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Outline

1 Which networks form?
2 Static random network models

Poisson random networks
Small-world networks
Markov graphs/Exponential
random graphs
Configuration model
An expected degree model

3 Properties of random networks
Large networks
Properties on limit

Threshold functions and
phase transitions
Threshold for the existence
of isolated points
Threshold function for
connectivity
Threshold for giant
component
Degree distribution of a
neighboring node
Diameter estimation
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Which networks form?

Section 1

Which networks form?
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Which networks form?

Which networks form?

Random network: How.
Economic/game theoretic models: Why.
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Static random network models

Section 2

Static random network models
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Static random network models Poisson random networks

Subsection 1

Poisson random networks
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Static random network models Poisson random networks

Poisson random networks

Out of the all the possible networks on n nodes, one could simply
pick one at random, with each network having an equal
probability.
In the G(n, p) model, a graph is constructed by connecting nodes
randomly. Each edge is included in the graph with probability p
independent from every other edge.
In the G(n,M) model, a graph is chosen uniformly at random
from the collection of all graphs which have n nodes and M edges.
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Static random network models Poisson random networks

The G(n, p)model

Every edge is formed with probability p ∈ (0, 1) independently of
every other edge.
Let Iij ∈ {0, 1} be a Bernoulli random variable indicating the
presence of edge {i, j}.
For the Poisson random graph, random variables Iij are
independent and

Iij =

{
1, with probability p,
0, with probability 1− p.
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Static random network models Poisson random networks

The G(n,M)model

One could simply specify that the network should have M links,
and then pick one of those networks at random with equal
probability.
That is, with each M-link network having probability

(N
M
)−1,

where N =
(n
2

)
is the number of potential links among n nodes.
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Static random network models Poisson random networks

The G(n, p)model: Properties

While these networks are static in the way that they are generated,
much of the analysis of such random networks concerns what
happens when n becomes large.
E[number of edges] = E[

∑
Iij] = n(n−1)

2
p.

Using weak law of large numbers, we have for all α > 0,

lim
n→∞

P
(∣∣∣∣∑ Iij −

n(n− 1)

2
p
∣∣∣∣ ≥ α

n(n− 1)

2

)
= 0.

⇒ The number of edges is random, but it is tightly concentrated
around its mean for large n.
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Static random network models Poisson random networks

The G(n, p)model: Degree distributions

Let D be a random variable that represents the degree of a node.
D is a binomial random variable with E[D] = (n− 1)p, i.e.,

P(D = d) =
(
n− 1

p

)
pd(1− p)n−1−d.

Keeping the expected degree (n− 1)p constant as n → ∞, D can
be approximated with a Poisson random variable with
λ = (n− 1)p,

P(D = d) = 1

d!
[(n− 1)p]de−(n−1)p =

λde−λ

d!
.

This degree distribution falls off faster than an exponential in d,
hence it is not a power-law distribution.
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Static random network models Poisson random networks

The G(n, p)model: Clustering/diameter

Individual clustering coefficient is p.
Overall clustering coefficient is p.
Clustering tends to 0, if max degree is bounded and network
becomes large:
If np is constant , then p → 0 when n → ∞.
Diameter: small.
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Static random network models Poisson random networks

Poisson random graph: Algorithm

G(n, p): BernoulliGraphDistribution in Mathematica.
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Static random network models Poisson random networks

Poisson random graph: Algorithm (Cont.)

G(n,M): RandomGraph in Mathematica.

Xiang Sun Lecture 3 September 27–October 11, 2017 14 / 119

http://reference.wolfram.com/language/ref/RandomGraph.html


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Static random network models Poisson random networks

The G(n, p)model: Issue

While random graphs can exhibit some of the features of observed
social networks, (e.g., diameters that are small), it is clear that
random graphs lack some of the features that are prevalent among
social networks (such as the high clustering).
Unrealistic in some sense.
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Static random network models Small-world networks

Subsection 2

Small-world networks
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Static random network models Small-world networks

Watts-Strogatz model

To have a network with a small diameter and a high clustering, it
is not convenience to use Poisson random graphs.
The Watts-Strogatz model is a random graph generation model
that produces graphs with small-world properties, including short
average path lengths and high clustering.
Watts-Strogatz model starts with a highly regular and clustered
network (circle), and rewires a small number of edges to generate
a small diameter.
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Static random network models Small-world networks

Watts-Strogatz model: Illustration
We start with a very structured network that exhibits a high degree of
clustering. For instance, let us construct a large circle, but then connect
a given node to the nearest four nodes rather than just its nearest two
neighbors.
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Static random network models Small-world networks

Watts-Strogatz model: Illustration (Cont.)

Each node’s individual clustering coefficient will be 1
2
.

By adjusting the structure of the local connections we can also
adjust the clustering.
While this sort of regular network exhibits high clustering, it fails
to exhibit some of the other features of many observed networks,
such as a small diameter and at least some variance in the degree
distribution.
The diameter of such a network is on the order of n = 4.
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Static random network models Small-world networks

Watts-Strogatz model: Illustration (Cont.)

