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Introduction
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Game theory is a bag of analytical tools designed to help us understand the phenomena that we observe when decision-

makers interact. It is concerned with general analysis of strategic interaction among individuals.

1.1 Timeline of the main evolution of game theory

1.1 Reference: A Chronology of Game Theory by Paul Walker.

1.2 In 1838, the book Researches into the Mathematical Principles of the Theory of Wealth by Antoine Augustin Cournot
(RHFET - REHT - FERE).

In Chapter 7 of the book, “On the competition of producers”, Cournot discussed the special case of duopoly and
utilises a solution concept that is a restricted version of the Nash equilibrium.
1.3 In 1913, Zermelo’s theorem by Ernst Zermelo (BT - AR

@ Ernst Zermelo, Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in Proceedings of the Fifth
International Congress of Mathematicians, volume II (E. W. Hobson and A. E. H. Love, eds.), 501-504, Cambridge,
Cambridge University Press, 1913.


http://www.econ.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm
http://en.wikipedia.org/wiki/Augustin_Cournot
http://en.wikipedia.org/wiki/Zermelo%27s_theorem_%28game_theory%29
http://en.wikipedia.org/wiki/Ernst_Zermelo
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Figure 1.1: Ernst Zermelo.

This theorem is the first theorem of game theory asserts that in any finite two-person game of perfect information
in which the players move alternatingly and in which chance does not affect the decision making process, if the
game can not end in a draw, then one of the two players must have a winning strategy. More formally, every finite
extensive-form game exhibiting full information has a Nash equilibrium that is discoverable by backward induction.

If every payoff is unique, for every player, this backward induction solution is unique.

When applied to chess, Zermelo's theorem states “either white can force a win, or black can force a win, or both

sides can force at least a draw””

For more details of Zermelo’s theorem, see Zermelo and the early history of game theory by Ulrich Schwalbe and
Paul Walker.

1.4 In 1928, Zur Theorie der Gesellschaftsspiele (H FA 77 % 2 2 #+) by John von Neumann (4 8 + & « #&{F 2).
@ John von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100 (1928), 295-320.

Figure 1.2: John von Neumann.

John von Neumann proved the minimax theorem in this paper. It states that every two-person zero-sum game with
finitely many pure strategies for each player is determined, i.e. when mixed strategies are admitted, this variety of

game has precisely one individually rational payoft vector. This paper also introduced the extensive form of a game.

1.5 In 1944, the book Theory of Games and Economic Behavior (1§ 7= 5§ % 47 1) by John von Neumann (%] %


http://www.math.harvard.edu/~elkies/FS23j.03/zermelo.pdf
http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/John_von_Neumann
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G« #A# &) and Oskar Morgenstern.

SIKTIETH-ANNIVERSARY EDITION

Figure 1.3: 60th anniversary edition (2004) of the book Theory of Games and Economic Behavior.

This book is considered the groundbreaking text that created the interdisciplinary research field of game theory.
As well as expounding two-person zero sum theory this book is the seminal work in areas of game theory such as
the notion of a cooperative game, with transferable utility, its coalitional form and its von Neumann-Morgenstern
stable sets. It was also the account of axiomatic utility theory given here that led to its wide spread adoption within

economics.

1.6 In 1950, Melvin Dresher and Merrill Flood carry out, at the Rand Corporation, the experiment which intro-
duced the game now known as the prisoner’s dilemma. The famous story associated with this game is due to
Albert W. Tucker (7 /R {8 4F + 34 3¢). Howard Raiffa independently conducted, unpublished, experiments with

the prisoner’s dilemma.

1.7 In 1950, Nash’s equilibrium points by John Forbes Nash, Jr. (%1% - &4 #7 - 4411).

€ John Nash, Equilibrium points in N-person games, Proceedings of the National Academy of Sciences of the United
States of America 36 (1950), 48-—49.
® John Nash, Non-cooperative games, Annals of Mathematics 54 (1951), 286-295.

Figure 1.4: John Forbes Nash, Jr.

Nash earned a doctorate in 1950 with a 28-page dissertation on non-cooperative games. The thesis, which was


http://en.wikipedia.org/wiki/Oskar_Morgenstern
http://en.wikipedia.org/wiki/RAND_Corporation
http://en.wikipedia.org/wiki/Albert_W._Tucker
http://en.wikipedia.org/wiki/John_Forbes_Nash,_Jr.
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written under the supervision of doctoral advisor Albert W. Tucker, contained the definition and properties of
what would later be called the “Nash equilibrium”. It’s a crucial concept in non-cooperative games, and won Nash

the Nobel prize in economics in 1994.
In an equilibrium no player can profitably deviate, given the other players’ equilibrium behavior.

Example: Prisoner’s dilemma. There is unique Nash equilibrium: (Confess, Confess).

Don’t confess Confess
Don’t confess 3,3 0,4
Confess 4,0 1,1

Figure 1.5: Prisoner’s dilemma.

NG ONE COULD TTAVE

IMAGINED. I

RUSSELL
CROWE

AMIND

Figure 1.6: Theatrical release poster of the movie “A beautiful mind ( EWMOR)

1.8 In 1950, Nash bargaining solution by John Forbes Nash, Jr. (4 % - &4 #f + 4y11).

@ John Nash, The bargaining problem, Econometrica 18 (1950), 155--162.
© John Nash, Two person cooperative games, Econometrica 21 (1953), 128-140.

The Nash bargaining game is a simple two-player game used to model bargaining interactions. John Nash proposed
that a solution should satisfy certain axioms (Invariant to affine transformations, Pareto optimality, Independence

of irrelevant alternatives, Symmetry).

John Nash also gave a equivalent characterization for this solution. Let u and v be the utility functions of players 1
and 2, respectively. In the Nash bargaining solution, the players will seek to maximize (u(z) —u(d)) - (v(y) —v(d)),
where u(d) and v(d), are the status quo utilities (i.e. the utility obtained if one decides not to bargain with the other
player).

Further reading:

« John Nash’s Contribution to Economics, Roger B. Myerson, Games and Economic Behavior 14 (1996), 287-
295.

1.9 1950-1953, Harold W. Kuhn provided the formulation of extensive games which is currently used, and also some
basic theorems pertaining to this class of games.

© Harold W. Kuhn, Extensive Games, Proceedings of the National Academy of Sciences of the United States of America
36 (1950), 570-576.


http://en.wikipedia.org/wiki/Albert_W._Tucker
http://www.imdb.com/title/tt0268978/
http://en.wikipedia.org/wiki/Bargaining_problem#Nash_bargaining_solution
http://en.wikipedia.org/wiki/John_Forbes_Nash,_Jr.
http://www.sciencedirect.com/science/article/pii/S0899825696900536
http://en.wikipedia.org/wiki/Harold_W._Kuhn
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@ Harold W. Kuhn, Extensive Games and the Problem of Information, in Contributions to the Theory of Games, vol-

ume II (Annals of Mathematics Studies, 28) (H. W. Kuhn and A. W. Tucker, eds.), 193-216, Princeton: Princeton
University Press, 1953.

Extensive games allow the modeler to specify the exact order in which players have to make their decisions and to

formulate the assumptions about the information possessed by the players in all stages of the game.

1.10 In 1953, Shapley value by Lloyd Stowell Shapley (37 3% & « # 6 % /R « 5 ).

@ Lloyd Shapley, A value for n-person games, in Contributions to the Theory of Games, volume II (Annals of Mathe-

1.11

matics Studies, 28) (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematical Studies 28, 307-317, Princeton
University Press, 1953.

Figure 1.7: Lloyd Stowell Shapley.

Shapley value is a solution concept in cooperative game theory. To each cooperative game Shapley value assigns a

unique distribution (among the players) of a total surplus generated by the coalition of all players.
Shapley also showed that the Shapley value is uniquely determined by a collection of desirable properties or axioms.

Further reading:

« B RDERWRESE, RA, (FFEK), 2012410 A 19 H,
o R BIFKIENRE, IR,

In 1953, stochastic game by Lloyd Stowell Shapley (% 3% /& « #f#£ % /K « L F)).

Lloyd Shapley, Stochastic games, Proceedings of the National Academy of Sciences of the United States of America 39
(1953), 1095-1100.

Stochastic game is a dynamic game with probabilistic transitions played by one or more players. The game is played
in a sequence of stages. At the beginning of each stage the game is in some state. The players select actions and
each player receives a payoff that depends on the current state and the chosen actions. The game then moves to
a new random state whose distribution depends on the previous state and the actions chosen by the players. The
procedure is repeated at the new state and play continues for a finite or infinite number of stages. The total payoff
to a player is often taken to be the discounted sum of the stage payoffs or the limit inferior of the averages of the
stage payoffs.

Shapley showed that for the strictly competitive case, with future payoft discounted at a fixed rate, such games are
determined and that they have optimal strategies that depend only on the game being played, not on the history or

even on the date, i.e., the strategies are stationary.


http://en.wikipedia.org/wiki/Shapley_value
http://en.wikipedia.org/wiki/Lloyd_Shapley
http://www.infzm.com/content/82035
http://en.wikipedia.org/wiki/Stochastic_game
http://en.wikipedia.org/wiki/Lloyd_Shapley
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1.12 In 1960, mechanism design by Leonid Hurwicz (£ B B.4& « 4 9%).

® Leonid Hurwicz, Optimality and informational efficiency in resource allocation processes, in Mathematical Methods

in the Social Sciences (Arrow, Karlin and Suppes eds.), Stanford University Press, 1960.

Figure 1.8: Leonid Hurwicz.

Figure 1.9: The Stanley Reiter diagram.

The Stanley Reiter diagram above illustrates a game of mechanism design. The upper-left space © depicts the type
space and the upper-right space X the space of outcomes. The social choice function f(#) maps a type profile to
an outcome. In games of mechanism design, agents send messages M in a game environment g. The equilibrium

in the game £(M, g, ) can be designed to implement some social choice function f(6).

A communication system in which participants send messages to each other and/or to a “message center”, and
where a pre-specified rule assigns an outcome (such as an allocation of goods and services) for every collection of

received messages.

Several Chinese articles about Leonid Hurwicz by Quogiang Tian:

o HEBRR T 2007 F35 NURE G5 2 RK AR 4 K #3%, 2007 410 A 16 H,

o HEBRPHFERKE  ROFE. KEHRRAN, (SRFF), 2007410 A 16 H.
H B R IT 0 4 4 K BT R R AR ML, (SRR M), 2007 F 10 A 16 H,

. AEE BIZLEFMER, (FHAK), 20074 10 A 18 H,

o BEREELZMER, (F—MEHER), (LEIEHM), 2007 F 10 A 17 H,

. HEE: MERAT, ERMIFUNERTREE, (HEM), 200847 H 4 H,


http://en.wikipedia.org/wiki/Mechanism_design
http://en.wikipedia.org/wiki/Leonid_Hurwicz
http://en.wikipedia.org/wiki/Stanley_Reiter
http://econweb.tamu.edu/tian/hurwicz1.doc
http://econweb.tamu.edu/tian/hurwicz2.doc
http://econweb.tamu.edu/tian/hurwicz3.doc
http://econweb.tamu.edu/tian/hurwicz5.doc
http://econweb.tamu.edu/tian/hurwicz6.doc
http://econweb.tamu.edu/tian/hurwicz-caijing.mht
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1.13 In 1961, Vickrey auction by William Vickrey (k& « 45 2) .

€ william Vickrey, Counterspeculation, auctions, and competitive sealed tenders, The Journal of Finance 16 (1961),
8-37.

Figure 1.10: William Vickrey.

A Vickrey auction is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other
people in the auction. The highest bidder wins but the price paid is the second-highest bid. The auction was first
described academically by William Vickrey in 1961 though it had been used by stamp collectors since 1893. This

type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value.

A Vickrey—Clarke—Groves (VCG) auction is a generalization of a Vickrey auction for multiple items, which is named
after William Vickrey, Edward H. Clarke, and Theodore Groves for their papers that successively generalized the

idea.

1.14 In 1962, deferred-acceptance algorithm by David Gale and Lloyd Stowell Shapley (%7 3% 1 « H#f £ % /R « 703 A).

€ David Gale and Lloyd Shapley, College admissions and the stability of marriage, The American Mathematical
Monthly 69 (1962), 9-15.

Figure 1.11: David Gale.

Gale and Shapley asked whether it is possible to match m women with m men so that there is no pair consisting
of a woman and a man who prefer each other to the partners with whom they are currently matched. They proved

not only non-emptiness but also provided an algorithm for finding a point in it.


http://en.wikipedia.org/wiki/William_Vickrey
http://en.wikipedia.org/wiki/David_Gale
http://en.wikipedia.org/wiki/Lloyd_Shapley
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Example: 3 students S = {1, 2,3}, 2 colleges C' = {a, b}. Students’ preferences: P, : b,a,0; Py : a,0; P3 : a,b, (.
Colleges’ preferences and quotas P, : 1,2,3,q, = 1; P, : 3,1, 2, ¢, = 1. Outcome:

day1 | day2 | day 3
2% | 2 | 1,¥
1 X3 3
3 1 2

=S| S|

1.15 In 1965, subgame perfect equilibrium by Reinhard Selten (% "4 - 3% /R ).

@ Reinhard Selten, Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetrigheit, Zeitschrift fiir die
Gesamte Staatswissenschaft 121 (1965), 301-24 and 667-89.

Figure 1.12: Reinhard Selten.

Nash equilibria that rely on non-credible threats or promises can be eliminated by the requirement of subgame

perfection.

Example:

L] 31 3,1 1,2 1,2
R{ 21 0,0 2, 0,0
Figure 1.13

(L, RR') is a Nash equilibrium but not a subgame perfect equilibrium.

1.16 In 1967, Bayesian games (games with incomplete information) by John Charles Harsanyi (#7 & - # 3 # - /& §*
).


http://en.wikipedia.org/wiki/Subgame_perfect_equilibrium
http://en.wikipedia.org/wiki/Reinhard_Selten
http://en.wikipedia.org/wiki/Bayesian_game
http://en.wikipedia.org/wiki/John_Harsanyi
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@ John Charles Harsanyi, Games with incomplete information played by “Bayesian” players, Management Science 14
(1967-68) 159-182, 320-334, and 486-502, Parts I-III.

Figure 1.14: John Charles Harsanyi.

In game theory, a Bayesian game is one in which information about characteristics of the other players (i.e. payoffs)
is incomplete. Following John C. Harsanyi’s framework, a Bayesian game can be modelled by introducing Nature
as a player in a game. Nature assigns a random variable to each player which could take values of types for each
player and associating probabilities or a probability density function with those types (in the course of the game,
nature randomly chooses a type for each player according to the probability distribution across each player’s type

space).

Harsanyi’s approach to modelling a Bayesian game in such a way allows games of incomplete information to become
games of imperfect information (in which the history of the game is not available to all players). The type of a player
determines that player’s payoft function and the probability associated with the type is the probability that the player
for whom the type is specified is that type. In a Bayesian game, the incompleteness of information means that at

least one player is unsure of the type (and so the payoff function) of another player.

Such games are called Bayesian because of the probabilistic analysis inherent in the game. Players have initial beliefs
about the type of each player (where a belief is a probability distribution over the possible types for a player) and
can update their beliefs according to Bayes’ rule as play takes place in the game, i.e. the belief a player holds about

another player’s type might change on the basis of the actions they have played.

1.17 In 1967, rent-seeking by Gordon Tullock (X% + % 7).
@ Gordon Tullock, The welfare costs of tariffs, monopolies, and theft, Western Economic Journal 5:3 (1967) 224-232.


http://en.wikipedia.org/wiki/Bayes%27_Rule
http://en.wikipedia.org/wiki/Rent-seeking
http://en.wikipedia.org/wiki/Gordon_Tullock
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Figure 1.15: Gordon Tullock.

Rent-seeking is spending wealth on political lobbying to increase one’s share of existing wealth without creating
wealth. The effects of rent-seeking are reduced economic efficiency through poor allocation of resources, reduced

wealth creation, lost government revenue, increased income inequality, and national decline.

In 1972, incentive compatibility by Leonid Hurwicz (£ % B 4& « #f 4 3%).

Leonid Hurwicz, On informationally decentralized systems, in Decision and Organization (Radner and McGuire
eds.), North-Holland, Amsterdam, 1972.

In mechanism design, a process is incentive compatible if all of the participants fare best when they truthfully reveal

any private information asked for by the mechanism.
In 1972, the journal International Journal of Game Theory was founded by Oskar Morgenstern.

In 1970s, revelation principle by Partha Dasgupta, Allan Gibbard, Peter Hammond, M. Harris, Bengt R. Holmstrém,
Eric Stark Maskin (32 & 7%, « & i 4), Roger Bruce Myerson ( Z 7% « #8/R%%), Robert W. Rosenthal, R. Townsend,

etc.

Allan Gibbard, Manipulation of voting schemes: a general result, Econometrica 41 (1973), 587-602.

Partha Dasgupta, Peter Hammond and Eric Maskin, The implementation of social choice rules: some general re-
sults on incentive compatibility, Review of Economic Studies 46 (1979), 181-216.

M. Harris and R. Townsend, Resource allocation under asymmetric information, Econometrica 49 (1981), 33-64.
Bengt R. Holmstrém, On incentives and control in organizations, Ph.D. dissertation, Stanford University, 1977.
Roger Myerson, Incentive compatibility and the bargaining problem, Econometrica 47 (1979), 61-73.

Roger Myerson, Optimal coordination mechanisms in generalized principal agent problems, Journal of Mathemat-
ical Economics 11 (1982), 67-81.

Roger Myerson, Multistage games with communication, Econometrica 54 (1986), 323-358.

Robert W. Rosenthal, Arbitration of two-party disputes under uncertainty, Review of Economic Studies 45 (1978),
595-604.


http://en.wikipedia.org/wiki/Incentive_compatibility
http://en.wikipedia.org/wiki/Leonid_Hurwicz
http://www.springer.com/economics/economic+theory/journal/182
http://en.wikipedia.org/wiki/Revelation_principle
http://en.wikipedia.org/wiki/Partha_Dasgupta
http://en.wikipedia.org/wiki/Allan_Gibbard
http://www2.warwick.ac.uk/fac/soc/economics/staff/academic/hammond
http://en.wikipedia.org/wiki/Bengt_R._Holmstr%C3%B6m
http://en.wikipedia.org/wiki/Eric_Maskin
http://en.wikipedia.org/wiki/Roger_Myerson
http://en.wikipedia.org/wiki/Robert_W._Rosenthal
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1.21

(a) Eric S. Maskin. (b) Roger B. Myerson. (c) Bengt Holmstrom.

Figure 1.16

The revelation principle is an insight that greatly simplifies the analysis of mechanism design problems. In force of
this principle, the researcher, when searching for the best possible mechanism to solve a given allocation problem,
can restrict attention to a small subclass of mechanisms, so-called direct mechanisms. While direct mechanisms
are not intended as descriptions of real-world institutions, their mathematical structure makes them relatively easy
to analyze. Optimization over the set of all direct mechanisms for a given allocation problem is a well-defined
mathematical task, and once an optimal direct mechanism has been found, the researcher can “translate back” that
mechanism to a more realistic mechanism. By this seemingly roundabout method, researchers have been able to
solve problems of institutional design that would otherwise have been effectively intractable. The first version of
the revelation principle was formulated by Gibbard (1973). Several researchers independently extended it to the
general notion of Bayesian Nash equilibrium (Dasgupta, Hammond and Maskin, 1979, Harris and Townsend, 1981,
Holmstrom, 1977, Myerson, 1979, Rosenthal, 1978). Roger Myerson (1979, 1982, 1986) developed the principle in

its greatest generality and pioneered its application to important areas such as regulation and auction theory.

In 1970s, implementation theory by Eric Stark Maskin (3% £ 7, « i 4), etc.

Eric Maskin, Nash equilibrium and welfare optimality. Paper presented at the summer workshop of the Economet-
ric Society in Paris, June 1977. Published 1999 in the Review of Economic Studies 66, 23-38.

The revelation principle is extremely useful. However, it does not address the issue of multiple equilibria. That
is, although an optimal outcome may be achieved in one equilibrium, other, sub-optimal, equilibria may also ex-
ist. There is, then, the danger that the participants might end up playing such a sub-optimal equilibrium. Can a
mechanism be designed so that all its equilibria are optimal? The first general solution to this problem was given
by Eric Maskin (1977). The resulting theory, known as implementation theory, is a key part of modern mechanism

design.

1.22 In 1974, correlated equilibrium by Robert John Aumann (Z 18 4F - 4% « £ Z).

@ Robert John Aumann, Subjectivity and correlation in randomized strategies, Journal of Mathematical Economics 1

(1974), 67-96.


http://en.wikipedia.org/wiki/Implementation_theory
http://en.wikipedia.org/wiki/Eric_Maskin
http://en.wikipedia.org/wiki/Correlated_equilibrium
http://en.wikipedia.org/wiki/Robert_Aumann
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1.23

1.24

Figure 1.17: Robert John Aumann.

Correlated equilibrium generalizes the notion of mixed-strategy Nash equilibrium to allow correlated information.

Example: In the following game, there are three Nash equilibria. The two pure-strategy Nash equilibria are (7', R)
and (B, L). There is also a mixed-strategy equilibrium (2 0T+ £ 0 B,20 L + § o R).

Player 2
L R L R
T166]27 T | py)=3 [ pz)=3
Pl 1 2 2 3 3
L B 7.270,0 B px) =1 0

Figure 1.18

Now consider a third party (or some natural event) that draws one of three cards labeled: (7, L), (B, L) and (T, R),
with the same probability, i.e. probability & for each card. After drawing the card the third party informs the players
of the strategy assigned to them on the card (but not the strategy assigned to their opponent).

Suppose player 1 is assigned B, he would not want to deviate supposing the other player played their assigned
strategy since he will get 7 (the highest payoff possible).

Suppose player 1 is assigned 7'. Then player 2 will play L with probability + and R with probability 5. The expected
utility of Bis 0 - § + 7 - 4 = 3.5 and the expected utility of T'is 2 - 4 4 6 - 5 = 4. So, player 1 would prefer to T

Since neither player has an incentive to deviate, this is a correlated equilibrium. Interestingly, the expected payoft
for this equilibrium is 7-  +2- £ 4+ 6 3 = 5 which is higher than the expected payoff of the mixed-strategy Nash

equilibrium.

In 1975, trembling hand perfect equilibrium by Reinhard Selten (#i "4 - & /R ).

Reinhard Selten, A reexamination of the perfectness concept for equilibrium points in extensive games, Interna-
tional Journal of Game Theory 4 (1975), 25-55.

In 1976, common knowledge and “agreeing to disagree is impossible” by Robert John Aumann (% {84 + 41 # -
HE).

Robert John Aumann, Agreeing to disagree, Annals of Statistics 4 (1976), 1236-1239.

Within the framework of partitional information structures, Aumann demonstrates the impossibility of agreeing
to disagree: For any posteriors with a common prior, if the agents’ posteriors for an event E are different (= they

disagree), then the agents can not have common knowledge (= agreeing), of these posteriors.


http://en.wikipedia.org/wiki/Trembling_hand_perfect_equilibrium
http://en.wikipedia.org/wiki/Reinhard_Selten
http://en.wikipedia.org/wiki/Robert_Aumann

1.1. Timeline of the main evolution of game theory 13

An event is common knowledge among a set of agents if all know it and all know that they all know it and so
on ad infinitum. Although the idea first appeared in the work of the philosopher D. K. Lewis in the late 1960s it
was not until its formalisation in Aumann’s paper that game theorists and economists came to fully appreciate its

importance.

1.25 In 1982, Rubinstein bargaining game by Ariel Rubinstein (7 2 3% % - € 2= #738),

@ Ariel Rubinstein, Perfect equilibrium in a bargaining model, Econometrica 50 (1982), 97-110.

Figure 1.19: Ariel Rubinstein.

A Rubinstein bargaining game refers to a class of bargaining games that feature alternating offers through an infinite
time horizon. Rubinstein considered a non-cooperative approach to bargaining. He considered an alternating-offer
game were offers are made sequentially until one is accepted. There is no bound on the number of offers that can be
made but there is a cost to delay for each player. Rubinstein showed that the subgame perfect equilibrium is unique

when each player’s cost of time is given by some discount factor.

Figure 1.20: A Rubinstein bargaining game.

One story for Ariel Rubinstein:

o Sorin, Rapped, economicprincipals.com, March 9, 2003.


http://en.wikipedia.org/wiki/Ariel_Rubinstein
http://www.economicprincipals.com/issues/2003.03.09/55.html
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« A letter to the officers of the Game Theory Society, Ariel Rubinstein, December 5, 2002.

1.26 In 1982, sequential equilibrium by David M. Kreps and Robert B. Wilson.
® David M. Kreps and Robert B. Wilson, Sequential equilibria, Econometrica 50 (1982), 863-894.

(a) David M. Kreps. (b) Robert B. Wilson.

Figure 1.21

1.27 In 1984, rationalizability by B. Douglas Bernheim and D. G. Pearce.

@ B. Douglas Bernheim, Rationalizable strategic behavior, Econometrica 52 (1984), 1007-1028.

@ D. G. Pearce, Rationalizable strategic behavior and the problem of perfection, Econometrica 52 (1984), 1029-1050.
1.28 In 1985, construction of universal type spaces by Jean-Frangois Mertens and Shmuel Zamir.

© Jean-Francois Mertens and Shmuel Zamir, Formulation of Bayesian analysis for games with incomplete informa-

tion, International Journal of Games Theory 14 (1985), 1-29.

Figure 1.22: Jean-Frangois Mertens.

For a Bayesian game the question arises as to whether or not it is possible to construct a situation for which there is
no sets of types large enough to contain all the private information that players are supposed to have. J.-F. Mertens

and S. Zamir show that it is not possible to do so.

1.29 In 1989, the journal Games and Economic Behavior was founded.


http://arielrubinstein.tau.ac.il/GTS.html
http://en.wikipedia.org/wiki/Sequential_equilibrium
http://en.wikipedia.org/wiki/David_M._Kreps
http://en.wikipedia.org/wiki/Robert_B._Wilson
http://www.stanford.edu/~bernheim/
http://en.wikipedia.org/wiki/Jean-Fran%C3%A7ois_Mertens
http://www.ma.huji.ac.il/~zamir/
http://www.journals.elsevier.com/games-and-economic-behavior/
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In 1989, electronic mail game by Ariel Rubinstein ([ 3£ # - & Z #f38),

Ariel Rubinstein, The electronic mail game: a game with almost common knowledge, American Economic Review
79 (1989), 385-391.

A B A B
AM M 1.-L AT 0.0 [1.-L
B[ —-L,1] 0,0 B[ =L | MM

G, (probability 1 — p) G} (probability p)

Figure 1.23: The parameters satisfy L > M > land p < 1.

If they choose the same action but it is the “wrong” one they get 0. If they fail to coordinate, then the player who
played B gets —L, where L > M. Thus, it is dangerous for a player to play B unless he is confident enough that
his partner is going to play B as well.

Case 1: The true game is known initially only to player 1, but not to player 2. we can model this situation as a

Bayesian game that has a unique Bayesian Nash equilibrium, in which both players always choose A.

Case 2: The game is common knowledge between two players, then it has a Nash equilibrium in which each player

chooses A in state ¢ and B in state b.

Case 3:

« The true game is known initially only to player 1, but not to player 2.

« Player 1 can communicate with player 2 via computers if the game is G There is a small probability e > 0 that
any given message does not arrive at its intended destination, however. (If a computer receives a message then
it automatically sends a confirmation; this is so not only for the original message but also for the confirmation,

the confirmation of the confirmation, and so on)

« If a message does not arrive then the communication stops.

o Atthe end of communication, each player’s screen displays the number of messages that his machine has sent.

o This game has a unique Bayesian Nash equilibrium in which both players choose A.
Rubinstein’s electronic mail game tells that players’ strategic behavior under “almost common knowledge” may be
very different from that under common knowledge. Even if both players know that the game is G, and the noise € is
arbitrarily small, the players act as if they had no information and play A, as they do in the absence of an electronic
mail system.
In 1991, perfect Bayesian equilibrium by Drew Fudenberg (%k + % 5 1H84%) and Jean Tirole (it * # % /K).

Drew Fudenberg and Jean Tirole, Perfect Bayesian equilibrium and sequential equilibrium, Journal of Economic
Theory 53 (1991), 236-260.


http://en.wikipedia.org/wiki/Ariel_Rubinstein
http://en.wikipedia.org/wiki/Bayesian_game#Perfect_Bayesian_equilibrium
http://fudenberg.fas.harvard.edu/
http://en.wikipedia.org/wiki/Jean_Tirole
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Figure 1.24: Jean Tirole.

Further reading:

 MER D HEFMERANEKLE, ARRK, 20054,
o TIEEBEMBER, M (L), 2014 F,

1.32 In 1999, Game Theory Society was founded.

1.2 Nobel prize laureates

1.33 In 1994, John C. Harsanyi (University of California at Berkeley), John E Nash Jr. (Princeton University) and Rein-
hard Selten (University of Bonn) were awarded the Nobel Prize, “for their pioneering analysis of equilibria in the
theory of non-cooperative games”

(a) John C. Harsanyi (b) John E. Nash Jr. (c) Reinhard Selten

Figure 1.25

1.34 In 1996, James Alexander Mirrlees (University of Cambridge) and William Spencer Vickrey (Columbia University)
were awarded the Nobel Prize, “for their fundamental contributions to the economic theory of incentives under

asymmetric information.”


http://www.dapenti.com/blog/readforwx.asp?name=xilei&id=94087
http://weekly.caixin.com/2014-12-12/100762308.html
http://www.gametheorysociety.org/
http://en.wikipedia.org/wiki/John_Harsanyi
http://en.wikipedia.org/wiki/John_Forbes_Nash,_Jr.
http://en.wikipedia.org/wiki/Reinhard_Selten
http://en.wikipedia.org/wiki/Reinhard_Selten
http://en.wikipedia.org/wiki/James_Mirrlees
http://en.wikipedia.org/wiki/William_Vickrey
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(a) James Alexander Mirrlees (b) William Spencer Vickrey

Figure 1.26

1.35 In 2005, Robert J. Aumann (Hebrew University of Jerusalem, Stony Brook University) and Thomas C. Schelling
(University of Maryland) were awarded the Nobel Prize, “for having enhanced our understanding of conflict and

cooperation through game-theory analysis”

(a) Robert J. Aumann (b) Thomas C. Schelling

Figure 1.27

1.36 In 2007, Leonid Hurwicz (Minnesota University), Eric S. Maskin (Harvard University, Princeton University) and
Roger B. Myerson (Northwestern University, Chicago University) were awarded the Nobel Prize, “for having laid
the foundations of mechanism design theory.”


http://en.wikipedia.org/wiki/Robert_Aumann
http://en.wikipedia.org/wiki/Thomas_Schelling
http://en.wikipedia.org/wiki/Leonid_Hurwicz
http://en.wikipedia.org/wiki/Eric_Maskin
http://en.wikipedia.org/wiki/Roger_Myerson
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(a) Leonid Hurwicz (b) Eric S. Maskin (c) Roger B. Myerson

Figure 1.28

1.37 In 2012, Alvin E. Roth (Harvard University, Stanford University) and Lloyd S. Shapley (University of California at
Los Angeles) were awarded the Nobel Prize, “for the theory of stable allocations and the practice of market design.”

(a) Alvin E. Roth (b) Lloyd S. Shapley

Figure 1.29

1.38 In 2014, Jean Tirole (Toulouse 1 Capitole University) was awarded the Nobel Prize, “for his analysis of market power

and regulation”


http://en.wikipedia.org/wiki/Alvin_E._Roth
http://en.wikipedia.org/wiki/Lloyd_Shapley
http://en.wikipedia.org/wiki/Jean_Tirole
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Figure 1.30: Jean Tirole.

