
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Social and Economic Networks
Diffusion through networks

Xiang Sun

November 1–8, 2017
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Outline

1 Diffusion

2 Bass model

3 Diffusion on random networks
Giant component
Contagion with immunity and link failure

4 SIS model
Uniformly random infection
Degree-based random meeting model
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Diffusion

Section 1

Diffusion
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Diffusion

Networks and behavior

How does network structure impact behavior?
Simple infections, contagion: diffusion.

* mechanical way where it goes from one node to another.
Opinions, information: learning.

* how do people process information? how does information flow?
Choices, decisions: games on network.
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Diffusion

Diffusion

The patterns by which epidemics spread through a society is
determined not just by the properties of the pathogen carrying it
(including its contagiousness, the length of its infectious period,
and severity), but also by the network structure within the
population.

Opportunities for a disease to spread from one person to another is
given by the contact network, indicating who has contact with
whom on a regular basis.

Not only disease transmission, but also diffusion through a
network of information, opinions, and adoption of new
technologies or behaviors.
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Diffusion

S-shape adoption

Diffusion over time and space
Initial adopters

Who are they? High degree? Innovators?

Increase in speed
Word of mouth, observations of neighbors

Eventual slowdown
Saturation
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Diffusion

Diffusion: Illustration 1

Griliches (1957): Hybrid corn diffusion
The hybrid corn is somewhere between 15% to 25% higher than
the existing corn strains.
Iowa is a state which is basically is mostly corn (a very good
climate for growing corn).
There is more variety of things grown in Wisconsin.
In Kentucky, even less hospitable to corn, and has other things
going on in terms of what it’s growing.
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Diffusion

Diffusion: Illustration 1 (Cont.)

Iowa was the state which adopted this earliest on.
Wisconsin was a little later adoption.
Kentucky was even later than Wisconsin.
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Diffusion

Diffusion: Illustration 1 (Cont.)

The adoptions start out fairly slowly where it takes.
It took quite awhile before it really starts accelerating.
Eventually peak.
We get this very nice s shape which is actually observed in a
number of different.
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Diffusion

Diffusion: Illustration 1 (Cont.)

Why does it start out slowly?
why does it start accelerating in this manner?
It eventually has to asymptote and slow down.

* It cannot go above 100% so it’s got to slow down eventually. It
can’t just keep going forever.
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Diffusion

Diffusion: Illustration 2

Adoption of new drug by doctors: Coleman, Katz, and Menzel
(1966).
Before they started this they surveyed the doctors: ask which
other doctors would you go to for advice.

⇒ This gives a network of doctors.
Result:

Fraction adopting by (months) 6 8 10 17
named by 0 others (36) 0.31 0.42 0.47 0.83

named by 1 or 2 others (56) 0.52 0.66 0.70 0.84
named by 3+ others (33) 0.70 0.91 0.94 0.97

More connected are earlier adopters.
The diffusion process actually differed based on the position of the
doctors in the network.
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Diffusion

Questions

Under what conditions will an initial outbreak spread to a
nontrivial portion of the population?
What is the extent of a diffusion?
How does it depend on the particulars of a network structure?
Can we say something about these time patterns, where does the
S-shape come in?
Can we say something about welfare analyses?
If you want to accelerate a diffusion, how would you want to do it?
What is the effect of immunization policies?
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Bass model

Section 2

Bass model
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Bass model

Bass model

A benchmark model with no explicit social structure.
It incorporates imitations.
It produces things like the S-shape.
Two states/actions/behaviors 0 and 1.

0: you are not infected/you are not adopting the new product/….
1: you are infected/you are adopting the new product/….

Initial state/action/behavior: 0.
Move from 0 to 1, and do not move back.
F(t): fraction of the population who have adopted action 1 at time
t.
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Bass model

Bass model (Cont.)

p: rate of spontaneous adoption/innovation.
q: rate of imitation of adoption.

d
dt
F(t) = p · (1− F(t)) + qF(t) · (1− F(t)).