Randomly re-wiring relatively few links, we can end up with a
network that has a much smaller diameter but still has substantial
clustering.
The re-wiring can be done by randomly selecting some link ij and
disconnecting it and then randomly connecting i to another node
k chosen uniformly at random from nodes which are not already
neighbors of i.
Of course, as more such re-wiring is done, the clustering will
eventually vanish.
The interesting region is where enough re-wiring has been done to
substantially reduce (average and maximal) path length, but not
so much that clustering vanishes.

Xiang Sun Lecture 3 September 27–October 11, 2017 20 / 119



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Static random network models Small-world networks

Watts-Strogatz model: Illustration (Cont.)
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Static random network models Small-world networks

Watts-Strogatz model: Illustration (Cont.)

After having rewired just six links the diameter of the network has
decreased from 6 (the left network) to 5 (the right network), with
minimal impact on the clustering.
There are 39 pairs of nodes at a distance of 6 from each other in
the left network, which are all moved closer to each other by the
rewiring.
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Static random network models Small-world networks

Watts-Strogatz model: Algorithm

Given the desired number of nodes N, the mean degree 2K, and a
special parameter β, satisfying 0 ≤ β ≤ 1 and N ≫ K ≫ lnN ≫ 1,
the model constructs an undirected graph with N nodes and NK edges
in the following way:

Construct a regular ring lattice, a graph with N nodes each
connected to 2K neighbors, K on each side.
For every node ni = n0, n1, . . . , nN−1, take every edge (ni, nj) with
i < j, and rewire it with probability β.
Rewiring is done by replacing (ni, nj) with (ni, nk) where k is
chosen with uniform probability from all possible values that
avoid self-loops (k ̸= i) and link duplication (there is no edge
(ni, nk′) with k′ = k at this point in the algorithm).
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Static random network models Small-world networks

Watts-Strogatz model: Algorithm (Cont.)
WattsStrogatzGraphDistribution in Mathematica.
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Static random network models Small-world networks

Watts-Strogatz model: Algorithm (Cont.)

The underlying ring lattice structure of the model produces a
locally clustered network, and the random links dramatically
reduce the average path lengths.
Varying β makes it possible to interpolate between a regular ring
lattice (β = 0) and a random graph (β = 1) approaching G(n, p)
with n = N and p = NK

(N
2
)
.
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Static random network models Small-world networks

Watts-Strogatz model: Algorithm (Cont.)

Properties:
The average path length falls very rapidly with increasing β.
The clustering coefficient remains quite close to its value for the
regular ring lattice, and only falls at relatively high β.
The degree distribution in the case of the ring lattice is just a Dirac
delta function centered at 2K.
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Static random network models Markov graphs/Exponential random graphs

Subsection 3

Markov graphs/Exponential random graphs
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Static random network models Markov graphs/Exponential random graphs

Clustering

Poisson random networks with average degrees growing more
slowly than the number of nodes have clustering ratios tending to
zero.

⇒ Too low to match many observed networks.
Having dependencies in the model can produce nontrivial
clustering.
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Static random network models Markov graphs/Exponential random graphs

Markov graphs/Exponential random graphs

Frank and Strauss introduced the class of graphs “Markov graphs”.
Such random graph models were later imported to the social
networks literature by Wasserman and Pattison under the name of
p∗ networks.
The basic motivation is to provide a model that can be statistically
analysed/estimated, and still allows for specific dependencies
between the probabilities with which different links form.
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Static random network models Markov graphs/Exponential random graphs

Conditional dependencies

Conditional dependencies can be introduced so that the
probability of a link ik depends on whether ij and jk are present.
The obvious challenge is that such dependencies will tend to
interact with each other in ways that could make it impossible to
specify the probability of different graphs in a tractable manner.

The conditional probability of a link ik depends on whether ij and
jk are present, but also on any other adjacent pairs being present.
The conditional probability of jk depends on other adjacent pairs
being present.
…
We end up with a complicated set of dependencies.
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Static random network models Markov graphs/Exponential random graphs

Dependence graph: Idea

Consider n nodes.
Keep track of the dependencies between links by another graph D
(dependence graph), which is a graph among all of the

(n
2

)
possible links.
D is not a graph on the original nodes, but a graph whose nodes
are all the possible links.
Idea: If ij and jk are neighbors in D, then there is some sort of
conditional dependency between them, possibly in combination
with other links.
D captures which links are dependent on which others, possibly in
quite complicated combinations.
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Static random network models Markov graphs/Exponential random graphs

Dependence graph: Illustration
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Static random network models Markov graphs/Exponential random graphs

Dependence graph: Illustration (Cont.)
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Static random network models Markov graphs/Exponential random graphs

Dependence graph: Definition

The original graph g with n nodes.
Let M be the set of all the possible links in G.

⇒ |M| =
(n
2

)
.

M is served as the set of nodes for the dependence graph D.
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Static random network models Markov graphs/Exponential random graphs

Dependence graph: Illustration

The Poisson random network is one where the set of links of D is
empty, as all links are independent.
If we wish to capture the idea that there might be clustering, then
we would like the link ik to depend on the presence of ij and kj for
each possible j. Thus, D would have ik connected to each other
link that contains either i or k.
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Static random network models Markov graphs/Exponential random graphs

Dependence graph: Definition (Cont.)