1.39 In 2016, Oliver Hart (Harvard) and Bengt Holmstrom (MIT) was awarded the Nobel Prize, “for their contributions

to contract theory”

(a) Oliver Hart (b) Bengt Holmstrom

Figure 1.31

1.3 Potential Nobel prize winners


https://en.wikipedia.org/wiki/Oliver_Hart_(economist)
https://en.wikipedia.org/wiki/Bengt_Holmstr%C3%B6m
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(a) Paul Milgrom (Stanford) (b) David Kreps (Stanford)

Figure 1.32

(a) Ariel Rubinstein (Tel Aviv, NYU) (b) Robert Wilson (Stanford)

Figure 1.33

1.4 Rational behavior

1.40 The basic assumptions that underlie game theory are that decision-makers pursue well-defined exogenous objec-
tives (they are rational) and take into account their knowledge or expectations of other decision-makers’ behavior

(they are reason strategically).
1.41 A model of rational choice:

o A: set of actions, with typical element a;
o (2 set of states, with typical element w;

o (' set of outcomes;

g: outcome functiong: A x Q — C;

o w: utility function u: C' — R.
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1.42 A decision-maker is rational if the decision-maker chooses an action a* € A that maximizes the expected value of

u(g(a,w)), with respect to some probability distribution y, i.e., a* solves

ﬁgWWQWJH

1.5 Common knowledge

1.43 E is common knowledge to players 1 and 2 if

e 1 knows E and 2 knows E;

o 1 knows that 2 knows E and 2 knows that 1 knows E};

o 1 knows that 2 knows that 1 knows E and 2 knows that 1 knows that 2 knows E;

« 1 knows that 2 knows that 1 knows that 2 knows E and 2 knows that 1 knows that 2 knows that 1 knows E

« and so on, and so on.

1.44 For example, a handshake is common knowledge between the two persons involved. When I shake hand with you,

I know you know I know you know ... that we shake hand. Neither person can convince the other that she does

not know that they shake hand. So, perhaps it is not entirely random that we sometimes use a handshake to signal

an agreement or a deal.
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1.46 There are four kinds of men:

(1) He who knows not and knows not he knows not: he is a fool—shun him;

(2) He who knows not and knows he knows not: he is simple—teach him;

(3) He who knows and knows not he knows: he is asleep—wake him;

(4) He who knows and knows he knows: he is wise—follow him.

Arabian Proverb
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2.1 Strategic games

2.1 A strategic game is a model of interactive decision-making in which each decision-maker chooses his plan of action

once and for all, and these choices are made simultaneously.

2.2 Definition: A strategy for a player is a complete plan of actions. It specifies a feasible action for the player in every

contingency in which the player might be called on to act.
2.3 Definition: A strategic game, denoted by (N, (A;), (ZZ;)), consists of

o afinite set IV of players
o for each player i € N a non-empty set A; of strategies

o for each player i € N a preference relation 27; on A = X jenA;.
A game is said to be finite if the set A; of every player i is finite.

2.4 In a simultaneous-move game, the set of strategies is the same as the set of feasible actions.

In a dynamic game, the set of strategies may be different from the set of feasible actions.

23
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Figure 2.1: Strategies and actions.

In this game, player 2 has 2 actions, I’ and R/, but 4 strategies, L'L’, L'R/, R'"L’ and R'R’.

The model places no restrictions on the set of strategies available to a player, which may be a huge set containing
complicated plans that cover a variety of contingencies. The preference relation or utility function may not be

continuous.

We often assume that 7~; can be represented by a payoff function u;: A — R. In such a case we denote the game
by (IV, (4i), (us))-

We may model a game in which the consequence of a profile is affected by an exogenous random variable; a profile
a € Ainduces a lottery g(a; ) on outcomes. In this case, a preference relation 7~; over A can be defined as: a 77; b
ifand only if g(b; -) is at least as good as g(a; ), e.g., E[u;(g(a;-))] > E[u;(g(b;))]-

A finite strategic game in which there are two players can be described conveniently in a payoff table.

When referring to the strategies/actions of the players in a strategic game as “simultaneous/static” we do not nec-

essarily mean that these strategies/actions are taken at the same point in time.

A common interpretation of a strategic game is that it is a model of an event that occurs only once; each player knows
the details of the game and the fact that all the players are “rational”, and the players choose their strategies/actions

simultaneously and independently.

Nash equilibrium

Definition: A Nash equilibrium of a strategic game (N, (A;), (zZ;)) is a profile a* € A with the property that for
every player ¢ € N we have

(a*;,a7) i (a*;,a;) foralla; € A;.

Interpretation: In an equilibrium no player can profitably deviate, given the other players” equilibrium behavior.

Once a player deviates, other players may want to deviate as well. But the definition does not require that a deviation

be free from subsequent deviations.

A Nash equilibrium needs not to be Pareto optimal, for example, prisoners’ dilemma. More generally, Nash equi-
librium does not rule out the possibility that a subset of players can deviate jointly in a way that makes every player
in the subset better off.

Shortcoming: The Nash equilibrium implicitly assumes that players know that each player is to play the equilibrium
strategy. Given this knowledge, no player wants to deviate. So, there is a sort of circularity in this concept—the

players behave in the way because they are supposed to behave in this way.
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2.16 The Nash equilibrium can be justified in several ways:
o The players reach a self-enforcing agreement to play this way through pregame communication. Example:
you may agree with a friend to meet at a particular restaurant for dinner.

o A steady-state convention evolved from some dynamic learning/evolutionary process. Example: we usually

takes nodding your head to mean yes and shaking your head means no.

o In coordination games, certain equilibria just “stands out” as a focal point.

Player 2
Mozart Mahler
Player 1 Mozart 2,2 0,0
Mabhler 0,0 1,1

Figure 2.2

2.17 Define a correspondence (set-valued function) B;: A_; — A; as follows:

Bi(a—;) ={ai € A; | (a—i,a;) =i (a—;,a}) foralla; € A;}.

~

The correspondence B; is called the best-response correspondence of player 4.

Define the correspondence B: A — A as follows:
B(CL) = xiENBi (a_i).

2.18 Proposition: a* is a Nash equilibrium if and only if a* € B(a*).

2.19 This alternative formulation of the definition points us to a method of finding Nash equilibria: first calculate the

best-response correspondence of each player, then find a profile a* for which a} € B;(a*;) foralli € N.

2.3 Examples

2.20 Example [OR Example 15.3]: Battle of the sexes.

Mary and Peter are deciding on an evening’s entertainment, attending either the opera or a prize fight. Both of them
would rather spend the evening together than apart, but Peter would rather they be together at the prize fight while
Mary would rather they be together at the opera.

Peter
Opera  Fight
Opera | 2.1 0,0
Fight | 0,0 1,2

Mary

Figure 2.3: Battle of the sexes.

Answer. Two Nash equilibria: (Opera, Opera) and (Fight, Fight). O

2.21 Example [OR Example 16.1]: A two-person coordination game.

A coordination game has the property that players have a common interest in coordinating their actions. That is,

two people wish to go out together, but in this case they agree on the more desirable concert.
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Player 2
Mozart Mahler
Player 1 Mozart 2,2 0,0
Mabhler 0,0 1,1

Figure 2.4: A coordination game.

Answer. Two Nash equilibria: (Mozart, Mozart) and (Mahler, Mahler). O

2.22 Example [OR Example 16.2]: Prisoner’s dilemma.

Two suspects in a crime are put into separate cells. If they both confess, each will be sentenced to three years in
prison. If only one of them confesses, he will be freed and used as a witness against the other, who will receive a

sentence of four years. If neither confesses, they will both be convicted of a minor offense and spend one year in

prison.
Don’t Confess Confess
Don’t Confess 3,3 0,4
Confess 4,0 1,1

Figure 2.5: Prisoner’s dilemma.

Answer. This is a game in which there are gains from cooperation—the best outcome for the players is that neither
confesses—but each player has an incentive to be a “free rider”. Whatever one player does, the other prefers Confess

to Don’t Confess, so that the game has a unique Nash equilibrium (Confess, Confess). O

2.23 Example [OR Example 16.3]: Hawk-Dove.

Two animals are fighting over some prey. Each can behave like a dove or like a hawk. The best outcome for each
animal is that in which it acts like a hawk while the other acts like a dove; the worst outcome is that in which both

animals act like hawks. Each animal prefers to be hawkish if its opponent is dovish and dovish if its opponent is

hawkish.
Dove Hawk
Dove | 3,3 1,4
Hawk | 4,1 0,0
Figure 2.6: Hawk-Dove.
Answer. Two Nash equilibria: (Dove, Hawk) and (Hawk, Dove). O

2.24 Example [OR Example 17.1]: Matching pennies.

Each of two people chooses either Head or Tail. If the choices differ, person 1 pays person 2 a dollar; if they are the

same, person 2 pays person 1 a dollar. Each person cares only about the amount of money that he receives.
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2.25

2.26

2.27

Head  Tail
Head | 1,-1 | —1,1
Tail [ —1,1 | 1,—1

Figure 2.7: Matching pennies.

Answer. No Nash equilibrium. O

Example: An old lady is looking for help crossing the street. Only one person is needed to help her; more are okay
but no better than one. You and I are the two people in the vicinity who can help, each has to choose simultaneously
whether to do so. Each of us will get pleasure worth of 3 from her success (no matter who helps her). But each one
who goes to help will bear a cost of 1, this being the value of our time taken up in helping. Set this up as a game.
Write the payoff table, and find all Nash equilibria.

Answer. We can formulate this game as follows:

« Two players: You (Player 1) and I (Player 2);
o Each player has 2 strategies: “Help” and “Not Help”.

o Payoffs:
Player 2
Help Not help
Player o/ halp 55100
Figure 2.8
There are two Nash equilibria: (Help, Not help) and (Not help, Help). O

Example: A game with three players.

There are three computer companies, each of which can choose to make large (L) or small (S) computers. The
choice of company 1 is denoted by Sy or L, and similarly, the choices of companies 2 and 3 are denoted .S; or L;
of i = 2 or 3. The following table shows the profit each company would receive according to the choices which the

three companies could make. Find all the Nash equilibria of the game.

5253 Sng LQS?, L2L3
S [ =10,-15,20 | 0,—10,60 0,10, 10 20,5, 15
Ly 5,-5,0 —5,35, 15 —5.0,15 —20, 10, 10

Figure 2.9: A game with three players.

Answer. Unique Nash equilibrium: (S, Lo, L3). O

Example: Two firms may compete for a given market of total value, V, by investing a certain amount of effort into
the project through advertising, securing outlets, etc. Each firm may allocate a certain amount for this purpose. If
firm 1 allocates x > 0 and firm 2 allocates y > 0, then the proportion of the market that firm 1 corners is z%ry The
firms have different difficulties in allocating these resources. The cost per unit allocation to firm i is ¢;, i = 1, 2.

Thus the profits to the two firms are

Wl(ﬂl‘,y):V' — T,

x+y
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ma(z,y) =V - ﬁ — c2y.

v
If both x and y are zero, the payoffs to both are ..

Find the equilibrium allocations, and the equilibrium profits to the two firms, as functions of V, ¢; and c,.

Answer. It is natural to assume V/, ¢; and ¢y are positive.

(1) Given player 2s strategy y = 0, there is no best response for player 1: The payoft of player 1 is as follows

V —cz, ifz > 0;
7"'1(56’0): Vv
2

, ifz = 0.

Player 1 will try to choose  # 0 as close as possible to 0:

« We may choose z small enough, such that £ < V' — ¢12, so 2 = 0 can not be a best response;

+ Foranyz > 0, we willhave V' — c12 < V' — ¢1 5, s0 « can not be a best response.

Hence, the strategy profiles (x, 0) and (0, y) are not Nash equilibria. Therefore, we will assume that =,y > 0.

(2) Given player 2’s strategy y > 0, player 1’s best response z*(y) should satisfy %(m) = 0 and 682;1 () <0,

which implies

_ Yy 0
(@) +y?
That is (= () +)°
y _ (=" +y
_—= 2.1
C1 \%4 ( )
Similarly, given player 1’s strategy « > 0, we will get that player 2’s best response y* () satisfies
* 2
z _ @ty (@) (22)

(3) Let (z*,y*) be a Nash equilibrium, that is, z* and y* are best responses of each other, and hence (z*, y*)
should satisfy Equations (2.1) and (2.2). From Equations (2.1) and (2.2), we will have

C1 V C2 '
Substitute this equation into Equations (2.1) and (2.2), we will obtain that

Ve VCl

VCQ *
@a+e2 VT ata)?

*

Notice that *, y* are both positive, so they could be the solution of this problem. Hence (z*, y*) is the only

Nash equilibrium.

Meanwhile, the equilibrium profits to the two firms are

. s Vel
7'('1((E Y ): ( 2 ) 7T2(3j

c1 + 62)2

2.28 Example [G Exercise 1.3]: Splitting a dollar.
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Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would
like to have, s1 and sg, where 0 < s1,59 < 1. If 57 + s2 < 1, then the players receive the shares they named; if
51 + s2 > 1, then both players receive zero. What are Nash equilibria of this game?

Answer. Given any sy € [0, 1), the best response for player 1 is 1 — so, i.e., B1(s2) = {1-s2}.
To sy = 1, the player 1’s best response is the set [0, 1], because player 1’s payoft is 0 no matter what she chooses.

The best-response correspondence for player 1:

{1782}, lfOSSQ < ].,
[0, 1], ifsy = 1.

31(82) =

Similarly, we have the best response correspondence for player 2:

{1 — 81}, if0<s1 < 1,

82(51) =
[0, 1], ifSl =1.
So A
1,1
1 (1)
B1(82>
32(51) o
O 1 S1

Figure 2.10: Best-response correspondences.

From Figure 2.10, we know
{(81782) ‘ S1 + S9 = 1,81,82 Z O} U {(1, 1)}

is the set of all Nash equilibria. O

2.29 Example: Modified splitting a dollar.

Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would

like to have, s; and s, where 0 < s1, s5 < 1. If s7 + s3 < 1/2, then the players receive the shares they named; if

s 4 s3 > 1/2, then both players receive zero. What are the Nash equilibria of this game?

Answer (1st method). Let s = (s1, s2) € [0, 1] x [0, 1]. We distinguish the following three cases:

o if 52 4+ 53 < 1/2, each player i can do better by choosing s; + €. Thus, s is not a Nash equilibrium.

o if s? 4+ 53 = 1/2, no player can do better by unilaterally changing his/her strategy (because i’s payoff is 0 by

choosing s; + €). Thus, s is a Nash equilibrium.
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o if s7 + s3 > 1/2, then we further distinguish two subcases:

- if s? < 1/2, then j can do better by choosing s; + €. Thus, s in this subcase is not a Nash equilibrium.

- ifs? > 1/2and s3 > 1/2, then no player can do better by unilaterally changing his/her strategy (because
1’s payoft is always 0 if s? > 1/2). Thus, s in this subcase is a Nash equilibrium.

Answer (2nd method). Given player 2’s strategy sz, the best response of player 1 is:

1/152}, if 59 < L
Bi(ss) = { 207 ERE

[0, ].], if82 Z

- 5

s

Note thatif 5o < %, then player 1 should choose s; as much as possible, so that 53+ s3 < 1. Hence, { 153 }

is player 1’s best response to sa. If 59 > %, no matter what player 1 chooses, his payoff is always 0. Thus player 1
can choose any value between 0 and 1.

The graph of Bj is showed in Figure 2.11a, and by symmetry, we can also get the best response of player 2, showed
in Figure 2.11b.

Sok SoA

—_
—_

1 1
V2 V2
?Hy*=1/2 2 H oy =1/2
0 EE ST 0 0 ST
V2 V2
(a) Graph of By (b) Graph of B>

Figure 2.11: Best-response correspondences.

Then the intersection of By and Bj is shown in Figure 2.12.

So the Nash equilibria are

{(51,82) | 51> 0,80 > 0,57 + 53 = ;}u ([\21} X {\%,1})

O

Now we change the payoff rule as follows: If s? + s3 < 1/2, then the players receive the shares they named; if
52 4+ s3 > 1/2, then both players receive zero. What are the Nash equilibria of this game?
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S2A
1,1
1 ()
1
V2
P Hyt=1/2
1 g
0] e 1 1

Figure 2.12: Intersection of B; and Bs.

Answer. Under the new payoff rules, the best response becomes:

B;(sj) = b, ifs; < %;
oo, s > L

where (¢, 7) = (1,2) or (2,1). Note that when s; < %, player ¢ does not have the best response, because he will
try to choose s; as close as possible to 4 /1/2 — s?, but can not achieve ,/1/2 — s?. The detailed discussion is as
follows:
« Forany 1 > s; > ,/1/2 — s, player 4’s payoff is 0, which is less than the payoff when player i chooses
1./1/2 - s?; Hence such a s; can not be a best response.

e Forany 0 < s; < /1/2— s?, player ¢’s payoff is s;, which is less than the payoff when player 7 chooses
Si+a /1/2—5;‘? .
2 b

Hence such a s; can not be a best response.

Therefore, the Nash equilibria are

2.30 Example [G Section 1.2.A]: Cournot model of duopoly.
Suppose firms 1 and 2 produce the same product.

Let ¢; be the quantity of the product produced by firm ¢, i = 1,2. Let Q = g1 + ¢, the aggregate quantity of the
product.

Let the market clearing price be
a—Q, ifQ <a,
0, it@Q > a.

PQ) =

Let the cost of producing a unit of the product be ¢, where we assume 0 < ¢ < a.

How much shall each firm produce?
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Answer. We need to translate the problem into a strategic game.

o The players of the game are the two firms.
o Each firm’s strategy space is S; = [0, 00), 7 = 1, 2. (Any value of ¢; is a strategy.)

o The payoff to firm ¢ as a function of the strategies chosen by it and by the other firm, is simply its profit

function:

qi[a_(Qi+Q‘)—C], ifg; + q; < a,
Ti(qi,q) = P(gi+4;) i —c-q; = ! !
—cq;, ifg; + g5 > a.

We consider the following two cases:

o When ¢; > a, (¢, q;) = —cg;» and hence B;(g;) = {0}.
o« Whena >¢; >a—c,
- ifg; > a — g;(> 0), then 7;(g;, ¢;) = —cq; < 0.
- ifa—¢q; > ¢; > 0, then i (q;, q;) = ¢ila — (¢; + q;) — ¢| <O0.
- if¢; = 0, then m;(g;, ¢;) = qila — (¢ + g;) —¢] = 0.
Therefore, B;(g;) = {0}.

In the following we only need to consider the case whena — ¢ > ¢;,q; > 0:

o ifg; +¢; > a,thenm;(g;,q;) = —cg; <O0.
o ifa>q; +q; > a—c thenm;(gi,q;) = ¢ila — (¢ +¢q;) — ¢] <0.

e ifa—c > ¢;+q; > 0,thenm;(g;, ¢;) > 0,and in this case ;(¢;, ¢;) achieves the maximum when ¢; = “—%—=

which yields a positive payoft for 7.

Therefore the best-response correspondence for ¢ is

{=5=}, ifgj<a—c,

Bi(qj) =
{0}, ifa —c < gj.

q2

Figure 2.13: Best-response correspondences.

From Figure 2.13, there is unique Nash equilibrium (3=, “5<). O
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2.31 Example [G Exercise 1.6]: Modified Cournot duopoly model.

Consider the Cournot duopoly model where inverse demand is P(Q) = a— () but firms have asymmetric marginal
costs: ¢; for firm 1 and ¢ for firm 2. What is the Nash equilibrium if 0 < ¢; < a/2 for each firm? What if
c1 < cg <abut2c >a+c?

Answer. o Setof players: {1,2};
« For each i, player ¢’s strategy set: S; = [0, +00);

o For each 4, player ¢’s payoff function:

7i(¢i, qj) = qi(max{a — ¢; — q;,0} — ¢;),

where i # j.

By similar method used in the previous examples, we will obtain player i’s best response:

(=5}, ifgy<a-—cg

Bl (q;) =
{0}, ifg; >a—c.
a2 q2
a a
a—C . a—C1
Bi(g2) Bi(¢2)

NE:(_“—QL;-&-Cz’ u—2%2+61) NE:(M 0)
2

B; % a—cs *
i) =\ Bl
a—ci
2

O e a—cy @ Q1 Ol a—cy o=
(a) (b)

a q1

Figure 2.14: Intersection of best-response correspondences.

(i) 0 < c1,c2 < 5, then *5% < § < a — c¢j, where i # j. Hence we have the Figure 2.14a, and from it we
will obtain the Nash equilibrium: (“*2%1“2 a*2‘332+61 ).

b

(i) f0<ec; <cz<aand2cy > a+cy,thena—cyp >a—cy > *52 > 0and “52 > a — ¢z > 0. Hence we

have the Figure 2.14b, and from it we will obtain the Nash equilibrium: (5%, 0).

2.32 Example [G Exercise 1.4]: Cournot model with many firms.

Suppose there are n firms in the Cournot oligopoly model. Let ¢; denote the quantity produced by firm ¢, and let
Q = ¢1 +- - -+ gy denote the aggregate quantity on the market. Let P denote the market-clearing price and assume
that inverse demand is given by P(Q) = a — @ (assuming @) < a, else P = 0). Assume that the total cost of firm 4
from producing quantity ¢; is C;(g;) = cg;. That is, there are no fixed costs and the marginal cost is constant at c,
where we assume ¢ < a. Following Cournot, suppose that the firms choose their quantities simultaneously. What

is the Nash equilibrium? What happens as n approaches infinity?
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Answer. We assume ¢ > 0.
o Setof players: {1,2,...,n};
« For each i, player ¢’s strategy set: S; = [0, +00);

o For each 4, player ¢’s payoff function:

7i(qis q—i) = gi(max{a — ¢; — q—;,0} — ¢)
(a—qi—q-i—c)q, ifqg+q-; <a;
—Cqy, lfQZ + q—i Z a,

whereq_; =37, q;.
In the following, given ¢_;, we try to find player i’s best response:

(1) When a < g_;, then we have ¢; + ¢_; > a, and hence

<0, ifg; >0;

Therefore, in this case, the best response for player i is ¢; = 0.

(2) Whena — ¢ < g_; < a, then we have

0, ifg; = 0;
(i, q—i) = (a—qi—q-i—0)q; <0, if0<q; <a—q_;
—cg; <0, ifg; > a—q;.

Therefore, in this case, the best response for player i is g; = 0.

(3) When 0 < g_; < a — ¢, then we have

0, lfql = 0;
mi(qis q—i) = (a—q —qi—0)q, H0<q <a-—q_y;

—cq; <0, ifg; > a—q_;.

The function (a — g; — g—; — ¢)g; is concave for ¢;, because its 2nd derivative is —2 < 0. The local maximum

can be determined by the first order condition (the 1st derivative equals zero) a — q_; — ¢ — 2¢; = 0, thus

a—c—q_;
2

a—c—q_;

the best response for player ¢ is . Note that when player ¢ chooses , his payoff is positive.

Therefore player i’s best response is

{0}, ifa—c<q;

{=5+} if0<gi<a-—c

Remark: We can not draw graphs to find Nash equilibria, since there are more than 2 players.

Claim: There does not exist a Nash equilibrium in which some players choose 0. We will prove this claim by

contradiction:
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2.33

(1) Assume there is a Nash equilibrium (g7, ¢5, . . ., ¢), where

J={i:qf =0} #0.

a—c—q",

LetJC:{172,...,n}—J,thenforanyjEJC,q;: 5
(2) Sinceforanyi € J,q; = 0, wewill have ¢*; > a — ¢, which implies >, ;. ¢f > a —c.
(3) Since forany i € J, ¢f = 0, we will have

qij = Z B>

keJe k#j

for each j € J¢, and hence
£ a—Cc— ZkeJC,k;&j @
q] - 2 ’

Vj e JC.

Summing this |.J¢| equations, we will have

. a—c . 1, . N
qu: 9 |J|—§(|J|—1)qu7

jeJe jeJe

which implies

Zq*f:7|f]| (a—c)<a-c.
J |J¢|+1

jedJe
Contradiction.
Assume that (¢}, 43, . . ., ¢;) is a Nash equilibrium, then based on the claim above, we will have ¢ = aic; 9-i for
alli =1,2,...,n. Hence
g =a—c—Q", Vi=1,2,...,n,
where Q* = Y7, ¢f. Summing the n equations above, we obtain
n
* = a—c).
@ n+1 ( )
Substituting this into each of the above n equations, we obtain
® ok _ o x_a—-cC
q1 = 42 In =7 T1
As n approaches infinity, the total output @* = ;%5 (a — c) approaches a — ¢ (perfect-competition output) and
the pricea — Q* = ?ﬁc approaches c (the perfect-competition price). O

Example [G Section 1.2.B]: Bertrand model of duopoly.

Suppose now the two firms produce different products. In this case, we can not use the aggregate quantity to
determine market prices as in Cournot’s model. Thus, instead of using quantities as variables, here we use prices as

variables.

If firms 1 and 2 choose prices p; and ps, respectively, the quantity that consumers demand from firm ¢ is

¢i(pi,pj) = a — p; + bp;
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where b > 0 reflects the extent to which firm ’s product is a substitute for firm j’s product. Here we assume ¢ < a.
How to find the Nash equilibrium?

Answer. 'The strategy space of firm ¢ consists of all possible prices, thus S; = [0, 00),7 = 1, 2.

The profit of firm ¢ is
mi(pi, ;) = 4i(Pi, pj) - Pi — ¢~ qi(pi, pj) = [a — pi +bpj] - (pi — ).

. . L . . . . bp;
For given p;, m;(p;, p;) is a concave function in terms of p;, and hence it achieves its maximum at p; = %.

Suppose (pi, p3) is a Nash equilibrium, then we have

. a+bps+c a+bp; +c
=" EE—

and pj = 5

Thus, p} = p5 = gJ_rg Note that this problem make sense only if b < 2. O

2.34 Example [G Exercise 1.7]: Suppose that the quantity that consumers demand from firm ¢ is

a—pi, ifp; <pj,
@(pi,py) = § S, ifpi = pj,

07 lfpl > Dj,

that is, all customers buy the product from the firm who offers a lower price. Suppose also that there are no fixed

costs and that marginal costs are constant at ¢, where ¢ < aand ¢ < ¢1,¢2 < a.

Answer. Given firm j’s price p;, firm ¢’s payoff function is

—~

a—pi)(pi —c), ifp; <pj,

mi(pi,pj) = § 3(a —pi)(pi — ¢), ifpi = pj,
0, ifp; > pj-
The strategy space is S; = [c, a.
We find three cases from the observation of the payoff curves.
« Case 1: Given p; > a;C. The maximum payoft is reached at p; = ‘“QLC. Thus, the best response B;(p;) =

{5}
a+tc

» Case2: Givenc < p; < 5= It is easy to see that

sup 7y, (pi, pj) = (a —pj)(pj — ¢)-

However, no p; € [c, a] can make m;(p;, p;) = (a—p;)(pj—c). For p; € (c,p;), the function 7, (p;, p;) =

(a—p;) (pi—c) is strictly increasing. For p; > p;, m;(p;, p;) = 0. For p; = pj, m(ps, pj) = %(a—pi)(pi—c).
Thus, there is no maximizer. This means that B;(p;) = 0.

« Case 3: Given p; = c. m;(p;, ¢) = 0 for any p,. Thus any p; is a maximizer, and B;(c) = [c, al.

The best-response correspondences are sketched below.
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q2A

Bi(p2)
c
NE=(c,¢)
0] C atc a T
2
Figure 2.15

The only intersection of the two correspondences is (¢, ¢). This shows that if the firms choose prices simultaneously,
then the unique Nash equilibrium is that both firms charge the price p; = c. O

2.35 Example [OR Exercise 18.2]: First-price auction.

An object is to be assigned to a player in the set {1,...,n} in exchange for a payment. Player 4’s valuation of the
object is v;, and v1 > vg > -+ > v, > 0. The mechanism used to assign the object is a (sealed-bid) auction: the
players simultaneously submit bids (non-negative numbers), and the object is given to the player with the lowest

index among those who submit the highest bid, in exchange for a payment.

Formulate a first-price auction as a strategic game and analyze its Nash equilibria. In particular, show that in all

equilibria player 1 obtains the object.

Answer. 'The strategic game (N, (4;), (u;)) is: N = {1,...,n}, player ¢’s action set is A; = [0, 00), and his payoff

is

(@) v; —a;, ifa; > a;(whenj < i), and a; > aj(when j > 7),

ui(a) =
' 0, otherwise.

Leta* = (a3, a3, ..., a) be a Nash equilibrium.

(1) Claim: a] > a} for i # 1. Suppose that player ¢ (# 1) submits the highest bid o] and a} > a}. If a} > vs,

then player i’s payoff is negative, so he can increase his payoff by bidding 0; if a} < wa, then player 1 can

deviate to the bid a; and increases his payoff. Hence, we have that a] > a forall ¢ # 1.

(2) Claim: a] < vy. Suppose aj > v;. By claim (1), we have that a] > a7 for all 7 # 1, then player 1 will win

and his payoft is negative, while he can increase his payoff by bidding 0.

(3) Claim: a} > wvy. Suppose a; < va. By claim (1), we have that a3 < v, then player 2 can increase his payoft

by bidding 3 (aj + v2).
(4) Claim: there exists j € {2,3,...,n}, such that a] = aj. Suppose that for any j € {2,3,...,n}, aj > aj,
then player 1 can choose maxa<j<n aj.

Hence, the Nash equilibrium is (a7, ..., aj,), where aj € [va,v1], @} < af forall j # 1, and a] = aj for some

) n
j#L

Moreover, we can have that in all equilibria, player 1 will obtain the object. O



2.3. Examples 38

2.36 Example [OR Exercise 18.5]: A war of attrition.

2.37

Two players are involved in a dispute over an object. The value of the object to player 7 is v; > 0. Time is modeled
as a continuous variable that starts at 0 and runs indefinitely. Each player chooses when to concede the object to
the other player; if the first player to concede does so at time ¢, the other player obtains the object at that time. If
both players concede simultaneously, the object is split equally between them, player ¢ receiving a payoft of v; /2.

Time is valuable: until the first concession each player loses one unit of payoff per unit of time.

Formulate this situation as a strategic game and show that in all Nash equilibria one of the players concedes imme-

diately.
Answer. The strategic game (N, (A;), (u;)) is: N = {1, 2}, player ¢’s action set is A; = [0, o), and his payoff is

—t;, ift; <tj7
ui(t,t2) = Qv /2 —t;, ift; =t;,

’Uz'ftj, ifti>tj,

where j € {1,2} \ {i}.
Let t* = (t7,15) be a Nash equilibrium.

(1) Claim: tj # t5. Suppose t] = t3, then player 1 can obtain the object in its entirely value instead of getting
just half of it by conceding slightly later than ¢7, so it is not a Nash equilibrium.

(2) Claim: If 7 < t5, then ¢} = O and t5 > v;. Suppose 0 < ¢}, then player 1 can increase his payoft to 0 by
deviating to ¢; = 0. Suppose 0 = ¢} < t5 < vy, then player 1 can increase his payoff by deviating to a time
slightly after t5.

(3) Claim: Ift5 < t], thent3 = 0 and t] > v9. It is similar with the claim 2.

Hence, (t7,t5) is a Nash equilibrium if and only if 0 = ¢} < t5 and v; < ¢}, 0r 0 =5 < t] and vo < #7. O

Example [G Exercise 1.8]: Hotelling model.

Consider a population of voters uniformly distributed along the ideological spectrum from left (x = 0) to right
(x = 1). Each of the candidates for a single office simultaneously chooses a campaign platform (i.e., a point on
the line between x = 0 and & = 1). The voters observe the candidates’ choices, and then each voter votes for the
candidate whose platform is closest to the voter’s position on the spectrum. If there are two candidates and they
choose platforms x; = 0.3 and x5 = 0.6, for example, then all voters to the left of z = 0.45 vote for candidate 1,
all those to the right vote for candidate 2, and candidate 2 wins the election with 55 percent of the vote. Suppose

that the candidates care only about being elected—they do not really care about their platforms at all!
Question 1: If there are two candidates, what is the Nash equilibrium.

(Assume that any candidates who choose the same platform equally split the votes cast for that platform, and that

ties among the leading vote-getters are resolved by coin flips.)
Answer (1st method). For player i, the strategy set is S; = [0, 1]. Player ¢’s payoff function:

1, ifs; <s;<1l—s50rl—s;<s;<sj;

mi(8i,55) = ifs; = s5, ors; =1 —sj;

1
29
0, otherwise.
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Given player js strategy s; # 3, from Figures 2.16a and 2.16b, we will see that player i wins only when s; is in the
red regions.

l | l
0 5; 5 1-s 1 0 1-—s 5 5

[

Figure 2.16: Players’ best response.

