(14) Then µ(j) = ν(j) by Lemma 8.38.

(15) Since j desires µ(iℓ+1) at µ, j also desires µ(iℓ+1) at ν.

(16) This contradicts the stability of ν, since j has higher ≻µ(iℓ+1)-priority than iℓ, who is
matched to ν(iℓ) = µ(iℓ+1) under ν.
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10.41 In a school choice problem ⟨I, S, q, P,≻⟩ (with strict priorities), we cannot find a stable im-
provement cycle for the DA matching.

However, once we remove some students who are matched with essentially underdemanded
schools, there could be a stable improvement cycle.

10.42 Iterative stable improvement cycles algorithm (Wang (2015)):�

Step 0: Run DA algorithm and obtain a temporary matching µ0.

Step k: (1) Identify the schools that are underdemanded atmatchingµk−1, settle thematching
at these schools, and remove these schools and the students matched with them.

(2) For each non-consenting student i removed with the underdemanded schools, each
remaining school s that i desires, and each remaining student j such that i ≻s j,
remove s from j’s preference.

(3) For the remaining schools and students, identify all stable improvement cycles and
carry out these cycles to obtain the matching µk. If there is no stable improvement
cycle, let µk = µk−1, and move forward to the next round.

End: The algorithm terminates when all schools are removed.

10.43 Theorem (Theorem 1 in Wang (2015)): For every school choice problem, the matching pro-
duced by ISIC is the same as the outcome of EADAM when all students consent.
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School choice with weak priorities
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11.3 Stable improvement cycles algorithm . . . . . . . . . . . . . . . . . . . . . . . 222

11.1 Weak priorities

11.1 In the context of school choice, it might be reasonable to assume that the students have strict
preferences, but school priority orderings are typically determined according to criteria that do
not provide a strict ordering of all the students. Instead, school priorities are weak orderings
with quite large indifference classes.

For instance, in Boston there aremainly five indifference classes for each school in the following
order:

(i) the students who already attend the school,

(ii) the students who have siblings at that school (sibling) and are in the reference area of the
school (walk zone),

(iii) sibling,

(iv) walk zone,

(v) all other students.

219
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11.2 There are at least two ways to break all the indifference classes.

• Single tie breaking: Use one lottery to decide the ordering on all students and, whenever
two students are in the same indifference class, break the tie use the ordering.

• Multiple tie breaking: Draw one lottery for each school, and whenever two students are in
the same indifference class for a school, break the tie using the ordering for that particular
school.

Then, one can apply DA to obtain a matching with respect to the strict priority profile derived
from the original one.

11.3 Policymakers from theNYCDepartment of Education believed that DAwith single tie breaking
rule is less equitable than multiple tie breaking rule:

If we want to give each child a shot at each program, the only way to accomplish this
is to run a new random. …. I cannot see how the children at the end of the line are
not disenfranchised totally if only one run takes place. I believe that one line will not
be acceptable to parents. When I answered questions about this at training sessions,
(it did come up!) people reacted that the only fair approach was to do multiple runs.

11.4 Simulation (Table 1 in Abdulkadiroğlu et al. (2009)) suggests that single tie breaking rule is
better in efficiency, although it is not too clear-cut.

11.5 Abdulkadiroğlu et al. (2015) showed that, when there is no intrinsic priority and the market is
large, DA-STB is more efficient than DA-MTB.

Intuition: DA’s inefficiency comes from students displacing each other. That is less likely in STB
than in MTB.

11.2 DA with tie breaking rules

11.6 Proposition: DA with any tie breaking rule is stable.

Proof. Since the breaking of indifferences does not switch the positions of any two students
in any priority order, the outcome would also be stable with respect to the original priority
structure.

11.7 Proposition: DA with any tie breaking rule is strategy-proof.

Proof. Straightforward.
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11.8 DA with tie breaking rules does not necessarily bring us the student-optimal stable matching.

Example: Consider the school choice problem ⟨I, S, q, P,%⟩, where I = {i, j, k},S = {s1, s2},
qs1 = qs2 = 1, and

i j k s1 s2
s2 s1 s1 i k
s1 s2 j, k i

Table 11.1

The tie-breaking rule either breaks %s1 as i ≻s1 j ≻s1 k or as i ≻s1 k ≻s1 j, and the
corresponding DA produces two stable matching, respectively

µ =

[
i j k

s1 ∅ s2

]
and µ′ =

[
i j k

s2 ∅ s1

]
.

Clearly, µ is Pareto dominated by µ′.

11.9 DA with tie breaking rules may lead to a stable matching such that there may be another stable
matching that is better off for everyone.

Example: I = {i, j, k}, S = {s1, s2, s3}, each school has one seat,

i j k s1 s2 s3
s2 s3 s2 i j k
s1 s2 s3 j, k i, k i, j
s3 s1 s1

Table 11.2

Assume that ties are broken in the order i ≻ j ≻ k for each school. DA with this tie breaking
rule finds

µ =

[
i j k

s1 s2 s3

]
.

However, everyone prefers

µ′ =

[
i j k

s1 s3 s2

]
,

and µ′ is stable with respect to the original priority.

11.10 If the priorities of schools are strict, thenDAproduces a constraint efficientmatching. However,
the two examples above illustrate that DAwith tie breaking rulesmay not bring us a constrained
efficient matching, provided that the priorities of schools are not strict.
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11.11 Theorem (Theorem 1 in Abdulkadiroğlu et al. (2009)): For any tie breaking rule, there is no
mechanism that is strategy-proof and dominates DA with the given tie breaking rule.

Proof. Recall Theorem 8.37.

In other words, whatever efficiency improvement upon DA with tie breaking rules may become
non-strategy-proof.

On the other hand, we could improve the efficiency upon DA with tie breaking rules without
hurting the stability.

11.3 Stable improvement cycles algorithm

11.12 Consider the school choice problem ⟨I, S, q, P,%⟩, where I = {i, j, k}, S = {s1, s2}, qs1 =

qs2 = 1, and

i j k s1 s2
s2 s1 s1 i k
s1 s2 j, k i

Table 11.3

We choose the tie breaking rule i ≻s1 j ≻s1 k.

DA with this tie breaking rule produces

µ =

[
i j k

s1 ∅ s2

]
.

Clearly, µ is Pareto dominated by µ′ =

[
i j k

s2 ∅ s1

]
.

Notice that i desires s2 and j and k desire s1. Besides, j and k share the same priority at school
s1. Thus, i and k can make an exchange so that finally i gets s2 and k gets s1. Meanwhile, such
an exchange does not violate j’s priority.