In the dependence graph D, a clique (派系) is a set of nodes of a
completely connected subgraph of D.
The singleton nodes are considered connected subgraphs.
Let C(D) be the set of all the cliques.
In the case of a Poisson random network C(D) would simply be
the set of all links ij.
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Static random network models Markov graphs/Exponential random graphs

Dependence graph: Definition

Given a generic element A ∈ C(D), let IA(g)

IA(g) =

{
1, if A ⊆ g,
0, otherwise.

If A is a triad {ij, jk, ik}, then IA(g) = 1 if each of the links ij, jk
and ik are in g, and IA(g) = 0 otherwise.
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Static random network models Markov graphs/Exponential random graphs

Hammersley and Clifford’s theorem

The probability of a given network g depends only on which cliques of
D it contains, and that it can be written as

log(Prob[g]) =
∑

A∈C(D)

αAIA(g)− c,

where c is a normalizing constant, and the αA’s are other free
parameters.
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Static random network models Markov graphs/Exponential random graphs

Hammersley and Clifford’s theorem: Illustration 1

Let g be a Poisson random graph on n nodes.
There are

(n
2

)
possible edges in g.

These are the nodes of dependence graph D.
C(D) = {ij | i, j ∈ g}
Theorem implies that

log(Prob[g]) =
∑

ij∈C(D)

αij − c.
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Static random network models Markov graphs/Exponential random graphs

Hammersley and Clifford’s theorem: Illustration 1

Theorem implies that

log(Prob[g]) =
∑

ij∈C(D)

αij − c.

To simplify things further, let us also suppose that there is a
symmetry among nodes, so that the probability of any two
networks that have the same architecture but possibly different
labels on the nodes is identical.

⇒ log(Prob[g]) =
∑

ij∈C(D) α− c = n1(g)α− c, where n1(g) is the
total number of links in g.
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Static random network models Markov graphs/Exponential random graphs

Hammersley and Clifford’s theorem: Illustration 2

Let g be a random graph on six nodes.
There are 15 possible edges in g.
These are the nodes of dependence graph D.

51 3

4 6

2
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Static random network models Markov graphs/Exponential random graphs

Hammersley and Clifford’s theorem: Illustration 2

51 3

4 6

2

Assumption of the dependence structure of g: two edges of g are
conditional independent if they are not parallel.
For example: 1-2 and 1-3 are independent, while 4-5 and 2-3 are
dependent.
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Hammersley and Clifford’s theorem: Illustration 2

51 3

4 6

2

56

12

14 24

34

46

13

15 35

25

45

23

26 36

16
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Hammersley and Clifford’s theorem: Illustration 2

56

12

14 24

34

46

13

15 35

25

45

23

26 36

16

There are six disjoint maximal cliques of D.
Three of these have size 4 and three are singletons.
Any nonempty subset of a maximal clique is a clique, so in total
there are 48 cliques.
15 of size 1, 18 of size 2, 12 of size 3, and 3 of size 4.
Theorem yields a representation of Prob(g) with 48 parameters
αA.
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Static random network models Markov graphs/Exponential random graphs

Hammersley and Clifford’s theorem: Comment

In general, given that D can be very rich and that the αA’s can be
chosen at will, this allows for an almost arbitrary probability
specification.
The difficulty and art in applying this type of model in practice is
in specifying the dependencies sparingly and imposing
restrictions on the αA’s so that the resulting probabilities are
simple and practical.
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Static random network models Configuration model

Subsection 4

Configuration model
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Static random network models Configuration model

Configuration model

While the Markov model of random networks allows for general
forms of dependencies, it is hard to keep track of the degree
distribution that it will generate, and to adjust that to match
observed networks.
In order to generate random networks with a given degree
distribution, various methods have been proposed.
One of the most widely used is what is referred to as the
configuration model, as developed by Bender and Canfield.
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Static random network models Configuration model

Configuration model (Cont.)

Work with degree sequences rather than degree distributions.
Given a network on n nodes, we end up with a list of the degrees
of different nodes: (d1, d2, . . . , dn).
The degree sequence directly tied to the degree distribution: the
proportion of nodes that have degree d in this sequence is
Pn(d) = |{i|di=d}|

n .
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Static random network models Configuration model

Configuration model: Algorithm

Suppose that we have an idea of the degree sequence (d1, d2, . . . , dn)
that we wish to generate in a network of n nodes.

1 Construct a sequence where node 1 is listed d1 times, node 2 is
listed d2 times, etc.:

1, 1, . . . , 1︸ ︷︷ ︸
d1 entries

, 2, 2, . . . , 2︸ ︷︷ ︸
d2 entries

, . . . , n, n, . . . , n︸ ︷︷ ︸
dn entries

.