Therefore, we have player i’s best response:

(Sj,].*Sj), iij < %;
Bils) =003k sk
(1 - Sj,Sj), iij > %
From Figure 2.17, there is only one Nash equilibrium (3, 3).
52
51

Figure 2.17: Intersection of the best-response correspondence.

O

Answer (2nd method). o Claim: Both candidates choose the same platform: if they choose different platforms,

without loss of generality, we may assume s; < 1 < s, then 1 can do better by choosing 1. (For any other

possible case, it is similar.)

o Claim: Both candidates choose the same platform at 0.5: If both candidates choose the same platform at

z # 0.5, say z > 0.5, then each candidate can do better by choosing Z£0-3.

O

Question 2: If there are three candidates, exhibit a Nash equilibrium.

Answer. (3,1, %) is a Nash equilibrium. To see this is a Nash equilibrium,

« Player 3 has no incentive to deviate because he is the winner and obtains the maximal payoft;

o Players 1 and 2 can not do better given the other two players choose % and %, respectively.

There are other equilibria. O
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Remark: suppose that the candidates care only about the percentage they have, in three-person game, there is no

Nash equilibrium:

« Ifall candidates choose different platforms, say s; < s3 < s3, then 1 can do better by choosing s; + 251,

+ If 1 and 2 choose same, but different with 3, say s; = s3 < s3, then 3 can do better by choosing s3 — 2251,

o If all of them choose same, say s; = s2 = s3 > 0.5, then 1 can do better by choosing s; — %.

2.38 Example [OR Exercise 19.1]: A location game.

Each of n people chooses whether or not to become a political candidate, and if so which position to take. There
is a continuum of citizens, each of whom has a favorite position; the distribution of favorite positions is given by a
density function f on [0, 1] with f(x) > 0 forall x € [0, 1]. A candidate attracts the votes of those citizens whose
favorite positions are closer to his position than to the position of any other candidate; if k candidates choose
the same position then each receives the fraction 1/k of the votes that the position attracts. The winner of the
competition is the candidate who receives the most votes. Each person prefers to be the unique winning candidate
than to tie for first place, prefers to tie for first place than to stay out of the competition, and prefers to stay out of

the competition than to enter and lose.

Formulate this situation as a strategic game, find the set of Nash equilibria when n = 2, and show that there is no

Nash equilibrium when n = 3.
Answer. O

2.39 Example [OR Exercise 35.1]: Guessing the average.

Let n(n > 2) people play the following game. Simultaneously, each player ¢ announces a number z; in the set
{1,2,..., K}. A prize of $1 is split equally between all the people whose number is closest to % - ftedta Find
all the Nash equilibria.

Incomplete answer. Assume (1, T2, . .., Ty) is a Nash equilibrium, and z; is the largest number among them. We

now argue as follows.
o In the equilibrium (21, x2, . .., z, ), Player 1’s payoff should be positive. Otherwise, he could be better off by
choosing a number which is the closest number to 2 of average.
o In the equilibrium (21, 22, . .., ,), there is some other, say Player j(j # 1), where z; = . Otherwise,
Player 1’s payoffis 0: if ; < x; forall j # 1, then by computation Player 1 will not win.
o In the equilibrium (1, x2, ..., %), if x1 > 1, then he can increase his payoff by choosing x; — 1, since by

making this change he becomes the outright winner rather than tying with at least one other player.

The remaining possibility is that z; = 1: every player uses the strategy in which he announces the number 1. [

2.40 Example: Consider the following two-person game.

Player 2
L R
U aj, b1 as, b2
D [ a3, b3 | a4,b4

Player 1

Figure 2.18

We have the following assumptions.
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241

2.42

2.43

(i) Neither strategy weakly dominates the other for any player.
(ii) aq 7’5 as and bl 75 bg.

(iif) It is known that this game has at least one Nash equilibrium

Prove that the game has two Nash equilibria.

Proof. Without loss of generality, we assume that a; > as3. Then as < a4.

If by < by, then b > by, and hence there is no Nash equilibrium, contradiction. Therefore, by > by and b3 < by.
So (U, L) and (D, R) are two Nash equilibria. O

Example: There are 100 people in a society, and two different types of mobile phones available: type A and type B.

Each of the 100 people (players in our context) chooses either A or B simultaneously. Let n 4 denote the number
of people who choose A and np denote the number of people who choose B. Note that n4 +np = 100. For each
player 4, his payoft is 61 4 if he chooses A, or 4np if he chooses B. For example, if player 7 chooses A and total
number of people who choose B is 50, player ¢ obtains the payoff of 300 (since n4 = 50, 614 = 300). In this case,
each of those who choose A obtains the payoft of 300 and each of those who choose B obtains the payoft of 200.

Find all the Nash equilibria. If you believe there is no Nash equilibrium, please explain.

Answer. There are two Nash equilibria:

o All players choose A (n4 = 100 and ng = 0).
o All players choose B (n4 = 0 and np = 100).

It is clear that the two strategy profiles above are Nash equilibria. The following shows that there is no other Nash

equilibrium:

o Any strategy profile with 0 < n4 < 40 and np = 100 — n4 can not be a Nash equilibrium because any
player who chooses A can deviate and obtain a better payoff since 4(np + 1) > 6n.4.

« Any strategy profile with 40 < n4 < 100 and ng = 100 — n 4 can not be a Nash equilibrium because any
player who chooses B can deviate and obtain a better payoff since 6(n4 + 1) > 4np.

o Any strategy profile with n 4 = 40 and np = 60 can not be a Nash because any player can deviate profitably.
If any player who chooses A deviates, he would obtain a better payoft since 4(np + 1) > 6n4. If any player
who chooses B deviates, he would obtain a better payoff since 6(n4 + 1) > 4np.

O

Example: Each individual i = 1,2, ..., 100 must choose a number r; € [0, 1]. If an individual chooses a number
that is the most closed to the value ¢ Zjﬂﬂ r; (where § € [0,1] is a parameter), then the individual gets payoft 1;
otherwise, the individual gets payoff 0. Formulate this problem as a strategic game, and find all Nash equilibria for

each 6 € [0, 1].

Example (from http://econweb.ucsd.edu/~jwatson/): Consider a strategic setting in which two geographi-
cally distinct firms (players 1 and 2) compete by setting prices. Suppose that consumers are uniformly distributed
across the interval [0, 1], and each will buy either one unit or nothing. Firm 1 is located at 0 and firm 2 is located
at 1. Assume that these locations are fixed. In other words, the firms cannot change their locations; they can only
select prices. Simultaneously and independently, firm 1 chooses a price p; and firm 2 chooses a price py. Assume

that the firms produce at zero cost and that, due to a government regulation, they must set prices between 0 and 6.


http://econweb.ucsd.edu/~jwatson/
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As in the standard location game, consumers are sensitive to the distance they have to travel in order to purchase.
But they are also sensitive to price. Consumers get a benefit of 6 from the good that is purchased, but they also pay a
personal cost of ¢ times the distance they have to travel to make the purchase. Assume that c is a positive constant.
If the consumer at location 2 € [0, 1] purchases from firm 1 then this consumer’s utility is 6 — cx — py. If this
consumer instead purchases from firm 2 then her utility is 6 — ¢(1 — ) — po. If this consumer does not purchase

the good, her utility is 0.

(i) Suppose that, for given prices p; and pa, every consumer purchases the good. That is, ignore the case in
which prices are so high that some consumers prefer not to purchase. Find an expression for the “marginal

consumer” who is indifferent between purchasing from firm 1 or firm 2. Denote this consumer’s location as
x*(p1,p2)-

(if) Continue to assume that all consumers purchase at the prices you are analyzing. Note that firm 1’s payoff

(profit) is pyz*(p1, p2) and firm 2’s payoff is p2[1 — z*(p1, p2)]. Calculate the firms’ best-response.
(iii) Find the Nash equilibrium of this game for the case in which ¢ = 2.
(iv) As c converges to 0, what happens to the firms’ equilibrium profits?

(v) Find the Nash equilibrium of this game for the case in which ¢ = 8.
2.44 Example (Complete-information all-pay auction): Two players, indexed by i = 1, 2, compete for an object of value

v > 0. Players simultaneously place their non-negative bids z;. The higher bidder obtains the object, while one

loses his bid regardless of win or loss. Ties will be broken randomly. Their payoffs can then be written as

v—ux;, ifxz; >z,

i (T, ) = 5 —x, ifw;=uxj,

—Z;, ifx; < ;.

Show that there does not exist a (pure-strategy) Nash equilibrium.

2.4 Existence of a Nash equilibrium

2.45 To show that a game has a Nash equilibrium it suffices to show that there is a profile a* such that a* € B(a*).

Fixed-point theorems give conditions on B under which there indeed exists a value of a* for which a* € B(a*).

2.46 Kakutani’s fixed-point theorem: Let X be a compact convex subset of R” and let f: X — X be a set-valued

function for which

o forall z € X the set f(x) is non-empty and convex,
o the graph of f is closed, i.e. f is upper-hemicontinuous.

Then there exists z* € X such that z* € f(a™).

f has a closed graph if
Graph(f) = {(z,y) |z € X,y € f(x)}

is closed, i.e., for all sequences {z,} and {y,} such that y,, € f(z,) forall n, z,, — x, and y,, — y, we have

y € f(=).

8 247 Theorem: A strategic game (N, (A;), (z;)) has a Nash equilibrium if for all i € N,
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 A; is non-empty compact convex subset of R”,

o 7, is continuous and quasi-concave on A;.

7; is continuous if the graph of 7—;, {(a,a’) | a 7Z; @'}, is a closed set with respect to the product topology.

7; is quasi-concave on A; if for any a’ € A, the upper level set for @’ {a; € A; | (a’

—1

a;) 7; a'} is convex.

A

1’s preference

a/

e

upper level set fo

Figure 2.19: A quasi-concave preference.

2.48 Proof. (1) Foreachi € N anda € A, B;(a_;) is non-empty, since 7-; is continuous and A; is compact.

(2) Foreachi € N anda € A, B;(a_;) is convex, since Z; is quasi-concave on A;.

~t %

Bi(a—i) = Nareaai € Ai | (a—i,a;) Zi (a—i, a;)}.

(3) The graph of B is closed, since each 7; is continuous.

(4) By Kakutani’s fixed-point theorem, B has a fixed point which is a Nash equilibrium of the strategic game.

O

2.49 The existence theorem remains valid when R" is replaced by “a metric space” or “a locally convex Hausdorft topo-

logical vector space”

2.5 Symmetric games

2.50 Symmetric games [OR Exercise 20.4]

Consider a two-person strategic game that satisfies the conditions of Theorem 2.47. Let N = {1, 2} and assume

that the game is symmetric: Ay = Ay and (a1, a2) 71 (b1, be) ifand only if (az, a1) 722 (be,by) foralla € A and

b € A (for simplicity, we could assume u1 (a1, az) = uz(az,a)).

Use Kakutani’s fixed-point theorem to prove that there is an action aj € A; such that (a7, a}) is a Nash equilibrium

of the game. (Such an equilibrium is called a symmetric equilibrium.) Give an example of a finite symmetric game

that has only asymmetric equilibria.

Answer. Define the function F': Ay — A; by F'(a1) = Ba(a1) (the best response of player 2 to a; ). The function

F satisfies the conditions of Theorem 2.46, and hence has a fixed point, say aj. The pair of actions (a}, a7) is a

Nash equilibrium of the game since, given the symmetry, if a] is a best response of player 2 to a] then it is also a

best response of player 1 to a;.

It is a symmetric finite game that has no symmetric equilibrium:
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2.51

2.52

2.6

2.53

I 254

2.55

" 256

Player 2
L R
L3314
Player 1 RI41100
Figure 2.20

O

Remark: Consider an n-player symmetric game, and suppose we find an asymmetric Nash equilibrium, which
means that not all players use the same strategy. If we find one asymmetric Nash equilibrium, then there are another
n — 1 asymmetric Nash equilibria to be found.

Example (Fey (2012)): Symmetric games have only asymmetric equilibria.

There are two players, the strategy set is [0, 1], and the payoffs are defined as follows:

(070), ifai = aj,
( ) (1,-1), ifa; <a;<lor0<a; <a; =1,
ulag, a;) =
(—1,1), ifa; <a; <lor0<a; <a; =1,
(

1,1), ifa=(1,0)ora=(0,1).

Example (Fey (2012)): Symmetric games have only asymmetric equilibria.

There are two players, the strategy set is [0, 1], and the payoffs are defined as follows:

max{ai,as}, ifa# (1,1),

ui(ar, az) = .
0, ifa=(1,1).

This game clearly has a continuum of equilibria. The (pure strategy) equilibrium set is given by {(a1,a2) | a1 =
loras =1} 1\ (1,1).

Strictly competitive games (zero-sum games)

For an arbitrary strategic game, we can say little about the set of Nash equilibria. However, for strictly competitive

games, we can say something about the qualitative character of the equilibria.

Definition: A two-person game ({1, 2}, (A4;), (2Z;)) is strictly competitive if for any a € A and b € A we have

a 721 bifand only if b 725 a.

Without loss of generality, we may assume that a strictly competitive game can be represented as a two-person

zero-sum game ({1, 2}, (A;), (u;)) in which payoff functions satisfy u; + us = 0.

Definition: a} € A; is a maxminimizer for player i if

min w;(aj,a;) > min w;(a;,a;) foralla; € A;.
ajEAj ajGAj
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Player ¢ maxminimizes if he chooses an action that is best for him on the assumption that whatever he does, player

j will choose her action to hurt him as much as possible.

2,57 Lemma: max min u;(a;,a;) = — min max u;(a;, a;).
ajeAj a; €EA; a]‘GA]‘ a; €EA;
Proof. max min u;(a;,a;) = — min max —u;(a;,a;) = — min max u;(a;,a;). O
a_jGAj a; €EA; J 7 ajEAj a;€EA; J » ajEAj a;€EA; v

¥ 2.58 Proposition: a* is a Nash equilibrium if and only if for i = 1,2, a} is i’s maxminimizer and

i . . ) — . *) — 1 . . ).
arineagi a?ggj u;i(as, a5) = ui(a™) al?elgj al}leai u;(a;, a;)

2.59 Interpretation: a profile is a Nash equilibrium if and only if the action of each player is maxminimizer. This result

provides a link between individual decision-making and the reasoning behind the notion of Nash equilibrium.
2.60 Proof. “=":

(1) Since a* is a Nash equilibrium, u;(a*) > u;(a;, a;*) for all a; € A;. Then u;(a*) > minwu,(a;,a;) for all

a
a; € A;. Hence we have u;(a”) > maxminu;(a;, a;).
ai aj
(2) Since u; + uj = 0, u;(a*) = —u;(a*) < —uj(a),a;) = u;(a;,a;) forall a; € A;. Then u;(a*) =
minu;(a;, a;). Hence u;(a*) < maxminw;(a;, a;).
aj a; aj

(3) Thus min u;(ay,a;) = u;i(a™) = maxminu;(a;, a;) and @ is ¢’s maxminimizer.
J

a; aj
(4) By Lemma,
u;(a*) = —u;(a*) = —maxminu;(a;, a;) = minmaxu,(a;, a;).
a;j a; aj a;
<=7 Since a; is 7’s maxminimizer, we have u;(a*) = min,; u;(aj, a;) < ui(a;,a;) foralla; € Aj. By u; +u; =
0, we have u;(a*) > u;(a;,a;) foralla; € A;. Thus, a* is a Nash equilibrium. O

2.61 Proposition: The Nash equilibria of a strictly competitive game are interchangeable: if (x, y) and (2, y') are equi-

libria then so are (x,y’) and (2/, y).

2.62 Proposition: If a two-player strictly competitive symmetric game has a Nash equilibrium, then it has a symmetric

Nash equilibrium.

Proof. Suppose a two-player zero-sum symmetric game has a Nash equilibrium (o7, 03). Then by symmetry, the
strategy profile (o3, 07) is also a Nash equilibrium. As all equilibria in zero-sum games are interchangeable, it

follows that (o7, o) is a Nash equilibrium. O

2.7 Contest

2.63 Reference: Corchén (2007).

2.64 Two players simultaneously commit to their rent-seeking effort outlays 1 and z2 to compete for an indivisible rent

v. Each of them wins with a probability

Li ifxy +x90 >0
b b)

pi(z1, 22) = flﬂz .
5 ifxy + a2 =0.
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2.65

2.66

2.67

2.68

2.69

The function p; is called the contest success function.
Assume that the effort incurs a constant marginal cost, which is normalized to one.

Player ¢ maximizes

(w5, 0) = ——
Ti\T4i, Lj) = —— U — Ty.
I + T2
It is clear that 7; is a concave function of ;. Hence, x} = .
Assume that the new winning probability is
-
x .
1
pi(T1,22) = — )
] + xh

where r < 2.

The equilibrium effort is .

Now consider an n-player Tullock rent-seeking model, where the contest success function is

'
Ly

Piln, e @n) =

Then a pure strategy Nash equilibrium exists if and only if r < =+, with the equilibrium effort level

. n—1
Tt = —5—rv.
n

The parameter  conventionally depicts the discriminatory power of the selection mechanism. A greater r implies

that one’s win depends more on the amount of his bid, rather than other noisy factors.

A more general setting:
S Hmy I T 0l >0,
%7 lf 22:1 ¢(Ik) = O

pi(T1,.. ., 2n) =
Here ¢(z;) measures the impact of z; in the contest. The ratio ¢(z;)/ >, _, ¢(xx) measures the relative impact
of i.
Assume that ¢ is strictly increasing and log-concave.

Asymmetric case: Each of them wins with a probability

L1 ifxy +x9 >0,

T1tw2’

%, ifxy + 29 = 0.

pi(3317332) =

The two players have different marginal costs, with ¢; < ca.

Variation: The contest organizer places a weight « on player 1s effort z1; players win the contest, respectively, with

probabilities

(e %] i)

pl(fvhl‘z) = , p2(3€179€2) =

axy + T axr, + o
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2.8

2.70

2.71

IF 272

¥ 273

2.74

Strategic games with discontinuous payoff functions

Reference: Reny (1999).

Consider a strategic game G = (N, (4;), (u;)). Say “player i can secure a payoff u; ata € A” if there exists a; € A;

such that u;(a;,a’_;) > u; forall a’_; close enough to a_;.
The game G is better-reply secure if whenever (a*, u*) is in the closure of the graph of its payoff profile function
and a* is not a Nash equilibrium, some player ¢ can secure a payoff strictly above u at a*.

That is, for every payoft profile limit «* resulting from strategies approaching non-equilibrium a*, some player ¢

has a strategy yielding a payoff strictly above u} even if the others deviate slightly from a*.
All games with continuous payoff functions are better-reply secure.
Theorem (Theorem 3.1 in Reny (1999)): If each A, is non-empty, compact, convex subset of a metric space, and each

u; is quasi-concave on A;, then the game G possesses at least one Nash equilibrium if in addition G is better-reply

secure.

Example: Consider a two-person symmetric game: G = (N, (A;), (u;)), where N = {1,2}, 4; = A, = [0,1],
and for all a;, a; € [0,1],4,j = 1,2,and i # j,

1, ifa; € [3,1]and a; € [3,1],
ui(a;,a;) = 1+a;, ifa; €[0,4)anda; € (%, 2,
a;, otherwise.
aj;h
1,1
1 (1,1
s _ 8]
‘ 1+a 1
20—
3
1
2
Q;
0 1 1 &
2

Figure 2.21: Payoff function u;(a;, a;).

Let D = [$,1] x [3, 1]. By definition, it is easy to see that the set of Nash equilibriais {z € D | a1,a2 € (2, 2)}.
To check the better-reply secure property: let € > 0 be sufficiently small.

Ifa* € D, then some a} < 3. Thus, i can secure payoff a + € > u} = a; (ifa; & (2,2))ora; +1+€>uf =
ai +1(ifaj € (2, 2)) by choosing a strategy a} + e.

Ifa* € D, then some a} € (%,2) and a; > %. We distinguish two subcases:

. a; > 3. Asa; liesinan openinterval (2, 2), j can secure payoff 1-+a; > 1by choosingastrategy a; € (0, 3).
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o aj = % In this subcase, the limiting vector u* depends on how a approaches a*. We must distinguish two

subsubcases:

- u* = (1,1), j can secure payoff 1 + a; > 1 by choosing a strategy a; € (0, 3).

~ The limiting payoff vector is u* = (a}, £) even though the actual payoff vector at a* € D is (1, 1). Thus
i can secure payoft a] + € > u = a] by choosing a strategy a; + ¢, since for any a; that deviates slightly
from %,

al +¢€, ifa; < %,
ui(a;Jrevaj) = ' 1
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3.1 Bayes rule (Bayes’ theorem)

3.1 Bayes’ rule gives the relationship between the probabilities of A and B, Prob(A) and Prob(B), and the conditional
probabilities of A given B and B given A, Prob(A | B) and Prob(B | A). In its most common form, it is:

Prob(A | B) — m Prob(B | A).

3.2 Interpretation:

o Prob(A), the prior, is the initial degree of belief in A.
o Prob(A | B), the posterior, is the degree of belief having accounted for B.

3.3 Example: A HIV test usually return a positive or a negative result (or sometimes inconclusive). Among the positive
results, there are true positives and false positives. Among the negative results, there are true negatives and false
negatives.

o True positive: positive test result and have the disease.
o False positive: positive test result and do not have the disease

« True negative: negative test result and do not have the disease.

49
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3.2

3.4

3.5

« False negative: negative test result and have the disease.
The probability of having HIV is usually taken to be the prevalence (population base rate). Currently this prevalence
is around 1/1000.

We also know that the probability of obtaining a positive result given that the person does not have HIV is 0.01,
and the probability of obtaining a negative result given that the person has HIV is 0.05.

Question: A person obtains a positive result, then what is the probability that he has HIV?

Answer. For the purpose of this discussion, + will indicate a positive test, — will indicate a negative test, HIV will
indicate having HIV and —HIV will indicate not having HIV.

Prob(+ | HIV) is the probability of obtaining a positive result, given that the person has HIV. This is known as the

sensitivity. It is a measure of how good the test is at identifying individuals with HIV.

Prob(— | —HIV) is the probability of obtaining a negative test result if you do not have HIV. It is know as the
specificity. It is a measure of how the test is at identifying people who do not have HIV.

Prob(HIV | +) is the posteriori probability, that is, how likely is it that a given person has HIV after we have taken

into account the base rate and updated it with the available evidence (i.e., result of HIV test).

We have
Prob(+ | HIV) x Prob(HIV)
Prob(HIV | +) =
rob(HIV [ 4) = 5 G THIV) x Prob(HIV) & Prob(+ | ~HIV) X Prob(-HIV)
0.95 x 0.001
= = 8.68%
0.95 x 0.001 4 0.01 x 0.999 ’
O
Bayesian games

We frequently wish to model situations in which some of the parties are not certain of the characteristics of some of
the other parties. The model of a Bayesian game (also called strategic game with incomplete information), which
is closely related to that of a strategic game, is designed for this purpose.

Example [G Section 3.1.A]: Cournot competition under asymmetric information.

Consider the Cournot duopoly model, except:

o Firm I’s cost function is ¢1(q1) = cqs.

« Firm 2’s cost function is

crq2, with probability 6,
ca(q2) =
crqe, with probability 1 — 6,

where cj, < cy are low cost and high cost respectively.

The information is asymmetric: firm 1’s cost function is known by both; however, firm 2’s cost function is only
completely known by itself. Firm 1 knows only the marginal cost of firm 2 to be ¢y with probability 6 and ¢y, with
probability 1 — 6.

All of the above is common knowledge. How much shall each firm produce?
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Answer. Firm 2 has two payoff functions:

7T2(Q1,Q2;CL) = [a —q1— 42— CL]Qz,

m2(q1, q2icn) = [a — q1 — @2 — culge.
Firm 1 has only one (expected) payoff function
m1(q1,g25¢) = Egla — g1 — g2 — cJaqu.

The two firms simultaneously choose (g7, ¢5(cu ), g5 (cr)), where
* g5 (cm) solves rr;ax[a — ¢ — q2 — cH]q2
2
o ¢5(cr) solves Ir(llax[a —q¢f — g2 — cL]ge,
2
o Firm 1 should maximize its expected payoff, i.e., g} maximizes

Ola —q1 — q3(cu) — clgg + (1 = 0)[a — g1 — g5(c) — cla1-

By first order condition, it is easy to obtain

. a—qi —c N a—qi —c
ilen) = L= ey - 2T
o Ola—g5(cu) =+ (1 = 0)fa—g5(cL) — ¢
a4 = 2 :

By solving them, we have

. a—2c+0cg+(1—-0)c
4 = 3

. a—2cyg+c 1-0

G3(em) = ——5—— + ——(en —cx)

3 6
N a—2c+c 6
G3(er) = ——5—— = slem —cr)

3 6

B 3.6 Definition: A Bayesian game, denoted by (N, Q, (4;), (T}), (7:), (p:), (u;)), consists of

« afinite set IV of players

o aset () of states

« aset A; of actions available to player ¢

o aset T} of signals (or types)

« asignal function 7;: 0 — T; that specifies the signal 7;(w) observed by i at state w

o a probability measure p; on €2 (the prior belief of ¢) for which p; (T;l (ti)) > Oforallt; € T;

« a payoff function u;: A x 2 — R of player «.

A state w € () contains a “complete” description of the payoft function and the beliefs of every player.
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If player ¢ receives the signal ¢; € T}, then he deduces that the state is in the set Ti_l (t;); his posterior belief about

the state, denoted by p; (w | t;) or p; (w Er (tz)) , is the probability conditional on 7, ! (t;), i.e.,

pi(w) . —1
—e < ifwe T (L),
pi(w|[t:) =pi (w \ Ti_l(ti)> = { plr @)

0, otherwise.

In a Bayesian game, player ¢s strategy s; is a function from T to A;. A strategy profile can be denoted by

s =(sj)jen, ora = (a »t.) , :(a t) .
J)ien, ((960), g Jien = (060) oy o

3.7 Belief updating: From prior belief to posterior belief:

True statew dati 7 (ri(w
— signal/type 7;(w) Updating, ’ ( « ))
Prior belief p; Posterior belief p; (w’ | 7i (w))

3.8 We can model Cournot competition under asymmetric information as the Bayesian game in which

N = {1,2}.

Q=T xTo ={(¢,cn),(c,cp)}

A = Ay =[0,00).

Ty ={c}, Ty ={cr,cH}.

T1(c,") = ¢, ma(e,ey) = e, 12(c, ) = ey,

i’s prior belief on Q is: (¢, cgr) with probability 6, and (¢, ¢, ) with probability 1 — 6.

Profit functions.

K" 3.9 Definition: s* = (s}) is a Bayesian Nash equilibrium of (N, , (4;), (T), (7:), (pi), (wi)) if for each i € N and
eachw € Q,

U (8" w) > @ (sl, i )forallsZ T, — A;,

where

(s;w) Z W' | 7i(w)) s (s(T(W));w).

w'eN

BF"  3.10 Alternative definition: A Bayesian Nash equilibrium of a Bayesian game (N, Q, (A4;), (T3), (1), (p:), (u;)) isa Nash
equilibrium of its agent strategic game, denoted by (N, (A; +,)), (4(.z,)))> which is defined as follows:

« N = {(Z,tz) |Z'€N,ti ETZ}

o Ajpy = A and A= Xjen e Aga,)-

o Ui, A — R is defined as follows:

UGa(@) = Y pilw | 1) ((au,n(w)))%w) :

weN

where a = (a(j’tj)) e A

JEN,t; €T}
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That is, a* € A is a Bayesian Nash equilibrium if and only if for each i € N and for each ¢; € Tj,
ﬂ(i,ti)(d*) > ﬂ(@ti) (a(mi),ai(i)ti)) for all a(iyti) - A(i,ti) = Ai-
3.11 Proof of the equivalence. “<=": Suppose that s* = (s}) is a Bayesian Nash equilibrium. For each j € IV and each
ty € Ty letaf;, | = si(tj) € Aj. Soa* = (afj,t_)) € A is a Bayesian Nash equilibrium. For any

JENt; €T}
s Ty — Ajyletag,) = si(t;) for each t;. Therefore

Z pi(w | i (w Ui(S*(T(w/))§w/)

w'eN
= Z pi(wW | Ti(w)) - uy (s”{(n(w’)), e sH(m(W), . sfl(Tn(w’));w’)
w'eQ
* * * L0
=D pil | Ti(w)) s (a(l-ﬂ(w’))’ s Mm@y A (@) Y )
w'eN
= (i (w)) (@)
2 Uiy (w) (au,ti)va’i(m))
= D> pilw [ 7w i(a?l,mw'))w--’a(z:n(w'»v--wa?n,mw))?‘”’)
w'eN
= > il | i) wi (ST W), si (T (@), ()i
w’'eN
= u;(s;, s7;;w)
“=": Here we require 7; is onto for each ¢ € N in addition. Suppose that a* = (az‘j tj)) is a Bayesian Nash
equilibrium. For each j € N, let s7: T; — A; be as follows, Cp (t;) = afj7tj). For any a(;4,) € fl(i,ti), let
si: Ty — A; be as follows, s;(t;) = a(,). For any t;, since 7;: @ — T; is onto, there exists w, such that
Ti(w) = ti.
* * * i
Ut ) Z pi(w < a, Tl(w/)y...,a(i’ﬂ,(w,)),...,a(nﬁm(w,)),w)
w'eN
= 3w | @) i (ST @) s (@), i (W) )
w'eN
= ui(s™;w)

> Ui(si, 5% 5 w)

=Y i | Tl i(s;(ﬁ(w/)),...,si(n(w/)),...,s;(Tn(w'));w’)

w’eN

= > P 1 7)) i (s Ao+ Tl i)
w'eN

= U(i,t:) (a(m), ai(i,ti))
O
BF"  3.12 For applications we often use the following simple version of Bayesian game, denoted by (N, (4;), (T3), (u;), (p:)):

« aset N of players.

« aset A; of actions available to player i.
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o aset T; of signals/types.

o u;j(ay,ag,...,an;ty,ta, ..., ty,) is ’s payoff function.

o each player i has a belief p;(- | ¢;) on T—; conditional on the signal ¢; he receives.
BE" 313 A strategy of i is a function s;: T; — A;.

s* is a Bayesian Nash equilibrium of the Bayesian game if and only if for each ¢ € N, and for each t; € T},

ﬂl(s*,tz) Z ﬂl—(ai,s* tz) for all a; € Ai,

—i»
where

U;(s3t;) = Be_, ui(siti), s—i(t—i); ti, t—4)

= > piltoi [ t) - ui(si(ta), sa(ta), - sn(tn)itist—s).

t_;€T_;

Moreover, if the players have a common prior p on 7', then

p(t—i,t;) _ p(t—i, t;)
p(ti) Zt/_ieT/_i p(t;.ti)

pit—i | ti) =

That is, no player wants to change his strategy, even if the change involves only one action by one type.

K& 3.14 A Bayesian game (N, Q, (4;), (1), (), (pi), (u;)) has a common prior if p; = p; foralli,j € N.

Alternatively, a posterior belief system (py (- | -),p2(- | -),...,pn(: | -)) is generated by a common prior if there
exists a probability measure p such that for any¢ € N,any £ C Qand anyw € €,

p(E) = piE | 7i(w)) - pw).

weN

Note that there may be multiple common priors.
3.15 Example [JR Exercise 7.20].

(i) Suppose that p is a common prior in a game of incomplete information assigning positive probability to every
joint type vector. Show that if some type of some player assigns positive probability to some type, ¢;, of another
player ¢, then all players, regardless of their types, also assign positive probability to type ¢; of player <.

(ii) Provide a three-player game of incomplete information in which the players’ beliefs can not be generated by
a common prior that assigns positive probability to every joint vector of types.

(iii) Provide a two-player game of incomplete information in which the players’ beliefs can not be generated by
a common prior that assigns positive probability to every joint vector of types and in which each player,

regardless of his type, assigns positive probability to each type of the other player.

