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Social and Economic Networks
Representing and Measuring Networks

Xiang Sun
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Outline

1 Types of networks
2 Graphs

Graph representation
Walks, paths, and cycles
Connectivity and
components
Trees, stars, rings and
complete graphs
Neighborhood and degree of
a node

3 Summary statistics and
characteristics of networks

Degree distributions

Diameter and average path
length
Clustering
Centrality

Degree centrality
Closeness centrality
Decay centrality
Betweenness centrality
Eigenvector centrality
Katz prestige
Bonacich centrality/Katz
prestige-2

Homophily
4 Homework
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Types of networks

Section 1

Types of networks
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Types of networks

Networks in the real world

A network is a set of items (nodes or vertices) connected by edges
or links.
Systems taking the form of networks abound in the world.
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Types of networks

Types of networks

Social and economic networks: A set of people or groups of people
with some pattern of contacts or interactions between them.

Facebook, friendship networks, business relations between
companies, intermarriages between families, labor markets
Questions: Degree of connectedness, homophily, small-world
effects

Information networks: Connections of “information” objects.
Network of citations between academic papers, World Wide Web
(network of Web pages containing information with links from
one page to other), semantic (how words or concepts link to each
other)
Questions: Ranking, navigation
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Types of networks

Types of networks (Cont.)

Technological networks: Designed typically for distribution of a
commodity or service.

Infrastructure networks: e.g., Internet (connections of routers or
administrative domains), power grid, transportation networks
(road, rail, airline, mail)
Temporary networks: e.g., ad hoc communication networks,
sensor networks, autonomous vehicles
Questions: Does network structure support performance?
Fragility? Cascading failures?

Biological networks: A number of biological systems can also be
represented as networks.

Food web, protein interaction network, network of metabolic
pathways
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Types of networks

Network study

Historical study of networks:
Mathematical graph theory: One of the pillars of discrete
mathematics

Started with Euler’s celebrated 1735 solution of the Konigsberg
bridge problem.

Networks also studied extensively in sociology.
Typical studies involve circulation of questionnaires, leading to
small networks of interactions.

Recent years witnessed a substantial change in network research.
From analysis of single small graphs (10–100 nodes) to statistical
properties of large scale networks (million–billion nodes).
Motivated by availability of computers and computer networks that
allow us to gather and analyze large scale data.
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Types of networks

Network study: New analytical approach

Find statistical properties that characterize the structure of these
networks and ways to measure them.
Create models of networks.
Predict behavior of networks on the basis of measured structural
properties and models.
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Graphs

Section 2

Graphs
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Graphs Graph representation

Subsection 1

Graph representation
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Graphs Graph representation

Graph

We represent a network by a graph (N, g), which consists of a set
of nodes N = {1, 2, . . . , n} and an n× n matrix g = [gij]i,j∈N
(referred to as an adjacency matrix (邻接矩阵)), where
gij ∈ {0, 1} represents the availability of an edge from node i to
node j.
We refer to a graph as a directed graph (有向图) (or digraph) if
gij ̸= gji and an undirected graph (无向图) if gij = gji for all
i, j ∈ N.
When are directed/undirected graphs applicable?

Citation networks: directed
Friendship networks: undirected
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Graphs Graph representation

Graph: Example 1

1

2 3

0 1 0
0 0 1
1 0 0
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Graphs Graph representation

Graph: Example 2

1

2 3

1

2 3

0 1 1
1 0 1
1 1 0
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Graphs Graph representation

Graph (Cont.)

Another representation of a graph is given by (N,E), where E is
the set of edges in the network.

For directed graphs: E is the set of “directed” edges, i.e., (i, j) ∈ E.
For undirected graphs: E is the set of “undirected” edges, i.e.,
{i, j} ∈ E.

In Example 1, Ed = {(1, 2), (2, 3), (3, 1)}.
In Example 2, Eu =

{
{1, 2}, {2, 3}, {1, 3}

}
.
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Graphs Graph representation

Weighted graph

The edge weight gij > 0 can also take on non-binary values,
representing the intensity of the interaction, in which case we refer to
(N, g) as a weighted graph (权重图).

1

2

3

1
3

1
3

1
3

1
2

1
2

3
4

1
4

1
3

1
3

1
3

1
2

1
2

0
0 1

4
3
4

 ⇐⇒
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Graphs Graph representation

Weighted graph (Cont.)