2 Randomly pick two elements of the sequence.
3 Form a link between the two nodes corresponding to those

entries.
4 Delete those entries from the sequence.
5 Repeat 2–4.
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Static random network models Configuration model

Configuration model: Issues

It is possible to have more than one link between two nodes.
As such, it generates what is called a multi-graph (allowing for
multiple links) instead of a graph.
Self links are possible and may even occur multiple times, while
we have generally been ignoring self links in our discussion of
networks up to this point.
As a more minor point, the sum of the degrees needs to be even or
else there will be a leftover entry at the end of the process.
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Static random network models Configuration model

Configuration model

The process still has nice properties for large n.
Generate a multi-graph, and then from it delete self-links and
duplicate links between two nodes. This is then a graph.
If the proportion of links we needed to delete is suitably small,
then we end up with a graph with a degree distribution close to
what we started with.
Proposition: If max di

n1/3 tends to 0 (n → 0), then the chance that any
given node (including the largest ones) has a duplicate or self-link
tends to 0.
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Static random network models An expected degree model

Subsection 5

An expected degree model
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Static random network models An expected degree model

An expected degree model

Chung and Lu provide a different random model that also
approximates a given desired degree sequence.
The advantage of this process is that it forms a graph instead of a
multi-graph, although it still allows for self loops and does not
result in the exact degree sequence, even asymptotically.
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Static random network models An expected degree model

Chung and Lu’s process

Start with n nodes and a desired degree sequence (d1, d2, . . . , dn).
Form a link between nodes i and j with probability didj∑

k dk
, where

the degree sequence is such that that (maxi di)2 <
∑

k dk, so that
each of these probabilities is less than 1.
It is clear that any node i’s expected degree is indeed di, when a
self-link ii is allowed to form with probability didi/

∑
k dk.
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Static random network models An expected degree model

Configuration model vs. the Chung-Lu’ process

Fix a degree sequence where all nodes have the same number of
links k = ⟨d⟩.
Consider the configuration model, where we delete self and
duplicate links.
The probability that any given node has no duplicate links or self
links, and hence degree exactly k, converges to 1.
From here it is not difficult to conclude that with a probability
going to 1, the proportion of nodes with degree k will also
converge to 1.
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Static random network models An expected degree model

Configuration model vs. the Chung-Lu’ process
(Cont.)

Fix a degree sequence where all nodes have the same number of
links k = ⟨d⟩.
The number of links to other nodes for any node follows a
binomial distribution on n− 1 draws with a probability of k

n .
As the probability of self links vanishes, the probability that the
degree is the same as the number of links excluding self links
approaches 1.

Xiang Sun Lecture 3 September 27–October 11, 2017 56 / 119



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Static random network models An expected degree model

Configuration model vs. the Chung-Lu’ process
(Cont.)

As n becomes large, a binomial distribution of n− 1 draws with
probability k

n places a probability bounded away from 1 on having
exactly k links.
The probability of having exactly k links can be approximated
from a Poisson approximation, and we find a probability on the
order of

e−kkk

k!
,

which is maximized at k = 1 and always less than 1
2
.

Under the Chung-Lu process, although the expected degree of any
given node is k, the chance that it ends up with exactly k links is
bounded away from 1, regardless of whether we allow self links.
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Static random network models An expected degree model

Configuration model vs. the Chung-Lu’ process
(Cont.)

This tells us that the realized degree distribution will differ
significantly from the distribution of the expected degree
sequence, which places full weight on degree k.
While the configuration process (under suitable conditions) leads
to a degree distribution more closely tied to the starting one, the
Chung-Lu expected degree process is still of interest and more
naturally relates to the Poisson random networks. Both are useful.
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Properties of random networks

Section 3

Properties of random networks
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Properties of random networks Large networks

Subsection 1

Large networks
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Properties of random networks Large networks

Properties on limit

Other questions of interest:
Does the graph have isolated nodes? cycles? Is it connected?

For random graph models, we are interested in computing the
probabilities of these events, which may be intractable for a fixed
n.

Every network has some probability of forming.
How to make sense of that?

Therefore, most of the time, we resort to an asymptotic analysis,
where we compute (or bound) these probabilities as n → ∞.
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Properties of random networks Large networks

Phase transition

Interestingly, often properties hold with either a probability
approaching 1 or a probability approaching 0 in the limit.
Consider a Possion random network with link formation
probability p(n) (again interest in p(n) → 0 as n → ∞).

n

p(n)

50 100 150 200 250 300 350 400 450 500

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

t(n) =
log(n)

n

Prob(connected) ≈ 1

Prob(connected) ≈ 0

The graph experiences a phase transition (相变) as a function of
graph parameters (also true for many other properties).
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Properties of random networks Properties on limit

Subsection 2

Properties on limit
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Properties of random networks Properties on limit

Specifying properties

N: the set of nodes.
G(N): the set of all the undirected networks on the set of nodes N.
A property is a subset A(N) ⊆ G(N).

A specification of which networks have that property.
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Properties of random networks Properties on limit

Examples of properties

A(N) = {g ∈ G(N) | Ni(g) is nonempty for all i ∈ N}.
property of no isolated nodes.

A(N) = {g ∈ G(N) | ℓ(i, j) is finite for all i, j ∈ N}.
network is connected.

A(N) = {g ∈ G(N) | ℓ(i, j) < log(n) for all i, j ∈ N}.
diameter is less than log(n).
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Properties of random networks Properties on limit

Monotone properties

A property A(·) is monotone if

g ∈ A(N)
g ⊆ g′ ∈ G(N)

}
=⇒ g′ ∈ A(N).