3.3 Examples

3.16 Example [G Exercise 3.2]: Cournot competition under asymmetric information.

Consider a Cournot duopoly operating in a market with inverse demand P(q1, g2) = a — g1 — g2, where g; is the

quantity chosen by firm . Both firms have total costs ¢;(¢;) = cqg;, but demand is uncertain: it is high (¢ = ay)
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with probability § and low (@ = ar,) with probability 1 —0. (Assume ag > ay, > ¢ > 0.) Furthermore, information
is asymmetric: firm 1 knows whether the demand is high or low, but firm 2 does not (however, firm 2 knows the
probability ). All of this is common knowledge. The two firms simultaneously choose quantities. Let g1 ;7 denote
the quantity chosen by firm 1 if it is type H (in other words, if firm 1 knows a = ay), g11, denote the quantity

chosen by firm 1 if it is type L (in other words, if firm 1 knows a = ar,).

The strategy spaces are {q17 | 0 < qum < apm}, {qir |0 < qip <ar},and {g2 | 0 < g2 < bagy + (1 —O)ar}.
Assume 3(ar, — ¢) > (fag + (1 — 0)ar — ¢) (roughly speaking, az and ar, are not too far from each other).

Find all the Bayesian Nash equilibria of this game.

Answer. (i) Firm s action space is {¢ | ¢ > 0}.

(ii) Firm 1’s type space Th = {H, L}; Firm 2 has only one type.

(iii) Strategy space: S1 = {(q1#,q12) | ¢1m, 1z > 0}, and Sy = {g2 | g2 > 0}.

(iv) Suppose that ((¢]f,¢71.), ¢5) is a Bayesian Nash equilibrium, then by definition we will have:

o If the demand is high, firm 1 will choose g} ;; to maximize its payoft
qiulag —c— g5 — quul,
which is a concave function, and hence
_ag —Cc— %

Ty = —= 3.1
e B (3.1

o Ifthe demand is low, firm 1 will choose ¢} to maximize its payoft
qiLlar —c—gq5 — qirl,
which is a concave function, and hence
o Rk d (3.2)
« Firm 2 does not know the exact type of the demand, so it will choose ¢; to maximize its expected payoft
Og2lan — ¢ = qiy — g2l + (1 = O)qelar — ¢ — qif, — ¢2],

and hence o( )4 (1 B) . )
ayg — —0)(ar — —c
q; _ H qu 2 L Q1L . (3.3)

Combining Equations (3.1), (3.2) and (3.3), we get

achiﬁaH+(170)aLfc

QTH: 2 6 )
. ap —c¢  Bag+ (1—0)ar — ¢
q1, = 9 - 6 )
. bag+(1—-0)ar—c
Q2 = 3 '

O

3.17 Example [G Exercise 3.3]: Consider the following asymmetric-information model of Bertrand duopoly with differ-

entiated products. Demand for firm ¢ is ¢;(p;, pj) = a — p; + b; - p;. Costs are zero for both firms. The sensitivity
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of firm ¢’s demand to firm j5’s price is either high or low. That is, b; is either by or by, where by > by, > 0. For each
firm, b; = by with probability ¢ and b; = b;, with probability 1 — 60, independent of the realization of b;. Each
firm knows its own b; but not its competitor’s. All of this is common knowledge. What are the action spaces, type
spaces, beliefs, and utility functions in this game? What are the strategy spaces? Assume that 0by + (1 —0)br, < 2.
Find the pure-strategy Bayesian Nash equilibria of this game.

Answer. (i) Firm ¢’s action space: A; = [0, 00).
(if) Firm ¢’s type space: T; = {H, L}.
(iii) Firm ¢’s beliefs: 0H + (1 — 6) L.
(iv) Firm ¢’s strategy space: S; = {(pim, pir) | pim, pir, € Ai}-
(v) Firm ¢s utility function (for type t): (a — pit + by (0pjr + (1 — 0)p;1) ) pis-
(vi) Fortypet = H, L, firm ¢’s maximization problem is
max m;; = (a —pit + b (Opjm + (1 — G)ij))pit.

Pit

By first order condition, a — 2p;; + b¢(0pjr + (1 — 0)p;r) = 0. Thatis, fori = 1,2,

11
pirr = sa+ b (Op;m + (1 —0)p;1),

2 2
1 1
pip = 5a + §bL(9ij +(1—-0)p;r).

Letb = 0by + (1 — 0)by,. Then, we have

1 1 1
pig = —a+ —abg + —bby(Op;im + (1 — Opir),

2 4 4
1 1 1
piL = ia + ZabL + beL(epiH + (1 — e)piL).

Therefore, fori =1, 2,

fa(1+ 3by) + 2ab(by — br)

PiH =

_ %bQ )
_ 3a(l+ 3b) — Sab(by —br)
DiL = 1— %b2

3.18 Example [G Exercise 3.4]: Find all the Bayesian Nash equilibria in the following Bayesian game:

« Nature determines whether the payoffs are as in Game 1 or as in Game 2, each game being equally likely.

L R L R
T1|1,1]0,0 T 10,0 0,0
B |10,0]0,0 B 0,022

Game 1 Game 2

o Player 1 learns whether nature has drawn Game 1 or Game 2, but player 2 does not.

« Player 1 chooses either T or B; player 2 simultaneously chooses either L or R.
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« Payoffs are given by the game drawn by nature.

Answer. + There are two players: player 1 and player 2;
o Typespaces: T1 = {1,2},and T> = {{1,2}};
« Believes: player 1’s belief on player 2’s type is 1 on {7, B}, and player 2’s belief on player 1’s types is 1/2 on 1
and 1/2 on 2;

o Action spaces: A1 = {T, B}, and Ay = {L, R};
o Strategy spaces: S; = {T'T,TB, BT, BB}, and Se = {L, R}.

Now we will find the best-response correspondence for each player and each associated type: let a1, as be player

I’s actions in Game 1 and Game 2, respectively, b player 2’s action.
o If Game 1 is drawn by Nature, then player 1’s best-response correspondence is

(T},  ifb=L;

aj(b) =
{T,B}, ifb=R.

o If Game 2 is drawn by Nature, then player 1’s best-response correspondence is

{T,BY, ifb=1L;

as(b) =
() (B}, ifb=R.

o Since player 2 does not know which game is being drawn, he will choose b to maximize his expected payoft.

The following table is player 2’s expected payoff table:

L R
TT [1/2] 0
TB[1/2] 1
BT [0 [ 0
BB[ 0 | 1

Thus we get player 2’s best-response correspondence:

{L}, ifarag =TT
{R}, ifajay = T'B;
{L,R}, ifajas = BT}
{R}, ifajas = BB.

b* (al, (LQ) =

Therefore, by definition, we will get all the Bayesian Nash equilibria: (7T, L), (T'B, R) and (BB, R). The reason

is as follows:

o If player 2 plays L, then player 1 must play 7" in Game 1 (and player 1 is indifferent between 7" and B in Game
2). Note that, if player 1 plays B in Game 2, then player 2 must play R.
So, given that player 2 plays L, the only possible Bayesian Nash equilibrium is (77", L) in this case.

o If player 2 plays R, then player 1 must play B in Game 2 (and player 1 is indifferent between T" and B in Game
1). Note that, R is player 2’s best response for 7'B and BB.
So, given that player 2 plays R, there are two Bayesian Nash equilibria: (T'B, R) and (BB, R).
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O

3.19 Example: The worker has an outside opportunity v known by himself. The firm believes thatv = 6 and v = 10 with
probabilities 2/3 and 1/3 respectively. A wage w = 8is preset by the union. The firm and the worker simultaneously
announce whether to accept or reject the wage. The worker will be employed by the firm if and only if both of them
accept the wage. If the firm accepts the wage, its payoff is 3 if the worker is employed and —1 otherwise. If the firm
rejects the wage, then its payoff is 0 regardless the worker’s action. The worker’s payoft is w if he is employed and v

otherwise. Find all the Bayesian Nash equilibria.

Answer. Let Game 1 and Game 2 be as follows:

Firm Firm
A R A R
Al 83 6,0 A 8,3 10,0
Worker % 511 6.0 Worker % 907 T 10.0
Game l,v =06 Game 2,v = 10

o There are two players: firm and worker;

o Type spaces: Ty = {{1,2}},and T\, = {1,2};

« Believes: work’s belief on firm’s type is 1 on {1, 2}, and firm’s belief on work’s types is 2/3 on 1 and 1/3 on 2;
o Action spaces: A,, = Ay = {A, R};

Strategy spaces: Sy = {A, R} and S,, = {AA, AR, RA, RR}.

Now we will find the best-response correspondence for each player and each associated type: let a; and a2 be

worker’s actions in Game 1 and Game 2, respectively, b firm’s action.
o If Game 1 is drawn by Nature, then worker’s best-response correspondence is

(A},  ifb=A;

ai(b) =
(AR}, ifb=R.

o If Game 2 is drawn by Nature, then worker’s best-response correspondence is

{R}, ifb= A

az(b) =
{A,R}, ifb=R.

o Since firm does not know which game is being drawn, it will choose b to maximize its expected payoff. The

following table is firm’s expected payoft table:

Firm
A R
AA | 3 0
AR [ 5/3] 0
Worker RA[1/3] 0
RR | -1 0
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Thus we get firm’s best-response correspondence is

{4}, ifajas = AA;
{4}, ifajaz = AR;
{A}, ifajas = RA;
{R}, ifajaz = RR.

b* (al, a2) =

Therefore, by definition, we will get all the Bayesian Nash equilibria: (AR, A) and (RR, R). The reason is as follows:

« If firm chooses A, then worker should choose A and R in Game 1 and Game 2, respectively. Note that, if
worker chooses AR, then firm should choose A.

So, given that firm chooses A, the only possible Bayesian Nash equilibrium is (AR, A).

« If firm chooses R, then worker can choose any strategy in each game. Note that, only when worker chooses
RR, R is firm’s best response. So, given that firm chooses R, the only possible Bayesian Nash equilibrium is
(RR,R).

O

3.20 Example: Consider the following Bayesian game.

« Nature selects Game 1 with probability 1/3, Game 2 with probability 1/3 and Game 3 with probability 1/3.

« Player I learns whether Nature has selected Game 1 or not; player II learns whether Nature has selected Game

2 or not.
o Players I and II simultaneously choose their actions: player I either 7" or B, and player II either L or R.

o Payoffs are given by the game selected by Nature.

L R L R L R
T| 0,0 | 6,—1 T1|1,3]0,0 T|2,-2] =22
B| —-1,6| 4,4 B 0,01 3,1 B | —-22|2 -2
Game 1 Game 2 Game 3

All of this is common knowledge. Find all the Bayesian Nash equilibria.

Answer. o There are 2 players: player I and player II;

o Typespaces: Ty = {{1},{2,3}},and T2 = {{1, 3}, {2} };

o Believes: player I's belief on player IT’s types: 2/3 on {1, 3} and 1/3 on {2}; player ITs belief on player I's types:

1/30on {1} and2/3 on {2,3};

o Action spaces: A1 = {T, B}, and 4y = {L, R};

o Strategy spaces: S; = {T'T,TB, BT, BB},and S; = {LL, LR, RL, RR}.
Now we will find the best-response correspondence for each player and each associated type: let a; and a9 be player
I’s actions in Game 1, and Games 2 and 3, respectively, b; and bs player II's actions in Games 1 and 3, and Game 2,

respectively.

o If Game 1 is drawn, then player Is best-response correspondence is

T, ifb = L;
T, ifb, = R.

aj(br) =
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o If Game 1 is not drawn, then by considering the expected payoff, player I's best-response correspondence is

T, ifb1b2 = LL,

T, 1fb1b2 == LR,
a;(ble) =

B, ifbiby = RL;

B, ifbibs = RR.

o If Game 2 is drawn, then player II's best-response correspondence is

L, ifas =T,
R, ifag = B.

bs(az) =

o If Game 2 is not drawn, then by considering the expected payoff, player II's best-response correspondence is

R, ifajas =TT;

x L, ifa1a2 = TB,
b1 (alag) =

R, ifa1a2 = BT‘7

L7 ifalag = BB.

Therefore, by definition, we will get all the Bayesian Nash equilibria: (7T, RL) and (T'B, LR). The reason is as

follows:

o Ifplayer I chooses 7T, then player II should choose RL; on the other hand, 77" is a not best response for RL.
So there is no Bayesian Nash equilibrium when player I chooses T'T".

« If player I chooses T'B, then player II should choose LR; on the other hand, T'B is a not best response for
LR. So there is no Bayesian Nash equilibrium when player I chooses T'B.

« If player I chooses BT, then player II should choose RL; on the other hand, BT is not a best response for
RL. So there is no Bayesian Nash equilibrium when player I chooses BT

« If player I chooses BB, then player II should choose LR; on the other hand, BB is not a best response for
LR. So there is no Bayesian Nash equilibrium when player I chooses BB.

O

3.21 Example: Two individuals are involved in a synergistic relationship. If both individuals devote more effort to the
relationship, they are both better off. Specifically, an effort level is a non-negative number, and player 1’s payoft
function is e (1 4 ez — e1), where e; is player is effort level. For player 2 the cost of effort is either the same as that
of player 1, and hence her payoff function is given by e5(1 + e; — e2), or effort is very costly for her in which case
her payoff function is given by es(1 + e; — 2e5). Player 2 knows player 1’s payoff function and whether the cost of
effort is high for herself or not. Player 1, however, is uncertain about player 2’s cost of effort. He believes that the
cost of effort is low with probability p, and high with probability 1 — p, where 0 < p < 1. Find the Bayesian Nash

equilibrium of this game as a function of p.

Answer. (i) There are two players;
(ii) Action spaces: A3 = Ap = [0, 00);
(iii) Type spaces: Ty = {{H,L}},and To = {H, L};
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(iv) Strategy spaces: S1 = {e1 | e1 > 0}, and So = {(eam, ear) | e2m, €21 > 0}.
(v) Let (e, e5p, €5;) be a Bayesian Nash equilibrium, then we will have:
« Player 1 does not know the exact type of the cost of effort, so he will choose e} to maximize his expected
payoff
pxe(l+ey —e)+(1—p)xe(l+ey—e),

and hence . .
_ 1t+pey + (1-plesy

1 34
. . (3.4)
« For player 2, if the cost of effort is high, then player 2 will choose €3 ;; to maximize his payoft
€2H(1 + 6){ - 2€2H),
and hence )
x te
= —. 3.5
« For player 2, if the cost of effort is low, then player 2 will choose e to maximize his payoff
ear(1+e€j —e2r),
and hence ]
. lte
€or, = Tl (36)
Solving Equations (3.4), (3.5) and (3.6), we will have
UL R B
1_7_p7 2H_7_p7 2L 7_p
O

3.22 Example: There are 2 players who were at the scene where a crime was committed. But neither player knows whether
she has been the only witness to the crime, or whether there was another witness as well. Let 7 be the probability
with which each player believes the other player is a witness. Each player, if she is a witness, can call the police or

not. The payoff to Player i is 2/3 if she calls the police, 1 if someone else calls the police, and 0 if nobody calls.

Question 1: Write down each player’s types and strategies.

Answer. Since each player knows that he is in the crime scene, each one has only one type: player 1’s type is “Player
1 is a witness”, and player 2’s type is “player 2’s type is a witness”. There is no possibility that they are not in the crime

scene.!

However, they don’t know whether the other person is also in the crime scene or not. Hence, what they are uncertain

about is the other player’s type.

Each player i has one types: ¢; = “on the scene”. For 7 € [0, 1], each player 7 has two strategies C' (call) and N (not
call). O

Question 2: For each value of 7w € [0, 1], find the Bayesian Nash equilibria.

Answer (1st method). The story can be formulated as the following Bayesian game:

! Another acceptable solution is: player 4’s type space is {player i is a witness, Player i is not a witness}. While there is no available action when
the type is “player 7 is not a witness”.
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« N ={1,2}.

e O ={w; = Y,Y),ws = (Y,N),ws = (N,Y),ws = (N, N)}, where, for example, ws = (N, Y) means
player 1 is not a witness and player 2 is a witness.

o A; = {C, NC}, where C'and NC mean “call the police” and “not call” respectively.

o 71 = {Y} and Ty = {Y'}, where Y means “player 1/2 is a witness”.

emm=Yandmn =Y.

o plwr) = 7% plws) = plws) = w(1 — ), plws) = (1 — )

%7 ifa1 = C,
ui(ar,az,w) =41, ifa; = NC,as = C,w = wy,ws,
0, otherwise,
and
%, ifCLQ = C7
uz(ai,a2,w) =41, ifag =C,a3 = NC,w = w1, ws,
0, otherwise.

Player ¢’s strategy set is identical with his action set A,.

Player i’s payoff when he chooses C' is always 2.

Player 1’s expected payoff when action profile is (NC, C) is 7, and payoff when action profile is (NC, NC') is 0.
Player 2’s expected payoff when action profile is (C, NC) is 7, and payoff when action profile is (NC, NC') is 0.

So we have the following payoft table

Player j
c NC
C|2/3,2/3| 2/3,«
NC | m,2/3 0,0

Player 7

Thus the Bayesian Nash equilibria are as follows:

o If2/3 > m > 0, then there is only one Bayesian Nash equilibrium (C, C);
o If m = 2/3, then there are three Bayesian Nash equilibria (C, C), (C, NC) and (NC, C);
o If1 > 7 > 2/3, then there are two Bayesian Nash equilibria (C, NC) and (NC, C).

Answer (2nd method). Each player ¢ thinks that he is playing the following games:

« Game 1: if player ¢ thinks that player j is also on the spot (probability 7). Then player i’s payoft table is as

follows:
Player j
C N
. C | 2/312/3
Player ¢ N 1 0

Game 1: player j is on the scene



3.3. Examples 63

o Game 2: if player ¢ thinks that player j is not on the spot (probability 1 — 7). Then player ¢ think that he will

get 2/3 if he chooses C, and 0 otherwise, no matter what player j chooses.

Player j
C N
Player 7 jg 2(/)3 2(/)3

Game 2: player j is not on the scene

Therefore, player ¢’s expected payoff is in the payoft table GG1, and the game in fact can be represented by the payoft

table G's.
Player j Player j
¢ N C N
. C 1 2/3]2/3 . C | 2/3,2/3 | 2/3,7
Player ¢ N x 0 Player ¢ N[ m2/3 0.0
Gl G2

Thus the Bayesian Nash equilibria are as follows:

« If2/3 > m > 0, then there is only one Bayesian Nash equilibrium (C, C);
o If 1 = 2/3, then there are three Bayesian Nash equilibria (C, C), (C, N) and (N, C);
o If1 > m > 2/3, then there are two Bayesian Nash equilibria (C, N) and (N, C).

O

3.23 Example: There are n > 2 players. Each player ¢ must simultaneously decide whether to join a team (z; = 1) or
not (x; = 0); hence z = E?:l x; is the size of the team. If player ¢ does not join (so that z; = 0) then ¢ receives a
payoff of zero. If player i joins the team (so that z; = 1) then ¢ pays a cost of ¢;. If all n players join the team (so that
z = n) then each player enjoys a benefit of v. Hence player i’s payoff is u; = v — ¢; when z = n, and u; = —z;¢;

when z < n. Suppose thatv > ¢; > 0.

Question 1: Suppose that the costs ¢y, . . . , ¢, are common knowledge. Find all Nash equilibria.
Answer. For player i, given other players’ strategies, his best-response correspondence is

0, if.%‘,i 75’[1— 1

xi(x_;) = , wherex_; = ij.
It is easy to see that there are two Nash equilibria (0,0, ...,0) and (1,1, ...,1). The reason is as follows:

o If player 1 chooses 0, then each of other player should choose 0. Note that 0 is player 1’s best response when

each of other players chooses 0;
So, given that player 1 chooses 0, the only possible Nash equilibrium is (0, 0, . . ., 0) in this case.
« If player 1 chooses 1. Note that 1 is player 1’s best response only when each of other players chooses 1;

So, given that player 1 chooses 1, the only possible Nash equilibrium is (1,1, ..., 1) in this case.
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Question 2: Now, suppose that information is incomplete. Player ¢’s cost realization ¢; is known only to ¢; players’
costs are drawn independently from the same uniform distribution: ¢; ~ UJ[0, ). Find the symmetric Bayesian

Nash equilibrium.

Answer. o There are n > 2 players;

o Type spaces: T; = {c; | ¢; € [0,¢]};

o Action spaces: A; = {0,1};

o Strategy spaces: S; = {functions from T; to 4;}.
Suppose x(c¢;): T; — A; for each player i constitutes a symmetric Bayesian Nash equilibrium. Since we know that
when the cost becomes larger, the more possibility player will choose 0. So x can be characterized by y € [0, ¢,

that is,

( ) 1; ifci € [an],
z(c;) =
0, otherwise.

For player 4, when c¢; is drawn, given other players’ strategies x(c; ), player ¢’s expected payoff is

(w/e)" v —c)+[1—(y/e)" (~c), ifx(e)
0, if x(c;)

Y

1
0.

Thus player i chooses 1 if and only if (y/¢)" (v — ¢;) + [1 — (y/&)" "] (—¢;) > 0, that is
(y/o" o= e

o If (y/&)" v > ¢ theny = ¢
o If (y/2)" 'v < ¢, then (y/¢)"'v = y. We consider the following two cases.

- Ifn = 2,then £ - v = y. Since v > ¢, this equation has only one solution y = 0.

1 n—1
~ Ifn > 2, then this equation has two solutions: y = Oory = (1)72¢&"=2. Moreover,y = (1)7-2¢cn—=2 <

¢if and only if ¢ < v. Thus, for both solutions the condition (y/¢)"~1v = y < ¢ is satisfied.

To summarize,

e ifn=2,theny =0o0ry =G

o ifn > 2,theny =0,0ry = (1)%26%é ory =¢.

Then (z(c;)), is a symmetric Bayesian Nash equilibrium for
17 ifci S [07 y]7

z(c;) =
0, otherwise,

where y is stated above. O

Example: Exchange game.

A rich, honest, but mischievous father told his two sons that he had placed 10" dollars and 10" ! dollars in two
envelops respectively, wheren € {1,2,...,10}. The father then randomly handed each son one of the two envelops
with a probability 0.5.
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After both sons opened their envelop, his father privately asked each son whether he wanted to switch his envelop
with the one his brother had. If both sons agreed, then the envelops were switched. Otherwise, each son kept the

original envelop he received.

Represent the sons’ problem as a Bayesian game, and find all the Bayesian Nash equilibria.

Answer. We can formulate this game as follows:

o Two players: son 1 and son 2.
e Th=T2=1{0,1,2,...,10}.

o A; ={Y, N}, where Y means that son ¢ wants to switch.

« Payoft:
10t-¢, ifay =as =Y,
ui(ar, az;tit—;) =
10%,  otherwise.
o Beliefs:
lo(t; +1), ift; =0,
plt—i|ti)=q3o(ti—1)+1o(t;+1), ift;=1,2,...,9,
lo(t; — 1), ift; = 10.
e 5;: T — Al

There are two kinds of Bayesian Nash equilibrium strategies:

Y, ift;=0
N, otherwise

Hence, the switch of envelope would never take place.

The reason is as follows:

(1) Ifason received the envelope of $101Y, the son would definitely say “no” (since he knew the other must receive
the envelope of $1019~!, Therefore, at an equilibrium, $101°-type player must say “no”.

010—1

(2) Given that $10'°-type player says “no’, $1 -type player would realize that he is now in the position of

$10'°-type player and, thus, should say “no”
(3) Repeat the argument. For any integer n > 0, $10™-type player should say “no” at an equilibrium

(4) Ifn = 0, $10°-type player would be indifferent between saying “no” or saying “yes”

3.25 Example [OR Exercise 28.2]: Exchange game.

Each of two players receives a ticket on which there is a number in some finite subset S of the interval [0, 1]. The
number on a player’s ticket is the size of a prize that he may receive. The two prizes are identically and independently
distributed, with distribution function F'. Each player is asked independently and simultaneously whether he wants
to exchange his prize for the other player’s prize. If both players agree then the prizes are exchanged; otherwise each
player receives his own prize. Each player’s objective is to maximize his expected payoff. Model this situation as a
Bayesian game and show that in any Nash equilibrium the highest prize that either player is willing to exchange is

the smallest possible prize.
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Answer. In the Bayesian game there are two players, say N = {1, 2}, the set of states is 2 = S x .5, the set of actions

of each player is { Exchange, Don'texzchange}, the signal function of each player i is defined by 7;(s1, s2) = s;,

and each player’s belief on €2 is that generated by two independent copies of F'. Each player’s preferences are repre-

sented by the payoff function u;((X,Y),w) = w; if X =Y = Exchange and u;((X,Y),w) = w; otherwise.

Let  be the smallest possible prize and let M; be the highest type of player ¢ that chooses Exchange. If M; > z

then it is optimal for type x of player j to choose Exchange. Thus if M; > M; and M; > x then it is optimal for

type M; of player i to choose Don’texchange, since the expected value of the prizes of the types of player j that

choose Exchange is less than M;. Thus in any possible Nash equilibrium M; = M; = x: the only prizes that may

be exchanged are the smallest.

Bilateral trading (Double auction)

Example [G Section 3.2.C]: Double auction.

There are two players: a buyer and a seller.

O

The buyer’s valuation for the seller’s good is vy, the seller’s is vs. The valuations are private information and are

drawn from certain independent distribution on [0, 1].

The seller names an asking price ps, and the buyer simultaneously names an offer price p,. If p, > ps, then trade

occurs at price p = mfs; if pp < ps, then no trade occurs.

Buyer’s payoff is
’Ub_%a ifprpsa
0[Py, ps | ve] =
0, if pp < ps.
Seller’s payoft is
% — Vs, lfpb Zpsa
Ws[pbaps | Us] -
0, if pp < ps.

Question 1: Find all the linear Bayesian Nash equilibria.

Answer. Letp;(v;) = a; + ¢;v;, 7 = 8, bbe players’ linear strategies, where a; > 0 and ¢; > 0.

Given seller’s strategy ps(vs), buyer’s expected payoff is

+ S US
Ey, 7 [po, Ds(vs) | vp] = / vy — M dv, —l—/ 0dv,
po<ps(vs)<as+cs

as<ps (Us)gpb 2
Pob+u U Pp—as 3 1
- vy — d— = Vb= SPb— 7 0s | -
as<u<py 2 Cs Cs 4 4

Maximizing E,,, m[pp, ps(vs) | vp] yields buyer’s best response

2 g
po(vp) = gvb + 357

which implies ¢;, = % and ap, = %

Analogously, given buyer’s linear strategy py, (v ), seller’s expected payoft is

ap+cp —ps (3 ap + ¢
Ey, o [pss py(v3) | 5] = = Ps ( + _ US) .

Cp Zps 4
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Maximizing E,, 7s[ps, po(vs) | vs] yields seller’s best response

2 ap + ¢

ps(vs) = gvs + 3 )

which implies ¢; = % and a, = ’“’Tm

Therefore, the linear equilibrium strategies are

2 1
po(vp) = Zvp +

) = 2o, 4 1
3Ty PslUs) = 3 o

The trade occurs if and only if p, > ps, i.e., if and only if

1
vavs—FZ.

O

Remark: Myerson and Satterthwaite (Journal of Economic Theory, 1983) show that, for the uniform valuation distri-
butions, the linear equilibrium yields higher expected gains for the players than any other Bayesian Nash equilibria
of the double auction. This implies that there is no Bayesian Nash equilibrium of the double auction in which trade

occurs if and only if it is efficient (i.e., if and only if v, > vs).

Question 2: The double auction above has the linear equilibrium strategies:

(04) = 20y + =, pylvg) = 20y +
pbb—3b 12»]935—35 4

Note that pp(vp) > vp if vy < %. This means that some types (v, < %) of the buyer offer such prices which may
probably lead to negative payoffs. Does this equilibrium look reasonable? Can you prove that actually no trade

occurs with negative payoffs to any player? (You can find the similar situation for the seller.)

Answer. When they choose the following strategies

() 2 " 1 (vs) 2 n 1
vp) = —Up + — Vg) = =V + —,
Pb Vb 3 b 1y Ps(Us 3Vs T
then payofs are
2 1 1 1 2 1.
Zup — =0 — =, if trade occurs; zvp — Vs + =, if trade occurs;
=243 3Us 7 % andm, = { 3 3Us T §
0, otherwise. 0, otherwise.

It suffices to show %vb - %US - % and %vb - %vs + % can not be negative, when trade occurs.

If %vb — %vs — % < 0, since trade occurs when vy, > vg + %, we have v, < 0, which is a contradiction.

If %vb — %vs + % < 0, since trade occurs when vy, > vy + i, we have v, > 1, which is a contradiction. O

Example: Double auction.

Consider the double auction where the seller’s and buyer’s valuations, vs and vy, are uniformly distributed on

[as, Bs] and [, B], respectively. Find the linear Bayesian Nash equilibrium of the game.

Answer. o There are two players: seller (s) and buyer (b);
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o Type spaces: Ty = [as, Bs] and T, = [, B );
o Action spaces: A; = A, = [0,00);

Strategy spaces: S, = {function from T} to A}, and S = {function from T to A };

o Payoff:

pPs+p
us(ps,pb;vsmb) = 2 s Ub(Ps»Pb;Ust) =

0, Py < Ds 0, Po < Ps

Suppose (p%, p; ) is a linear Bayesian Nash equilibrium, where
pa(vs) = as + csvs,  pp(vp) = ap + cpvp.
Note that ag, cs, ap, ¢, are to be determined. Here we should assume cg, ¢;, > 0.
o For seller, when v is drawn, given buyer’s strategy p;, p; (vs) will maximize his expected payoft

E[us(ps, s vs, 0b)]

1 ps + pp () 1

= / — vg dvp + / 0dwvy
By — o Jp, <pi (v0)<pi (Bs) 2 Bo = b Jp; () <pj (v0) <ps

_ 1 Pe Ps + ap + cpvp —v.dv

By —ap Jrema 2 T

b

— 1 (ps"_abv)(ﬂbps_ab
By — ap 2 ° Ch

1 Ds + ap Ds — Qyp Ch Ds — ap Ds — Qyp
R ( 5 —Us> (Bb— o >+4<ﬁb— o )(ﬁb—i- o >1
1 o Ps—an)\ | (psta c ps —ap

By (61) Ch ) ( 2 vs) T (61) - )1

=% (i)ab (coBp — ps + ap) [—vs + %ps + i(ab + Cbﬁb)}

Therefore, by the first order condition,

. 2 1 1
Ds (US) = ZUs+ sap + gcbﬂln

3 3
and hence
=3 a=g(mtaf)
Cs—ga as_3ab ChPb)-

« For buyer, when vj, is drawn, given seller’s strategy p?, pj; (vp,) will maximize his expected payoff

E[uy (p3, o3 vs, vb)]
=
Bs — Qs Jp (as)<pi(vs)<pv

*
s

vy — B2 (US; + P dv, +

/ 0dvg
Bs = s Jpy,<pz (va)<pr (82)

Pp—as

_ L /Cs v _as+csvs+pbdv
_ﬂs_as o b 2 *

b_vsv PbZPs ’Ub_psi;pbv PbZPs

(3.7)
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1 as+pb Py — Gs Cs ;
:B — O —5 'Usdvs
s — Qg a
1 [( as+pb> (pb—as > Cs (pb—as ) (pb—as )
= vp — - - — —as | |/ tas
Bs — as 4 Cs Cg
_ 1 Pp—as oy~ G P G (Pp—as
Bs*as Cs 3 b 2 4 Cs ?

3 1

(pb — a5 — Csas) |:’Ub - Zpb - Z(as + Csas):l

Cs

_Bs_as

Therefore, by the first order condition,

2
pZ(Ub) = U + 505 + 5Cs0,

3 3 3
and hence
-2 = 1( + csevs) (3.8)
Cb—3, ab—g Qg CsQlg ). .
Solving Equations (3.7) and (3.8), we will have
" — Bo 0 — B | as
s 12 4 T T

Example [G Exercise 3.8]: Double auction.