11.13 In a school choice problem ⟨I, S, q, P,%⟩ with a given matching µ, for each school s ∈ S, let
Ds be the set of highest %s-priority students among those who desire s (i.e., who prefers s to
her assignment under µ).

In the Example above,Ds1 = {j, k} andDs2 = {i}.

11.14 Definition: A stable improvement cycle consists of distinct students i1, i2, . . . , in = i0 (n ≥ 2)�

such that for each ℓ = 0, 1, . . . , n− 1,
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(1) iℓ is matched to some school under µ;

(2) iℓ desires µ(iℓ+1); and

(3) iℓ ∈ Dµ(iℓ+1).

11.15 Given a stable improvement cycle, define a new matching µ′ by:

µ′(j) =

µ(j), if j ̸∈ {i1, i2, . . . , in};

µ(iℓ+1), if j = iℓ.

Note that the matching µ′ continues to be stable and it Pareto dominates µ.

11.16 Theorem (Theorem 1 in Erdil and Ergin (2008)): In a school choice problem ⟨I, S, q, P,%⟩, let�

µ be a stable matching. If µ is Pareto dominated by another stable matching ν (i.e. µ is not
constraint efficient), then it admits a stable improvement cycle.

Proof. (1) Suppose that µ and ν are stable matchings and that ν Pareto dominates µ.

(2) Let I ′ denote the set of students who are strictly better off under ν. Let S′ = µ(I ′) be the
set of schools to which students in I ′ are assigned to under µ.

(3) Lemma 8.38 implies that µ(I ′) = ν(I ′) = S′.

(4) Thus, for each s ∈ S′, there exists a student i such that s = ν(i)Piµ(i), i.e., i desires s at
µ and is assigned to s under ν.

(5) For any s ∈ S′, let D′
s denote the set of highest %s-priority students among those in I ′

that desire s at µ.

(6) Fix an arbitrary student is ∈ D′
s and let school µ(is) point to s.

(7) By Lemma 8.38, µ(is) ∈ S′.

(8) Since is desires s at µ, µ(is) ̸= s.

(9) Thus, we can repeat this for each school s ∈ S′ and find a school t ∈ S′ \ {s} that points
to s.

(10) Since each school in S′ is pointed to by a different school in S′, there exists a cycle of
distinct schools s1, s2, . . . , sn = s0 (n ≥ 2) in S′, where sℓ points to sℓ+1 for ℓ =

0, 1, . . . , n− 1.

(11) Let iℓ = isℓ+1
for ℓ = 0, 1, . . . , n− 1. Then µ(iℓ) = sℓ, and iℓ desires sℓ+1 = µ(iℓ+1) at

µ.

µ(is)→ s = ν(is)⇒ µ(iℓ) = µ(isℓ+1
) = sℓ → sℓ+1 = ν(isℓ+1

) = ν(iℓ) = µ(iℓ+1).
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(12) Let Ds denote the set of highest %s-priority students among those who desire s at µ. In
the following, we will show that iℓ ∈ Dµ(iℓ+1).

(13) Suppose that iℓ /∈ Dµ(iℓ+1). Thus,Dµ(iℓ+1) has no intersection with I ′.

(14) For any j ∈ Dµ(iℓ+1), we have j /∈ I ′ and j ≻µ(iℓ+1) iℓ.

(15) Since j /∈ I ′, µ(j) = ν(j) by Lemma 8.38.

(16) Since j desires µ(iℓ+1) at µ, j also desires µ(iℓ+1) at ν.

(17) This contradicts the stability of ν, since j has high%µ(iℓ+1)-priority than iℓ, who ismatched
to ν(iℓ) = µ(iℓ+1) under ν.

11.17 Stable improvement cycles algorithm:�

Step 0: Run DA algorithm and obtain a temporary matching µ0.

Step k: (1) Find a stable improvement cycle for µk−1: for schools s and t, let s → t if some
student i ∈ Dt is matched to s under µk−1.

(2) If there are any cycles, select one. For each s→ t in this cycle, select a student i ∈ Dt

with µk−1(i) = s. Carry out this stable improvement cycle to obtain µk.

End: The algorithm stops when there is no cycle.

11.18 Starting with an arbitrary stablematching, SIC produces a constrained efficient stablematching.

11.19 SIC is not strategy-proof.

Question. Hint: Consider 11.11.

11.20 The SIC algorithm is similar to but different from TTC:

• The cycles here are stable improvement cycles; students are pointing to all schools that
are better than their current match. While in TTC, each agent points to her most favorite
school.

• For convenience, the algorithm is described through the pointings among schools instead
of that among students. Each school may point to none or multiple other schools. Hence,
each school may be involved in multiple cycles, and cycle-selection is an issue (the simple
way is to randomly pick one).

11.21 EADAMand simplified EADAMcan also be applied to resolve the efficiency loss resulting from
weak priorities. See Kesten (2010) and Tang and Yu (2014).

11.22 There may not exist a strategy-proof selection of constrained efficient matchings.

Example: Let I = {i, j, k}, S = {a, b, c}, each school has one seat,
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i j k a b c
b b a i k k
c c b j i, j j
a a c k i

Table 11.4

The two constrained efficient matchings are

µ =

[
i j k

b c a

]
and µ′ =

[
i j k

c b a

]
.

Let bothP ′
i andP ′

j be b, a, c. At (P ′
a, P−a,%), onlyµ is constrained efficient, and at (P ′

b, P−b,%
), only µ′ is constrained efficient.

If φ is a constrained efficient mechanism, then φ[P ′
a, P−a,%] has to be µ, and φ[P ′

b, P−b,%]

has to be µ′. So at (P,%), one needs to select one of them. However, whenever φ selects the
matching that is more favorable to one of a and b, the other will misreport.
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12.1 Affirmative action policies have been widely used in public education although they have also
received various criticisms. There are two affirmative action policies:

• Majority quotas: the number of majority students matched to school s cannot exceed the
majority quota qMs .

• Minority reserves: if the number of minority students matched to school s is less than the
minority reserve rms , then minority students are always preferred to majority students.

12.2 We are interested in the questionwhether these affirmative action policies really benefitminority
students.

12.1 The formal model

12.3 A school choice problem with minorities is tuple Γ = ⟨I, S, q, P,≻⟩, where�

• I is a finite set of students. The set of students are partitioned to two subsets, the set IM

of majority students and Im of minority students.

• S is a finite set of schools.

227
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• For each s ∈ S, qs is the total capacity of school s.

• For each school s ∈ S,≻s is a strict priority order over the set of students.

• For each student i ∈ I , Pi is a strict preference over S and being unmatched (being un-
matched is denoted by ∅). If sPi∅, then school s is said to be acceptable to student i. For
each i ∈ I , let Ri be the symmetric extension of Pi.