1

2

3

7

2

5 4

0 7 2
5 0 0
0 4 0

 ⇐⇒
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Graphs Graph representation

Conventions

We will use the terms network and graph interchangeably.
We will sometimes use the notation (i, j) ∈ g (or {i, j} ∈ g) to
denote gij = 1.
Self-links or loops (圈) will often not have any real meaning or
consequence, and so whether we set gii = 1 or gii = 0 as a default
will most often (but not always!) be irrelevant. Unless otherwise
indicated in what follows, assume that gii = 0 for all i.
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Graphs Walks, paths, and cycles

Subsection 2

Walks, paths, and cycles
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Graphs Walks, paths, and cycles

Walks, paths, and cycles

We consider “sequences of edges” to capture indirect interactions. For
an undirected graph (N, g):

A walk (链) is a sequence of edges {i1, i2}, {i2, i3}, . . . , {iK−1, iK}.
A path (路径) between nodes i and j is a sequence of edges
{i1, i2}, {i2, i3}, . . . , {iK−1, iK} such that i1 = i and iK = j, and
each node in the sequence i1, i2, . . . , iK is distinct.
A path is a walk where there are no repeated nodes.
A cycle (循环) is a path with a final edge to the initial node.
A geodesic (测地线) between nodes i and j is a “shortest path”
(i.e., with minimum number of edges) between these nodes.
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Graphs Walks, paths, and cycles

Walks, paths, and cycles: Example

i j

walk

i j

graph

i j

path

i j

cycle

i j

geodestic
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Graphs Walks, paths, and cycles

Walks, paths, and cycles (Cont.)

The length of a walk (or a path) is the number of edges on that
walk (or path).
For directed graphs, the same definitions hold with directed edges
(in which case we say “a path from node i to node j”).
Under the convention gii = 0, the matrix g2 tells us number of
walks of length 2 between any two nodes:

(g× g)ij =
∑

k gikgkj.
Similarly, gk tells us number of walks of length k.
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Graphs Connectivity and components

Subsection 3

Connectivity and components
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Graphs Connectivity and components

Connectivity and components

An undirected graph is connected (连通) if every two nodes in
the network are connected by some path in the network.
Components (分支) of a graph (or network) are the distinct
maximally connected subgraphs.
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Graphs Connectivity and components

Connectivity and components: Example

1

2

3

4

5

6

7

8

9

10

Four components:
the node 2 together with an empty set of links,
the nodes {1, 3, 4, 5} together with links{
{1, 5}, {3, 5}, {3, 4}, {4, 5}

}
,

the nodes 6 and 10 together with the link
{
{6, 10}

}
,

and the nodes {7, 8, 9} together with the links{
{7, 8}, {7, 9}, {8, 9}

}
.
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Graphs Connectivity and components

Connectivity and components: Example

A directed graph is
connected (连通) if the underlying undirected graph is connected
(i.e., ignoring the directions of edges).
strongly connected (强连通) if each node can reach every other
node by a “directed path”.

Example: A directed graph that is connected but not strongly
connected.

1

2 3
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Graphs Trees, stars, rings and complete graphs

Subsection 4

Trees, stars, rings and complete graphs
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Graphs Trees, stars, rings and complete graphs

Trees

A tree (树) is a connected (undirected) graph with no cycles.
A connected graph is a tree if and only if it has n− 1 edges.
In a tree, there is a unique path between any two nodes.

A forest is a network such that each component is a tree.
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Graphs Trees, stars, rings and complete graphs

Stars, rings and complete graphs
A star (星) is a network such that there exists some node i such
that every link in the network involves node i. In this case i is
referred to as the center of the star.
The complete graph (完全图) is one where all possible links are
present, so one where where gij = 1 for all i ̸= j.
A ring (环) is a network that has a single cycle and such that each
node in the network has exactly two neighbors.

Star Ring Complete graph
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Graphs Neighborhood and degree of a node

Subsection 5

Neighborhood and degree of a node
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Graphs Neighborhood and degree of a node

Neighborhood

The neighborhood (邻域) of node i is the set of nodes that i is
connected to:

Ni(g) = {j ∈ N | gij = 1}.