A firm and a worker play a double auction. The firm knows the worker’s marginal product (m) and the worker
knows his or her outside opportunity (v), respectively. In this context, trade means that the worker is employed
by the firm. A wage w is preset by the union. If there is trade, then the firm’s payoff is m — w and the worker’s is
w; if there is no trade then the firm’s payoff is zero and the worker’s is v. Suppose that m and v are independent
draws from a uniform distribution on [0, 1]. The both players simultaneously announce either that they Accept the
wage w or that they Reject that wage. The worker will be employed by the firm if and only if both of them accept
the wage. Given an arbitrary value of w from [0, 1], what is the Bayesian Nash equilibrium of this game? Draw a
diagram showing the type-pairs that trade. Find the value of w that maximizes the sum of the players’ expected

payoft and compute this maximized sum.

Answer. o There are two players: firmer and worker;
o Type spaces: Tt = {m | m € [0,1]},and T}, = {v | v € [0,1]};
o Action spaces: Ay = A,, = {A,R};
o Strategy spaces: Sy = S, = {functions from [0, 1] to {A, R} };
« Payoff functions:
m—w, ifsp(w) = su(v) = A

up(sp(w), sw(v);m,v) = _
0, otherwise.

w, ifsp(w) = s,(v) = A4

v, otherwise.

Uw(sf (U}), Sw (U); m, U) =
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(i) Foranyw € [0, 1], it is easy to see (s}(m), s;,(v)) is a Bayesian Nash equilibrium, where

. A, ifm>w . A, ifw>v
sp(m) = sw(v) =

, .
R, otherwise R, otherwise

(ii) There is trade when (m,v) is drawn if and only if s7(m) = sj,(v) = A, and thus 7' is the trading area in

Figure 3.1.

m

Trading area T'

(L1)

=Y

I
I
I
I
I
I
I
I
|
I
0 w 1

Figure 3.1: Trading area T'

(iii) In the Bayesian Nash equilibrium, the payoff are as follows:

m—w, if(m,v)eT w, if(m,v)eT
ug(m,v) = ) Uy (M, v) = :
0, otherwise v, otherwise

Since m and v are uniformly distributed on [0, 1], we have:

E[uf]:/Ol/oluf(m,v)dvdm://T(m—w)dvdm
E[uw]:/Ol/oluw(m,v)dvdm://devdm—i-//Cvdvdm
://T(w—v)dvdm—i—/ol/olvdvdm

1,1
E[Uf]JFE[Uw}:// (m*’U)d’Udm*{»/ / vdvdm
T o Jo
1 w 1 1 2 1
:/ / (m—v)dvdm—i—//vdvdm:w Wz
w JO o Jo 2 2

Therefore, w* = % is the maximizer of the sum of the expected payoff.

and thus
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3.5

3.29

3.30

3.31

3.32

3.33

3.34

3.6

3.35

3.36

Providing a public good under incomplete information

There are two players, ¢ = 1,2. Players decide simultaneously whether to contribute to the public good, and
contributing is a 0-1 decision. Each player derives a benefit of 1 if at least one of them provides the public good and

0 if none does; player 7’s cost of contributing is c;.

The benefits of the public good—1 each—are common knowledge, but each player’s cost is known only to that
player. However, both players believe it is common knowledge that the ¢; are drawn independently from the same

continuous and strictly increasing cumulative distribution function p on [c, ¢|, where ¢ < 1 < & The cost ¢; is

RIS

player ¢’s “type”

A pure strategy is a function s; : [¢, ¢ — {0, 1}, where 1 means “contribute” and 0 means “not contribute.”

Player 7’s payoff is

w;i(a;, a5, ¢;) = max{a;, a;} — c;a;.
A Bayesian Nash equilibrium is (s}, s3) such that for each player ¢ and every ¢;, the action s (¢;) solves

rr(llaxEcJ u;i(ai, s5(cj), ci)-
i

Let z; £ Prob(s(c;) = 1) be the equilibrium probability that player j contributes.

To maximize his expected payoff, player ¢ will contribute if his cost ¢; is less than 1(1 — z;), which is his benefit
from the public good times the probability that player j does not contribute. Thus

" 1, ifCi<1—Zj7
si(ci) =
0, ife; >1—z.
This shows that the types of player ¢ who contribute lie in an interval [c, ¢}], where ¢f =1 — z;.
Similarly, player j contributes if and only if ¢; € [c, ¢j] where ¢] =1 — 2;.

Clearly c; =1 — z; = 1 — Prob(clec; < ¢}) = 1 — p(c}). Thus cf and c; must both satisfy the equation

¢ =1-p(1-p(c)).

Comments on Bayesian games

Harsanyi (1967-68) argued that a situation in which the players are unsure about each other’s characteristics can
be modeled as a Bayesian game. Accordingly, games of incomplete information are transformed into ones with
imperfect information. Harsanyi also assumed that the prior belief of every player is the same (this assumption is

referred to as Harsanyi’s doctrine).

By “complete information”, we mean that the payoff functions are common knowledge. (applicable for strategic

games and extensive games)
By “perfect information”, we mean that at each move in the game, the player with the move knows the full history

of the play of the game thus far. (applicable for extensive games)

A Bayesian game can be used to model not only situations in which each player is uncertain about the others’

payofs, but also situations in which each player is uncertain about the others’ knowledge.
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Consider a Bayesian game in which
« N ={1,2}.
o Q= {w,wa,ws}.
« the signal functions of two players i = 1, 2 are given by 7 (w1) = 71 (w2) = t1, 71 (w3) = t}, and 7o (w1 ) = ¢,
To(w2) = Ta(w3) = t5.
« player 1s preference satisfy (b,w;) 71 (¢, w;) for j = 1,2 and (¢, ws) Z1 (b, ws) for some action profiles b
and c.
Suppose that the true state is w;. Player 2 knows that the true state is wy, so he knows player 1 prefers b to ¢ in
such a game. Since in state wy, player 1 does not know whether the state is wq or wo, and hence he does not know
whether or not player 2 knows that 1 prefers b to c.
3.37 Can every situation in which the players are uncertain about each other’s knowledge be modeled as a Bayesian
game?
3.38 Assume that the players’ payoffs depend only on a parameter # € ©. Denote the set of possible beliefs of each
player 7 by T;. Then a belief of any player j is a probability distribution over © x T_ ;. The question above is to find
a collection {7 } jc n of sets such that forall ¢ € N,
T. .~ homeomorphism A(@ % T,')
where A(© x T_;) is the set of probability distributions over © x T__;.
A function f: X — Y between two topological spaces (X, T'x) and (Y, Ty') is called a homeomorphism (] )
if it has the following properties:
o fisabijection;
« fis continuous;
« f~1is continuous.
3.39 If so, we can let
Q=0x(Th xTyx---xT,)
be the state space and use the model of a Bayesian game to capture any situation in which players are uncertain not
only about each other’s payoffs but also about each other’s beliefs.
In addition, we call ¢; € T is a Harsanyis type.
3.40 Consider a two-player game, where a space O of states of nature is primitive uncertainty faced by each player.

s =g

S = o1 5 A(STOy

SEI = gl s A(SH) = S 5 A(SIO) 5 A(STH)

SBI = 5B s A(S1) = S1T 5 A(SIO1) 5 A(STH) % A(SE]

Sl = Sl=1 s A(SEY = S0 5 A(ST0y 5 A(STH) x - A(SET)
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Each player has Ist-beliefs, namely a distribution, about the uncertainty.

As the decisions of other players are relevant, so are their 1st-beliefs, since they affect their decisions. Thus a player

must have 2nd-order beliefs about the 1st-beliefs of other players.

For the same reason, a player needs to consider 3rd-order beliefs about the 2nd-beliefs of other players about the

1st-beliefs and so on.

Let T = x22,A(S). We have
T ~homeomorphism A(@ % T),

given any one of the following conditions:

o O is a compact Hausdorff space: Mertens and Zamir (1985);

« O is a Polish space: Brandenburger and Dekel (1993).

These results are valid when there are finite players as well.
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4.1 Preliminary

4.1 An auction is a process of buying and selling goods or services by offering them up for bid, taking bids, and then
selling the item to the highest bidder.

In economic theory, an auction may refer to any mechanism or set of trading rules for exchange. A common aspect
of auction-like institutions is that they elicit information, in the form of bids, from potential buyers regarding their
willingness to pay, and the outcome—that is, who wins what and pays how much—is determined solely on the basis

of the received information.

4.2 The uncertainty regarding values facing both sellers and buyers is an inherent feature of auctions.

« The seller is unsure about the values that bidders attach to the object being sold—the maximum amount each

bidder is willing to pay.

o Private value: each bidder knows the value of the object to herself at the time of bidding. Implicit in this

situation is that no bidder knows with certainty the values attached by other bidder and knowledge of other

bidders’ value would not affect how much the object is worth to a particular bidder.

o Interdependent value: values are unknown at the time of the auction and may be affected by information

available to other bidders.

75
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4.4

4.5

4.6

4.7

o Common value: the value is unknown at the time of the auction but is the same for all bidders.
Auctions should be defined by three kinds of rules:

« rules for bidding
- who can bid, when
- what is the form of a bid
- restrictions on offers, as a function of:
* bidder’s own previous bid
* auction state (others’ bids)
* eligibility (i.e., budget constraints)
* expiration, withdrawal, replacement
« rules for what information is revealed
- when to reveal what information to whom
« rules for clearing

- when to clear

* at intervals

* on each bid

* after a period of inactivity
- allocation (who gets what)

- payment (who gets what)

The open ascending price or English auction is the oldest and perhaps most prevalent auction form. The word
auction itself is derived from the Latin augere, which means “to increase” (or “augment”), via the participle auctus

€« : »
(“increasing”).

In one variant of the English auction, so-called Japanese auction, the sale is conducted by an auctioneer who begins
by calling out a low price and raises it, typically in small increments, as long as there are at least two interested

bidders. The auction stops when there is only one interested bidder.

One way to formally model the underlying game is to postulate that the price rises continuously and each bidder
indicates an interest in purchasing at the current price in a manner apparent to all by, say, raising a hand. Once a
bidder finds the price to be too high, she signals that she is no longer interested by lowering her hand. The auction
ends when only a single bidder is still interested. This bidder wins the object and pays the auctioneer an amount

equal to the price at which the second-last bidder dropped out.

The Dutch auction is the open descending price counterpart of the English auction. It is not commonly used in
practice but is of some conceptual interest. Here, the auctioneer begins by calling out a price high enough so that
presumably no bidder is interested in buying the object at that price. This price is gradually lowered until some

bidder indicates her interest. The object is then sold to this bidder at the given price.

The sealed-bid first-price auction: Bidders submit bids in sealed envelopes; the person submitting the highest bid
wins the object and pays what she bid.

The sealed-bid second-price auction. As its name suggests, once again bidders submit bids in sealed envelopes; the

person submitting the highest bid wins the object but pays not what she bid but the second-highest bid.
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4.8

4.2

4.9

4.10

4.12

4.13

4.14

4.15

4.3

4.16

4.17

The Dutch open descending price auction is strategically equivalent to the first-price sealed-bid auction. When
values are private, the English open ascending auction is equivalent to the second-price sealed-bid auction in a

weaker sense. (Exercise)

The symmetric model

There is a single object for sale, and IV potential buyers are bidding for the object.

Bidder i assigns a value of X; to the object—the maximum amount a bidder is willing to pay for the object.

Each X; is independently and identically distributed on some interval [0, w] according to the increasing cumulative
distribution function F. It is assumed that ' admits a continuous density f = F”, F((z) = [ f(t) dt, and has full
support. It is assumed that E[X;] = [ # dF(z) = [« f(z) dz < oo.

Bidder ¢ knows the realization x; of X; and only that other bidders’ values are independently distributed according
to .

Bidders are risk neutral; they seek to maximize their expected profits.

All components of the model other than the realized values are assumed to be commonly known to all bidders. In

particular, the distribution F’ is common knowledge, as is the number of bidders.

It is also assumed that bidders are not subject to any liquidity or budget constraints. Each bidder ¢ has sufficient
resources so if necessary, she can pay the seller up to her value x;.
A strategy for a bidder is a function 3;: [0,w] — R, which determines her bid for any value.

We will typically be interested in comparing the outcomes of a symmetric equilibrium—an equilibrium in which

all bidders follow the same strategy—of one auction with a symmetric equilibrium of the other.

Second-price sealed-bid auction
In a second-price auction, each bidder submits a sealed bid of b;, and given these bids, the payofts are:

r; —max,z; b;, ifb; > max,; b;,
L (by, by, i) = J#i Yj J#i Yj
0, if b; < max;; bj.

We also assume that if there is a tie, so b; = max;; b;, the object goes to each winning bidder with equal probability.

Proposition: In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to 5"(z) = .

Proof. (1) Consider bidder 1, say, and suppose that p; = max;; b; is the highest competing bid.
(2) Bybidding x; , bidder 1 will win if z; > p; and notif 1 < p; (if ;1 = p; , bidder 1 is indifferent between
winning and losing).
(3) Suppose, however, that she bids an amount 27 < 5.
o If py > x1 > 21, she still loses.
o If x1 > 21 > p1, then she still wins, and her profit is still z; — p;.

o If x1 > p1 > 21, then she loses, whereas if she had bid x1, she would have made a positive profit.
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4.18

4.19

4.4

4.20

4.21

Thus, bidding less than x; can never increase her profit but in some circumstances may actually decrease it.
(4) A similar argument shows that it is not profitable to bid more than z;.

O

Remark: It should be noted that the argument in Proposition 4.17 relied neither on the assumption that bidders’
values were independently distributed nor the assumption that they were identically so. Only the assumption of

private values is important, and Proposition 4.17 holds as long as this is the case.

Varijation: The biddersi = 1,2, ..., N simultaneously submit bids in R, , and the object is given to the bidder with
the lowest index among those who submit the highest bid, in exchange for a payment. Each player ¢ knows her own
valuation z; € [0, w] but is uncertain of the other bidders’ valuations. Assume that each bidder believes that every

other bidder’s valuation is drawn independently from the same distribution F' over [0, w].
The set of actions of each player i is [0, c0) (the set of possible bids) and the payoff of player 7 is

Z; 7m£?(bj, if b; > b17...,bi_1, and b; > b,‘,_;,_l,...,bn,
J7F

0, otherwise.

Then for any player ¢ the bid b; = z; is a dominant action.

Proof. To see this, let p; be another action of player s.
o If max;.; b; > z;, then by bidding p; player ¢ either does not obtain the object or receives a non-positive
payoff, while by bidding x; she guarantees herself a payoft of 0.
o If max;; b; < x;, then by bidding x; player 7 obtains the good at the price max;; b;, while by bidding p;

either she wins and pays the same price or loses.

First-price sealed-bid auction
In a first-price auction, each bidder submits a sealed bid of b;, and given these bids, the payoffs are

x; —b;, ifb; > max;; b;
I (b, b, ;) = 7
0, ifb; < max;-£; bj

As before, if there is more than one bidder with the highest bid, the object goes to each such bidder with equal
probability.
In a first-price auction, equilibrium behavior is more complicated than in a second-price auction.

 No bidder would bid an amount equal to her value, since this would only guarantee a payoft of 0.

« Fixing the bidding behavior of others, at any bid that will neither win for sure nor lose for sure, the bidder
faces a simple trade-off: an increase in the bid will increase the probability of winning while, at the same time

reducing the gains from winning.
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4.22 Assumption: It is expected that a bidder bids higher if she has higher private value, that is, the bidding strategy is

assumed to be an increasing function.
4.23 Example [G Exercise 3.6]: N-player first-price sealed-bid auction (risk-neutral, uniform distribution, symmetric
Bayesian Nash equilibrium).

Consider an N-player first-price sealed-bid auction in which the bidders’ valuations are independently and uni-

formly distributed on [0, 1]. Find a symmetric Bayesian Nash equilibrium.

Part 1: Formulation.

o There are N players;
o Type spaces: T; = [0, 1], that is, each x; € T; is a valuation;
o Action spaces: A4; = [0, 1], that is, each b; € A; is a bid;

Strategy spaces: S; = {8l: T; — A; };

o Payoff:
IL; (s, b—s, ;) = “T_bi, if b; is one of the k largest bids;
0, otherwise.
« Aim: find a symmetric Bayesian Nash equilibrium (3}, 85,...,8L), where 8} = 8} = ... = gL = .

Part 2: Heuristic derivation of symmetric equilibrium strategy.

(1) Suppose that bidder j # 1 follow the symmetric, increasing, and differentiable equilibrium strategy 5. Sup-

pose bidder 1 receives a signal, X; = x, and bids b. We wish to determine the optimal b.

(2) Notice that it can never be optimal to choose a bid b > /3(1), since in that case, bidder 1 would win for sure

and could do better by reducing her bid slightly, so she still wins for sure but pays less.

(3) A bidder with value 0 would never submit a positive bid, since she would make a loss if she were to win the

auction. Thus, we must have 5(0) = 0.

(4) Bidder 1 wins the auction whenever she submits the highest bid—that is, whenever max;; 5(X;) < b. Her

expected payoff is therefore
N-1

(B7H0)" x (z—b).

(5) Maximizing this with respect to b yields the first-order condition:

B 1 N-2 1 b — (31 N-1 _
V=00 gy e - (7)) =
After rearrangements, we have
(N-D@=b) .
CCRID) I

(6) Atasymmetric equilibrium, b = 3(z), and thus we have the following differential equation

(N = 12N — (N = 1)B(2)a" "% = 2715/ (),
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or equivalently,

d _ -
ﬁ(xN "B(z)) = (N - 1)z !
(7) Since 5(0) = 0, we have
N-1
Bla) =~
Remark: The derivation of 3 is only heuristic: We have not formally established that if the other N — 1 bidders
follow §, then it is indeed optimal for a bidder with value x to bid 8(x). O

Part 3: Prove (3 to be a symmetric equilibrium strategy.

(1) Suppose that all but bidder 1 follow the strategy 5. We will argue that in that case it is optimal for bidder 1 to

follow 3 also.

(2) Since f is an increasing and continuous function, in equilibrium the bidder with the highest value submits

the highest bid and wins the auction.

(3) Itis not optimal for bidder 1 tobida b > (1) = &=L,

(4) Suppose bidder 1 bids an amount b < 3(1) = &=L Denote by z = 37! (b). Then bidder 1’s expected payoff

from bidding 3(z) = b when her value is z is as follows:

_ N -1
N—-1 72]\[.

—p) = N1
X(x—b)y=z"""z N

1(b,z) = (67'())

(5) We thus obtain that

1(B(0).2) ~ T(B(2).2) = (= —0):% " — PV lay >0

regardless of whenever z > x or z < z.

Remark: The phenomenon that 8'(z) = Y=Lz < 2 is called bid shading. As the number of bidders increases, each

bidder shades less. For each bidder, there is both an incentive to bid higher, so that she wins with higher probability
(s71(z) increases), and an incentive to bid lower, so that when she wins, she pays less and benefits more (z — b

increases). Bid shading is exactly the result of such a trade-off. O

4.24 Heuristic derivation of symmetric equilibrium strategy for general model

(1) Suppose that bidder j # 1 follow the symmetric, increasing, and differentiable equilibrium strategy 5" = .

Suppose bidder 1 receives a signal, X1 = x, and bids b. We wish to determine the optimal b.

(2) Notice that it can never be optimal to choose a bid b > 5(w), since in that case, bidder 1 would win for sure

and could do better by reducing her bid slightly, so she still wins for sure but pays less.

(3) A bidder with value 0 would never submit a positive bid, since she would make a loss if she were to win the

auction. Thus, we must have 3(0) = 0.

(4) Bidder 1 wins the auction whenever she submits the highest bid—that is, whenever max;; 5(X;) < b. Since
B is increasing, max; 1 5(X;) = f(max;21 X;) = B(Y1), where Y7 = Yl(Nfl), the highest of N — 1 values.
Her expected payoft is therefore

G(67' (1) x (z ~b),

where G is the distribution of Y7.
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(5) Maximizing this with respect to b yields the first-order condition:

g(B71(b))

IOy — a8 (b)) = .
ﬁ/(ﬂfl(b)) ( b) G(ﬂ (b)) 0, (4.1)

where g = G’ is the density of Y7.

(6) Atssymmetric equilibrium, b = 8(x), and thus Equation (4.1) yields the differential equation

G(2)B'(z) + g(x)B(x) = xg(x), (4.2)
or equivalently,
£ (@) = rgl)
(7) Since 5(0) = 0, we have
x:L ’ dy =E[Y7 | Y1 < 7] (4.3)
p(x) G(a:)/o yg(y) dy 1| Y1 <l :

The last equality holds due to the conditional probability.

Remark: The derivation of /3 is only heuristic because Equation (4.2) is merely a necessary condition: We have not
formally established that if the other N — 1 bidders follow 5, then it is indeed optimal for a bidder with value x to
bid 5(z).

4.25 Proposition: Symmetric equilibrium strategies in a first-price auction are given by
B(x) = E[Y1 | Y1 <], (4.4)
where Y] is the highest of N — 1 independently drawn values.

Proof. (1) Suppose that all but bidder 1 follow the strategy ' = /3 given in Equation (4.4). We will argue that in
that case it is optimal for bidder 1 to follow 3 also.

(2) Since g is an increasing and continuous function, in equilibrium the bidder with the highest value submits

the highest bid and wins the auction.
(3) Itis not optimal for bidder 1 tobida b > S(w).

(4) Suppose bidder 1 bids an amount b < 3(w). Denote by z = 371(b). Then bidder 1’s expected payoff from
bidding 8(z) = b when her value is x as follows:

(b, ) = G(B(b)) x (x—b)
ZG(Z)w G(2)E[Y1 | Y1 < 4]
=G(2)z — [, yg(y)dy By Equation (4.3)
=G(2)r—G(2)z+ fo y)dy Integration by parts
—GE)a -9+ fiC dy

(5) We thus obtain that

(8(2), ) ~ M(5(2).) = Gz o)~ [ Gy)dy >0

regardless of whenever z > z or z < z.
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To be more precise, bidding an amount 3(2’) > (z) rather than S(x) results in a loss equal to the gray area
in Figure 4.1: G(2')(z' — =) is the area of the right rectangle, and | G(y) dy is the area of the graph of G

from z to 2’.
A
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,
|
|
G |
|
|
|
Overbidding — /i :
L/ |
| | |
G@)fp------------- | |
| |
| |
Underbidding : :
I I | I
I I | I
I I | I
| | | |
| | | |
| | | |
Lo |
1 1 | 1
0 Z x 2 w X

Figure 4.1: Losses from over- and underbidding in a first-price auction.

Similarly, bidding an amount 5(z”) < B(x) results in a loss equal to the blue area.

4.26 Remark: From Equation (4.3), we have

B()C(z) = / " yly) = / "y dGy) = 2C(z) - / " G(y) dy.

and hence the equilibrium bid can be rewritten as

L o)
fw == [ G

This shows that the bid is, naturally, less than the value x.

4.27 Since the degree of “shading” (the amount by which the bid is less than the value)

G _ [Ew]™

depends on the number of competing bidders and as IV increases, approaches 0.

Thus, for fixed F, as the number of bidders increases, the equilibrium bid 3!(z) approaches .
4.28 Example 4.23 can be derived by lettingw = 1 and F'(z) = z.

4.29 Example: Values are exponentially distributed (the rate parameter A is 2) on [0, 00), and there are only two bidders.
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4.30

F(z)=1—e? =1—¢"2"and N = 2, then

F(y) 1 T~

0 05 1 15 2 25 X
Figure 4.2: Equilibrium strategy.

The equilibrium bidding strategy is depicted in Figure 4.2. The figure highlights the fact that with the exponentially
distributed values, even a bidder with a very high value—say, $1 million—will not bid more than 50 cents.

o The bidder is facing the risk of a big loss by not bidding higher.

« The probability that the bidder with a high value will lose in equilibrium is infinitesimal. Hence bidders with

high values are willing to bid very small amounts.

Variation: Two-player first-price sealed-bid auction (risk-neutral, uniform distribution, linear Bayesian Nash equi-
librium).
Suppose there are two bidders, i = 1, 2.
The bidders’ valuations x; and x5 for a good are independently and uniformly distributed on [0, 1].

Bidders submit their bids b; and b, simultaneously. The higher bidder wins the good and pays her bidding price;
the other bidder gets and pays nothing. In the case that b; = b9, the winner is determined by a flip of a coin.

Formulate it as a Bayesian game, and find all the linear Bayesian Nash equilibria.

Answer. The formulation is as follows:
e« A1 = Ay = [0,00),bidS b; € Ai;
o Ty =Ty =0, 1], valuations z; € T};
o P;(z;) is the uniform distribution on [0, 1];

o Forany z; € T, player i’s payoff is

x; — by, if b; > bj,
Hi(blabQ;xlva) = MT_bl7 lfbl = bja
0, ifb; < bj.

Player i’s linear strategy is a function 8} (z;) = a; + ¢;x; from [0, 1] to [0, 00), where 1 > a; > 0 and ¢; > 0.

(Bi(x1), BL(x2)) is a Bayesian Nash equilibrium if for each z; € [0, 1], 8} (z;) maximizes

xX; —bi bz — aj;
E., ui(bi, B (x5); 24, %) = Prob(b; > Bj(x;)) - (w; — bs) + Prob(b; = Bj(z;)) 2 ¢ (i — by).
J
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Therefore, player ¢’s best response solves

bi — Q;
max = ——(x; — b;).
a;j<b;<aj+c; Cj

The unconstrained maximum is
B o iz + aj
1 T 2 .
Ifb;, € laj,a; + c;], then the best response b;(x;) = b Ifb; < a;, then b;i(z;) = a;. If b; > aj + c¢;, then
bz(xl) = aj + Cj.

Thus, player s best response is

aj, ifx; <ay,
I zita; .
Bi(z;) = %, ifa; <z; < aj + 2c¢;j,

aj+Cj, 1f1'7 >aj+2Cj.
Since we want the strategy /! to be a linear function on [0, 1], there are only three cases:
(—o0, aj]a
(0,1 € 4 [aj, a5 +2¢;],
laj + 2¢j,00).

Case 1 violates the assumption a; < 1. Case 3 violates the assumptions a; > 0 and ¢; > 0 which imply a; 4 2¢; >
0.

Therefore, [0, 1] C [a;,a; + 2¢;], i.e. BL(z;) = 25 for a; € [0, 1]. Hence fori = 1,2 and j # 4,
ai:aj/2, 0111/2

This yields

alzagzo, (31:(32:1/2.
Therefore, the unique linear Bayesian Nash equilibrium is

Bilw1) = x1/2, By(x2) = x2/2.

Remark:

o a; > O reflects the fact that bids can not be negative.
« ¢; > 0 implies high bids for high valuation.

o Ifa; > 1, then, together with ¢; > 0, it follows that 8} (z;) > z; for each z; € [0, 1]. With such a bid, player
1 would always end up with negative payofts. This bid function is certainly non-optimal. Thus we assume
a; < 1.

o The linear Bayesian Nash equilibrium is a symmetric equilibrium.
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4.31 Variation: Two-player first-price sealed-bid auction (risk-averse, uniform distribution, linear Bayesian Nash equi-

librium).

Consider the following first-price sealed-bid auction. Suppose there are two bidders, ¢ = 1, 2. The bidders’ valu-
ations x and x5 for a good are independently and uniformly distributed on [0, 1]. The bidders have preferences
represented by the utility functions u;(z) = x® where 0 < «; < 1,4 = 1, 2. Bidders submit their bids b; and by
simultaneously. The higher bidder wins the good and pays her bidding price, so that x = x; — b;; the other bidder
gets and pays nothing, so that z = 0. In the case that b; = by, the winner is determined by a flip of a coin. Find a

Bayesian Nash equilibrium (b1, b2) in which b; is a linear function of v;, i = 1, 2.

Answer. o There are two players;
o Typespaces: 11 = {x1 | #1 € [0,1]},and T = {z2 | 22 € [0,1]};
o Action spaces: A1 = Ay = [0,1];
o Strategy spaces: S; = {functions from T3 to 4; } and Sy = {functions from 75 to A5 };
o Payoff:
(2 — b)), ifb; > by;
0, ifb; < b;.

ﬂ-i(bia b]a xhxj) =

Suppose (3%, 3}) is a linear Bayesian Nash equilibrium, where
Bg(.’bl) = a; + ¢z, 1= 1,2,

where a;, ¢; are to be determined. Here we should assume ¢; > 0.

« For bidder 1, when 7 is drawn, given bidder 2’s strategy 3%, 8} (z1) will maximize her expected payoff

E[Hl(bl,bé(xg);xl,xg)] = (21 — b)™ Prob(ﬁ;(xg) < b)

b, —
= (Il — bl)al Prob <I2 < ! . a2) = (:El — bl)al

by — az

C2

Note that when bidder 1 chooses by, the probability that b; = 35 (22) is 0, and thus we do not need to consider
that.

Therefore first order condition implies

a1 1
B1(z1) = 1+a1a2+ 1+a1$17
and hence
(65} 1 (45)
a; = as, €= . .
L T R AP

« For bidder 2, when x5 is drawn, given bidder 1s strategy 31, 85 (z2) will maximize her expected payoff

E[lly (81 (z1), ba; 1, 32)] = (22 — b2)** Prob(B](z1) < ba)

b — by —
= (29 — by)*? Prob (xl < 2 a1> = (20 — bg)‘”ﬁ,

C1 C1

Note that when bidder 2 chooses b, the probability that b, = (] (z1) is 0, and thus we do not need to consider
that.
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4.5

4.32

4.33

4.34

4.35

Therefore first order condition implies

1 - [6%) 1
/BQ(IQ) - 1+a2a1 1+a2x27
and hence
(69 1 (4 6)
as = a co = .
2 1 ¥ s 1 2 1 ¥ Qs
Solving Equations (4.5) and (4.6), we will have a; = a2 = 0. O

Revenue comparison

With Proposition 4.17 in hand, we can compute how much each bidder expects to pay in equilibrium in a second-

price auction.

Fix a bidder—say, 1—and let the random variable Y7 = Yl(N_l) denote the highest value among the V-1 remaining
bidders. In other words, Y is the highest-order statistic of Xo, X3, ..., X . Let G denote the distribution function
of Y;. Clearly, for all y, G(y) = F(y)™ L. In a second-price auction, the expected payment by a bidder with value

x can be written as

m" (x) = Prob[Win] x E[second highest bid | « is the highest bid]
= Prob[Win] x E[second highest value | x is the highest value]
=G(z) xEY7 | Y] < 1]

In a first-price auction, the winner pays what she bids, and thus the expected payment by a bidder with value x is
m!(x) = Prob[Win] x Amount bid = G(z) x E[Y; | Y1 < 2],

which is the same as in a second-price auction.

Proposition: With independently and identically distributed private values, the expected revenue in a first-price

auction is the same as the expected revenue in a second-price auction.

Proof. (1) The ex ante expected payment of a particular bidder in either auction is

Bafm(@)] = [ mAo)f)de = [ < [ vatw) dy) f(w) dr,

where A isIor II.

(2) The expected revenue accruing to the seller E[R4] is just N times the ex ante expected payment of an indi-
vidual bidder, so

E[RA] = N x E[m*(X)] = N / (1 - F(y))g(y) dy.
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4.36

4.37

4.38

4.39

4.40

Furthermore, note that the density of YQ(N), the second highest of IV values, fQ(N) (y) =N(1-F(y)) 1(N_1) (y),

and since fl(Nfl) (y) = g(y), we can write

E[RA] = / "N () dy = BV,

In either case, the expected revenue is just the expectation of the second-highest value.

Remark: In specific realizations of the values the price at which the object is sold may be greater in one auction or
the other.

Example: There are two bidders and values are uniformly distributed. The equilibrium strategy in a first-price

auction is #'(z) = .

o If the realized value are such that %xl > I, then the revenue in a first-price auction, %xl, is greater than that

in a second-price auction, x5.
. If%xl < x9 < x1, the opposite is true.
Definition: Suppose X is a random variable with distribution function F. Let Z be a random variable whose
distribution conditional on X = x, H(- | X = z) is such that forall , E[Z | X = x] = 0. Suppose Y = X + Z
is the random variable obtained from the first drawing X from F’ and then for each realization X = x, drawing a

Z from the conditional distribution H (- | X = z) and adding it to X. Let G be the distribution of Y. We will say
that G is a mean-preserving spread of .

As the name suggests, while the random variables X and Y have the same mean—that is, E[X] = E[Y]—the

variable Y is “more spread out” than X since it is obtained by adding a “noise” variable Z to X.