All three of the previous properties are monotone.
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Properties of random networks Properties on limit

Limiting properties

In order to deduce things about random networks, we often look
at “large” networks, by examining limits.
Examine a sequence of Poisson random networks, with
probability p(n).
Deduce things about properties as n → ∞.
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Properties of random networks Threshold functions and phase transitions

Subsection 3

Threshold functions and phase transitions
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Properties of random networks Threshold functions and phase transitions

Threshold functions and phase transitions

A threshold function for some given (monotone) property A(·) is
a function t(n) such that

Prob[A(N)] →

{
1, if p(n)

t(n) → ∞,

0, if p(n)
t(n) → 0,

where n = |N|.
When such a threshold function t(n) exists, it is said that a phase
transition occurs at that threshold.
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Properties of random networks Threshold functions and phase transitions

Phase transition: Example

Define property A as A = {number of edges > 0}.
We are looking for a threshold for the emergence of the first edge.
Recall that

E[number of edges] =
(n
2

)
p(n) = n(n−1)

2
p(n) ≈ n2

2
p(n).

Let n̂ =
(n
2

)
and λ(n) = n̂p(n) ≈ n2

2
p(n).
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Properties of random networks Threshold functions and phase transitions

Phase transition: Example

Assume that lim
n→∞

p(n)
2/n2 = 0.

Then E[number of edges] → 0.
Thus, Prob(number of edges > 0) → 0.
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Properties of random networks Threshold functions and phase transitions

Phase transition: Example

Assume that lim
n→∞

p(n)
2/n2 = ∞.

The number of edges can be approximated by a Poisson
distribution (just like the degree distribution):

Prob(number of edges = k) =
(
n̂
k

)
pk(1− p)n̂−k ≈ e−λ(n)λk

k!
.

Thus, Prob(number of edges = 0) ≈ e−λ(n).
Since lim

n→∞
λ(n) = lim

n→∞
p(n)
2/n2 = ∞, we have

lim
n→∞

Prob(number of edges = 0) ≈ lim
n→∞

e−λ(n) = 0.
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Properties of random networks Threshold functions and phase transitions

Phase transition: Example

Hence, the function t(n) = 1
n2 is a threshold function for the

emergence of the first link:
When p(n) ≪ 1

n2 , the network is likely to have no edges in the
limit;
When p(n) ≫ 1

n2 , the network has at least one edge with
probability going to 1.
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Properties of random networks Threshold functions and phase transitions

Phase transition: Example

n

p(n)

50 100 150 200 250 300 350 400 450 500

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

t(n) = 1
n2

Prob(emergence of the first link) ≈ 1

Prob(emergence of the first link) ≈ 0
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Properties of random networks Threshold functions and phase transitions

Phase transition: Example

How large should p(n) be to start observing triples in the
network?

We have E[number of triples] = n3p2, using a similar analysis we
can show that t(n) = 1

n3/2 is a threshold function.
How large should p(n) be to start observing a tree with k nodes
(and k− 1 arcs)?

We have E[number of trees] = nkpk−1, and the function
t(n) = 1

nk/(k−1) is a threshold function.
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Properties of random networks Threshold functions and phase transitions

Phase transition: Example

The threshold function for observing a cycle with k nodes is
t(n) = 1

n .
Below the threshold of 1

n , largest component of the graph includes
no more than a factor times log(n) of the nodes.
Above the threshold of 1

n , a giant component emerges, which is
the largest component that contains a nontrivial fraction of all
nodes, i.e., at least cn for some constant c.
The giant component grows in size until the threshold of log(n)

n , at
which point the network becomes connected.
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Properties of random networks Threshold functions and phase transitions

Phase transition: Example

n

p(n)

50 100 150 200 250 300 350 400 450 500

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

Figure: Blue: 1
n2 ; Green: 1

n3/2 ; Yellow: 1
n ; Red: log(n)

n
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Properties of random networks Threshold functions and phase transitions

Phase transition: Illustration

n 1
n2

1
n3/2

1
n

log(n)
n

first link triples cycle connected
50 0.0004 0.0028 0.02 0.0782

12
3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
22

23 24 25 26 27
28

29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46
47

484950

Figure: The emergence of the first link: G(50, p = 0.001).
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Properties of random networks Threshold functions and phase transitions

Phase transition: Illustration

n 1
n2

1
n3/2

1
n

log(n)
n

first link triples cycle connected
50 0.0004 0.0028 0.02 0.0782

12
3

4
5

6

7

8

9

10

11

12

13

14

15

16
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28

29
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31

32
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34

35
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38
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43

44
45

46
47

484950

Figure: A first component with more than two nodes: G(50, p = 0.01).
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Properties of random networks Threshold functions and phase transitions

Phase transition: Illustration

n 1
n2

1
n3/2

1
n

log(n)
n

first link triples cycle connected
50 0.0004 0.0028 0.02 0.0782

12
3
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14

15
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28
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32

33

34
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44
45

46
47

484950

Figure: Emergence of cycles: G(50, p = 0.03).
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Properties of random networks Threshold functions and phase transitions

Phase transition: Illustration

n 1
n2

1
n3/2

1
n

log(n)
n

first link triples cycle connected
50 0.0004 0.0028 0.02 0.0782
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484950

Figure: Emergence of a giant component: G(50, p = 0.05).