The two-neighborhood of a node i is

N2
i (g) = Ni(g) ∪

(
∪j∈Ni(g)Nj(g)

)
.

The k-neighborhood of a node i is

Nk
i (g) = Ni(g) ∪

(
∪j∈Nk−1

i (g)Nj(g)
)
.
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Graphs Neighborhood and degree of a node

Degree

For undirected graphs:
The degree (度) of node i is the number of edges that involve i (i.e.,
cardinality of his neighborhood).

For directed graphs:
Node i’s in-degree (入度) is

∑
j gji.

Node i’s out-degree (出度) is
∑

j gij.
Node 1 has in-degree 1 and out-degree 2:

21

4 3
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Summary statistics and characteristics of networks

Section 3

Summary statistics and characteristics of
networks
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Summary statistics and characteristics of networks

Summary statistics and characteristics of networks

While a small network can be visualized directly by its graph
(N, g), larger networks can be more difficult to envision and
describe.
Therefore, we define a set of summary statistics or quantitative
performance measures to describe and compare networks (focus
on undirected graphs):

Global patterns of networks
degree distributions, diameter, average path length
Local patterns of networks
clustering, transitivity
Positions in networks
centrality
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Summary statistics and characteristics of networks

Benchmark: Random graphs

Start with n nodes.
Each link is formed independently with some probability p.
Serves as a benchmark G(n, p).

If we see some network out there in the real world and we know
what the properties of a random network of n nodes with some
probability p was, then we can compare the real world network to
this benchmark network.
Does it look like something systematic is going on?
Does this network look systematically different than if nature had
just picked links at random?
Does it look like something is systematically different?
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Summary statistics and characteristics of networks

Models

Gilbert–Elliott model G(n, p)
Erdos–Renyi model G(n,M)

Scale-free network (Barabasi–Albert model) for fat tails
Watts–Strogatz model for small worlds
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Summary statistics and characteristics of networks Degree distributions

Subsection 1

Degree distributions
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Summary statistics and characteristics of networks Degree distributions

Degree distribution

For each node, the possible value of the degree could be one of
{0, 1, . . . , n− 1}.

⇒ What is the proportion/fraction for each value?
The degree distribution (度分布) of a network is a description of
relative frequencies of nodes that have different degrees.
We use P(d) to denote the fraction of nodes with degree d.

⇒ The degree distribution can be described as an n-dimensional
vector: (

P(0), P(1), P(2), . . . , P(n− 1)
)
.
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Summary statistics and characteristics of networks Degree distributions

Degree distribution (Cont.)

Why do we care about the degree distribution?
Example: Average degree tells only part of the story.

12

3 4

1 2

3

4

These two networks have the same average degree 3
2
.

However, they are quite different.
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Summary statistics and characteristics of networks Degree distributions

Degree distribution: Random graph

The probability that a node has d links is binomial (二项分布):(
n− 1

d

)
pd(1− p)n−1−d.

For large n and constant n× p, this is approximately a Poisson
distribution (泊松分布):

1

d!
(n− 1)dpde−(n−1)p.

Poisson/binomial distribution gives us an approximation.
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Summary statistics and characteristics of networks Degree distributions

Degree distribution: Fat tails

Fat tails (肥尾): More high and low degree nodes than predicted
at random.
Price (1965): Citation network

Too many with 0 citations, too many with high numbers of
citations to have citations drawn at random.

Related to other settings (wealth, city size, word usage…): Pareto
(1896), Yule (1925), Zipf (1949), Simon (1955).
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Summary statistics and characteristics of networks Degree distributions

Degree distribution: Fat tails (Cont.)

Albert, Jeong, Barabasi (1999)
Degree – ND www Albert, Jeong, 

Barabasi (1999)

Log(Degree)

log(freq)
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Summary statistics and characteristics of networks Degree distributions

Degree distribution: Fat tails (Cont.)

Albert, Jeong, Barabasi (1999).
Pout(k) and Pin(k) is the fractions of documents that have k
outgoing and incoming links, respectively.
They found that Pout(k) and Pin(k) follow a power law over several
orders of magnitude, remarkably different not only from the
Poisson distribution predicted by the classical theory of random
graphs.
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Summary statistics and characteristics of networks Degree distributions

Degree distribution: Fat tails (Cont.)