12.4 A matching µ is a mapping from I to S ∪ {∅} such that |µ−1(s)| ≤ qs for all s ∈ S.�

12.5 Amechanism is a systematic procedure that determines amatching for each school choice prob-�

lem with minority students.

12.6 A matching µ Pareto dominates matching ν if µ(i)Riν(i) for all i ∈ I and µ(i)Piν(i) for at�

least one i ∈ I . Amatching is Pareto efficient if it is not Pareto dominated by another matching.

Affirmative action policies are implemented to improve thematches ofminorities, sometimes at
the expense ofmajorities. Therefore, we also need an efficiency concept to analyze the welfare of
minority students. A matching µ Pareto dominates matching ν for minorities if µ(i)Riν(i) for
all i ∈ Im and µ(i)Piν(i) for at least one i ∈ Im. A matching is Pareto efficient for minorities
if it is not Pareto dominated for minorities by another matching.

12.2 Affirmative action policies with majority quotas

12.7 For each s ∈ S, let qMs be the type-specific capacity for majority students (qMs ≤ qs), which
is implemented by prohibiting schools to admit more than qMs of majority students. For each
s ∈ S, let qs = (qs, q

M
s ).

Given (qMs )s∈S , a matching µ is feasible under majority quotas if |µ−1(s) ∩ IM | ≤ qMs for all
s ∈ S. This condition requires that the number of majority students matched to each school s
is at most its type-specific capacity qMs .

12.8 Definition: Given (qMs )s∈S , a matching µ is stable under majority quotes if�

(1) µ(i)Ri∅ for each i ∈ I , and

(2) if sPiµ(i), then either

(i) i ∈ Im, |µ−1(s)| = qs and i′ ≻s i for all i′ ∈ µ−1(s), or

(ii) i ∈ IM , |µ−1(s) ∩ IM | < qMs , |µ−1(s)| = qs and i′ ≻s i for all i′ ∈ µ−1(s), or

(iii) i ∈ IM , |µ−1(s) ∩ IM | = qMs , and i′ ≻s i for all i′ ∈ µ−1(s) ∩ IM .

All conditions except for (2-iii) are standard. Condition (2-iii) describes a case in which a po-
tential blocking is not realized because of a type-specific capacity constraint for the majority
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students: Student i wants to be matched with school s, but she is a majority student and the
seats for majority students are filled by students who have higher priority than i at s.

12.9 Definition: A mechanism is stable under majority quotes if it always selects a stable matching�

under majority quotes for each school choice problem with minorities.

12.10 Deferred acceptance algorithm with majority quotas.�

Step 1: Each student i applies to her first choice school (call it s). The school s rejects i if

• qs seats are filled by students who have higher priority than i at s, or
• i ∈ IM and qMs seats are filled by students in IM who have higher priority than i at
s.

Each school s keeps all other students who applied to s.

Step k: Start with the tentative matching obtained at the end of Step (k−1). Each student i
applies to her first choice school (call it s) among all schools that have not rejected i before.
The school s rejects i if

• qs seats are filled by students who have higher priority than i at s, or
• i ∈ IM and qMs seats are filled by students in IM who have higher priority than i at
s.

Each school s keeps all other students who applied to s.

End: The algorithm terminates at a step in which no rejection occurs, and the tentative match-
ing at that step is finalized.

12.11 Theorem: Abdulkadiroğlu and Sönmez (2003) show that the outcome of DAwithmajority quo-�

tas is the student-optimal stablematching, a stablematching that is unanimouslymost preferred
by all students among all stable matchings.

12.12 Top trading cycles mechanism with majority quotas.�

Start: For each school s, set its total counter at its total capacity qs and its majority-specific
counter at its type-specific capacity qMs .

Step 1: • Each school points to a student who has the highest priority at that school.
• Each student i points to her most preferred school that still has a seat for her, that is,

a school whose total counter is strictly positive and, if i ∈ IM , its majority-specific
counter is strictly positive.

• There exists at least one cycle (if a student points to ∅, it is regarded as a cycle). Every
student in a cycle receives the school she is pointing to and is removed.

• The counter of each school is reduced by one. If the assigned student is in IM , then
the school matched to that student reduces its majority-specific counter by one.
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Step k: Start with the matching and counter profile reached at the end of Step (k−1).

• Each school points to a student who has the highest priority at that school.
• Each student i points to her most preferred school that still has a seat for her, that is,

a school whose total counter is strictly positive and, if i ∈ IM , its majority-specific
counter is strictly positive.

• There exists at least one cycle (if a student points to ∅, it is regarded as a cycle). Every
student in a cycle receives the school she is pointing to and is removed.

• The counter of each school is reduced by one. If the assigned student is in IM , then
the school matched to that student reduces its majority-specific counter by one.

End: If no student remains, terminate.

12.13 Theorem (Theorem 1 in Kojima (2012)): Under DAwithmajority quotas, the affirmative action�

may hurt all the minority students.

Proof. (1) Consider a problemwithout affirmative action: I = {i1, i2, i3}with IM = {i1, i2}
and Im = {i3}, S = {s1, s2}, qs1 = (2, 2), qs2 = (1, 1), and preferences and priorities
are as follows:

i1 i2 i3 s1 s2
s1 s1 s2 i1 i2

s2 s1 i2 i3
i3 i1

Table 12.1

(2) DA results in

µ =

[
s1 s2

i1, i2 i3

]
.

(3) Now consider a new problem Γ̃ = ⟨I, S, q̃, P,≻⟩ where s2 applies the affirmative action
q̃s2 = (2, 1).

(4) In Γ̃, DA results in

µ̃ =

[
s1 s2

i1, i3 i2

]
.

(5) Student i3 is strictly worse off under µ̃ than under µ. Therefore, µ̃ is Pareto dominated by
µ for the minority.

12.14 In the example presented in the proof, it is not only the minority student but also the majority
students that are weakly worse off in Γ̃.
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The reason that a quota for majority students can have adverse effects on minority students is
simple. Consider a situation in which a school s is mostly desired by majorities. Then having a
majority quota for s decreases the number of majority students who can be assigned to s even
if there are empty seats. This, in turn, increases the competition for other schools and thus can
even make the minority students worse off.

12.15 The following example illustrate the case where the affirmative action benefits everyone, includ-
ing the majority students, under DA with majority quotas.