The first term: spontaneous infection rate times the fraction of
uninfected agents.
The second term: the contagion rate times the frequency of
encounters between healthy and infected agents.

Initially, F(0) = 0.
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Bass model

Getting the S-shape

d
dt
F(t) = (p+ qF(t)) · (1− F(t)).

When F(t) = 0, d
dtF(t) = p.

everything is just happening from the spontaneous adopters.
no imitation going on because there’s nobody to imitate.

When F(t) = ϵ, d
dtF(t) = (p+ qϵ)(1− ϵ).

to get initial convexity, need (p+ qϵ)(1− ϵ) > p.
⇒ q > p.

When F(t) nears 1, d
dtF(t) = 0.

the fraction of people who haven’t adopted yet becomes small, and
that’s what gives you the last part of the curve.
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Bass model

Getting the S-shape (Cont.)
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Left: q > p; Right: q < p.
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Bass model

Getting the S-shape (Cont.)

Solution:
F(t) = 1− e−(p+q)t

1 + q
pe−(p+q)t .

The ratio of q to p determines the overall shape of the curve.
Initially only p matters, then q takes over.

Xiang Sun Lecture 6 November 1–8, 2017 18 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bass model

Applications

This model has been used extensively in forecasting by trying to
estimate from initial take up.
As this process takes off, you do not need much data to begin to
analyze and form estimates of p and q.
Once you have got the estimates of p and q, you can get estimates
of what the rest of the process is going to look like.

how many people go see the movie in the first week?
how many people go see the movie in the second week?
based on that first week and second week, you may predict
something.

Xiang Sun Lecture 6 November 1–8, 2017 19 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Diffusion on random networks

Section 3

Diffusion on random networks
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Diffusion on random networks

Questions

When do we get diffusion?
What is the extent of diffusion?
How does it depend on the particulars of the process as well as the
network?
Who is likely to be infected earliest?
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Diffusion on random networks

Component structure

Reach of contagion is determined by the component structure.
The component structure of a network naturally partitions a
society into separate groups who do not interact or communicate
with each other.
The component structure serves as a natural first limit on the
extent of diffusion or contagion when we examine diffusion
through a social network.
The component structure is also important to understand with
respect to navigation, as if one can only follow paths in the
network, then components are again natural barriers.
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Diffusion on random networks

Extent of diffusion

Get nontrivial diffusion if someone in the giant component is
infected/adopts.
Size of the giant component determines likelihood of diffusion
and its extent.
Poisson random network models allow for giant component
calculations.
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Diffusion on random networks Giant component

Subsection 1

Giant component
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Diffusion on random networks Giant component

Giant component

How big is the giant component when there is one?
If p < 1

n , then all are isolated.
If p > log n

n , then all path connected.
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Diffusion on random networks Giant component

Size of the giant component

q: fraction of nodes in largest component.
For any node, the chance it is in the giant component is q.
Observation: Chance that this node is outside of the giant
component is the chance that all of its neighbors are outside of the
giant component.
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Diffusion on random networks Giant component

Size of the giant component (Cont.)

Probability that a node is outside of the giant component: 1− q.
It is equal to the probability that all of its neighbors are outside.

⇒ It is equal to (1− q)d, where d is the node’s degree.
So, probability 1− q that a node is outside of the giant component
is

1− q =
∑
d

(1− q)dP(d),

where P(d) is the chance that the node has d neighbors.
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Diffusion on random networks Giant component

Size of the giant component (Cont.)

1− q =
∑
d

(1− q)dP(d).
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Diffusion on random networks Giant component

Size of the giant component (Cont.)

In a Poisson random network:

P(d) = (n− 1)dpde−(n−1)p

d!
.

So

1− q = e−(n−1)p
∑
d

[(1− q)(n− 1)p]d

d!

≈ e−(n−1)pe(1−q)(n−1)p = e−pq(n−1).