To characterize the “fat tails”, we consider the power-law
distribution (幂分布):

P(d) = cd−γ,

for some γ > 0 and c > 0.
Appear linear on a log− log plot.
Also known as a scale-free distribution (标度自由分布/无标度分
布): a distribution that is unchanged (within a multiplicative
factor) under a rescaling of the variable.
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Summary statistics and characteristics of networks Degree distributions

Poisson distribution vs power-law distribution

Bearman, Moody, and Stovel (2004): High school romance network
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Summary statistics and characteristics of networks Degree distributions

Poisson distribution vs power-law distribution
(Cont.)

Fit: Random graph 0.99 (better)
Fit: Power-law distribution 0.84
Degree distributions of different networks can have different
properties.
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Summary statistics and characteristics of networks Diameter and average path length

Subsection 2

Diameter and average path length
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Summary statistics and characteristics of networks Diameter and average path length

Diameter and average path length

How close are nodes to each other?
How long does it take to get from one note to another node?
How fast will information spread?
How does it depend on network density?
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Summary statistics and characteristics of networks Diameter and average path length

Diameter

Let ℓ(i, j) denote the length of the geodesic between node i and j
(or the distance between i and j).
The diameter (直径) of a connected network is the largest distance
between any two nodes in the network:

diameter = max
i,j

ℓ(i, j).

If the network is unconnected, then its diameter is the diameter
for its largest component (giant component).
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Summary statistics and characteristics of networks Diameter and average path length

Diameter: Example

1

2
3

4

5

6
7

8

9

10

11

12

13

14

Both networks have an average degree of 2, but they are very
clearly different in structure.
The diameter of a ring of n nodes is either n

2
or n−1

2
.

The diameter of a binary tree of n nodes is 2 log2(n+ 1)− 2:

1 + 21 + 22 + · · ·+ 2k = n and the diameter is 2k.
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Summary statistics and characteristics of networks Diameter and average path length

Average path length

The average path length is the average distance between any two
nodes in the network:

average path length =

∑
i≥j ℓ(i, j)(n

2

) .

If the network is unconnected, one often checks the average path
length in the grant component.
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Summary statistics and characteristics of networks Diameter and average path length

Average path length: Example

1

2
3

4

5

6
7

8

9

10

11

12

13

14

The average path length of a ring of n nodes is ?
The average path length of a binary tree of n nodes is ?
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Summary statistics and characteristics of networks Diameter and average path length

Diameter vs average path length

Diameter: the maximum geodesic.
Average path length: the average geodesic.
Example: There is one pair of nodes which are very far from each
other, but a lot of the other ones are relatively well connected to
each other.
Average path length is bounded from above by the diameter; in
some cases, it can be much shorter than the diameter.
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Summary statistics and characteristics of networks Diameter and average path length

Small average path length and diameter

Milgram (1967) letter experiments:
Median 5.5 for the 25% (fairly high in terms of response rate for
this kind of participation in an experiment) that made it.
People didn’t get to see the network. (we are able to figure out
what the most efficient path is if we know all the connections)
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Summary statistics and characteristics of networks Diameter and average path length

Small average path length and diameter: Real world

Co-authorship studies

Biology Economics Math Physics
Num of nodes 1520521 81217 253339 52909
Average degree 15.5 1.7 3.9 9.3
Average path length 4.9 9.5 7.6 6.2
Diameter 24 29 27 20
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Summary statistics and characteristics of networks Diameter and average path length

Small average path length and diameter: Real world
(Cont.)

WWW
Adamic, Pitkow (1999): mean 3.1 (85.4% possible of 50 million
pages)

Facebook
Backstrom et al. (2012): mean 4.74 (721 million users)
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Summary statistics and characteristics of networks Diameter and average path length

Why do we have short average path lengths

Links are dense enough so that the network is connected almost
surely:

d(n) ≥ (1 + ϵ) log(n) for some ϵ > 0.

The network is not too complete: d(n)
n → 0.

Theorem: If d(n) ≥ (1 + ϵ) log(n) for some ϵ > 0 and d(n)
n → 0.