Consider the following problem without affirmative action: I = {i1, i2, i3, i4} with IM =

{i1, i2} and Im = {i3, i4}, S = {s1, s2}, qs1 = (2, 2), qs2 = (1, 1), preferences and priorities
are as follows:

i1 i2 i3 i4 s1 s2
s1 s1 s1 s2 i1 i3

s2 s1 i4 i4

i2
...

i3

Table 12.2

Then DA with majority quotas results in

µ =

[
s1 s2 ∅
i1, i4 i3 i2

]

Consider a new problem Γ̃ = ⟨I, S, q̃, P,≻⟩ where s1 applies the affirmative action q̃s1 =

(2, 1). Then in this problem, DA with majority quotas results in

µ̃ =

[
s1 s2 ∅
i1, i3 i4 i2

]

Every student is weakly better off under µ̃ than under µ: Students i1 and i2 are indifferent,
whereas i3 and i4 are strictly better off.

12.16 Theorem (Theorem 3 in Kojima (2012)): Under TTC with majority quotas, the affirmative ac-�

tion may hurt the minority students.

Proof. (1) Consider the problem without affirmative action: I = {i1, i2, i3, i4} with IM =

{i1, i2} and Im = {i3, i4}, S = {s1, s2, s3}, qs1 = (2, 2), qs2 = (1, 1), qs3 = (1, 1),
and preferences and priorities are as follows:
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i1 i2 i3 i4 s1 s2 s3
s1 s1 s3 s2 i1 i2 i4

s3 i2 i3
i3
i4

Table 12.3

(2) TTC produces the matching

µ =

[
s1 s2 s3

i1, i2 i4 i3

]

(3) Now suppose that s1 applies the affirmative action q̃s1 = (2, 1).

(4) In the new problem, TTC produces the matching

µ′ =

[
s1 s2 s3 ∅
i1 i4 i2 i3

]

(5) Every student is weakly worse off under µ′ than under µ: Student i1 and i4 are indifferent,
whereas i2 and i3 are strictly worse off. Note that i3 is a minority student.

This result shows that TTC with majority quotas does not guarantee that an affirmative action
has an intended effect to help the minority. Thus, the difficulty of affirmative action policies is
not confined to DA with majority quotas.

Another remark is that every student is made weakly worse off by the affirmative action in the
example used in the proof. Thus, it is possible that the policy unambiguously hurts welfare.

12.3 Affirmative action policies with minority reserves

12.17 For each s ∈ S, let rms be the type-specific capacity for minority students (rms ≤ qs), which
gives priority to minority students up to the reserve numbers.

Under minority reserves: majority students may take the seats reserved for minority students if
no minority students desire those seats.

Whenever we compare the effects of minority reserves (rms )s∈S and majority quotas (qMs )s∈S ,
we assume that rms + qMs = qs for each s ∈ S.

12.18 Definition: Given (rms )s∈S , a matching µ is stable under minority reserves if�
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(1) µ(i)Ri∅ for each i ∈ I , and

(2) if sPiµ(i), then either

(i) i ∈ Im, |µ−1(s)| = qs and i′ ≻s i for all i′ ∈ µ−1(s), or

(ii) i ∈ IM , |µ−1(s) ∩ Im| > rms , |µ−1(s)| = qs and i′ ≻s i for all i′ ∈ µ−1(s), or

(iii) i ∈ IM , |µ−1(s) ∩ Im| ≤ rms , and i′ ≻s i for all i′ ∈ µ−1(s) ∩ IM .

Condition (2-i) describes a situation where (i, s) does not form a blocking pair because i is
a minority student and s prefers all students in s to i. In condition (2-ii), whereas blocking
does not happen because i is a majority student, the number of minority students in s exceeds
minority reserves and s prefers all students in s to i. Finally, in condition (2-iii), (i, s) does not
form a blocking pair because i is a majority student, the number of minority students in s does
not exceed minority reserves, and s prefers all majority students in s to i.

12.19 Definition: A mechanism is stable under minority reserves if it always selects a stable matching�

under minority reserves for each school choice problem.

12.20 Deferred acceptance algorithm with minority reserves:�

Step 1: Each student i applies to her first-choice school. Each school s first accepts as many as
rms minority applicants with the highest priorities if there are enough minority applicants.
Then it accepts applicants with the highest priorities from the remaining applicants until
its capacity is filled or the applicants are exhausted. The rest of the applicants, if any remain,
are rejected by s.

Step k: Start with the tentative matching obtained at the end of Step (k−1). Each student iwho
got rejected at Step (k−1) applies to her next-choice school. Each school s considers the
new applicants and students admitted tentatively at Step (k−1). Among these students,
school s first accepts as many as rms minority students with the highest priorities if there
are enough minority students. Then it accepts students with the highest priorities from
the remaining students. The rest of the students, if any remain, are rejected by s. If there
are no rejections, then stop.

End: Thealgorithm terminates when no rejection occurs and the tentativematching at that step
is finalized.

12.21 Proposition (Proposition 1 in Hafalir et al. (2013)): The student-proposing deferred acceptance
algorithm with minority reserves produces a stable matching that assigns the best outcome
among the set of stable matching outcomes for each student and is weakly group strategy-proof.

12.22 Theorem (Theorem 1 in Hafalir et al. (2013)): Consider majority quotas (qMs )s∈S and minority�

reserves (rms )s∈S such that rms + qMs = qs for each s ∈ S. Let µ be a stable matching under
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majority quotas (qMs )s∈S . Then either µ is stable under minority reserves (rms )s∈S or there
exists a matching that is stable under minority reserves (rms )s∈S that Pareto dominates µ.

This result implies that for any stable matching under majority quotas, there exists a stable
matching under the corresponding minority reserves that Pareto dominates it.

12.23 Theorem (Theorem 2 in Hafalir et al. (2013)): Consider minority reserves (rms )s∈S . Let µr and
µ be the matchings produced by the DA with or without minority reserves (rms )s∈S , respec-
tively, for a given preference profile. Then there exists at least one minority student i such that
µr(i)Riµ(i).

Theorem 12.13 shows that using majority quotas may hurt all the minority students in some
settings. This result shows that this is impossible with minority reserves.

12.24 Example (Example 1 inHafalir et al. (2013)): On very peculiar cases, such as the example below,
imposing minority reserves can make some minorities worse off while leaving the rest indiffer-
ent.

Consider the problem: IM = {i1}, Im = {i2, i3}, S = {s1, s2, s3}, qs1 = qs2 = qs3 = 1, and
students’ preferences and schools’ priorities are given by the table Minority reserves are given

i1 i2 i3 s1 s2 s3
s1 s3 s1 i1 i1 i1
s3 s1 s2 i2 i2 i2
s2 s2 s3 i3 i3 i3

by rm = (0, 0, 0). In this problem, the unique stable matching is

µ =

[
s1 s2 s3

i1 i3 i2

]
.