⇒ log(1−q)
q = (n− 1)p = E[d].
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Diffusion on random networks Giant component

Size of the giant component (Cont.)

log(1− q)
q

= (n− 1)p = E[d].
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q

Xiang Sun Lecture 6 November 1–8, 2017 30 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Diffusion on random networks Giant component

Who is infected?

Probability of being in the giant component:

1− (1− q)d.

It is increasing in d.
⇒ More connected, more likely to be infected.
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Diffusion on random networks Contagion with immunity and link failure

Subsection 2

Contagion with immunity and link failure
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Diffusion on random networks Contagion with immunity and link failure

Extensions

Immunity: delete a fraction of nodes and study the giant
component on remaining nodes.
Probabilistic infection.

Random infection: have some links fail, just lower p
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Diffusion on random networks Contagion with immunity and link failure

Contagion with immunity and link failure

Some node is initially exposed to infection.
π of the nodes are immune naturally.
only some links result in contagion: fraction f.
What is the extent of the infection?

Xiang Sun Lecture 6 November 1–8, 2017 34 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Diffusion on random networks Contagion with immunity and link failure

Contagion with immunity and link failure (Cont.)

Consider a random network on n nodes.
Delete fraction π of the nodes.
Delete fraction 1− f of the links.
If starts at a node in giant component of the remaining network,
then the giant component of that network is the extent of the
infection; otherwise negligible.
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Diffusion on random networks Contagion with immunity and link failure

Contagion with immunity and link failure (Cont.)

Let q be the fraction of nodes of the remaining network in its giant
component.
q(1− π) is the probability of a nontrivial contagion.
Conditional on a contagion it infects q(1− π) of the original
nodes.

⇒ q solves

− log(1− q)
q

= (n− 1)p(1− π)f.
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Diffusion on random networks Contagion with immunity and link failure

Contagion with immunity and link failure (Cont.)

− log(1− q)
q

= (n− 1)p(1− π)f.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2
0.4
0.6
0.8
1.0

(n− 1)p(1− π)f

q
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Diffusion on random networks Contagion with immunity and link failure

Implications

Infection can fail if π is high enough or f or p are low enough.
High π: immunization, low virulence.
Low f: low contagiousness.
Low p: low contact among population.
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SIS model

Section 4

SIS model
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SIS model

SIS model

In the SIS model, a node can be in one of 2 states:
Susceptible (易感): Before the node has caught the disease, it is
susceptible to infection from the neighbors.
Infected (感染): Once the node has caught the disease, it is
infectious and has some probability of infecting each of its
susceptible neighbors.
After recovering from infected, the nodes become susceptible
again (rather than being removed).

Models diseases such as certain variations of the common cold.
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SIS model

SIS model: Comments

It is a simple model of diffusion.
It is highly stylized and not directly applicable to a lot of things.
But it is a useful model because it gives us some basic intuitions of
how things work.
A lot of the insights that will come out of this model will be quite
useful, even if the model is a little bit too simple and stark to
actually match a lot of things.
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SIS model

SIS model (Cont.)

Probability that get infected is proportional to number of infected
neighbors with rate v > 0, plus spontaneous ϵ.
Get well randomly in any period at rate δ > 0.
Let ρ = ρ(t) be the percent infected.
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SIS model Uniformly random infection

Subsection 1

Uniformly random infection
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SIS model Uniformly random infection

Uniformly random infection

Randomly meet an individual each period.

d
dt
ρ = (1− ρ)(vρ+ ϵ)− ρδ.

Steady state: d
dtρ = 0.

⇒

ρ =
(v− δ − ϵ) +

√
(v− δ − ϵ)2 + 4ϵv
2v

.

Xiang Sun Lecture 6 November 1–8, 2017 44 / 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

SIS model Uniformly random infection

Without ϵ

d
dt
ρ = (1− ρ)vρ− ρδ.

d
dtρ = 0 has two solutions:

ρ = 0.
ρ = 1− δ

v (if it is positive).
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SIS model Uniformly random infection

Implications

ρ = 1− δ
v .

If δ > v, then recover faster than get sick.
⇒ No infection stays.