Given two distributions F' and G with the same mean, we say that F' second-order stochastically dominates G if

for all concave functions U: [0, w] — R,

/ " U@) f(2) da > / " U)al) dy,
0 0

where f and g are density functions of ' and G respectively.
Lemma: G is a mean-preserving spread of F' if and only if F' second-order stochastically dominates G. (Exercise)

Proposition: With independently and identically distributed private values, the distribution of equilibrium prices
in a second-price auction L™ is a mean-preserving spread of the distribution of equilibrium prices in a first-price

auction L.

Proof. (1) The revenue in a second-price auction is R = Y2( ); the revenue in a first-price auction is R' =

B (Yl(N) ), where 3 = 3! is the symmetric equilibrium strategy.
(2) We have

E[R"| R =p] =e[V\V | YV = (p)] = [y, | N Y < g (p)].

(3) By Equation (4.4), we have
E [R“ | R = p} =P (ﬁ‘l(p)) =p.

(4) Therefore, there exists a random variable Z such that the distribution of R" is the same as that of R! + Z and
E[Z | R' = p] = 0. Thus, L is a mean-preserving spread of L.
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441

4.6

4.42

443

O

Remark: It is clear that the revenues in a second-price auction are more variable than in its first-price counterpart.

In the former, the prices can range between 0 and w; in the latter, they can only range between 0 and E[Y7].

From the perspective of the seller, a second-price auction is risker than a first-price auction. Every risk-averse seller

prefers the latter to the former, assuming that bidders are risk-neutral.

Reserve prices

In the analysis so far, the seller has played a passive role. Indeed, we have implicitly assumed that the seller parts
with the object at whatever price it will fetch. In many instances, sellers reserve the right to not sell the object if
the price determined in the auction is lower than some threshold amount—say, > 0. Such a price is called the
reserve price. We now examine what effect such a reserve price has on the expected revenue accruing to the seller.
Reserve prices in second-price auctions: Suppose that the seller sets a “small” reserve price of r > 0.
A reserve price makes no difference to the behavior of the bidders; it is still a weakly dominant strategy to bid one’s
value.

(1) Since the price at which the object is sold can never be lower than r, no bidder with a value < r can make

a positive profit.
(2) Consider bidder 1 with value 1 > r, and suppose that p; = max;; b; is the highest competing bid.

(3) By bidding x4 , bidder 1 will win if z1 > p; and notif 1 < py (if z1 = p1 , bidder 1 is indifferent between

winning and losing).
(4) Suppose, however, that she bids an amount z; < .

o If py > w1 > 21, she still loses no matter what r is.
o Ifzy > 21 > py and 21 > 7, then she still wins, and her profit is still z1 — max{p;,r}.
e If z1 > p1 > z1, then she loses no matter what r is, whereas if she had bid 1, she would have made a

positive profit.
Thus, bidding less than x; can never increase her profit but in some circumstances may actually decrease it.
(5) A similar argument shows that it is not profitable to bid more than z;.
The expected payment of a bidder with value r is now just rG(r), and the expected payment of a bidder with value

T >ris

mll(z,r) = rG(r) + [G(x) - G()] -E[Y | Yi < 2] = rG(r) + / " yg(y) dy,

since the winner pays the reserve price r whenever the second-highest bid is below .

4.44 Reserve prices in first-price auctions: Suppose that the seller sets a “small” reserve price of r > 0.

(1) Since the price at which the object is sold can never be lower than 7, no bidder with a value z < r can make
a positive profit.

(2) if B! is a symmetric equilibrium of the first-price auction with reserve price r, it must be that 5'(r) = r. This
is because a bidder with value r wins only if all other bidders have values less than r and, in that case, can win
with a bid of r itself.
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(3) In all other respects, the analysis of a first-price auction is unaffected, and in a manner analogous to Proposi-

tion 4.25, we obtain

and hence

(4) Therefore,

TG(T’) 1
- Gl@)  G(2)

/ yg(y) dy = E [max{V," "V} | VY < ).
The expected payment of a bidder with value x > r is

i) = Glo) x Be) = 160 + [ " y(y) dy,

which is the same as the expected payment in a second-price auction. Proposition 4.35 generalizes so as to accom-

modate reserve prices.

4.45 The ex ante expected payment of a bidder is
B ()] = [ mA () f(@)de = r(L= FO)GO)+ [ o1 - FW)gw) dy.

4.46 Suppose that the seller attaches a value zy € [0,w). This means that if the object is left unsold, the seller would
derive a value zq from its use.
(1) The seller would not set a reserve price r that is lower than .

(2) The expected payoff of the seller from setting a reserve price r > xg is
Il = N x E[m*(X,r)] + F(r)N xo.

(3) Differentiating this with respect to r, we obtain,

dIl,

. = N1 F() = rf()G(r) + NG(r) f(r)zo.

Recall that the hazard rate function associated with the distribution F' is defined as A(x) = f(z)/[1 — F(z)].

Thus, we have

0 = N1~ (r— 2001~ F()Gr).

4.47 A revenue maximizing seller should always set a reserve price that exceeds her value:
o If xg > 0, then the derivative of Iy at r = x¢ is positive, implying that the seller should set a reserve price
T > Xg.
o Ifxg = 0, then the derivative of IIy at » = 01is 0, but as long as A(r) is bounded, the expected payment attains
a local minimum at 0, so a small reserve price leads to an increase in revenue.
4.48 Example: A reserve price that exceeds x( leads to an increase in revenue.

Consider a second-price auction with two bidders and suppose xy = 0.
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4.49

4.50

4.51

4.52

4.53

« By setting a positive reserve price r, the seller runs the risk that if the highest value among the bidders, Yl(N) ,

is smaller than r, the object will remain unsold. The probability of this event is F'(r)?, and the loss is at most
7, so for small r, the expected loss is at most 7 F'(r)2.
« This potential loss is offset by the possibility that while the highest value Yl(N)
value YQ(N) is smaller than r. The application of the reserve price means that the object will be sold for r rather
than YQ(N). The probability of this event is 2F'(r)(1 — F'(r)), and the gain is of order r, so the expected gain

is of order 2rF(r)(1 — F(r)).

exceeds r, the second highest

« The expected gain from setting a small reserve price exceeds the expected loss. This fact is sometimes referred
to as the exclusion principle, since it implies, in effect, that it is optimal for the seller to exclude some bidders—

those with value below the reserve price—from the auction even though their values exceed z.

The first-order condition implies that the optimal reserve price 7* must satisfy
(r* —zo)A(r) = 1.

If A(+) is increasing, this condition is also sufficient:

o Ifr < 7%, then &2 (7) > 0;

o Ifr > 7%, then £lo(7) < 0;

« Hence r* is global optimal.

Note that the optimal reserve price does not depend on the number of bidders. The reason is that a reserve price

comes into play only in instances when there is a single bidder with a value that exceeds the reserve price.

A positive reserve price r results in bidders with low values, lying below , being excluded from the auction. Since
their equilibrium payoffs are zero, such bidders are indifferent between participating in the auction or not. An
alternative instrument that the seller can also use to exclude buyers with low values is an entry fee—a fixed and

non-refundable amount that bidders must pay the seller prior to the auction in order to be able to submit bids.

A reserve price of  excludes all bidders with value z < r. The same set of bidders can be excluded by asking each
bidder to pay an entry fee e = G(r) x r. Notice that after paying e, the expected payoff of a bidder with value z < r

would not find it worthwhile to pay e in order to participate in the auction.

A reserve price raises the revenue to the seller but may have a detrimental effect on efficiency.

Suppose that the value that the seller attaches to the object is 0.

« In the absence of a reserve price, the object will always be sold to the highest bidder and in the symmetric
model studied here, that is also the bidder with the highest value. Thus, both the first- and second-price
auctions allocate efficiently in the sense that the object ends up in the hands of the person who values it the

most.

o If the seller sets a reserve price r > 0, there is a positive probability that the object will remain in the hands

of the seller and this is inefficient.
This simple observation implies that there may be a trade-off between efficiency and revenue.

Remark: We have implicitly assumed that the seller can credibly commit to not sell the object if it cannot be sold at
or above the reserve price. This commitment is particularly important because by setting a reserve price the seller
is giving up some gains from trade. Without such a commitment, buyers may anticipate that the object, if durable,

will be offered for sale again in a later auction and perhaps with a lower reserve price. These expectations may affect
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4.54

4.7

4.55

4.56

4.57

4.58

their bidding behavior in the first auction. Indeed, in the absence of a credible “no sale” commitment, the problem
confronting a seller is analogous to that of a durable goods monopoly. In both, a potential future sale may cause
buyers to wait for lower prices, and this may reduce demand today. In effect, potential future sales may compete
with current sales. In response, the seller may have to set lower reserve prices today than would be optimal in a

one-time sale or if the good were perishable.

Remark: We have assumed that the reserve price is publicly announced prior to the auction. In many situations,
especially in art auctions, it is announced that there is a reserve price, but the level of the reserve price is not
disclosed. In effect, the seller can opt to not sell the object after learning all the bids and thus the price. But this is
rational only if the seller anticipates that in a future sale the price will be higher. Once again, buyers’ expectations

regarding future sales may affect the bidding in the current auction.

The revenue equivalence principle

The auction forms we consider all have the feature that buyers are asked to submit bids—amounts of money they

are willing to pay. These bids alone determine who wins the object and how much the winner pays.

We will say that an auction is standard if the rules of the auction dictate that the person who bids the highest amount

is awarded the object.

o Both first- and second-price auctions are standard.

o A third-price auction, discussed later, in which the winner is the person bidding the highest amount but pays
the third-highest bid is standard.

o An example of a nonstandard method is a lottery in which the chances that a particular bidder wins is the
ratio of her bid to the total amount bid by all. Such a lottery is nonstandard, since the person who bids the

most is not necessarily the one who is awarded the object.

Given a standard auction form, A, and a symmetric equilibrium 34 of the auction, let m“ () be the equilibrium

expected payment by a bidder with value .

Theorem (Revenue equivalence principle): Suppose that values are independently and identically distributed and
all bidders are risk neutral. Then any symmetric and increasing equilibrium of any standard auction, such that the

expected payment of a bidder with value zero is zero, yields the same expected revenue to the seller.

Proof. (1) Consider a standard auction form, A, and fix a symmetric equilibrium 3 of A. Let m“(x) be the

equilibrium expected payment in auction A by a bidder with value . Suppose that /3 is such that m* (0) = 0.

(2) Consider a particular bidder—say, 1—and suppose other bidders are following the equilibrium strategy 5.
Consider the expected payoft of bidder 1 with value « and when she bids 3(z) instead of the equilibrium bid
().

(3) Bidder 1 wins when her bid 5(z) exceeds the highest competing bid B(Yl(N_l)), or equivalently, when z >

y V-,

(4) Her expected payoft is

T4(z,2) = G(2)x — m”(z),

where G(2) = F(z)V~1 is the distribution of YI(N_U.
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4.59

4.8

4.60

4.61

(5) Maximization results in the first-order condition,

9 a _ 4 a
@H (z,z) = g(2)z UL () =0.

(6) Atan equilibrium it is optimal to bid z = z, so we obtain that for all y,

d
" Ay) =gy
(7) Thus,
m?(z) = m™(0) + /m yg(y) dy = /m yg(y)dy = G(z) x E[v" "V | vV <a]. (4.7)
0 0

Since the right-hand side does not depend on the particular auction form A, the expected revenue of the seller

is constant.

O

Example: Values are uniformly distributed on [0, 1].

F(z) = x, then G(z) = 2V ~! and for any standard auction satisfying m“ (0) = 0, we have

m(a) = S ta,
and o] N1
[m ( )]_N(NH)’

while the expected revenue is
N-1
B[R] = N x E [m"(X)] = -
(R4 = N x B [m4(X)] = 3

All-pay auction

Consider an all-pay auction with the following rules. Each bidder submits a bid, and the highest bidder wins the
object. The unusual aspect of an all-pay auction is that all bidders pay what they bid.

The all-pay auction is a useful model of lobbying activity. In such models, different interest groups spend money—
their “bids”—in order to influence government policy and the group spending the most—the highest “bidder”—is
able to tilt policy in its favored direction, thereby “winning the auction” Since money spent on lobbying is a sunk
cost borne by all groups regardless of which group is successful in obtaining its preferred policy, such situations

have a natural all-pay aspect.

Suppose for the moment that there is a symmetric, increasing equilibrium of the all-pay auction such that the
expected payment of a bidder with value 0 is 0. Then we know that the expected payment in such an equilibrium

must be the same as in Equation (4.7).

Now in an all-pay auction, the expected payment of a bidder with value x is the same as her bid—she forfeits her bid
regardless of whether she wins or not—and so if there is a symmetric, increasing equilibrium of the all-pay auction
BAP, it must be that

B (z) = m?(z) = / ' yg(y) dy

0
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4.62 Proposition: S (z) = mA(x) = fom yg(y) dy is a symmetric equilibrium strategy in an all-pay auction.

Proof. (1) Suppose that all bidders except 1 are following the strategy 3 = 34F.
(2) If she bids an amount 3(z), the expected payoff of a bidder with value x is

G(2)z — B(z) = G2z — / gy dy.

(3) By integrating by parts, we have

G(2)(e —2) + / "Gy dy,

which is the same as the payoff obtained in a first-price auction by bidding 3'(z) against other bidders who
are following 3.

(4) For the same reasons as in Proposition 4.25, this is maximized by choosing z = x. Thus, 3% is a symmetric
equilibrium.

O

4.9 Third-price auction

4.63 Suppose that there are at least three bidders. Consider a sealed-bid auction in which the highest bidder wins the
object but pays a price equal to the third-highest bid. A third-price auction, as it is called, is a purely theoretical
construct: There is no known instance of such a mechanism actually being used. It is an interesting construct
nevertheless; equilibria of such an auction display some unusual properties, and it leads to a better understanding

of the workings of the standard auction forms.

4.64 Suppose that there are three bidders, and for the moment that there is a symmetric, increasing equilibrium of the

third-price auction—say, 3™ —such that the expected payment of a bidder with value 0 is 0.

(1) Since the assumptions of Theorem 4.58 are satisfied, we must have that for all z, the expected payment of a

bidder with value z in a third-price auction is

m"(z) = /0 yg(y) dy. (4.8)

(2) On the other hand, consider bidder 1, and suppose that she wins in equilibrium when her value is z.

(3) Winning implies that her value = exceeds the highest of the other N-1 values—that is, Yl(Nfl) < x. The
price bidder 1 pays is the random variable BHI(Y2(N_1)), where YZ(N_D is the second highest of the N-1

other values.

(4) The density of YQ(N_I), conditional on the event that Yl(N_l) < x, can be written as

1

ANV VY <) = —N T -
Y ()

x (N = 1)(F(z) — F(y)) x N2 (y),

where (N — 1)(F(z) — F(y)) is the probability that Yl(Nfl) exceeds Y;Nﬁl) = y but is less than x, and
1(N72) (y) is the density of the highest of N—2 values.

(5) Thus, the expected payment of a bidder with value x in a third-price auction can then be written as

mU(z) = FN V(@) x E[BUv V) | vV < . (4.9)
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(6) Equating Equations (4.8) and (4.9), we obtain that
/0 () dy = FN Y (@) < B[ ) [ <],
(7) Since G(z) = F(z)N 1, differentiating with respect to z, we have
(N = 1)f () / A ) dy = wgla) = 2N — 1) (@) F)Y
(8) This can be rewritten as
/oz BT () dy = 2P (@)Y = 2P (@),
(9) Differentiating once more with respect to x,
B @) AN @) = 2P @) + FN TP (@),

and rearranging this we get

FN=2(g) F(x)

BN YIe)

111 ) =1 1
Ty TN

This derivation, however, is valid only if 3" is increasing, and from the preceding equation it is clear that a sufficient
condition for this is that the ratio F'/ f is increasing. This condition is the same as requiring that In F" is a concave

function or equivalently that F' is log-concave.

4.65 Proposition: Suppose that there are at least three bidders and F’ is log-concave. Symmetric equilibrium strategies

in a third-price auction are given by
F(z)

(N =2)f(z)

4.66 Remark: An important feature of the equilibrium in a third-price auction is worth noting: The equilibrium bid

ﬂHI(Qf) =+

exceeds the value.

o Notice that for much the same reason as in a second-price auction, it is dominated for a bidder to bid below

her value in a third-price auction.

o Unlike in a second-price auction, however, it is not dominated for a bidder to bid above her value. Fix some
equilibrium bidding strategies of the third-price auction—say, 5—and suppose that all bidders except 1 follow
(. Suppose bidder 1 with value « bids an amount b > .

- If8 (YQ(N_l)) <z <p (Yl(N_l)) < b, this is better than bidding b, since it results in a profit, whereas
bidding 2 would not.
- If, however, x < B(YQ(N_D) < 6(Y1(N_1)) < b, then bidding b results in a loss.

When b — z = € is small, the gain in the first case is of order €2, whereas the loss in the second case is of order

€3. Thus, it is optimal to bid higher than one’s value in a third-price auction.

4.67 Remark: Comparing equilibrium bids in first-, second-, and third-price auctions in case of symmetric private val-

ues, we have seen that

Bl(x) < p(z) = = < pM(x).
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(assuming that the distribution of values is log-concave).

4.10 Uncertain number of bidders

4.68

4.69

4.70

4.71

In many auctions—particularly in those of the sealed-bid variety—a bidder may be uncertain about how many
other interested bidders there are. In this section we show how the standard model may be amended to include this

additional uncertainty.

Let V' = {1,2,..., N} denote the set of potential bidders and let A C N be the set of actual bidders—that is, those

that participate in the auction. All potential bidders draw their values independently from the same distribution F".

Consider an actual bidder i € 4 and let p,, denote the probability that any participating bidder assigns to the event
that she is facing n other bidders. Thus, bidder 7 assigns the probability p,, that the number of actual bidders is n+1.
The exact process by which the set of actual bidders is determined from the set of potential bidders is symmetric
so every actual bidder holds the same beliefs about how many other bidders she faces; the probabilities p,, do not
depend on the identity of the bidder nor on her value. It is also important that the set of actual bidders does not

depend on the realized values.

(1) Consider a standard auction A and a symmetric and increasing equilibrium /5 of the auction. Note that since

bidders are unsure about how many rivals they face, 3 does not depend on n.

(2) Consider the expected payoff of a bidder with value 2 who bids 8(z) instead of the equilibrium bid S(x). The
probability that she faces n other bidders is p,,. In that case, she wins if Yl(n), the highest of n values drawn
from F, is less than z and the probability of this event is G(™)(z) = F(z)™. The overall probability that she

will win when she bids §5(z) is therefore
N-1
G(z) = Z pnG(n) (2)-
n=0
(3) her expected payoff from bidding 5(z) when her value is x is then
(2, 2) = G(2)x — m”(2).

(4) Suppose that the object is sold using a second-price auction. Even though the number of rival buyers that
a particular bidder faces is uncertain, it is still a dominant strategy for her to bid her value. The expected

payment in a second-price auction of an actual bidder with value x is therefore
N-1

m'(z) = Z pnG (2)E Yl(n) | Yl(n) < x} )
n=0

(5) Suppose that the object is sold using a first-price auction and that /5 is a symmetric and increasing equilibrium.

The expected payment of an actual bidder with value z is
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(6) The revenue equivalence principle implies that for all z, m!(z) = m!(z), so
p p p
Z Yl( ) |Y1( ) } Z 6( L)(.”L’),
n=0

where 3(") is the equilibrium bidding strategy in a first-price auction in which there are exactly n + 1 bidders

for sure.

4.72 The equilibrium bid for an actual bidder with value x when she is unsure about the number of rivals she faces is a

weighted average of the equilibrium bids in auctions when the number of bidders is known to all.
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5.1 Mixed-strategy Nash equilibrium

5.1

52

53

5.4

5.5

The notion of mixed-strategy Nash equilibrium is designed to model a steady state of a game in which the partici-

pants’ choices are not deterministic but are regulated by probabilistic rules.

Consider a strategic game G = (N, (A;), (u;)). The mixed extension of G is defined as the strategic game
(N, (A(A), (U2)),

in which A(A;) is the set of probability distributions over A;, and U;: X,jen A(A;) — R that assigns to each
a = (o) € x;enA(A;) the expected value under u; of the lottery induced by c.
If A is finite, then
Ui(a) = > (ar(an)az(az) - - anlan)) - uila).
acA
We refer to a member of A(A;) as a mixed strategy of player i; we refer to a member of A; as a pure strategy. In

strategic games, a pure strategy can be viewed as a degenerate mixed strategy that attaches probability one to the

pure strategy.

Definition: A mixed-strategy Nash equilibrium of a strategic game is a (pure-strategy) Nash equilibrium of its mixed

extension.

Proposition: A profile a* is a pure-strategy Nash equilibrium if and only if 1 0 a* = (1 0 a},1 0 a*,) is a mixed-

strategy Nash equilibrium, where 1 o a is ¢’s degenerate mixed strategy that attaches probability one to a;.

97
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Proof. “=": Since a* is a pure-strategy Nash equilibrium, for any o; € A(A;), we have

Ui(loa™) =u;(a™) > Zai(ai) cug(ag,a;) =Ui(a;,1oaly).

“«=”: Since 1 o a* is a mixed-strategy Nash equilibrium, for any a; € A;, we have

ui(a*) =U;(loa™) > Uj(loa;,1oa™;) =ui(a;,a” ;).

—1i

5.6 Proposition: A profile o* is a mixed-strategy Nash equilibrium if and only if for each player ¢,

Ui(a®) > U;(1oa;,ar ;) foralla; € A;.

5.7 Some games, e.g., matching pennies, may possess no pure-strategy Nash equilibrium. However, every finite strategic

game must have at least one mixed-strategy Nash equilibrium.

Nash’s theorem: Every finite strategic game (N, (4;), (u;)) has a mixed-strategy Nash equilibrium.

Proof. Consider the mixed extension (N, (A(A;)), (U;)) of the strategic game. Since expected payoff is linear in
probabilities, U; is both continuous and quasi-concave on A(A;). Since A(A;) is a simplex in a finite-dimensional

Euclidean space, there is a mixed-strategy Nash equilibrium. O

5.8 For the finite set X and § € A(X), we denote §(x) the probability that § assigns to z € X. Define the support of
J to be the set of elements © € X for which 6(z) > 0, i.e.,

support(d) = {z € X | 6(z) > 0}.

5.9 Lemma: A profile o* is a mixed-strategy Nash equilibrium if and only if for each ¢ and for each a} € support(as),
Uj,(l o a;‘, Oz*_z) > Uz(l o a;, Oéii) forall a; € AL

*
—7°

Proof. “=": If there is a} € support(c) which is not a best response to a* ;, then ¢ can increase his payoff by

transferring probability from a to a best-response action; hence ] is not an equilibrium strategy.

“«<": If each a} € support(c]) is a best response to a* ;, then ¢ can not do better by choosing a different mixed

strategy oy; hence « is optimal against a* . O

5.10 Corollary: Every action in the support of any player’s equilibrium strategy yields that player the same equilibrium
payoff, i.e.,
Ui(a;,a*;) = U;(a) forall a € support(ay).

5.11 A profile o* is a mixed-strategy Nash equilibrium if and only if

(1) for every player 4, no action in A; yields, given a* ;, a payoft to player ¢ that exceeds his equilibrium payoft,

and

(2) the set of actions that yield, given a* ;, a payoff less than his equilibrium payoff has o] -measure zero.
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5.2 Examples
5.12 Example: Matching pennies.
Player 2
Head  Tail
Head | 1,-1 | —1,1
Player 1 =11 [ 1.1
Figure 5.1: Matching pennies
Answer. Letp; = (r,1—r) be a mixed strategy in which player 1 plays Head with probability r. Letps = (¢, 1—¢q)
be a mixed strategy for player 2. Then given py, we have
Ui(Head,p2) =q-14+(1—¢q)-(-1) =2¢ — 1,
Ur(Tail, p2) =g - (=1) + (1 —¢) - 1 =1-2¢.
Player 1 chooses Head if and only if Uy (Head, po) > U; (Tail, po) if and only if ¢ > 1. Hence
{1y, if1>¢>3,
Bi(g) = ({0}, ifi>qg>0,
[0,1], ifg=13.
Similarly, we have
Us(p1,Head) =7 - (-1)+ (1—1r) -1,
Us(py, Tail) =7 -1+ (1 —r) - (—1),
and
{0}, if1>r>1,
By(r) = ¢ {1}, if3>r=>0,
[0,1], ifr=41.
We draw the graphs of By (gq) and Bsy(r) together:
The graphs of the best-response correspondences intersect at only one point (1, 1), and in this case r = ¢ = 1.
Thus (p, p}) is the unique mixed-strategy Nash equilibrium, where p; = (3, 1) and p5 = (3, 1). O

5.13

5.14

We may also use Corollary 5.10 to find mixed-strategy Nash equilibrium. Suppose that (p3, p3) is a mixed-strategy

Nash equilibrium, then

ph(Head) - 1 + pj(Tail) - (—=1) = pj(Head) - (—1) + p}(Tail) - 1
pt(Head) - (—1) + p’(Tail) - 1 = p*(Head) - 1 + p (Tail) - (—1)

Thus, for i = 1,2, p; (Head) = p; (Tail) = 1.

Example [OR Example 34.1]: Battle of sexes.
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5.15

5.16

qh
1 ,,,,,
B3 (r) mixed [NE
1
2 ¢
‘I i l
|
|
|
9, 1 1 v
2
Figure 5.2: Matching pennies
Peter
Opera  Fight
Opera 2.1 0,0
Mary “Bight [ 0.0 | 1.2

Figure 5.3: Battle of the sexes.

Answer. Suppose that (o1, ) is a mixed-strategy Nash equilibrium.
If a1 (O) is zero or one, we obtain the two pure-strategy Nash equilibria.

If0 < a1(0) < 1 then, given ag, by Corollary 5.10 player 1’s actions “Opera” and “Fight” must yield the same
payoff, so that we must have 2a:2(0) = az(F) and thus a2(0) = 3.
Since 0 < a3(0) < 1 it follows from the same result that player 2’s actions “Opera” and “Fight” must yield the

same payoff, so that o (0) = 201 (F), or a1 (0) = 2.

Thus the only non-degenerate mixed-strategy Nash equilibrium of the game is ((%, %), (3,

win

). 0

W=

Example: Rock-paper-scissors game.

Suppose two players play the rock-paper-scissors game. The two players simultaneously form one of their hands
into the shape of either a rock, a piece of paper, or a pair of scissors. Abbreviate these shapes as R, P, and S,
respectively. If the players pick the same shape, then the game ends in a tie. Otherwise, one of the players wins
and the other loses. The winner is determined by the following rule: rock beats scissors, scissors beat paper, and
paper beats rock. Each player obtains a payoff of 1 as a winner, —1 as a loser, and 0 if he or she ties. Find all Nash

equilibria.
Answer. Unique mixed-strategy Nash equilibrium: (3R + P+ £S5, R+ 1P + 19). O

Example [OR Exercise 35.1]: Guessing the average.

Let n(n > 2) people play the following game. Simultaneously, each player ¢ announces a number z; in the set
{1,2,...,K}. A prize of $1 is split equally between all the people whose number is closest to 2 - £+ Show

that the game has a unique mixed-strategy Nash equilibrium, in which each player’s strategy is pure.

Answer. O
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5.17

5.18

5.19

5.20

5.21

Example [OR Exercise 35.2]: An investment race.

Two investors are involved in a competition with a prize of one dollar. Each investor can spend any amount in the
interval [0, 1]. The winner is the investor who spends the most; in the event of a tie each investor receives half dollar.

Formulate this situation as a strategic game and find its mixed-strategy Nash equilibria.
Answer. O

Example [OR Exercise 36.1]: Guessing right.

Players 1 and 2 each choose a member of the set {1,2, ..., K}. If the players choose the same number then player
2 pay one dollar to player 1; otherwise no payment is made. Each player maximizes his expected monetary payoft.

Find the mixed-strategy Nash equilibria of this game.
Answer. 0

Example [OR Exercise 36.2]: Air strike.

Army A has a single plane with which it can strike one of three possible targets. Army B has one anti-aircraft gun
that can be assigned to one of the targets. The value of target k is vy, with v; > v > v3 > 0. Army A can destroy
a target only if the target is undefended and A attacks it. Army A wishes to maximize the expected value of the
damage and army B wishes to minimize it. Formulate the situation as a (strictly competitive) strategic game and
find its mixed-strategy Nash equilibria.

Answer. O

Example: Symmetric games.

A game is symmetric if each player has the same set of pure strategies and

Ug (4) (80(1),80(2), . -750(n)> = u;i(51,52,...,5n)

for each player ¢ whenever the n-vector (o(1),0(2),...,0(n)) isa permutation of (1,2, ..., n). Prove that a finite
symmetric game possesses a symmetric (mixed-strategy) Nash equilibrium—a Nash equilibrium in which every

player chooses the same strategy.
Answer. O

Example (Complete-information all-pay auction): Two players, indexed by ¢ = 1, 2, compete for an object of value
v > 0. Players simultaneously place their non-negative bids x;. The higher bidder obtains the object, while one

loses his bid regardless of win or loss. Ties will be broken randomly. Their payoffs can then be written as

v — Iy, ifx; > Zj,
(i, ) =% —xy, ifx; =,
L\ ] 2 (2] [ Jo

—Z;, ifx; < Tj.

Find the unique mixed-strategy Nash equilibrium.
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5.22 Example: Contest.

n agents contest for a prize. Let agent ¢ outlay x; to influence the outcome of the political contest in his favor. The

probability that agent ¢ will be the successful contender is

0, ifx; is not a maximal element of z1, 22, ..., %,

=1 T |
= if x; is one of  maximal elements of x1, x2, ..., Zy,.
m

For each i, assume agent ¢’s valuation is v;, which is publicly known.

Show that

(i) No agent will, in equilibrium, spend a positive amount 3 with a strictly positive probability.
(if) If there are only two agents, they must have the same maximum spending level.
(iii) The minimum spending level is zero for each agent.

(iv) At most one agent spends zero with strictly positive probability.

Given these results, if we define 1 — G;(z;) to be the probability that agent ¢ spends more than x;, then G;(z;) is

continuous over (0, 00).

Proof. (i) (1) Suppose that agent i does spend 3 with strictly positive probability.
(2) Then the probability that a rival agent j beats agent ¢ rises discontinuously as a function of z; at ; = .
(3) Therefore, there is some € > 0, such that agent j will bid on the interval [5 — €, /3] with zero probability,
forall j # i.
(4) But then agent 7 is better off spending 5 — e rather than 3 since his probability of winning is the same,
contradicting the hypothesis that z; = /3 is an equilibrium strategy.
(ii) Routine.
(iii) (1) Suppose that agent ¢ spends less than 3 with zero probability, where 5 > 0.
(2) Then for any j # i, any spending level between zero and f3 yields a negative payoft since the probability

of winning is zero.
(3) Since other agents can always spend zero it follows that no agent will spend in the interval (0, 3).

(4) But then agent ¢ could reduce his spending level below [ without altering the probability of winning,
contradicting the hypothesis that agent ¢ could, in equilibrium, do no better than take 5 as his minimal

spending level.

(iv) Routine.

5.3 Interpretation of mixed-strategy Nash equilibrium

5.23 “Outside of Las Vegas we do not spin roulettes” by Ariel Rubinstein (Econometrica 1991).
5.24 A mixed strategy entails a deliberate decision by a player to introduce randomness into his behavior.

5.25 We can interpret a mixed-strategy Nash equilibrium as a stochastic steady state. The players have information about
the frequencies with which actions were taken in the past; each player uses these frequencies to form his belief about

the future behavior of the other players, and hence formulate his action.
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5.26 Mixed strategies as pure strategies in an extended game.

Example:

Peter
Opera _ Fight
Opera 2.1 0,0
Mary “Bight [ 0.0 | 1.2

This game has two pure-strategy Nash equilibria (Opera, Opera) and (Fight, Fight), and one mixed-strategy Nash
equilibrium (2 o Opera + § o Fight, § o Opera + 2 o Fight).

Now suppose that each player has three possible “moods’, determined by factors he does not understand. Each
player is in each of these moods one-third of the time, independently of the other player’s mood; his mood has no

effect on his payoft.