Xiang Sun Lecture 3 September 27–October 11, 2017 81 / 119



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Properties of random networks Threshold functions and phase transitions

Phase transition: Illustration

n 1
n2

1
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1
n

log(n)
n

first link triples cycle connected
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Figure: Emergence of connectedness: G(50, p = 0.1).
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Properties of random networks Threshold for the existence of isolated points

Subsection 4

Threshold for the existence of isolated points
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Properties of random networks Threshold for the existence of isolated points

Threshold for the existence of isolated points

Theorem: The threshold for the (non)existence of isolated vertices
is t(n) = log n

n .
It is sufficient to show that

Prob(nonexistence of isolated points) →

{
0, if λ(n) = p(n)

t(n) → 0,

1, if λ(n) = p(n)
t(n) → ∞.

We will show a stronger result: Let p(n) = λ log(n)
n .

Prob(nonexistence of isolated points) →

{
0, if λ < 1,

1, if λ > 1.
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Properties of random networks Threshold for the existence of isolated points

Threshold for the existence of isolated points (Cont.)

n

p(n)

50 100 150 200 250 300 350 400 450 500

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

t(n) =
log(n)

n

Prob(isolated points) ≈ 1

Prob(isolated points) ≈ 0
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Properties of random networks Threshold for the existence of isolated points

Proof

Write p = p(n) = λ log(n)
n . Clearly, p → 0.

Let Ii be a Bernoulli random variable defined as

Ii =

{
1, if node i is isolated,
0, otherwise.

We can write the probability that an individual node is isolated as

q = Prob(Ii = 1) =
(
1− p

)n−1 ≈ e−pn = e−λ log(n) = n−λ,

where the third equality is due to p → 0.
This also implies that q → 0.
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Properties of random networks Threshold for the existence of isolated points

Proof

Let X =
∑n

i=1 Ii denote the total number of isolated nodes.
It suffices to show that

Prob(X = 0) →

{
0, if λ < 1,

1, if λ > 1.

We have
E[X] = n× q ≈ n× n−λ = n1−λ.
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Properties of random networks Threshold for the existence of isolated points

Proof: The case λ < 1

Assume that λ < 1.
For λ < 1, we have E[X] ≈ n1−λ → ∞. We want to show that this
implies Prob(X = 0) → 0.

In general, this is not true.
For example, Prob(X = 0) = 1

n2 and Prob(X = n) = 1− 1
n2 .

Can we use a Poisson approximation (as in the previous example)?
No, since the random variables here are dependent.
We show that the variance of X is of the same order as its mean.
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Properties of random networks Threshold for the existence of isolated points

Proof: The case λ < 1 (Cont.)

We compute the variance of X:

var(X) =
∑
i

var(Ii) +
∑
i

∑
j ̸=i

cov(Ii, Ij)

= n var(I1) + n(n− 1) cov(I1, I2)
= nq(1− q) + n(n− 1)(E[I1I2]− E[I1]E[I2]),

where the second and third equalities follow since the Ii are
identically distributed Bernoulli random variables with parameter
q (dependent).
We have

E[I1I2] = Prob(I1 = I2 = 1) = Prob(both 1 and 2 are isolated)

= (1− p)n−2(1− p)n−2(1− p) = q2
1−p .
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Properties of random networks Threshold for the existence of isolated points

Proof: The case λ < 1 (Cont.)

Combining the preceding two relations, we obtain

var(X) = nq(1− q) + n(n− 1)[ q2
1−p − q2]

= nq(1− q) + n(n− 1) q2p
1−p

Since p → 0 and q → 0, we have

var(X) ∼ nq+ n2q2 p
1−p ∼ nq+ n2q2p

= nn−λ + n2n−2λ λ log(n)
n

∼ nn−λ = E[X],

where a(n) ∼ b(n) denotes a(n)
b(n) → 1 as n → ∞.
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Properties of random networks Threshold for the existence of isolated points

Proof: The case λ < 1 (Cont.)

Second moment method: Let X be a non-negative integer valued
random variable. Then

Prob(X = 0)(E[X])2 ≤ var(X).

By the second moment method, we have

Prob(X = 0)(E[X])2 ≤ var(X) ∼ E[X].

Therefore,

Prob(X = 0) ≤ κ E[X]
(E[X])2 = κ 1

E[X] → 0.
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Properties of random networks Threshold for the existence of isolated points

Proof: The case λ > 1

Assume that λ > 1.
We want to show that Prob(X = 0) → 1.
We have E[X] = n(1− p)n−1.
Then,

E[X] = n(1− p)n−1 ≤ ne−p(n−1) = o(ne− log(n)) = o(1),

where the second inequality is due to ex ≥ x+ 1 for any x.
First moment method: Let X be a non-negative random variable.
Then

Prob(X > 0) ≤ E[X].
By the first moment method, we have

Prob(X > 0) = o(1) ⇒ Prob(X = 0) → 1.
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Properties of random networks Threshold function for connectivity

Subsection 5

Threshold function for connectivity
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Properties of random networks Threshold function for connectivity

Threshold function for connectivity

Theorem (Erdos and Renyi 1959): A threshold function for the
connectedness of a Poisson random network is t(n) = log(n)

n .
We will show a stronger result: Let p(n) = λ log(n)

n .