However, when minority reserves are rm = (1, 0, 0). In the new problem, the unique stable
matching is

µ′ =

[
s1 s2 s3

i2 i3 i1

]
.

With minority reserves, i1 gets rejected from s1 because of the presence of minority reserves at
the first step of the algorithm. Then i1 applies to s3 and s3 rejects i2 in return. Next, i2 applies
to s1 and s1 rejects i3. Finally, i3 applies to s2, which accepts her. Therefore, the introduction of
minority reserves creates a rejection chain that makes some minority students worse off. Hence
an increase in the minority reserves of s1 makes i2 worse off and i3 indifferent.

12.25 Top trading cycles algorithm with minority reserves:
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Step 1: If a school has minority reserves, then it points to its most preferred minority student;
otherwise it points to the most preferred student.

Each student points to the most preferred school if there is an acceptable school and oth-
erwise points to herself.

There exists at least one cycle. Each student in any of the cycles is matched to the school
she is pointing to (if she is pointing to herself, then she gets her outside option).

All students in the cycles and schools that have filled their capacities are removed.

Step k: If a school has not filled itsminority reserves, then it points to themost preferredminor-
ity student if there is any minority student left. Otherwise, it points to the most preferred
student.

Each student points to the most preferred school if there is an acceptable school and oth-
erwise points to herself.

There exists at least one cycle. Each student in any of the cycles is matched to the school
she is pointing to (if she is pointing to herself, then she gets her outside option).

All students in the cycles and schools that have filled their capacities are removed.

End: If there is no cycle, then stop.

12.26 Proposition (Proposition 5 in Hafalir et al. (2013)): TTC with minority reserves is Pareto effi-
cient and strongly group strategy-proof.

12.27 Theorem (Theorem4 inHafalir et al. (2013)): Suppose thatµr andµ are thematchings produced
by TTC with or without minority reserves rm for a given preference profile. Then there exists
i ∈ Im such that µr(i)Riµ(i).

This result implies that we cannot make all minority students worse off by having minority
reserves.
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13.1 Background

13.1 Transplant is an important treatment of serious kidney diseases. Over 90,000 patients are on
waiting lists for kidney in the US. In 2011, there were

• 11,043 transplants from diseased donors,

• 5,771 transplants from living donors, while

• 4,697 patients died while on the waiting list (and 2,466 others were removed because they
were “too sick to transplant”).

13.2 Buying and selling kidneys is illegal in the US as well as many other countries.

Section 301 of the National Organ Transplant Act states:

It shall be unlawful for any person to knowingly acquire, receive or otherwise transfer
any human organ for valuable consideration for use in human transplantation.

《人体器官移植条例》第三条：

239
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任何组织或者个人不得以任何形式买卖人体器官，不得从事与买卖人体器官
有关的活动。

Given that constraint, donation is the most important source of kidneys.

13.3 There are two sources of donation:

• Deceased donors: In the US and Europe a centralized priority mechanism is used for the
allocation of deceased donor kidneys. The patients are ordered in a waiting list, and the
first available donor kidney is given to the patient who best satisfies a metric based on the
quality of the match, waiting time in the queue, age of the patient, and other medical and
fairness criteria.

• Living donors: Living donors usually come from friends or relatives of a patient (because
the monetary transaction is prohibited).

Live donation has been increasing recently.

Donor types 2008 1998 1988
All donors 10,920 9,761 5,693

Deceased donors 5,992 5,339 3,876
Live donors 4,928 4,422 1,817

Table 13.1: Number of donors by donor types. Data obtained at http://www.optn.org/.

13.4 For a successful transplant, the donor kidney needs to be compatible with the patient.

(1) Blood type compatibility: There are four blood types, O, A, B and AB.

AB

A B

O

• O type patients can receive kidneys from O type donors.

• A type patients can receive kidneys from O or A type donors.

• B type patients can receive kidneys from O or B type donors.

• AB type patients can receive kidneys from donors of any blood type (that is, O, A, B
or AB).

(2) There is another compatibility issue around some proteins called HLA Tissue Compati-
bility.

http://www.optn.org/
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13.5 A problem with transplant from live donors: transplant is carried out if the donor kidney is
compatible with the patient. Otherwise the willing donor goes home and the patient cannot get
transplant.

13.6 Question: Is there any way to increase the number and quality of transplant?

13.7 A paired exchange (aka paired donation) involves two incompatible patient-donor pairs such�

that the patient in each pair feasibly receives a transplant from the donor in the other pair. This
pair of patients exchange donated kidneys. The number of pairs in a paired exchange can be
larger than two.

Donor 1 Patient 1

Patient 2 Donor 2

Figure 13.1: A paired exchange.

Take a look at the web page of Alliance for Paired Donation at http://paireddonation.
org/.

13.8 A list exchange involves an exchange between one incompatible patient-donor pair and the�

deceased donor waiting list. The patient in the pair becomes the first priority person on the
deceased donor waiting list in return for the donation of her donor’s kidney to someone on the
waiting list.

Donor 1 Patient 1

Deceased donor waiting list

1st Patient
2nd Patient
3rd Patient
... ...

Figure 13.2: A list exchange.

http://paireddonation.org/
http://paireddonation.org/
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List exchanges can potentially harm O blood-type patients waiting on the deceased donor wait-
ing list. Since the O blood type is the most common blood type, a patient with an incompatible
donor is most likely to have O blood herself and a non-O bloodtype incompatible donor. Thus,
after the list exchange, the blood type of the donor sent to the deceased donor waiting list has
generally non-O blood, while the patient placed at the top of the list has O blood. Thus, list
exchanges are deemed ethically controversial.

13.2 Themodel

13.9 Definition: A kidney exchange problem consists of:�

• a set of donor kidney-transplant patient pairs {(k1, t1), . . . , (kn, tn)},

• a set of compatible kidneysKi ⊆ K = {k1, . . . , kn} for each patient ti, and

• a strict preference relation ≻i over Ki ∪ {ki, w} where w refers to the priority in the
waiting list in exchange for kidney ki.

13.10 A matching is a function that specifies which patient obtains which kidney (or waiting list). We�

assume that the waiting list can be matched with any number of patients.

A kidney exchange mechanism is a systematic procedure to select a matching for each kidney
exchange problem.

13.11 A matching is Pareto efficient if there is no other matching that makes everybody weakly better�

off and at least one patient strictly better off.

A mechanism is Pareto efficient if it always chooses Pareto efficient matchings.

13.12 Amatching is individually rational if each patient ismatchedwith an option that is weakly better�

than her own paired-donor.

A mechanism is individually rational if it always selects an individually rational matching.