Assume that Mary chooses Opera whenever she is in moods 1 or 2 and Fight when she is in mood 3, and Pater

chooses Opera when he is in mood 1 and Fight when he is in moods 2 or 3.

Viewing the situation as a Bayesian game in which the three types of each player correspond to his possible moods,
this behavior defines a pure-strategy Nash equilibrium corresponding exactly to the mixed-strategy Nash equilib-

rium of the original game.

Note that the mood (signal) is private and independent.

5.27 Mixed strategies as beliefs.

5.3.1 Purification

5.28 Mixed strategies as pure strategies in a perturbed game, due to Harsanyi (1973).

A mixed-strategy Nash equilibrium in a game of complete information can almost always be interpreted as a pure-

strategy Bayesian Nash equilibrium in a closely related game with a little bit of incomplete information.

A game with complete information G k= o0 A sequence of games with incomplete information G*
Mixed-strategy NE f Pure-strategy BNE f*
kE— o0
Figure 5.4
5.29 Example: Battle of sexes.
Peter
Opera  Fight
Opera | 2,1 0,0
M J b
Y Fight [ 0,0 | 1,2

This game has two pure-strategy Nash equilibria (Opera, Opera) and (Fight, Fight), and one mixed-strategy Nash
equilibrium (% o Opera + % o Fight, % o Opera + % o Fight).
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(1) Suppose Mary and Peter are not completely sure each other’s payoff: if both attend Opera, Mary’s payoft is
2 + t,; if both attend Fight, Peter’s payoft is 2 + ¢,,, where ¢, is privately known by Mary and ¢, is privately
known by Peter, and ¢,, and t,, are independently drawn from a uniform distribution on [0, z].

This can be expressed as a Bayesian game G = (A,,, Ap; Tony Tp; P, Py} U, Up), Where
o A, = A, = {Opera, Fight}
o T, =T, =10,2]
o The payoffs are

Peter
Opera Fight
Opera | 2+41,,,1 0,0
Fight 0,0 1,2+1¢,

(2) In general, Mary’s and Peter’s strategies are s,,,: [0, 2] — {Opera, Fight} and s,,: [0,2] — {Opera, Fight},
which are defined by

Opera, ift,, > m, Fight, ift, > p,
Sm(tm) = sp(tp) =
Fight, ift,, <m, Opera, ift, <p.

Given s, (t,) and s, (t,), let

Om = Prob(Mary plays Opera) = m, 9, = Prob(Peter plays Fight) = =P
x x

As z — 0, since t,,, and t,, are in [0, z], the Bayesian game converges to the original game of complete infor-

mation.

(3) Given Peter’s strategy s,,(t,) (or say p), Mary’s expected payoff, if she plays Opera, is
(2 + ty,) - Prob(Peter chooses Opera) + 0 - Prob(Peter chooses Fight) = (2 + ¢,,)(1 — d,) + 0 - Jp,

and, if she plays Fight, is
0-(1—6p)+1-0p.

Thus Mary playing Opera is optimal if and only if

% o T g
1-9, D

(2 + tm)(l - 6p) > 5p Sty >

Let m = & — 3. Then sy, (tm) is the best response strategy to sp(tp).

(4) Similarly, given Mary’s strategy s, (t,,,) (or say m), Peter’s expected payoffis 0 - 6., + (2 + t,)(1 — d,,,) for
Fightand 1 -, + 0 (1 — d,,,) for Opera.
Thus playing Fight is optimal if and only if

2+t,)(1—0m) >0y &ty > Om 2="_3.

_Om x
1—-96, m

Let p = £ — 3. Then, s,(t,) is the best response strategy to s, ().
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(5) Hence, (s;,,s5,) is a Bayesian Nash equilibrium if and only if

Thus,
" «_ V9+4dzr -3
-2

As z — 0, the Bayesian game converges to the original game of complete information, and

5* :(s;:xfp B 7\/9+4x73%

T 2z

2
3"

5.30 Example: Matching pennies.

It has no pure-strategy Nash equilibrium but has one mixed-strategy Nash equilibrium: each player plays H with

probability 1/2.
H T
H[1,-1] 1.1
T -1,1 1,1
Game G

(1) Consider the following game with incomplete information G(x): where

H T
H[1+t, 1] 1,1t
T 1,1 1,1

Game G(z)

o Type spaces: T} = Ty = [0, z], t; and ¢5 are i.i.d. random variables and uniformly distributed on [0, z].
o Action spaces: A; = As = {H,T}.
o Strategy spaces: S; = S3 = {s; is a function from [0, z| to { H, T'}}.
Note that G(0) = G.
In G(z), suppose (s7, s3) is a Bayesian Nash equilibrium, p = Prob({¢; : si(t1) = H}),andq = Prob({t2: s5(t2) =

(2) For player 1, given his type ¢; and player 2’s strategy s, his expected payoft is

(I+t)-g=1-(1-g), a=H;
—1-g+1-(1-g9q), ap =T.

E[ui(a1,s3) | t1] =

Thus H is a best response ifand only if (1 4+¢;)-¢g—1-(1—¢q) > —1-g+1-(1 —q), thatis, t; > % —4.

Hence, we have
2/q—4
T

p="Prob({t;: sj(t1) =H})=1-—

(5.1)
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(3) For player 2, given his type ¢, and player 1’s strategy s7, his expected payoft is

“Lpt1-(-p) az = H:
(I—=t) p+(=1)-(1—p), ax=T.

E[ua(az, s7) | t2] =

Thus H is abest responseifand onlyif —1-p+1-(1—p) > (1 —t2) - p+(—1)- (1 —p), thatis, t3 > 4 — %.

Hence, we have

4—-2
g = Prob({ta: s5(ts) = H}) = 1 — T/p (5.2)
(4) Rewriting Equations (5.1) and (5.2), we will have
_ 2 _ 2
b= 4+ (¢g— 1)z’ 1= 4+ (1—p)x’

Asz — 0,p,q — 3, that is, the Bayesian Nash equilibrium will converge to the mixed-strategy Nash equi-

librium in G.
5.31 Example: Matching pennies (cont.).

(1) Consider the following game with incomplete information G(z): where

H T
H[1+4t, 1] 1,1+
T 11 1,1

Game G(z)

o Type spaces: 71 = Ty = [0, x], ¢1 and 5 are i.i.d. random variables and uniformly distributed on [0, z].
o Action spaces: A1 = Ay = {H,T}.
o Strategy spaces: S1 = S2 = {s; is a function from [0, z] to { H, T’} }.
Note that G(0) = G.
In G(z), suppose (s7, s3) isa Bayesian Nash equilibrium, p = Prob({¢;: s7(t1) = H}),andg = Prob({t2: s5(t2) =

(2) For player 1, given his type ¢; and player 2s strategy s3, his expected payoft is

(I+t)-qg—1-(1-q), a=H;
~1-g+1-(1-gq), ap="1T.

E[ui(as,s3) | t1] =

Thus H is a best response ifand only if (1 +¢1) - ¢g—1-(1 —¢q) > —1-q+1- (1 — q), thatis, t; > % —4.

Hence, we have
2/q—4

p=Prob({t1: si(t1) =H})=1— .

(5.3)

(3) For player 2, given his type ¢2 and player 1’s strategy s7, his expected payoft is

-1-p+1-(1-p), az = H;
(I+t)-p+(-1)-1-p), ax=T.

E[ua(az, s7) | t2] =
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Thus H is a best response ifand onlyif —1-p+1-(1—p) > (1+1t2)-p+ (=1)- (1 —p), thatis, t5 < 12;—4.

Hence, we have
2/p—4

q = Prob({ta: s5(t2) = H}) = . (5.4)
(4) Rewriting Equations (5.3) and (5.4), we will have
- 2 - 2
p= 44 qz’ 1= 44+ (1 —-p)z’

Asz — 0,p,q — 3, that is, the Bayesian Nash equilibrium will converge to the mixed-strategy Nash equi-

librium in G.

5.32 Harsanyi shows that any mixed strategy equilibrium can be “purified” in a similar way. For a complete proof, see
Govindan, Reny and Robson (2003).
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6.1 Motivation

6.1 We discuss an interpretation of a mixed-strategy Nash equilibrium as a steady state in which each player’s action

depends on a signal that she receives from “nature”. In this interpretation the signals are private and independent.

6.2 What happens if the signals are not private and independent?

Example:
Peter
Opera _ Fight Opera Fight
Mary OPera | 2,1 0,0 Opera | p(z) = % 0
Y Fight [ 0,0 | 1,2 Fight 0 p(y) = 1

Suppose that both players observe a random variable that takes each of the two values x and y with probability
1. Then there is a new equilibrium, in which both players choose Opera if the realization is « and Fight if the

realization is y.

Given each player’s information, her action is optimal: if the realization is = then she knows that the other player

chooses Opera, so that it is optimal for him to choose Opera, and symmetrically if the realization is y.

One interpretation of this equilibrium is that the players observe the outcome of a public coin toss, which determines

which of the two pure-strategy Nash equilibria they play.

EHRp MHBATH AR ELSEAN, BN AEBRKIATHERE, % ERYE piTEHH
TR B AT 2h 4 B B9 A PEBR R SRR R T R RN, AR 4 B St B R R AR

6.3 In this example the players observe the same random variable. More generally, their information may be less than

perfectly correlated.

109
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6.4

6.5

Player 2
L R L R
Pl 1 ) ) 3 3
WL B 7.270,0 B |px) =1 0

Suppose that there is a random variable that takes the three values z, y, and z equally likely, and player 1 knows only
that the realization is either x or that it is a member of {y, z}, while player 2 knows only that it is either a member

of {x, y} or that it is z. That is, player 1’s information partition is {{z}, {y, 2} } and player 2’s is {{z, y}, {2} }.

A strategy of player 1 consists of two actions: one that she uses when she knows that the realization is = and one
that she uses when she knows that the realization is a member of {y, z}. Similarly, a strategy of player 2 consists of

two actions, one for {z, y} and one for z.

A player’s strategy is optimal if, given the strategy of the other player, for any realization of her information she can

do no better by choosing an action different from that dictated by her strategy.

Then there is a new equilibrium, they will choose (B, L), (T, L) and (T, R) when , y and z are realized respectively.
The equilibrium payoft profile are (5, 5).

Neither player has an incentive to deviate. Consider player 1. At state z, player 1 knows that player 2 plays L and
thus it is optimal for player 1 to play B; at states y and z, player 1 assigns equal probabilities to player 2 playing L
and R, so that it is optimal for player 1 to play 7.

Another advantage: The game above has two pure-strategy Nash equilibria (7', R), (B, L) and one mixed-strategy
Nash equilibrium (2 0T+ 1 0 B,20 L + 3 o R).

The expected payoff for the new equilibrium is 7- 4 + 2 - & + 6 - + = 5 which is higher than the expected payoff
of the mixed-strategy Nash equilibrium.

)

7

14

Figure 6.1

6.2 Correlated equilibrium

Definition: A correlated equilibrium, denoted by ((Q, 7), (P;), (0;)), of a strategic game (N, (A;), (u;)) consists
of

« a finite probability space (2, 7) (£2 is a set of states and 7 is a probability measure on §2)
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6.6

6.7

6.8

6.9

6.10

6.11

o for each player ¢ a partition P; of 2 (player ¢’s information partition)

o for each player 7 a function o;: Q — A; with 0;(w) = 0;(w’) whenever w,w’ € P, for some P; € P; (0 is

player ¢’s strategy)

such that for every i and every function 7;: Q — A; for which 7;(w) = 7;(w’) whenever w,w’ € P; for some

P; € P; (i.e. for every strategy of player i) we have

Z m(w) - ui(0—i(w), o3 (w)) > Z (W) - ui(0—i(w), i (w)).

weN weN

Intuitively, correlated equilibrium allows us to get at preplay communication without explicit modeling the com-

munication process.

The condition of correlated equilibrium can be written as: for every player ¢, every information cell P; € P; with
w(P;) > 0, every a; € A;,

Z m(w | P) ui(o(w)) > Z m(w | P) - ui(o—i(w), a;).

weP; weP;

Proposition: Let G = (N, (4;), (u;)) be a finite strategic game. Every probability distribution over outcomes that
can be obtained in a correlated equilibrium of G can be obtained in a correlated equilibrium in which the set of
states is A and for each ¢ player ¢’s information partition consists of all sets of the form {a € A | a; = b; } for some
action b; € A;.

Proof. Let ((Q2,7), (P;:), (0;)) be a correlated equilibrium of G. Then (', 7’), (P}), (c})) is also a correlated

equilibrium, where Q' = A, 7'(a) = 7({w € Q | o(w) = a}) for each a € A, P} consists of sets of the type
{a € A|a; =b;} forsomeb; € A;, and o} is defined by 7/ (a) = a;.

For every ¢ and every function 7/: A — A, for which 7/(a) = 7/(a’) whenever a; = a}, we have

Zﬁl(a) (0 ;(a), o}(a)) = Zﬂ({w | o(w) =a})  wi(a_;,a;) Z Z cui(a—;, a;)

a weo~1(a)

- Z i (o(w)) > Zw(w) “ui(0-i(w), 7 (0(w)))

w

= Z Z cui(a—i, 7 Zw o' (a),7!(a)).

a weo~1(a)

Remark: This result allows us to confine attention, when calculating correlated equilibrium payofts, to equilibria in

which the set of states is the set of outcomes. Note however that such equilibria may have no natural interpretation.

Corollary: A correlated equilibrium can be viewed simply as 7 € A(A) such that, for every player ¢, and every
function ~y;: 4; — A;,

> w(a) - uila) > w(a) - uilai,vi(ai).

acA a€cA

Thus, a mixed-strategy Nash equilibrium is a special form of correlated equilibrium: 7 € X ;e yA(A;).

(From http://zhuanlan.zhihu.com/qianfeng/20018642) tH x ¥ # £ £ TH FEHW H M, TURLAE
FEREM, FERAFESHNERENANMZ AR EHE, ANKEBERZRSE, RERZ 2T E N


http://zhuanlan.zhihu.com/qianfeng/20018642
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6.12

6.13

6.14

6.15

RE R LA MEST RS2 NTITHEABER), wRZH2HE, E5 LML

2RARE B HIRT, AR IR &AM,

MERE, RNEETUFEBME XY ERHMAHEER LW — 30 1 RRLMARA S € 0%,
2H TR ARG, MAABE—HFWHTET, EIrSHA0CRANEEML AR

FERURMKE, MENTHEE, TRHREEMT L, FHH CRE) KA R ML TR AT RS E 8,

GhE—PMEFEFCH—MERAE 7, BT 1w A LR — correlating device, ™ AFNE5 ARFEATH

WEBRTUERR - M RZLEEWERIE M55 ABRE B THER (ﬁlj]%ﬁﬁ), [ = A T

MUAREE (UTardE) Wit

EZERFEERIE r ERNT R ERHFY, BN AEENME SRS TRBRENATIM R

w3 A 1T

g2, WRENEEU-MEEHHE, AP 5HEXFLXTES GAZR XA XK EER

75%)@ 3, NS EGAEZLERN T Z2E R RAERKRT 2ot aHE (B GRLEFLANER

ZFREEM AN B IR, HEARREAANNFTERENFE), Bash A EHEER I+
%ﬁ%ﬁ%%$?’:iz€&ﬂ]%%%méfa R FR 848 R

Proposition: Let G = (N, (A;), (u;)) be a strategic game. Any convex combination of correlated equilibrium

payoft profiles of G is a correlated equilibrium payoff profile of G.

Proof. Let u, ..., u’ be correlated equilibrium payoff profiles and let (\!,..., \%) € RE with A\¥ > 0 for all
kand >, AF = 1. For each value of k let ((Q*, %), (PF), (¢F)) be a correlated equilibrium that generates the
payoff profile u*; without loss of generality assume that the sets Q¥ are disjoint. The following defines a correlated
equilibrium for which the payoff profile is >, A*u*. Let

o Q= UpQF, and for any w € () define 7(w) = \*7¥(w) where w € QF;

e Foreachi,letP; = Uka, where w € QF;

+ Define o; by 0;(w) = 0¥ (w) where w € QF.

For every i and every function 7;: Q — A; for which 7;(w) = 7;(w’) whenever w,w’ € P; for some P; € P;, let
7k (w) = 7;(w) where w € QF. Then

K2

Zﬂ(w) cug(o—i(w Z Z cui(o—;(w), o Z Z Nerk (w cui(o (w),af(w))

we k weqQk kE weQk
> Z Z Nerk (w cui(o (w),Tik(w)) = Z m(w) - ui(0—i(w), i (w)).
k weQk weN

Remark: The set of Nash equilibrium outcomes is generally not convex.

One of the advantages of correlated equilibria is that they are computationally less expensive than are Nash equilib-
ria. This can be captured by the fact that computing a correlated equilibrium only requires solving a linear program
whereas solving a Nash equilibrium requires finding its fixed point completely. Another way of seeing this is that it
is possible for two players to respond to each other’s historical plays of a game and end up converging to a correlated
equilibrium. (See Foster and Vohra, GEB, 1996)
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6.3 Examples

6.16 Example [OR Exercise 48.1]: Consider the following three-player game. Player 1 chooses one of the two rows,
player 2 chooses one of the two columns, and player 3 chooses one of the three tables.

R
0,0
0,0

b)

=

Sl

0
0

=)
W~

SO
O

(i) Show that the pure-strategy equilibrium payoffs are (1, 0,0), (0,1, 0), and (0, 0, 0).
(ii) Show that there is a correlated equilibrium in which player 3 chooses B and players 1 and 2 play (7, L) and
(B, R) with equal probabilities.

(iii) Explain the sense in which player 3 prefers not to have the information that players 1 and 2 use to coordinate

their actions.
6.17 Example: Find the set of correlated equilibrium payoffs of battle of sexes.

Peter
Opera  Fight
Opera | 2,1 0,0
Fight | 0,0 1,2

Mary

Answer. We may assume

« 2={(0,0),(0,F),(F,0),(FF)},
« P1={{(0,0),(0,F)},{(F,0),(F,F)}},and P, = {{(0,0), (F,0)},{(O,F),(F,F)}},

o 01(a1,as) = ay and o2(ay, as) = as.

Let the probability distribution 7 be as follows:
z=7((0,0)),y=7((0,F)),z=7((F,0)),w=n((F,F)).

The prior probabilities of the four outcomes are summarized by the following table:

0
F

w8 (Q
g [ |0

By Corollary 6.10, we have the following inequalities:

TuHE0) + yurteF) + zui (F, O) + wuy (F, F) > 2upte0) + yukesT) + 2ui (0, 0) + wuy (O, F),
2u1(0,0) + yu (O, F) + 2utE0) + wisF) > zuy (F,0) + yui (F, F) + 2u550) + wiprHT),

Tus0) + yus (0, F) + ZusHET) + wus(F, F) > 2uste:0) + yus (0, 0) + ZusHET) + wus(F, 0),
zuz(0, 0) + yustEsT) + zus(F,O) + wistEF) > zuz(0, F) + yustesT) + zus(F, F) + wistF).
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That is,
w>2z, 2>y, 2w>y, > 2z

In other words, both = and w must be greater then 2z and 4. The set of correlated equilibrium payoffs is equal to
up =2 +w, us =+ 2w,

subject to min{z,w} > max {¥,2z}, 2 +y+z+w=1andz,y,z,w > 0.

Draw the feasible payoft set. Notice that the efficient frontier is obviously part of the correlated equilibrium payoff set
because any point on the frontier can be achieved by a linear combination of the two pure-strategy Nash equilibrium.
The question is how inefficient the payoft can be. To make the payoff small, we want to put as much weight on y
and z as possible without violating min{z,w} > max{¥ 22} This means that we want to set z = w = 4 = 2z.

Let z = e. Then y = 4¢, x = w = 2¢. This means € = 3. The corresponding payoft is (3, 3) which is the payoft

for the mixed-strategy equilibrium. In this case, the set of correlated payoffs, as shown in Figure 6.2, is

the convex hull of{ (;, ;) ,(2,1), (1, 2)} .

o
oo b - — = — =
R DR

Figure 6.2

6.18 Example: Find the set of correlated equilibrium payofs of the following game.

o R
M
(=11 \]
\
—
\
—

Answer. We may assume

« @={(a,a),(a,b), (b,a),(b,b)}
» Pr={{(a,0),(a,b)},{(b,a), (b,0)} } and P = {{(a, a), (b,a)},{(a,b), (b, b)} }

o 0i(a;,a;) =a;

Letz = 7((a,a)), y = 7((a,b)), z = w((b,a)), and w = 7((b,b)). The prior probabilities of the four outcomes
are summarized by the following table:



115

6.3. Examples
a b
alz |y
b |z |w

For the strategy to be a correlated equilibrium, z, y, z and w must satisfy the following conditions:

20 > 3xr —y s ax <y,
22<3z—wesw<lz,
20 > 3x —z e x < z,
2u<3y—w e wly.

The set of correlated equilibrium payoffs is equal to

{(U1,02) | Uy =22+ 32 — w,Us = 22 + 3y — w},

where
max{z,w} < min{y, z}, z,y,z,w > 0andx +y + z + w = 1.

Result:
2 2 55
h hull of - =, = .
the convex hull o {(3,3>,(3,3>,(3,0)7(0,3)}
O

6.19 Question: How to compute the set of payoft vectors of correlated equilibria? (Hint: Fourier-Motzkin elimination)


http://en.wikipedia.org/wiki/Fourier%E2%80%93Motzkin_elimination
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In equilibrium each player’s choice is optimal given his correct belief about opponents’ actions. However, it is not clear

how each player can know the other players’ equilibrium actions.

“Nash behavior is neither a necessary consequence of rationality, nor a reasonable empirical proposition.”

—Berheim (Econometrica, 1984, p. 1007)

For this reason, game theorists have developed solution concepts that do not entail this assumption.

We study some solution concepts, in which the players’ beliefs about each other’s actions are not assumed to be correct,
but are constrained by considerations of rationality: each player believes that the actions taken by every other player is
a best response to some belief, and, further, each player assumes that every other player reasons in this way and hence

thinks that every other player believes that every other player’s action is a best response to some belief, and so on.

7.1 Rationalizability

7.1 The basic idea behind the notion of rationalizability is that “rational” behavior must be justified by “rational” beliefs

and conversely, “rational” beliefs must be based on “rational” behavior.
7.2 The idea can be illustrated explicitly by a two-person game as follows:

« A strategy of 7 is called 1-justifiable if it is a best response to some beliefs of ¢ about the strategic choice of j.

o A strategy of 7 is called ¢-justifiable (where ¢ > 2) if it is a best response to a belief of ¢ that assigns positive
probabilities only to (¢ — 1)-justifiable strategies of j.

117
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7.3

7.4

K75

7.6

7.7

o A strategy of { is rationalizable if it is a best response to a belief of ¢ that assigns positive probabilities only to

t-justifiable strategies of j for all ¢ > 1.
Example:

Player 2
L R

T | 3,0
Player1 M | 0,0
B|1,1

=W o
Ol |~

b)

(1) For player 1, T and M are 1-justifiable; for player 2, L and R are 1-justifiable.

(2) For player 1, T and M are 2-justifiable; for player 2, R is 2-justifiable.

(3) For player 1, M is 3-justifiable; for player 2, R is 3-justifiable.

(4) Itis clear that M and R are t-justifiable for players 1 and 2 respectively for ¢ > 3.

The notion aims to be weak; it determines not what actions should actually be taken, but what actions can be ruled

out with confidence.

Definition: For simplicity, we restrict attention to finite games unless otherwise stated explicitly.

o0
» A product subset X = x;cnX; C Ais rationalizable if there exists a collection ((X;) je N) of sets with
=0

X;? = X and X; C Aj forall jand ¢t > 1 such that for each j € N, eacht > 0,and each a; € X;, there is

a belief uj-“ (a;) € A(Xt_ﬁl) such that a; is a best response (in A;) to the belief u?” (a;) of player j.

o We call each a; € X a rationalizable action for player i.

The interpretation of th-“ is that it is the set of all actions a; of player j that may be used to justify some other

player i’s action a; € X!.

We take a belief of player i to be a probability distribution on Xt ,, i.e. u € A(X",), which allows each player to

believe opponents’ actions are correlated. In the original definition in Bernheim (Econometrica, 1984) and Pearce

t
—1

(Econometrica, 1984), i’s belief is a product of independent probability distributions on X" ;, one for each of the

other players, i.e. 1 € X2 A(X}). In general, X2 A(XE) G A(x i X5).

Example: In the following game, there are three players; player 1 chooses one of the two rows, player 2 chooses one
of the two columns, and player 3 chooses one of the four tables. All three players obtain the same payofts, given by

the numbers in the boxes.

L R L R L R L R

U| 8]0 U410 U|0]0 U|l3]3

D|0]0O D|0]4 D |08 D|3]3
M1 Mg M3 M4

We claim that M, is rationalizable if player 3’s belief about his opponents’ actions are correlated, but is not ratio-

nalizable if he is restricted to beliefs that are products of independent probability distributions.

Let Zl = {U,D}, ZQ = {L,R} and Z3 = {MQ}

« U of player 1 is a best response to a belief that assigns probability one to (L, M) and D is a best response to
the belief that assigns probability one to (R, M);
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7.8

7.9

7.10

7.11

o L of player 2 is a best response to a belief that assigns probability one to (U, Mz) and R is a best response to
the belief that assigns probability one to (D, Mz);

o My of player 3 is a best response to the belief in which players 1 and 2 play (U, L) and (D, R) with equal
probabilities.
However, M is not a best response to any pair of independent mixed strategies and is thus not rationalizable under
the modified definition in which each player’s belief is restricted to be a product of independent beliefs.

In order for My to be a best response, we need

4pg +4(1 — p)(1 — q) > max{8pq,8(1 — p)(1 — q), 3},

where (p,1 — p) and (g, 1 — ¢) are mixed strategies of players 1 and 2 respectively. This inequality is not satisfied
for any values of p and q.

Shown below are the payoffs of player 1 in a three-person game. In this game, player 1 has three pure strategies L,
M and R. Player 2 chooses rows and player 3 chooses either matrix A or matrix B. For players 2 and 3, neither

strategy weakly dominates the other for any player. Is L a rationalizable strategy?

L M R L M R
U| 6 | 10] 0 Ul 6 |10] 10
D | 6 |10 ] 10 D| 6 0 |10
A B
Answer. L is a best response to the belief o (U, A) + 5 o (D, B). Hence, L is rationalizable. O

Alternative definition:
+ A product subset Z = X jenZ; C A is rationalizable if for each j € N, each a; € Zj, there exists pu;(a;) €
A(Z_j;) such that a; is a best response (in A;) to the belief 11;(a;).

o We call each z; € Z; a rationalizable action for player i.

Proof of the equivalence.

“=": Suppose that a; € A; is rationalizable according to Definition 7.5. Then we have a product subset X which
is rationalizable according to Definition 7.5 and a; € X;. Let

Z = xjen (U2 Xj).
For each j € N, each a; € Z; = U; X}, there exists ¢, such that a; € X, and hence there is a belief M;H (a;) €
A(Xt_tl) to which a; is a best response of player j. Since A(Xt_tl) C A(Z_;), we have ,u;-“(aj) € A(Z_;),
and hence Z is rationalizable according to Definition 7.9. Therefore a; € X; C Z; is rationalizable according to
Definition 7.9.

“<" If a; € A, is rationalizable according to Definition 7.9. Then we have a product subset Z which is rational-
izable according to Definition 7.9 and a; € Z;. Define X; = Zj foreach j € N andeacht > 0; hence X = Z is

rationalizable according to Definition 7.5, and a; € X is rationalizable according to Definition 7.5. O
Proposition:

« a* is a Nash equilibrium if and only if the singleton {a*} is a rationalizable set.
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o Every action used with positive probability by some player in a correlated equilibrium is rationalizable.

Proof. Denote the strategic game by (N, (A;), (u;)); choose a correlated equilibrium ((£2, ), (P;), (¢;)). For each

Jj>each a; € Aj, take P; to be an information cell such that on it ;(w) = a;. Then for every a’; € A;, we have

Yoww | Py uj(oj(w)a;) > Y w(w | Py) - ui(oj(w),af).

weP; weP;

For each player j € IV, let Z; be the set of actions that player j uses with positive probability in the equilibrium, i.e.,
Z; = support(c;). For each k # j, based on 7(w | P;) and oy (w), define a player j’s belief on player k’s actions

>wep, T(w | Pjlog(w).

Then any a; € Z; is a best response to the the belief (Zwer m(w | Pj)og (w)) iy The support of this belief is a
j

subset of Z_. O

7.12 Define B(R) = X;cnB;(R—_;), where
Bi(R_;) = {a, | there exists € A(R_;) such that a; is a best response to the belief /1 }.

Then Z is rationalizable if and only if Z C B(Z), i.e., Z is a fixed point of the correspondence B.

7.13 If two subsets R = x; R;j and R’ = X ; I, of A are rationalizable, then x ;(R; U R’) is also rationalizable.

For a finite strategic game (N, (4;), (u;)), define

R* = U R.

R is rationalizable

Then R* is the largest (with respect to the set inclusion) rationalizable set.

7.14 Example: find the largest rationalizable set of the following game.

Player 2
bl b2 b3 b4
a [ 07 | 2.5 7.0 | 0,1
Plaver 1 @2 | 5.2 3,3 52 | 0,1
WL w70 | 2.5 0,7 | 0,1
as| 0,0 | 0,—2 | 0,0 |10,_1

Answer. R* = {ay1,a2,a3} x {b1,ba,b3}:

o (ag,bs) is a Nash equilibrium;

o a is a best response to bs, b3 is a best response to as, as is a best response to by, and b; is a best response to

ai.

« by is not rationalizable since if the probability that player 2’s belief assigns to a4 exceeds , then b3 yields a

payoff higher than does by, while if this probability is at most % then by yields a payoff higher than does by.

« a4 is not rationalizable since without b4 in the support of player 1’s belief, a4 is dominated by as.
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7.15

7.2

7.16

7.17

7.18

7.19

7.20

7.21

Example (From http://econweb.ucsd.edu/~jwatson/): In a strategic game, player 1 selects any real number

2 and player 2 selects any real number y. The payoffs are given by
u(z,y) =22 — 2 + 2y, us(x,y) = 10y — 2zy — y°.
Find all pure-strategy Nash equilibria and the largest rationalizable set.

Answer. Unique Nash equilibrium (3, 2), the largest rationalizable set is R x R. O

Iterated elimination of never-best response
The notion of rationalizability determines not what actions should actually be taken, i.e., the action which is a
never-best response will not be taken.

Definition (Never-best response): Given a product subset X C A, an action a; of player ¢ is a never-best response
given X if it is not a best response to any belief on X of player i, i.e., for each p € A(X_;), thereis a} € A; such
that

Ui(a;, p) < Ui(ag, p).
Notation: For product subsets X, X’ C A where X’ C X, we use the notation
X — X’
to signify that for any a; € X; \ X7 and for any € A(X_;), there is a} € A; such that
Uj(az, p) < Uj(aj, p)-

The notation X »— X"’ does not require that all never-best responses be eliminated; in particular, X — X.

IENBR: The product set X C A of outcomes of a finite strategic game is the result of iterated elimination of never-
best response (IENBR) if there is a collection (X*)I_, where X° = A, X! »— X' and X = N X! — X'
only for X’ = X.

Sometimes, we use IENBR to denote the result of iterated elimination of never-best response.
For infinite games we may need to consider a countably/uncountably infinite number of rounds of elimination.

Claim: Let X be the result of iterated elimination of never-best response for a finite strategic game, then X is the

largest rationalizable set.

Proof. Since R* is rationalizable according to Definition 7.9, then R* C X tforallt > 0, and hence R* C X.

Since X — X' only for X’ = X, then X is rationalizable according to Definition 7.9, and hence X C R*. O

This claim implies that the order and speed of iterated elimination of never-best response have no effect on the set

of outcomes that survive.

Every Nash equilibrium survives IENBR.


http://econweb.ucsd.edu/~jwatson/
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7.22

7.23

7.3

7.24

7.25

7.26

7.27

7.28

Example (Order dependence): Consider the following game G = ({1}, A1, u1), where A; = (0,1) anduy(z) =z
forallz € A;.