Then for large n, average path length and diameter are
approximately proportional to log(n)

log(d(n)) .
This gives us an idea of why we end up with a very short average
path lengths and short diameters if we had something in a
random graph.
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Summary statistics and characteristics of networks Clustering

Subsection 3

Clustering
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Summary statistics and characteristics of networks Clustering

Clustering

How dense is a network at a local level?
What fraction of my friends are friends of each other?
The individual clustering for a node i is

Cli(g) =
number of triangles connected to i

number of triples centered at i
,

where a “connected triple” refers to a node with edges to an
unordered pair of nodes.

i

j k
Freq of this link?
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Summary statistics and characteristics of networks Clustering

Clustering (Cont.)

The average clustering coefficient (平均集群性) is

Clavg(g) = 1

n
∑
i∈N

Cli(g) =
1

n
∑
i∈N

#{kj ∈ g | k, j ∈ Ni(g)}
#{kj | k, j ∈ Ni(g)}

.

Example: The individual clustering for the nodes are 1
6
, 0, 0, 1 and

1. The average clustering coefficient for this network is 13
30

.

0

1

2

3

4
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Summary statistics and characteristics of networks Clustering

Clustering (Cont.)

The overall clustering coefficient (整体集群性) Cl(g) is given by

Cl(g) =
∑

i∈N #{kj ∈ g | k, j ∈ Ni(g)}∑
i∈N #{kj | k, j ∈ Ni(g)}

=
3× number of triangles in the network
number of connected triples of nodes

.

Example: The overall clustering coefficient for this network is 3
8
.

0

1

2

3

4

Xiang Sun Lecture 2 September 13–20, 2017 60 / 109



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary statistics and characteristics of networks Clustering

Clustering (Cont.)

Cl(g) measures the fraction of triples that have their third edge
filled in to complete the triangle.
Note that 0 ≤ Cl(g) ≤ 1.
Also referred to as network transitivity: measures the extent that a
friend of my friend is also my friend.
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Summary statistics and characteristics of networks Clustering

Average clustering vs overall clustering

1 2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

If we have 3n+ 1 nodes, then

Clavg(g) = 1

3n+ 1
(3n× 1 +

3n(
3n
2

))
→ 1

Cl(g) = 3× n× 4

3n× 3 +
(
3n
2

) → 0
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Summary statistics and characteristics of networks Clustering

Clustering: Random graph

The individual clustering for a node in random graph G(n, p) is
simply p.

⇒ The average clustering coefficient is p.
The overall clustering coefficient is also p.
Average and overall clustering tend to 0, if max degree is bounded
and network becomes large.
If np is constant (or the degree is bounded), then p → 0 when
n → ∞.
Random networks are going to tend to have very low clustering.
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Summary statistics and characteristics of networks Clustering

Clustering: Real world

Looking in data across a variety of different kinds of data sets,
clustering are much higher than those would have occurred in random
networks.

Biology Economics Math Physics
Num of nodes 1520521 81217 253339 52909
Average degree 15.5 1.7 3.9 9.3
Overall clustering 0.09 0.16 0.15 0.45
Random 0.00001019 0.00002093 0.00001539 0.00017578
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Summary statistics and characteristics of networks Clustering

Clustering: Real world (Cont.)

Prison friendships: 0.31 (MacRae 1960) vs 0.134 (random
network)
WWW: 0.1078 for web links (Adamic 1999) vs 0.00023 (random
network)
Florentine marriages: 0.46 vs 0.29 (random network)
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Summary statistics and characteristics of networks Centrality

Subsection 4

Centrality

Xiang Sun Lecture 2 September 13–20, 2017 66 / 109



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary statistics and characteristics of networks Centrality

Centrality

Is a node important, influential, central, or powerful?
⇒ To understand how difference nodes are positioned in a network.

How to describe individual characterstics?
Degree
Clustering
Distance
Centrality
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Summary statistics and characteristics of networks Centrality

Four different measures

Degree centrality: connectedness
Closeness/decay centrality: ease of reaching other nodes
Betweenness centrality: role as an intermediary, connector
Eigenvector/Bonacich centrality/prestige: you are important if
your friends are important.
These things are capturing different ideas and different aspects.

Xiang Sun Lecture 2 September 13–20, 2017 68 / 109



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary statistics and characteristics of networks Centrality

Degree centrality

Degree centrality: for node i,

di(g)
n− 1

, where di(g) is the degree of node i.