13.13 A mechanism is strategy-proof if it is always the best strategy for each patient to:�

• reveal her preferences over other available kidneys truthfully, and

• declare the whole set of her donors (in case she hasmultiple donors) to the systemwithout
hiding any (the model treats each patient as having a single donor, but the extension to
multiple donors is straightforward).



Do
No
t C
op
y o
r D
istr
ibu
te

13.3. Multi-way kidney exchanges with strict preferences 243

13.3 Multi-way kidney exchanges with strict preferences

13.14 In Roth et al. (2004)’s design the underlying assumptions are as follows:

• Any number of patient-donor pairs can participate in an exchange, i.e., exchanges are pos-
sibly multi-way.

• Patients have heterogeneous preferences over compatible kidneys; in particular, no two
kidneys have the same quality, i.e., the preferences of a patient are strict and they linearly
order compatible kidneys, the waiting list option, and her own paired-donor.

• List exchanges are allowed.

13.15 Under these assumptions, this model is very similar to the house allocation model with existing
tenants. We will consider a class of mechanisms that clear through an iterative algorithm.

13.16 In each step,

• each patient ti points either toward a kidney inKi ∪ {ki} or toward w, and

• each kidney ki points to its paired recipient ti.

13.17 A cycle is an ordered list of kidneys and patients (k1, t1, k2, t2, . . . , km, tm) such that kidney�

k1 points to a patient t1, patient t1 points to kidney k2, . . . , kidney km points to patient tm,
and patient tm points to kidney k1.

13.18 Cycles larger than a single pair are associated with direct exchanges, very much like the paired-
kidney-exchange programs, but may involve more than two pairs, so that patient t1 is assigned
kidney k2, patient t2 is assigned kidney k3, . . . , patient tm is assigned kidney k1.

Note that each kidney or patient can be part of atmost one cycle and thus no two cycles intersect.

13.19 Aw-chain is an ordered list of kidneys and patients (k1, t1, k2, t2, ..., km, tm) such that kidney�

k1 points to patient t1, patient t1 points to kidney k2, . . . , kidney km points to patient tm, and
patient tm points to w.

We refer to the pair (km, tm) whose patient receives a cadaver kidney in a w-chain as the head
and the pair (k1, t1) whose donor donates to someone on the cadaver queue as the tail of the
w-chain.

13.20 w-chains are associated with indirect exchanges but unlike in a cycle, a kidney or a patient can
be part of several w-chains.

One practical possibility is choosing among w-chains with a well-defined chain selection rule,
very much like the rules that establish priorities on the cadaveric waiting list.
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k1 t1tail

k2

t2

...

tm kmhead

w

Figure 13.3: A w-chain.

k1 t1

k2 t2

k3 t3

k4 t4

k5 t5 w

Figure 13.4: Five w-chains.

• The current pilot indirect exchange programs in the United States choose the minimal
w-chains, consisting of a single donor-recipient pair, but this may not be efficient.

• Selection of longerw-chains will benefit other patients as well, and therefore the choice of
a chain selection rule has efficiency implications.

• Chain selection rules may also be used for specific policy objectives such as increasing the
inflow of type O living donor kidneys to the cadaveric waiting list.

13.21 Lemma (Lemma 1 in Roth et al. (2004)): Consider a graph in which both the patient and the
kidney of each pair are distinct nodes as is the wait-list option w. Suppose that each patient
points either toward a kidney or w, and each kidney points to its paired recipient. Then either
there exists a cycle, or each pair is the tail of some w-chain.

Proof. (1) Consider a graph where each patient points toward either a kidney or w, and each
kidney points to its paired recipient.

(2) Suppose that there is no cycle.
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(3) Consider an arbitrary pair (ki, ti). Start with kidney ki, and follow the path in the graph.

(4) Since there are no cycles, no kidney or patient can be encountered twice. Hence by the
finiteness of pairs, the path will terminate atw. This is thew-chain initiated by pair (ki, ti)
completing the proof.

13.22 Fixed parameters: First, we take the operation of the cadaver queue as fixed. The cadaver queue
can be thought of as a stochastic arrival process of cadavers and patients, interacting with a
scoring rule that determines which patients are offered which cadaver kidneys.

We also take as fixed how patients whose donors donate a kidney to someone on the queue are
given high priority on the queue, e.g., by being given points in the scoring rule.

We also take as given the size of the live kidney exchange; i.e., the set of patient-donor pairs is
taken to be fixed.

13.23 For the mechanism defined below, we assume that when one among multiplew-chains must be
selected, a fixed chain selection rule is invoked. We will consider a number of such rules, and
their implications for incentives, efficiency, and equity.

Below we list a number of plausible chain selection rules:

(a) Choose minimal w-chains, and remove them.

(b) Choose the longest w-chain and remove it. If the longest w-chain is not unique, then use
a tiebreaker to choose among them.

(c) Choose the longest w-chain and keep it. If the longest w-chain is not unique, then use a
tiebreaker to choose among them.

(d) Prioritize patient-donor pairs in a single list. Choose thew-chain starting with the highest
priority pair, and remove it.

(e) Prioritize patient-donor pairs in a single list. Choose thew-chain starting with the highest
priority pair, and keep it.

(f) Prioritize the patient-donor pairs so that pairs with type O donor have higher priorities
than those who do not. Choose thew-chain starting with the highest priority pair; remove
it in case the pair has a type O donor, but keep it otherwise.

13.24 Throughout the procedure kidneys are assigned to patients through a series of exchanges. Some
patients and their assigned kidneys will be immediately removed from the procedure, while
others will remain with their assignments but they will assume a passive role. So at any point
in the procedure, some agents may no longer be participants, some participants will be active,
and the others passive.
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13.25 For a given kidney exchange problem, the top trading cycles and chains (TTCC) mechanism�

determines the exchanges as follows.

Step 1: Initially all kidneys are available and all agents are active. At each stage of the procedure

• each remaining active patient ti points to the best remaining unassigned kidney or to
the waiting list option w, whichever is more preferred,

• each remaining passive patient continues to point to her assignment, and
• each remaining kidney ki points to its paired patient ti.

Step 2: By Lemma 13.21, there is either a cycle, or a w-chain, or both.

(a) Proceed to Step 3 if there are no cycles. Otherwise, locate each cycle, and carry out
the corresponding exchange (i.e., each patient in the cycle is assigned the kidney he
is pointing to). Remove all patients in a cycle together with their assignments.

(b) Each remaining patient points to his top choice among remaining kidneys, and each
kidney points to its paired recipient. Locate all cycles, carry out the corresponding
exchanges, and remove them. Repeat until no cycle exists.