If δ < v, infection stays at some level.
* Low recovery rates can lead to large infections.
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SIS model Uniformly random infection

Limitations

Missing heterogeneity in degree.
Missing local patterns.
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SIS model Degree-based random meeting model

Subsection 2

Degree-based random meeting model
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SIS model Degree-based random meeting model

Degree-based random meeting model

Nodes interact randomly according to their degree di.
Let P(d) be the degree distribution in the society.
v: the transmission rate of infection.
δ: the recovery rate of an infected individual.
ρ(d) = ρ(d, t): fraction of nodes of degree d infected.
θ = θ(t): probability that a given meeting is with an infected
individual.
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SIS model Degree-based random meeting model

Degree-based random meeting model (Cont.)

P(d): fraction of nodes that have d meetings.
The probability that a meeting of node i is with a degree-d node is
P(d)d
E[d] .
It is essential to keep track of nodes degrees since nodes with
different degrees tend to have different infection rates.
So likelihood of meeting infected node is:

θ =
∑
d

ρ(d)P(d)d
E[d]

.
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SIS model Degree-based random meeting model

Steady state

Steady state: for each d,

0 =
d
dt
ρ(d) = (1− ρ(d))vθd− ρ(d)δ.

ρ(d) = λθd
λθd+1

, where λ = v
δ
.

ρ(d) is increasing in d.
⇒

θ =
∑
d

ρ(d)P(d)d
E[d]

=
∑
d

P(d)λθd2

(λθd+ 1)E[d]
= H(θ).
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SIS model Degree-based random meeting model

θ for regular degree distributions

Consider regular networks: each node has a degree E[d].

θ =
∑
d

P(d)λθd2

(λθd+ 1)E[d]
=

λθE[d]
λθE[d] + 1

.

It is positive only if E[d] > 1
λ
= δ

v .
Intuition: If the number of meetings is large enough relative to the
relative recovery/infection rate, then the infection can be
sustained. Otherwise, any infection will die out.
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SIS model Degree-based random meeting model

θ for power law degree distributions

P(d) = 2d−3.

θ =
∑
d

P(d)λθd2

(λθd+ 1)E[d]
=

∞∑
d=1

2λθ

E[d](d2λθ + d)
.

⇒ 1 = 2λ
E[d] log(1 +

1
λθ
).

Note that E[d] = 2.
θ = 1

λ(e
1
λ−1)

∈ (0, 1).
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SIS model Degree-based random meeting model

Properties ofH(θ)

Let H(θ) =
∑

d
P(d)λθd2

(λθd+1)E[d] .
H(0) = 0.
H(1) =

∑
d
P(d)d
E[d]

λd
λd+1

≤
∑

d
P(d)d
E[d] = 1.

H′(θ) =
∑

d
P(d)λd2

(λθd+1)2E[d] > 0.

H is increasing and H′(0) = λ
E[d]

∑
d P(d)d2 = λE[d2]

E[d] .

H′′(θ) = −2
∑

d
P(d)λ2d3

(λθd+1)3E[d] < 0.
H is strictly concave.
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SIS model Degree-based random meeting model

Graph ofH(θ)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

θ

H(θ)

H′(0) > 1, positive steady state

H′(0) < 1, no positive steady state
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SIS model Degree-based random meeting model

Nonzero steady state

H′(0) = λE[d2]
E[d] .

There exists a nonzero steady state if and only if

v
δ
= λ >

E[d]
E[d2]

.

So need infection/recovery rate to be high enough relative to
average degree divided by second moment (roughly variance).
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SIS model Degree-based random meeting model

Nonzero steady state (Cont.)

Regular network: λ > 1
E[d] .

Poisson random network: λ > 1
1+E[d] .

Power law network: E[d2] diverges ⇒ always has a nonzero steady
state.
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SIS model Degree-based random meeting model

Ideas

High degree nodes are more prone to infection.
Individuals with high-degree nodes serve as conduits for
infection. Even very low infection rates can lead them to become
infected and infect many others.
Higher variance, more such nodes to enable infection.
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