Degree captures the connectedness.
In order to make it a measure between zero and one, we can
normalize the degree (dividing n− 1).
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Summary statistics and characteristics of networks Centrality

Degree centrality: Example

1 23

The degree centralities for nodes 1–3 are 3
13−1

= 1
4
.
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Summary statistics and characteristics of networks Centrality

Degree centrality: Issues

Degree centrality misses a lot.
Example: Node 3 has the same degree as node 1 or node 2.
However, node 3 is less central than the other nodes.
Degree centrality is not really gathering all of position, and it is
just saying how big is your local neighborhood.
It is not saying where you are positioned in the network, or how
central you are in a deeper sense.
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Summary statistics and characteristics of networks Centrality

Closeness centrality

Closeness centrality (接近中心性): for node i

n− 1∑
j ̸=i ℓ(i, j)

,

where ℓ(i, j) is the distance between i and j.
It describes the relative distances to other nodes.
It tracks how close a given node is to any other node.
If I am a distance 1 from everyone, then the closeness centrality is
1.
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Closeness centrality: Example

Pazzi

Acciaiuol Salviati Ginori

Barbadori
Medici

Albizzi

Castellan Ridolfi Tornabuon

Strozzi Guadagni

Pucci
Peruzzi Bischeri

Lambertes
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Summary statistics and characteristics of networks Centrality

Closeness centrality: Example

Ignoring the Pucci now because if we add them to everybody and
we think of everybody has being infinitely distant from them,
then everybody would have closeness centrality of zero.
Medici: 14

25
.

Strozzi: 14
32

.
Guadagni: 14

26
.

Tornabuon: 14
29

.
Ridolfi: 14

28
.
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Summary statistics and characteristics of networks Centrality

Decay centrality

Decay centrality (衰弱中心性): for node i,∑
j ̸=i

δℓ(i,j)

where δ ∈ (0, 1) is the decay factor.
It captures the proximity between a given node and every other
node weighted by the decay.
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Summary statistics and characteristics of networks Centrality

Decay centrality (Cont.)

As δ approaches 1, the decay centrality measures how large a
component a node lies in.
As δ approaches 0, the decay centrality gives infinitely more
weight to closer nodes than farther nodes.

⇒ It becomes degree.
Different decay factors may give different order for nodes.
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Summary statistics and characteristics of networks Centrality

Closeness/decay centrality: Example

1 2 3

4

5

The closeness centrality of node 1:

n− 1∑
j ̸=i ℓ(i, j)

=
n− 1

1 + 2 + 1 + 1
=

4

5
.

The decay centrality of node 1, with δ = 0.5:∑
j ̸=i

δℓ(i, j) = δ + δ2 + δ + δ = 1.75.
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Summary statistics and characteristics of networks Centrality

Degree/closeness/decay centrality: Example

4 3

1

2

5

6

7

Node 1 Node 3 Node 4
Degree 2

6
3
6

2
6

Closeness 6
15

6
11

6
10

Decay δ = 0.5 1.5 2 2
Decay δ = 0.75 3.1 3.7 3.8
Decay δ = 0.25 0.59 0.84 0.75

Xiang Sun Lecture 2 September 13–20, 2017 78 / 109



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary statistics and characteristics of networks Centrality

Decay centrality: Normalization

The normalized decay centrality:∑
j ̸=i δ

ℓ(i,j)

(n− 1)δ
.

(n− 1)δ is the lowest decay possible.
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Summary statistics and characteristics of networks Centrality

Betweenness centrality

Let P(ij) denote the number of geodesics between i to j.
Let Pk(ij) denote the number of geodesics between i and j that k
lies on.
Betweenness centrality (中介中心性): for each k,∑

i,j : i̸=j,i ̸=k,j ̸=k

Pk(ij)/P(ij)(n−1
2

) .