Prob(connectivity) →

{
0, if λ < 1,

1, if λ > 1.
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Properties of random networks Threshold function for connectivity

Threshold function for connectivity (Cont.)

n

p(n)

50 100 150 200 250 300 350 400 450 500

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

t(n) =
log(n)

n

Prob(connected) ≈ 1

Prob(connected) ≈ 0
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Properties of random networks Threshold function for connectivity

Proof

Write p = p(n) = λ log(n)
n . Clearly, p → 0.

Let Ii be a Bernoulli random variable defined as

Ii =

{
1, if node i is isolated,
0, otherwise.

We can write the probability that an individual node is isolated as

q = Prob(Ii = 1) =
(
1− p

)n−1 ≈ e−pn = e−λ log(n) = n−λ,

where the third equality is due to p → 0.
This also implies that q → 0.
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Properties of random networks Threshold function for connectivity

Proof

Let X =
∑n

i=1 Ii denote the total number of isolated nodes.
Then, we have

E[X] ≈ n× n−λ = n1−λ.
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Properties of random networks Threshold function for connectivity

Proof: The case λ < 1

Assume that λ < 1.
We have shown that

Prob(at least one isolated node) → 1.

Therefore, Prob(disconnected) → 1 as n → ∞, completing the
proof.
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Properties of random networks Threshold function for connectivity

Proof: The case λ > 1

Assume that λ > 1.
We want to show that Prob(connectivity) → 1.
We have shown that

Prob(X > 0) → 0.

However, we need more to establish connectivity.
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Properties of random networks Threshold function for connectivity

Proof: The case λ > 1 (Cont.)

The event “graph is disconnected” is equivalent to the existence of
k nodes without an edge to the remaining nodes, for some k ≤ n

2
.

We have

Prob({1, 2, . . . , k} not connected to the rest) = (1− p)k(n−k).

Therefore,

Prob(∃ k nodes not connected to the rest) =
(n
k
)
(1− p)k(n−k).
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Properties of random networks Threshold function for connectivity

Proof: The case λ > 1 (Cont.)

We have

Prob(disconnected) ≤
n/2∑
k=1

(n
k
)
(1− p)k(n−k).

By some (ugly) calculations, we have

Prob(disconnected) = o(1).
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Properties of random networks Threshold for giant component

Subsection 6

Threshold for giant component
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Properties of random networks Threshold for giant component

Giant component

We have shown that when p(n) ≪ log n
n , G(n, p) is disconnected

with high probability.
In cases for which the network is not connected, the component
structure is of interest.
We have argued that in this regime the expected number of
isolated nodes goes to infinity.
This suggests that G(n, p) should have an arbitrarily large number
of components.
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Properties of random networks Threshold for giant component

Giant component (Cont.)

We will next argue that the threshold t(n) = 1
n plays an important

role in the component structure of the graph.
Let λ = p(n)

t(n) .
For λ < 1, all components of the graph are “small”.
For λ > 1, the graph has a unique giant component, i.e., a
component that contains a constant fraction of the nodes.
We will analyze the component structure in the vicinity of
p(n) = λ

n using a branching process approximation.
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Properties of random networks Threshold for giant component

Giant component: Intuition

Form a Poisson random network on n− 1 nodes with a
probability of any given link being p > 1

n .
Now let us add a last node, and again connect this node to each
other node with an independent probability p.
Let q be the fraction of nodes in the largest component of the
n− 1-node network.
As a fairly accurate approximation for large n, this will also be the
fraction of nodes in the largest component of the n node network.
The only possible exception to this is if the added node ends up
connecting two large components that were not connected before.
As argued above, the chance of having two components with large
numbers of nodes that are not connected to each other goes to 0
in n, given that p > 1

n .
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Properties of random networks Threshold for giant component

Giant component: Intuition (Cont.)

Now, the chance that this added node ends up outside of the giant
component is the probability that none of its neighbors are in the
giant component.
If the new node has degree di this probability is converging to
(1− q)di , as we let n become large.
As we can think of any node as having been added in this way, in a
large network the expected frequency of nodes of degree di that
end up outside of the giant component is approximately (1− q)di .
So, the overall fraction of nodes outside of the giant component,
1− q, can then be found by averaging (1− q)di across nodes.
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Properties of random networks Threshold for giant component

Giant component: Intuition (Cont.)

This leads to
1− q =

∑
d

(1− q)dP(d).

P(·) follows the Poisson distribution:

1− q =
∑
d

(1− q)d e
−(n−1)p((n−1)p)d

d!

= e−(n−1)p
∑
d

[(n−1)p(1−q)]d
d!

= e−(n−1)pe(n−1)p(1−q) = e−(n−1)pq.

Xiang Sun Lecture 3 September 27–October 11, 2017 107 / 119



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Properties of random networks Threshold for giant component

Giant component: Intuition (Cont.)

There is always a solution of q = 0 to this equation. In the case
where the average degree is larger than 1 (i.e., p > 1/(n− 1)), and
only then, there is also a solution for q that lies between 0 and 1.
(why?)
This corresponds to phase transition, in that the appearance of
such a giant component comes above the threshold of
(n− 1)p = 1.
That is, there is a marked difference in the structure of the
resulting network depending on whether average degree is bigger
or smaller than one.