Step 3: If there are no pairs left, we are done. Otherwise, by Lemma 13.21, each remaining
pair initiates a w-chain. Select only one of the chains with the chain selection rule. The
assignment is final for the patients in the selected w-chain. In addition to selecting a w-
chain, the chain selection rule also determines:

(a) whether the selected w-chain is removed, or
(b) the selectedw-chain in the procedure although each patient in it is henceforth passive.

If thew-chain is removed, then the tail kidney is assigned to a patient in the deceased
donor waiting list. Otherwise, the tail kidney remains available in the problem for the
remaining steps.

Step 4: Each time a w-chain is selected, a new series of cycles may form. Repeat Steps 2 and 3
with the remaining active patients and unassigned kidneys until no patient is left. If there
exist some tail kidneys of w-chains remaining at this point, remove all such kidneys and
assign them to the patients in the deceased-donor waiting list.

13.26 Example (Example 1 in Roth et al. (2004)): Consider a kidney exchange problem with 12 pairs
as follows:

Suppose that patients are ordered in a priority-list based on their indices startingwith the patient
with the smallest index. We use the following chain selection rule: choose the longest w-chain.
In case the longest w-chain is not unique, choose the w-chain with the highest priority patient;
if the highest priority patient is part of more than one, choose the w-chain with the second
highest priority patient, and so on. Keep the selected w-chains until the termination.

Round 1: There is a single cycle C1 = (k11, t11, k3, t3, k2, t2). Remove the cycle by assigning
k11 to t2, k3 to t11, and k2 to t3.
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
k9 k11 k2 k5 k3 k3 k6 k6 k3 k11 k3 k11
k10 k3 k4 k9 k7 k5 k1 k4 k11 k1 k6 k3
k1 k5 k5 k1 k11 k8 k3 k11 w k4 k5 k9

k6 k6 k8 k4 k6 k9 k2 k5 k11 k8
k2 k7 k10 k5 k10 k3 k6 k10

k8 k3 k1 k8 k7 k12
w w w w

Table 13.2

t1 k1 t2 k2 t3 k3 t4 k4

t5

k5

t6

k6

t7k7t8k8t9k9t10k10

t11

k11

t12

k12

w

Figure 13.5: Round 1

Round 2: Upon removing cycle C1, a new cycle C2 = (k7, t7, k6, t6, k5, t5). Remove it by
assigning k7 to t5, k6 to t7, and k5 to t6.
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t1 k1 t2 k2 t3 k3 t4 k4

t5

k5

t6

k6

t7k7t8k8t9k9t10k10

t11

k11

t12

k12

w

Figure 13.6: Round 2

Round 3: No new cycle forms, and hence each kidney-patient pair starts aw-chain. The longest
w-chains are W1 = (k8, t8, k4, t4, k9, t9) and W2 = (k10, t10, k1, t1, k9, t9). Since t1, the
highest priority patient, is inW2 but not inW1, choose and fixW2. Assignw to t9, k9 to t1, and
k1 to t10 but do not remove them. Kidney k10, the kidney at the tail ofW2, remains available
for the next round.

t1 k1 t2 k2 t3 k3 t4 k4

t5

k5

t6

k6

t7k7t8k8t9k9t10k10

t11

k11

t12

k12

w

Figure 13.7: Round 3
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Round 4: Upon fixing the w-chainW2, a new cycle C3 = (k4, t4, k8, t8) forms. Remove it by
assigning k4 to t8 and k8 to t4.

t1 k1 t2 k2 t3 k3 t4 k4

t5

k5

t6

k6

t7k7t8k8t9k9t10k10

t11

k11

t12

k12

w

Figure 13.8: Round 4

Round 5: No new cycles form, and the pair (k12, t12) “joins”W2 from its tail to form the longest
w-chainW3 = (k12, t12, k10, t10, k1, t1, k9, t9). FixW3, and assign k10 to t12. Since no patient
is left,w-chainW3 is removed, and kidney k12 at its tail is offered to the highest priority patient
at the cadaveric waiting list.
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t1 k1 t2 k2 t3 k3 t4 k4

t5

k5

t6

k6

t7k7t8k8t9k9t10k10

t11

k11

t12

k12

w

Figure 13.9: Round 5

13.27 Theorem (Theorem 1 in Roth et al. (2004)): Consider a chain selection rule such that any w-�

chain selected at a nonterminal round remains in the procedure, and thus the kidney at its tail
remains available for the next round. The TTCC mechanism, implemented with any such chain
selection rule, is efficient.

Proof. (1) Let the TTCC mechanism be implemented with a chain selection rule such that
any w-chain selected at a nonterminal round remains in the procedure and the kidney at
its tail remains available for the next round.

(2) Any patient whose assignment is finalized in Round 1 has received his top choice and
cannot be made better off.

(3) Any patient whose assignment is finalized in Round 2 has received his top choice among
the kidneys not already assigned as part of an exchange (since chains are not removed, so
the kidney at their tail remains available), and cannot be made better off without hurting
a patient whose assignment was finalized in Round 1.

(4) Proceeding in a similar way, no patient can be made better off without hurting a patient
whose assignment is finalized in an earlier round.

(5) Therefore, TTCCmechanism selects a Pareto efficientmatching at any given timeprovided
that w-chains are removed at the termination.
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13.28 Consider a class of priority-based chain selection rules that covers rules (d), (e), and (f): each
ordering of patient-donor pairs together with a fixed pair defines a chain selection rule, and it
is given as follows:

(1) Order donor-patient pairs in a single priority list, and fix a pair (kj , tj).

(2) Whenever aw-chain is to be selected, select thew-chain starting with the highest priority
pair (ki, ti), and remove the w-chain if the pair (ki, ti) has strictly higher priority than
the fixed pair (kj , tj), and keep it until termination otherwise.

13.29 Lemma (Lemma 2 in Roth et al. (2004)): Consider the TTCC mechanism implemented with a
priority-based chain selection rule. Fix the stated preferences of all patients except patient ti at
P−i. Suppose that in the algorithm the assignment of patient ti is finalized at Round s under
Pi and at Round s′ under P ′

i . Suppose that s ≤ s′. Then the remaining active patients and
unassigned kidneys at the beginning of Round s are the same, whether patient ti announces Pi

or P ′
i .

Proof. (1) Patient ti fails to participate in a cycle or a selectedw-chain prior to Round s under
either preference.

(2) Therefore, at any round prior to Round s not only the highest priority active patient is the
same, whether patient ti announcesPi orP ′

i , but also the same cycles/w-chains form, and
in case there are no cycles, the same w-chain is selected, whether patient ti announces Pi

or P ′
i . Hence the remaining active patients and unassigned kidneys at the beginning of

Round s are the same, whether patient ti announces Pi or P ′
i .