If there are no paths connecting i and j, we set Pk(ij)/P(ij) = 0.
It captures how well situated a node is in terms of paths that it lies
on.
If two nodes (they are not directly connected) want to deal with
each other, then they might have to go through somebody that
they are connected with.
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Summary statistics and characteristics of networks Centrality

Betweenness centrality: Example

4 3

1

2

5

6

7

Node 1 Node 3 Node 4
Degree 2

6
3
6

2
6

Closeness 6
15

6
11

6
10

Decay δ = 0.5 1.5 2 2
Decay δ = 0.75 3.1 3.7 3.8
Decay δ = 0.25 0.59 0.84 0.75
Betweenness 0 8

15
9
15
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Summary statistics and characteristics of networks Centrality

Eigenvector centrality: Motivation

2 6 4

1 1

1 2

2

2

2

2

7

1

1

1

1

1

1

Each red node has degree 2, whereas left red node’s friends have
degree 6 and 7.
In some sense the they are better connected than the right red
node’s friends.
The idea of eigenvector centrality is that your importance comes
from being connected to other important.
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Summary statistics and characteristics of networks Centrality

Eigenvector centrality

Assumption: Each node’s centrality is proportional to the sum of
its neighbors’ centralities.
That is, Ci is proportional to

∑
j∈Ni(g) Cj.

⇒ Ci = a
∑

j gijCj = a(gC)i.
⇒ C = agC, where C is the column vector (C1,C2, . . . ,Cn).

Actually, C is an eigenvector of g (associated with the eigenvalue
a−1).
It is a self‐referential concept.
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Summary statistics and characteristics of networks Centrality

Eigenvector centrality: Example

0.31 0.5 0.36

0.17 0.17

0.17 0.25

0.16

0.21

0.17

0.11

0.39

0.13

0.13

0.13

0.13

0.13

0.13
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Summary statistics and characteristics of networks Centrality

Eigenvector centrality: Computation

C = agC, C is an eigenvector of g.
There are many possible eigenvectors.
Two steps to find the conventional one:

Look for one with the largest eigenvalue.
The largest eigenvalue and an associated eigenvector are
nonnegative by Perron-Frobenius Theorem (for connected graphs).
Normalize the eigenvector such that the sum of entries is 1.

EigenvectorCentrality in Mathematica.
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Eigenvector centrality: Example

Pazzi

Acciaiuol Salviati Ginori

Barbadori
Medici 0.43

Albizzi

Castellan Ridolfi 0.341 Tornabuon 0.326

Strozzi 0.356 Guadagni 0.289

Pucci
Peruzzi Bischeri

Lambertes
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Eigenvector centrality: Example

4 3

1

2

5

6

7

Node 1 Node 3 Node 4
Degree 2

6
3
6

2
6

Closeness 6
15

6
11

6
10

Decay δ = 0.5 1.5 2 2
Decay δ = 0.75 3.1 3.7 3.8
Decay δ = 0.25 0.59 0.84 0.75
Betweenness 0 8

15
9
15

Eigenvector 0.127678 0.171462 0.146365
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Eigenvector centrality: Example (Cont.)
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Summary statistics and characteristics of networks Centrality

Eigenvector centrality: Applications

Google Page rank: score of a page is proportional to the sum of
the scores of pages linked to it.
Random surfer model: start at some page on the web, randomly
pick a link, follow it, repeat …
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Summary statistics and characteristics of networks Centrality

Katz prestige

Katz prestige (Katz声望) of node i is defined to be a sum of the
prestige of i’s neighbors divided by their respective degrees.

PK
i (g) =

∑
j ̸=i

gij
PK
j (g)
dj(g)

.

Katz prestige vs eigenvector centrality:
Katz prestige is corrected by how many neighbors j has.
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Summary statistics and characteristics of networks Centrality

Katz prestige: Computation

Katz prestige of node i:

PK
i (g) =

∑
j ̸=i

gij
PK
j (g)
dj(g)

.

Let ĝij =
gij

dj(g) for each i and j.
⇒ Then ĝ is the normalized adjacency matrix g so that each column

sum is 1.
Let PK(g) be the column vector (PK

1 (g), PK
2 (g), . . . , PK

n (g)), then

PK(g) = ĝPK(g).
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Summary statistics and characteristics of networks Centrality

Katz prestige: Computation

PK(g) = ĝPK(g).
⇒ PK(g) is an eigenvector of ĝ associated with eigenvalue 1.

Since ĝ is a column stochastic matrix, Perron–Frobenius theorem
implies the existence of a nonnegative eigenvector associated with
eigenvalue 1.
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Summary statistics and characteristics of networks Centrality

Katz prestige: Example

4 3

1

2

5

6

7

PK(g) = (2, 2, 3, 2, 3, 2, 2).
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Katz prestige: Example (Cont.)
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Summary statistics and characteristics of networks Centrality

Katz prestige: Property

Katz prestige:
PK(g) = ĝPK(g).