Xiang Sun Lecture 3 September 27–October 11, 2017 108 / 119



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Properties of random networks Degree distribution of a neighboring node

Subsection 7

Degree distribution of a neighboring node
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Properties of random networks Degree distribution of a neighboring node

Degree of a neighboring node

Start at some node i with degree di.
Consider a neighbor j. How many neighbors do we expect j to
have?
This is important in estimating the size of i’s expanding
neighborhoods, in keeping track of contagion and transmission of
beliefs, in estimating diameters, and many other calculations.
Basically, any time that we consider some process that moves
through the network and we wish to keep track of how many lines
it expects to have to be able to follow at a next step, this is an
important sort of calculation.
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Properties of random networks Degree distribution of a neighboring node

Example

This degree distribution of a neighboring node is different from the
degree distribution. Consider the following network:

1 2

4 3

Degree distribution: P(1) = P(2) = 1
2
.

If we randomly pick a link and then randomly pick an end of it,
there is a 2

3
chance that we find a node of degree 2 and a 1

3
chance

that we find a node of degree 1.
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Properties of random networks Degree distribution of a neighboring node

Degree distribution of a neighboring node

Higher degree nodes are involved in a proportionately higher
percentage of the links.
If we randomly pick a link and a node at the end of it, and we
consider two nodes of degrees dj and dk, then node k is relatively
dk
dj times more likely to be the one we find than node j.
The distribution of degrees of a node found by choosing a link
uniformly at random from a network that has degree distribution
P and then picking either one of the end nodes with equal
probability is

P̃(d) = P(d)d
⟨d⟩ .
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Properties of random networks Degree distribution of a neighboring node

Degree distribution of a neighboring node (Cont.)
Details:

Prob(a degree-d node) = d
d′ Prob(a degree-d′ node).

We have

P̃(d) = Prob(degree-d nodes) = P(d)Prob(a degree-d node)

= P(d) d
d′

Prob(a degree-d′ node)

=
P(d)d
p(d′)d′

P(d′)Prob(a degree-d′ node) = P(d)d
p(d′)d′

P̃(d′)

Since
∑

d P̃(d) = 1,
∑

d
P(d)d
P(d′)d′ P̃(d

′) = 1, and hence

P̃(d′) = P(d′)d′∑
d P(d)d

=
P(d′)d′

⟨d⟩
.
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Properties of random networks Diameter estimation

Subsection 8

Diameter estimation
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Properties of random networks Diameter estimation

Diameter estimation

let us start by calculating the diameter of a network which makes
such calculations relatively easy.
Suppose that we examine a component that we know to be a tree
so that there are no cycles.
A method of obtaining an upper bound on diameter is to pick
some node and then successively expanding its neighborhood by
following paths of length ℓ, where we increase ℓ until the paths are
long enough so that we reach all nodes.
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Properties of random networks Diameter estimation

Cayley tree

Consider a tree such that every node either has degree k or degree
1 (the leaves), and such that there is a root node that is equidistant
from all of the leaves.
Start from that root node.
If we then move out by a path of 1, we have reached k nodes.
By traveling on all paths of length 2, we will have reached all of the
nodes in the immediate neighborhoods of the nodes in the
original node’s neighborhood. We will have reached k+ k(k− 1)
or k2 nodes.
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Properties of random networks Diameter estimation

Diameter estimation: Cayley tree

Extending this reasoning, by traveling on all paths of length ℓ, we
will have reached

k+ k(k− 1) + k(k− 1)2 + · · ·+ k(k− 1)ℓ−1 = k(k− 1)ℓ − 1

k− 2
,

roughly (k− 1)ℓ.
To reach n− 1 nodes, we need roughly (k− 1)ℓ = n, or ℓ is on the
order of log n

log d .

Diameter is roughly 2 log n
log d .
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Properties of random networks Diameter estimation

Diameter estimation: Poisson random networks

A randomly picked node i has an expected number of neighbors
of ⟨d⟩.
If we presume that nodes’ degrees are approximately independent,
then each of these neighbor nodes has a degree described by the
distribution P̃(d).
Thus, each of these neighbor nodes has an expected number of
neighbors (besides i) of∑

d

(d− 1)P̃(d) =
∑
d

(d− 1)
P(d)d
⟨d⟩

=
⟨d2⟩ − ⟨d⟩

⟨d⟩
.

The expected number of i’s second neighbors is roughly
⟨d⟩ ⟨d

2⟩−⟨d⟩
⟨d⟩ .
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Properties of random networks Diameter estimation

Diameter estimation: Poisson random networks
(Cont.)

Iterating, the expected number of k-th neighbors is estimated by

⟨d⟩
(
⟨d2⟩ − ⟨d⟩

⟨d⟩

)k−1

.

This means that expanding out to a ℓ-th neighborhood reaches
ℓ∑

k=1

⟨d⟩
(
⟨d2⟩ − ⟨d⟩

⟨d⟩

)k−1

nodes.

Let the above expression be n− 1.

ℓ =
log

(
(n− 1) ⟨d⟩−1

⟨d⟩ + 1
)

log⟨d⟩
≈ log n

log⟨d⟩
.
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