13.30 Theorem (Theorem 2 in Roth et al. (2004)): Consider the chain selection rules (a), (d), (e), and�

(f). The TTCC mechanism, implemented with any of these chain selection rules, is strategy-
proof.

Among these four chain selection rules, the last two are especially appealing: Rule (e) yields an
efficient and strategy-proofmechanism, whereas Rule (f) gives up efficiency in order to increase
the inflow of type O kidneys to the cadaveric waiting list.

13.31 Proof. We first consider the chain selection rule (a).

(1) Recall that for each patient ti, the relevant part of preference Pi is the ranking up to ki or
w, whichever is more preferred.

(2) Given the preference profile (Pi)
n
i=1, construct a newpreference profile (P ′

i )
n
i=1 as follows:

• for each patient ti with kiPiw, let P ′
i = Pi,
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• for each patient ti with wPiki, construct P ′
i from Pi by swapping the ranking of ki

and w.

(3) Note that kiP ′
iw for each patient ti and because the relevant part of preferences are the

more preferred of ki and w, ⟨{(ki, ti)}ni=1, (P
′
i )

n
i=1⟩, is a housing market.

(4) Let µ denote the outcome of the TTC mechanism for this housing market, and construct
matching ν from matching µ as follows: if P ′

i ̸= Pi and µ(ti) = ki, then ν(ti) = w,
otherwise, ν(ti) = µ(ti).

(5) The key observation is that ν is the outcome of the TTCC mechanism when it is imple-
mented with the minimal w-chain selecting chain selection rule.

(6) Therefore, by Theorem 4.27, a patient can never receive a more preferred kidney by a pref-
erence misrepresentation.

(7) He can receive the wait-list option w by a misrepresentation but cannot profit from it.
That is because the TTCC mechanism never assigns a patient a kidney that is inferior to
w. Hence TTCC is strategy-proof with this choice of chain selection rule.

Next consider any of the priority-based chain selection rules.

(1) Consider a patient ti with true preferences Pi. Fix an announced preference profile P−i

for all other patients.

(2) We want to show that revealing his true preferences Pi is at least as good as announcing
any other preferences P ′

i under the TTCC mechanism.

(3) Let s and s′ be the rounds at which patient ti leaves the algorithm under Pi and P ′
i , re-

spectively.

(4) Case 1: s < s′.

(i) By Lemma 13.29 the same kidneys remain in the algorithm at the beginning of Round
s whether patient ti announces Pi or P ′

i .
(ii) Moreover, patient ti is assigned his top choice remaining at Round s under Pi.
(iii) Therefore, his assignment under Pi is at least as good as his assignment under P ′

i .

(5) Case 2: s ≥ s′. After announcing P ′
i , the assignment of patient ti is finalized either by

joining a cycle, or by joining a selectedw-chain. We will consider the two cases separately.

(6) Case 2a: The assignment of patient ti is finalized either by joining a cycle under P ′
i .

(i) Let (k1, t1, k2, . . . , kr, ti) be the cycle patient ti joins, and thus k1 be the kidney he
is assigned under P ′

i .
(ii) Next suppose that he reveals his true preferences Pi.
(iii) Consider Round s′. By Lemma 13.29, the same active patients and available kidneys

remain at the beginning of this round whether patient ti announces P ′
i or Pi.
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(iv) Therefore, at Round s′, kidney k1 points to patient t1, patient t1 points to kidney k2,
. . . , kidney kr points to patient ti.

(v) Moreover, they keep on doing so as long as patient ti remains.
(vi) Since patient ti truthfully points to his best remaining choice at each round, he either

receives a kidney better than kidney k1 or eventually points to kidney k1, completes
the formation of cycle (k1, t1, k2, . . . , kr, ti), and gets assigned kidney k1.

(7) Case 2b: The assignment of patient ti is finalized by joining a selected w-chain under P ′
i .

(i) Let (k1, t1, k2, . . . , kr, ti = tr, kr+1, . . . , kr+m, tr+m) be the selected w-chain pa-
tient ti joins, where r ≥ 1 andm ≥ 0, under P ′

i .
(ii) Therefore, under P ′

i , patient ti is assigned the kidney kr+1 ifm ≥ 1, and the wait-list
option w ifm = 0.

(iii) Also note that, given the considered class of priority-based chain selection rules, pair
(k1, t1) is the highest priority pair in Round s′.

(iv) Next suppose that patient ti reveals his true preferences Pi.
(v) Consider Round s′. By Lemma 13.29, the same active patients and available kidneys

remain at the beginning of this round whether patient ti announces P ′
i or Pi.

(vi) We will complete the proof by showing that, upon announcing his truthful prefer-
ences Pi, the assignment of patient ti is finalized in Round s′ and thus he is assigned
his top choice available at the beginning of Round s.

(vii) Recall that for this case there is no cycle in Round s′ when patient ti announces P ′
i .

(viii) Therefore, when he announces his true preferences Pi, either there is no cycle in
Round s′ or there is one cycle that includes him.

(ix) If it is the latter, then his assignment is finalized in Round s′, and we are done.
(x) Otherwise, each pair initiates a w-chain by Lemma 13.21, and one of these w-chains

has to be selected.
(xi) By the choice of a priority-based chain selection rule, this will be the w-chain that

starts with the highest priority pair (k1, t1).
(xii) But the path starting with kidney k1 passes through patient ti and therefore the se-

lected w-chain includes patient ti.
(xiii) Hence in this case aswell his assignment is finalized inRound s′ completing the proof.

13.32 Example (Example 2 in Roth et al. (2004)): Strategy-proofness of TTCC is lost if one adopts a
chain selection rule that chooses among the longest w-chains.

Consider the problem in Example 13.26, but suppose that patient t4 misrepresents his prefer-
ences as P ′

4 : k5, k1, k9, . . . improving the ranking of kidney k1. While Round 1 and Round
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2 remain as in Example 13.26, Round 3 changes, and this time the longest w-chain at Round
3 is W4 = (k8, t8, k4, t4, k1, t1, k9, t9). Therefore, patient t4 is assigned kidney k1 instead of
kidney k8, making his preference misrepresentation profitable.

13.33 Proposition (Proposition 1 in Krishna and Wang (2007)): The TTCC algorithm induced by�

chain selection rule (e) is equivalent to the YRMH-IGYT algorithm.

13.34 Recall Theorem 6.43: A mechanism is Pareto efficient, individually rational, strategy-proof,
weakly neutral, and consistent if and only if it is a YRMH-IGYT mechanism.
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