Katz prestige is only determined up to a scale factor: if PK(g)
solves the above equation, then so does cPK for any c.
In undirected graph, it is easy to check that the solution to the
above equation is the degree vector (or any rescaling of it).

⇒ [PK(g)]i = di(g).
This provides a justification for degree centrality.
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Summary statistics and characteristics of networks Centrality

Bonacich centrality

The power/prestige of a node is a weighted (weighting by
distance) sum of the walks that emanate from it.
A walk of length 1 is worth a, a walk of length 2 is worth a2, and
so forth, for some parameter a ∈ (0, 1).
This scheme gives higher weights to walks of shorter distance.
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Summary statistics and characteristics of networks Centrality

Katz prestige-2

Katz prestige-2:

PK2(g, a) = ag1+ agag1+ a2g2ag1+ · · · .

Each node i has a base value adi(g) = (ag1)i for some a > 0.
Add a times the base value of each node that it has a direct link to
i: a×

∑
j gij(ag1)j = (a2g21)i.

Add a2 times the base value of each node that it has a walk of
length 2 to i.
And so forth.
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Summary statistics and characteristics of networks Centrality

Bonacich centrality

Katz prestige-2:
(I− ag)−1ag1.

Bonacich centrality is a direct extension of Katz prestige-2:

(I− bg)−1ag1,

where a > 0, b > 0, and b is sufficiently small such that the
expression is well defined.
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Bonacich centrality: Example

4 3

1

2

5

6

7
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Summary statistics and characteristics of networks Centrality

Bonacich centrality: Example (Cont.)

Node 1 Node 3 Node 4
Degree 2

6
3
6

2
6

Closeness 6
15

6
11

6
10

Decay δ = 0.5 1.5 2 2
Decay δ = 0.75 3.1 3.7 3.8
Decay δ = 0.25 0.59 0.84 0.75
Betweenness 0 8

15
9
15

Eigenvector 0.127678 0.171462 0.146365
Katz prestige-2 a = 1/3 3.125 4.25 3.5
Bonacich a = 1, b = 1/3 9.375 12.75 10.5
Bonacich a = 1, b = 1/4 4.94118 6.82353 5.41176
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Bonacich centrality: Example (Cont.)
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Summary statistics and characteristics of networks Homophily

Subsection 5

Homophily
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Summary statistics and characteristics of networks Homophily

Homophily

Many networks exhibit “homophily (趋同性)” by Lazarsfeld and
Merton.
This property refers to the fact that people are more prone to
maintain relationships with people who are similar to themselves.
race, gender, religion, …
“Birds of a feather flock together” — Philemon Holland (1960).
物以类聚，人以群分
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Summary statistics and characteristics of networks Homophily

Homophily: Real world

Friendship in high school in US:

Percent 52 38 5 5
White Black Hispanic Other

White 86 7 47 74
Black 4 85 46 13

Hispanic 4 6 2 4
Other 6 2 5 9
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Summary statistics and characteristics of networks Homophily

Homophily: Real world (Cont.)

Friendship in high school in Dutch:

Percent 65 5 6 7 17
Dutch Moroccan Turkish Surinamese Other

Dutch 79 24 11 21 47
Moroccan 2 27 8 4 5
Turkish 2 19 59 8 6

Surinamese 3 8 8 44 12
Other 13 22 14 23 30
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Summary statistics and characteristics of networks Homophily

Homophily: Reason

Opportunity—contract theory
Benefits/costs
Social pressure
Social competition
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Homework

Homework: Question 1

4 3

1

2

5

6

7

Use software (Matlab, Mathematica, R, …) to compute the degree
distribution, diameter, average path length, overall/average clustering
coefficient, degree centrality, closeness centrality, decay centrality
(δ = 0.5), betweenness centrality, eigenvector centrality, Bonacich
centrality (a = 1, b = 0.5), Katz prestige, and Katz prestige-2 (a = 0.5).
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Homework

Homework: Question 2 and 3

Practical questions

Xiang Sun Lecture 2 September 13–20, 2017 108 / 109



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Homework

Appendix: Poisson distribution

(
n− 1

d

)
pd(1− p)n−1−d.

1

d!
(n− 1)dpde−(n−1)p =

λde−d

d!
,

where d = (n− 1)p.
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