Every strategy is a never-best response. For any x € Aj, eliminate in round one all strategies in the set 4; \ {z},

and only  survives IENBR.

Let NE denote the set of Nash equilibria, and NE | g~ the set of Nash equilibria in the reduced game after the IENBR
procedure. We have the following NE = NE

R*-

Proof. Clearly, NE C NE | g-.

Assume, in negation, that there is a* € NE

r+ buta® & NE. Then, for some player j, a} is not a best response to
a’; € R_;in Aj, although a7 is a best response to a* ; in R;. Suppose that a; is a best response to a* ; for player
J. Then, a; is eliminated by the IENBR procedure, otherwise a} can not be an equilibrium action in the reduced

game. A contradiction. O

Iterated elimination of strictly dominated actions

Iterated strict dominance is one of the most basic principles in game theory. The concept of iterated strict dominance
rests on the simple idea: no player would play strategies for which some alternative strategy can yield him/her a

greater payoff regardless of what the other players play and this fact is common knowledge.

Definition (Strictly dominated action): The action a; € A; of player ¢ is strictly dominated if there is a mixed

strategy a; € A(A;) of player ¢ such that

Ui(ag,a—y) > ui(az,a;) foralla_; € A_;.

Lemma: An action is strictly dominated if and only if it is a never-best response.

Proof. “=": Let a; be strictly dominated by «;. Then for any u € A(A_;), we have

U(aisp) = Y pmla) wlasa) < Y pla)-Ui(as,a—) = Ui(as, p).

a_;€EA_; a_;€EA_;

Thus, a; is not a best response to 1, and hence a; is never-best response.

“<”: Let a; be not a best response to any i € A(A_;). Consider a two-person zero-sum game

G = <{Zv _i}7 (A(AJ))7 (Vj»»

where V;(a;, 1) = U; (e, u) — Us(ai, p) forall a; € A(A;) and p € A(A_;).

Clearly, A(A;) is non-empty, convex and compact, and the function V;(cy, i) is continuous and linear (hence
quasi-concave) in ;. So, there is a Nash equilibrium (o}, #*) in game G. Since a; is a never-best response, for any
we A(AL),

Vilag, ) > Vi(aj,p*) = max  Vi(ay,p*) > 0.
(o, ) (o, p1") o x| (viy pi*)

Hence, U;(af,a—;) > u;(a;,a—;) foralla_; € A_;, i.e., a; is strictly dominated by . O

Hyperplane separating theorem: Let A and B be convex sets in R™ such that A N B = (). Then, there exists

p € R™\ {0}, suchthat supp -z < inf p - y.
€A yEB



7.3. Iterated elimination of strictly dominated actions 123

Alternative proof for “<” (by hyperplane separating theorem). Assume that a, is not strictly dominated and enu-
merate A_; = {a';,a?,,...,a",}. Define V; = Ug,ea(a,) Vi(Bi), where

—1

Vi(Bi) = {(ﬁm):ﬁl:l € R Ui(Bi,a™,) > a™, forallm = 1,2, .. Lk}
Note that V; is a convex set, and since a; is not strictly dominated,
(ui(ai, al,),uilai, a2y), .. ui(ai,a®y)) € Vi

Therefore, by hyperplane separating theorem, there is some (p7)* _; € R* \ {0} such that

m=1

k k
Z pltu(a;, a™) > Z pa™ for all (@™)k _, € V. (7.1)
m=1

m=1

Note first that pi* > 0 because if pj* < 0, we can pick 4™ < 0 so that Equation (7.1) violated. Moreover, since
(pm)k _, #0, mezl p™ > 0 and thus we can normalize (p!)¥,_; so that an:l p™ = 1. Thus, (p7)k _, isa
probability distribution on A_; where p!” is the probability that —i plays a”;. This normalization will not change
Equation (7.1). Note also that for every a, € A;,

—i

(ui(ag, al)) —eui(al,a%;) —e, ... ui(a,a*;) — e) € Vi(a})

for any € > 0 and thus,

k k
Z plui(a;, a™;) > Z p*ui(al, a™;) — € forall a; € A;.
m=1 m=1

Since € > 0 is arbitrary, we get
k k
Z prui(a;, a™;) > Z pMui(ai, a™,) forall a, € A;.
m=1 m=1

Thus, a; is a best response. A contradiction. O

7.29 Notation: For product subsets X, X’ C A where X' C X, we use thte notation
X - X’
to signify that for any a; € X; \ X7, thereis o € A(A;) such that

U; (o]

Gra—j) >wuj(aj,aj) foralla_; € X_;.

7.30 IESDA: The product set X C A of outcomes of a finite strategic game is the result of iterated elimination of strictly
dominated actions (IESDA) if there is a collection (X)X, where X* = 4, X! — X'+ and X = N X! — X’
only for X’ = X.

Sometimes, we use IESDA to denote the result of iterated elimination of strictly dominated actions.
7.31 Claim: For a finite strategic game, the result of IENBR is the same as the result of IESDA. (By Lemma 7.26)

7.32 Example:
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7.33

7.34

7.35

7.36

Player 2 Player 2 Player 2
L R
L R R
13,0102 7 [3,0]0,1 T [0.1
Player1 M | 0,0 | 3,1 Player 1 M 070 3’ 1 Player 1 M 3’ 1
B[1,1]1,0 : 2 :
/ 1
a G G

« For player 1, B is strictly dominated by 3 o 7'+ 1 o M, which will be eliminated;

In reduced game G, for player 2, L is strictly dominated by R, which will be eliminated;

In reduced game G/, for player 1, T is strictly dominated by M, which will be eliminated;
o Thus, (M, R) is the only outcome that survives IESDA.

Notation: For product subsets X, X’ C A where X’ C X, we use the notation
X X'
to signify that for any a; € X; \ X/ and for any u € A(X_;), there is a} € X such that
Uj(aj, p) > Uj(a;, p).

‘We use the notation
X=X

to signify that for any a; € X; \ X/, thereis o € A(Xj) such that

Uj(aj,a—j) > uj(aj,a—j) foralla_; € X_;.
The product set X C A of outcomes of a finite strategic game is the result of iterated elimination of strictly dom-
inated actions’ (IESDA’) if there is a collection (X?)]_, where X? = A, X! — X! and X = NI X — X’
only for X’ = X.

The product set X C A of outcomes of a finite strategic game is the result of iterated elimination of never-best
response’ (IENBR') if there is a collection (X*)L_, where X° = A, X 95 X'+ and X = N X’ 3 X’ only
for X' = X.

Similarly, the result of IESDA’ is the same as the result of IENBR'.

Claim: For a finite strategic game, the result of IESDA is the same as the result of IESDA’.

Proof. Suppose that X is the result of IESDA/, then it is also the result of IENBR'. Since Z ¢ Z’ implies Z — Z’,
IENBR has greater elimination power than IENBR’. Therefore, X C R*.

Assume, in negation, that thereis a € X \ R*. Since ¢ € X is not rationalizable, for any € A(X_;), there exists
a; € Aj such that Uj(aj, p) > Uj(a;, ). Take a so that Uj(a}, ) = max,rea, Uj(a}, p). Then Uj(aj, p) >
Uj(aj, 1), and hence a7 is a best response to y1. It is clear that a} is eliminated in the process of IENBR’, otherwise

a; can not survive. A contradiction. O

Summary: R* = IENBR = IESDA = IENBR’ = IESDA’
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7.4

7.37

7.38

7.39

7.40

7.41

Examples

Example: Find all pure-strategy Nash equilibria and all pure rationalizable strategies in the following strategic game.

Player 2
L R
U|30]01]10
Player1 M | 0,1 | 3,0 | 0,0
D|10] 1,001

Answer. No pure-strategy Nash equilibrium.

U is a best response for L, L is a best response for M, M is a best response for C, and C is a best response. D is
strictly dominated by 1 o U + £ o M and eliminated, and consequently R is strictly dominated by 2 o L + 1 o C.
Therefore, U, L, M and C are all pure rationalizable strategies. O

Example [OR Exercise 56.4]: Cournot duopoly.
Consider the strategic game ({1, 2}, (4;), (u;)) in which A; = [0,1] and u;(a1,a2) = a;(1-a;—az) fori = 1,2.
Show that each player’s only rationalizable action is his unique Nash equilibrium action.

Answer. Player i’s best response function is B;(a;) = (1 — a;)/2; hence the only Nash equilibrium is (3, 3 ).

Since the game is symmetric, the set of rationalizable actions is the same for both players; denote it by Z. Let
m = infZ and M = sup Z. Any best response of player i to a belief of player j whose support is a subset of
Z maximizes E[a;(1 — a; — a;)] = a;(1 — a; — E[ay]), and thus is equal to B;(E[a;]) € [B;(M),B;(m)] =
[(1—M)/2,(1 —m)/2]. Hence, we need (1 — M)/2 < mand M < (1 —m)/2,so that M = m = %: 1 is the

only rationalizable action of each player. O

Example [OR Exercise 56.5]: Guessing the average.

Let n(n > 2) people play the following game. Simultaneously, each player ¢ announces a number z; in the set
{1,2,...,K}. A prize of $1 is split equally between all the people whose number is closest to 2 - £+ Show

that each player’s equilibrium action is his unique rationalizable action.
Example [OR Exercise 57.1].

Example [OR Exercise 63.1].

Consider a variant of the game in Example 2.38 in which there are two players, the distribution of the citizens’
favorite positions is uniform, and each player is restricted to choose a position of the form ¢/m for some ¢ €
{0,...,m}, where m is even. Show that the only outcome that survives iterated elimination of weakly dominated

actions is that in which both players choose the position %

Answer. Only one round of elimination is needed: every action other than 1 is weakly dominated by the action 3.
(In fact 1 is the only action that survives iterated elimination of strictly dominated actions: on the first round Out
is strictly dominated by 3, and in every subsequent round each of the remaining most extreme actions is strictly
dominated by 3. O
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7.42 Example [OR Exercise 63.2]: Dominance solvability.

A strategic game is dominance solvable if all players are indifferent between all outcomes that survive the iterative
procedure in which all the weakly dominated actions of each player are eliminated at each stage. Give an example
of a strategic game that is dominance solvable but for which it is not the case that all players are indifferent between
all outcomes that survive iterated elimination of weakly dominated actions (a procedure in which not all weakly

dominated actions may be eliminated at each stage).

Answer. Consider the following game. This game is dominance solvable, the only surviving outcome being (7', L).
However, if B is deleted then neither of the remaining actions of player 2 is dominated, so that both (7', L) and

(T, R) survive iterated elimination of dominated actions.

Player 2
L R
T 11,0100
Player 1 B01100
Figure 7.1

7.43 Example [OR Exercise 64.1]: Announcing numbers.

Each of two players announces a non-negative integer equal to at most 100. If a; + as < 100, where q; is the
number announced by player 7, then each player ¢ receives payoff of a;. If a; + a» > 100 and a; < a; then player
i receives a; and player j receives 100 — a;; if a1 + a2 > 100 and a; = a; then each player receives 50. Show that

the game is dominance solvable (see the previous exercise) and find the set of surviving outcomes.

Answer. At the first round every action a; < 50 of each player 4 is weakly dominated by a; + 1. No other action
is weakly dominated, since 100 is a strict best response to 0 and every other action a; > 51 is a best response to
a; + 1. At every subsequent round up to 50 one action is eliminated for each player: at the second round this action
is 100, at the third round it is 99, and so on. After round 50 the single action pair (51, 51) remains, with payoffs of
(50, 50). O

7.44 Consider the following game:

Player 2
L M R
A[43]25]20
B[62]03]14
Player 1 o 59 10 [ 1.2
D[3.0]1,1]33

(i) Eliminate strictly dominated strategies.
(ii) Find all pure-strategy Nash equilibria and write down the corresponding payoffs.

(iii) Find all mixed-strategy Nash equilibria and write down the corresponding expected payoffs.

Answer. (i) (1) C is strictly dominated by A and will be eliminated;
(2) L is strictly dominated by M and will be eliminated;
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Player 2 Player 2

M R M R

A|25]20 A 125120

Player 1 DI11]33 Player 1 DIL1]33
G1 G2

(3) B is strictly dominated by D and will be eliminated.

Hence we will obtain the reduced game G;.

(ii) From the payoff table G5, we obtain the pure-strategy Nash equilibria: (A, M) and (D, R) (red pairs) with
payoffs (2, 5) and (3, 3), respectively.

(iii) Letp; = (r,1 — r) be a mixed strategy in which player 1 plays A with probability r. Let p; = (¢, 1 — q) bea
mixed strategy in which player 2 plays M with probability q. Then player 1’s expected payoff is:

Ur(D,p2) =q+3(1—q) =3—2¢.

Hence
{1}, ifg>3;
r*(q) = argmax Ui (p1,p2) = { {0}, ifq < 3;
0<r<1
[0,1], ifg=3.

Similarly, player 2’s expected payoft is:

UQ(plaM):5T’+(1—r):1+4T’
Uz(p1, R) = 3(1 — 7).

Hence
. 2.
{1}, ifr> %5
q"(r) = argmax Us(p1,p2) = { {0}, ifr < 2;
0<q<1 ) 9
[0,1], ifr=z.

We draw the graphs of 7*(¢) and ¢*(r) together:
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qh

pure NE (A, M)

(0,1) -~

¢(r)|  mixed NE (24§ 2D, 1M + LR)

4

7 (q)

|
:
|
pure NE (D, R) |
|
|

N
0

=Y

(

Figure 7.2: Intersection of best-response correspondences.

,0) (1,0)

o

The graphs of the best response correspondences 7*(¢) and ¢* (r) intersect at 3 points (r = 2,¢ = ), (0,0)
and (1, 1). Hence, there are 3 mixed-strategy Nash equilibria:
o (10 A, 10 M) with expected payoff (2, 5),
o (10 D,1 0 R) with expected payoff (3, 3),
¢ (2044 50D,} oM+ 1o R) with expected payoff (2, £2).

O

7.45 Example: Each individual ¢ = 1,2, ..., 100 must choose a number r; € [0, 1]. If an individual chooses a number
that is the most closed to the value 0 Zjﬂﬂ r; (where § € [0,1] is a parameter), then the individual gets payoff
1; otherwise, the individual gets payoff 0. Formulate this problem as a strategic game, and find all rationalizable
strategies for each 0 € [0, 1].

7.5 Iterated elimination of weakly dominated actions

7.46 A player’s action is weakly dominated if the player has another action at least as good no matter what the other

players do and better for at least some vector of actions of the other players.

7.47 The action a; € A; of player ¢ is weakly dominated if there is a mixed strategy a;; € A(A;) of player 4 such that

Ui(ai7a_i) > ui(ai,a_i) foralla_; € A_i,

Uj,(Oéi, a_i) > ui(ai, a_i) for some a_; € A_i.

7.48 Since a weakly dominated action may be a best response to some belief, rationality does not exclude using such
an action. Yet since there is no advantage to using a weakly dominated act ion, it seems very natural to eliminate
such actions in the process of simplifying a complicated game. Indeed, a “cautious” player who holds full-support

probabilistic beliefs about the opponents’ behavior never uses a weakly dominated action.

7.49 Similarly to IESDA, we can define iterated elimination of weakly dominated actions (IEWDA). Unlike IESDA,
IEWDA might be an order dependent procedure.
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Player 2

L R
T ,1,1]0,0

Player 1 M | 1,1 | 2,1
B 10,021

7.50 Example:
o Procedure 1: T is eliminated (it is weakly dominated by M), then L is eliminated (it is weakly dominated by
R). Thus, the result is {(M, R), (B, R)}.
o Procedure 2: B is eliminated (it is weakly dominated by M), then R is eliminated (it is weakly dominated by

L). Thus, the resultis {(T", L), (M, L)}.

7.51 Proposition [JR Exercise 7.16]: In a finite strategic game, the set of strategies surviving iterative weak dominance is

non-empty.
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In game theory and economics, it is important and fundamental to account for an agent’s knowledge/beliefs about

uncertainty, as well as the agent’s higher-order knowledge/beliefs about the other agents’ knowledge/beliefs. Interactive

epistemology studies the logic of knowledge and belief in the context of interactions.

We present a model of knowledge and use it to formalize the idea that an event is “common knowledge”, and to express

formally the assumptions on players’ knowledge that lie behind various solution concepts such as Nash equilibrium and

rationalizability.

8.1

8.1 There are 3 players, each wearing a white hat. Each player knows that the hats are either white or black and sees the

A model of knowledge

color of the hats of the other two players. The game is to guess the color of their own hats (which they don't see).

Obviously, the hat color of the other two players contain no information about one’s own hat. Hence, initially none
of the three players can tell his own hat color. Now, suppose a fourth player announces publicly to all three players
that at least one hat is white. Then the fourth person asks them whether they now know the color of their hats. They
said no. The fourth player asks the question again. The answer is still no. The fourth player asks the question for

the third time. Now, they all answer correctly. Why?

First, do the three players learn anything that they do not know already from the fourth player? Everyone knows

that some hats are white. Furthermore, everyone knows everyone else knows some hats are white. For example,

131
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player 1 knows players 2 and 3’s hats are white. So, he knows player 2 knows someone’s hat (player 3’s) is white.
Similarly, player 1 also knows player 3 knows player 2’s hat is white. But, does player 1 know player 2 knows player
3 knows someone’s hat is white? The answer is no. Because player 1 does not know his own hat’s color. If player
I’s hat is white, then player 2 will not know player 3 knows some hats are white. So, it is not common knowledge

before the fourth person’s remark that some hats are white.
Making this fact common knowledge makes a whole lot of difference. Thinking from the perspective of player 1.
(1) Player 1 knows that player 2 knows that player 3 would know immediately that his (person 3’s) hat is white

if both player 1’s and player 2’s hats were black. The fact that player 3 didn’t immediately know that his hat is
white should tell player 2 that either player 1’s or player 2’s hat must be white.

(2) Now if player I’s hat were black, player 2 should conclude that his (person 2’s) hat must be white. The fact that
player 2 didn’t know tells player 1 that player 1’s hat must be white.

Same logic for the other two persons. The argument can extends to n persons with m white hats.

BE" 8.2 Thestandard semantic model of the knowledge of a single decision-maker is associated with Hintikka (1962, Knowl-
edge and Belief, Cornell University Press). The model is given by

(€, P),

o (is the set of states
« information function P: © — € such that for eachw € Q, ) # P(w) C Q.
Interpretation of information function: when the state is w the decision-maker knows only that the state is in the
set P(w). That is, he considers it possible that the true state could be any state in P(w) but not any state outside
P(w).
8.3 Example: Q = {w1,wa,ws,ws}, P(w) = P(w2) = {w1, w2} and P(ws) = P(w4) = {w3,ws}.
In this case, the decision maker knows whether the true state lies in the set {w;, w2} or {ws, w4}, though he can
not perfectly identify the true state.
8.4 Example: Q = {w1,wa}, P(w1) = {w1} and P(w2) = {w1,wa}.

In this case, the decision maker knows the true state when she is at state w1, but she is unsure of the true state when

w9 Occurs.

Notice that a rational decision maker (who also knows the mapping P) could reason that when she does not know
the state, she must be in state wy. One example of such a scenario is: decision maker is drunk in ws, and not drunk

in wi.
8.5 We usually assume that (€2, P) satisfies the following two conditions:
Pl. w € P(w) for every w € €.

P2. Ifw’ € P(w) then P(w') = P(w).

o P1 says that the decision-maker never excludes the true state from the set of states he regards as feasible.

o P2 says that the decision-maker uses the consistency or inconsistency with the information structure.

I¥" 8.6 An information function P for the set {2 of states is partitional if there is a partition of §2 such that for any w € Q2

the set P(w) is the element of the partition that contains w.
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8.7

8.8

8.9

8.10

8.11

Lemma: The information structure under P is partitional if and only if P satisfies P1 and P2.

Proof. “=7: If P is partitional then it clearly satisfies P1 and P2.

“«<”: Suppose that P satisfies P1 and P2. If P(w) and P(w’) intersect and w”’ € P(w) N P(w’) then by P2 we have
P(w) = P(w') = P(w"); by P1 we have U,cqP(w) = Q. Thus P is partitional. O

P2 ifw’ € P(w), then P(w) C P(w').

Claim: P1 and P2 are equivalent to P1 and P2’

Proof. 1t suffices to show that P1 and P2’ imply P2. Ifw’ € P(w), then by P2’ P(w) C P(w’). Thus, by P1
w € P(w),w € P(w’), which, again by P2, implies that P(w’) C P(w). O

We refer to a subset E' C ) as an event. We say the decision-maker knows/believes E at w if P(w) C E.

In Figure 8.1, the event E is known by player 1 at the state w since P; (w) = P2 C E.

E
1’s information | o w | 1 | |
" | — ° T f T \
partition
1 2 3 4
Pj P; P; Py

Figure 8.1: Knowledge

Given P, define the decision-maker’s knowledge operator K : 2% — 2% by

K(E)={weQ: P(w) C E}.

For any event E, the set K(E) is the set of all states in which the decision-maker knows E. The statement “the
decision-maker knows E” is identified with all states in which E' is known. Moreover, the set K (K (F)) is inter-

preted as “the decision-maker knows that he knows E”.

In Figure 8.1, K1 (E) = {w: Pi(w) C B} = P2

FE
1’s information | - w | 1 | |
. | — ° T f T \
partition
P} P} P} P}
FE
2’s information | L | w | 1 | |
.\ | T T ° T f T \
partition
1 2 3 4 5
Py Py Py Py P

Figure 8.2: Knowledge

In Figure 8.2, player 2 knows F at w since Py(w) = P3 C F, and K»(E) = P3. However, player 1 does not know
that player 2 knows E at w, since there is no player 1’s information cell in the subset Ps.
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8.12 The knowledge operator K satisfies the following properties:

8.13

8.14

Kl. K(Q) =Q.
K2. IfE C F then K(E) C K(F).
K3. K(E)NK(F)= K(ENF). Moreover, K(Ny\E)) = N\K(E)).

« K1 says that in all states the decision-maker knows that some state in {2 has occurred.
o K2 says that if /" occurs whenever E occurs and the decision-maker knows E then he knows F.

« K3 says that the decision-maker knows both E and F' then he knows £ N F'.

Proof. K1: Since P(w) C Q,Q C K(Q).
K2: IfE C Fandw € K(FE), then P(w) C E C Fandhencew € K(F).

K3: w € K(F)N K(F) if and only if P(w) C E and P(w) C F ifand only if P(w) C E N F if and only if
we K(ENF). O

Beware K(E)UK(F) # K(EUF).

If P satisfies P1, then the associated knowledge operator K satisfies the following additional property.

K4. (Axiom of Knowledge) K (E) C FE.
This says that whenever the decision-maker knows £ then indeed some member of E is the true state (£ must be
true): the decision-maker does not know anything that is false.
Replace E by K (E), we have K (K (E)) C K(FE). If decision-maker knows that he knows that F is true, then he
knows that E is true.
Proof. Letw € K(FE). Then P(w) C E,byPlw € P(w) and thusw € E. O
If P is partitional, then K (F) is the union of all members of the partition that are subsets of E. In this case, the

knowledge operator K satisfies the following two additional properties.

K5. (Axiom of Transparency) K (F) C K(K(FE)).
K6. (Axiom of Wisdom) 2\ K(E) C K(Q2\ K(E)).

o K5 says that if the decision-maker knows E then he knows that he knows E. (self awareness)

o K6 says that if the decision-maker does not know E then he knows that he does not know E.

Note that given that K satisfies K4 the properties in K5 and K6 in fact hold with equality.

Proof. K5: Letw € K(FE). Then P(w) C E,by P2 P(w') C E forallw’ € P(w) and thus P(w) C K(E), i.e.,
we K(K(E)).

Ké6: Let w ¢ K(FE). Then P(w) € E,by P2 P(w') € E forallw’ € P(w) and thus P(w) C Q\ K(FE), ie.,
we K(Q\K(E)). O
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8.15

8.16

Alternatively we can start by defining a knowledge operator for the set {2 to be a function K that associates a subset
of Q) with each event £ C ).

We can then derive from K an information function P as follows: for each state w let

Pw)=n{ECQ:weK(E)}

Given an information function P, let K be the knowledge operator derived from P and let P’ be the information
function derived from K. Then P’ = P.

Example: Puzzle of hats

Each of n “perfectly rational” individuals, seated around a table, is wearing a hat that is either white or black. Each
individual can see the hats of the other n — 1 individuals, but not his own. Assume that two are wearing a white
hat. An observer announces: “Each of you is wearing a hat that is either white or black; at least one of the hats is
white. I will start to count slowly. After each number you will have the opportunity to raise a hand. You may do so

only when you know the color of your hat” When, for the first time, will any individual raise his hand?

Answer. The two wearing white hats will raise their hands when the observer counts the number “2”.

Intuitively,

o When the observer counts the number “1”, no one knows the color of his hat. The two wearing white hats see
“1 white and 98 black”, and the other see “2 white and 97 black”

« When the observer counts the number “2”, the two wearing white hats now know the color of their hats. Each
of them who is wearing a white hat can reason as follows: Since the one wearing a white hat (saw in period 1)

did not raise his hand, there should be another white hat which much be on my head.

Formal reason:

Each state can be written as ¢ = (¢1, ¢a, . . . , ¢, ), where each ¢; is either W or B and at least one ¢; is W. The state
space is
0= {ce {W,B}": |[{i: c; =W} > 1}.

Player i’s initial information function P} is as follows:

Ple) {(c—iy W), (c—i, B)}, if cis the state in which a player different from ¢ has a white hat,
. C =

(3

{c}, if ¢ is the state in which all the other hats are black.

The event “7 knows the color of his hat” is
E;={ceQ: Pc) C{c: ¢; =B} or P(c) C {c: c; = W}}.

Let F' = {c: |{i: ¢; = W}| = 1}, the set of states for which someone raises a hand at the first stage.

Since there are two white hats, nobody raises a hand at the first stage, and then all players obtain the additional
information that the state is not in F''. Therefore, they will update their information: for all i and for all ¢ ¢ F 1
we have P?(c) = P}(c)\ F': P?(c)is {(c—i, W), (c—i, B)} unless c¢; = W for exactly one player j # 4, in which
case P7(c_i, W) = {(c_s, W)} and P?(c_;, W) = {(c_;, W)}. In other words, in any state ¢ for which ¢; = W
and ¢, = W for precisely two players j and h we have P?(c) C E; and P}(c) C Ej, and hence j and h each raises
a hand at the second stage. O
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8.17

8.2

IE" 8.18

8.19

IE" 8.20

8.21

8.22

It is easy to see that if k hats are white then no one raises a hand until the observer counts &, at which point the &

individuals with white hats do so.

I, ERHEALSTHES, —RAALTH T XEAE © N 22 99 P FMFEEH, ERE
Wb, EFERE R REATRATIAN M4, ERRF P T BT BoEM 4.
L RAKR T o, ERTRE L, RAERBHIEZANET T, B BSR4,
BAECHEXANMTRA 2T FEAXANMEFEMF L2 ATL?

Common knowledge

Let K; be the knowledge operator of player ¢ for each ¢ € N. For event E C (),

o K;(E)={weQ: P(w) C E} is the event that  knows E.
o K(F) =NienK;(F) is the event that F is mutually known.
« CKE=K(E)NK(K(E)NK(K(K(E)))N--- =N K*(E) is the event that E is commonly known,

and for each w € CKE, FE is said to be common knowledge in the state w.

Example: The state space is 2 = {w1, wo,ws}. The information functions are given as follows: P;(w1) = {w1},
Pl(wg) = P1 (W3) = {wg,wg}; P2<UJ]_> = Pg(wz) = {wl,w2}, Pg(wg,) = {Wg,}.
Consider E = {w3,ws}. We have

K1 (E) = {w2,ws}, Ko(E) = {ws},

and hence
K(E) = {ws}.

Then K1 (K (FE)) = (. Therefore, CKE = ().

Anevent F' C Qisself-evidentif K (F') = F,i.e, K;(F') = F for alli € N. Whenever a self-evident event occurs

everyone knows it occurs. The concept generalizes the condition K1.

Lemma: Under K4, An event £ is common knowledge in the state w if and only if it includes a self-evident event

F containing w.
Proof. “=7: Letw € CKE. Define F' = CK F, by K3, we have
K(F)=K(CKE) = K(N2,K*(E)) = nZ,K*(E) DN, K*(F) = CKE = F.

ByK4, F C K(F),so K(F) = F. By K4 again, wehave F = CKE C E.
“” Letwe F=K(F)C E.ByK2,F = K(F) = K}(F) =--- = KK(F) C K*(E) forall k > 1. Therefore,

weFCCKE. O
Claim: Under P1 and P2, the following are equivalent:

(1) K(E)=FE,ie,forallw € E, P;(w) C E forall i.

(2) E isaunion of members of the partition induced by P; for all 4.
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8.23

8.24

8.25

8.3

8.26

8.27

I 8.28

8.29

Proof. “(1) = (2)”: For everyw € Q, P;(w) C Eforalli. Then E = U, cgP;(w) for all ¢ and thus E is a union

members of the partition induced by F;.
“(2) = (1)”: Routine. O
Example: Let Q = {w1,ws, ws,ws,ws,ws}, let Py and P be the partitional information functions of players 1

and 2, and let Ky and K, be the associated knowledge operators. Let the partitions induced by the information

functions be
H1 = {{w1,w2}, {LU3,W4,W5}, {WG}}, H2 = {{wl}, {LUQ,LU3,W4}, {(JJ5}, {wg}}.

The event E' = {w1,ws,ws,ws } does not contain any event that is self-evident and hence in no state is ' common

knowledge.

The event F' = {wy,wa, w3, wy, ws } is self-evident and hence is common knowledge in any state in F'.
Example [OR Exercise 71.1].

Example [OR Exercise 71.2].

Common prior

We can start adding beliefs to the knowledge model. In the knowledge model, for player i € N, let P; be her

information function, and p; her prior probability. We assume p; has full support and is positive at every state w.

We call posterior belief the function p; (E | P;(w)), calculated by Bayes’ rule. That is,

)

Lemma: The posterior satisfies the following properties:

e pi(W | P(w)) =0ifw’ & Pi(w).

« pi(Pi(w) | Pi(w)) = L
A knowledge model has a common prior if p; = p; forall 4, j € IN. This can occur when players are born equal,
and are Bayesian updaters.

Alternatively, posterior beliefs pi (- | -),p2(- | -),...,pn(- | -) are generated by a common prior, if there exists a
probability p such that forany i € N,and E C Qandanyw € Q, p(E) =Y .o pi(E | Pi(w)) - p(w).

Note that there may be multiple common priors.

The common prior can be defined in an equivalent way:

Let II; be player ¢’s information partition, and P; player ¢’s information function. For each ); € II;, we define a

probability 1(Q;) on Q;, which can be generalized to a probability on €2.
A prior for 7 is a probability p; is a probability distribution on €2, such that for each information cell Q); € II,, if
pi(Qi) > 0, then
1i(Q3)(-) = pi(- | Qi)
Clearly, each 11;(Q;) isa prior for i. The set of all priors of i, denoted by X, is the convex hull of { 11, (Q;) | Q; € 1I,}.

A probability distribution y on €2 is a common prior if 1 € N;en X;.
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8.30

8.31

8.4

8.32

8.33

8.34

8.35

Example: Suppose 0 = {1,2,3}. There are two players with information partitions IT; = {{1,2},{3}} and
I, = {{1},{2,3}}. Lets = p1(1 | {1,2}) and t = po(2 | {2,3}). Show any s, ¢ € (0,1) can be generated by

some common prior.

Answer. Take m such that

3
™
+

.
+

1) — 1.

1—s
s

_ l1—s1—t
sand p3 = m=_"". O

Setpr =m,pa=m
Let Q = {w1, w2, w3}, and the posterior probabilities are

pr(wi | {wi,wa}) = 3, p1(ws | {ws}) = 1.

Then we can have a continuum of priors associated with this posterior probability. Two examples are

p1 = (%a %30)717/1 = (%7 %7 %)

“Agree to disagree” is impossible

Reference: Aumann (1976).

Within the framework of partitional information structures, Aumann (1976) showed that, under the common prior
assumption, it can not be common knowledge (agree) that i and j respectively assign two different posterior prob-

abilities to the same event (disagree), even if they possess different information.

To be more clear, two individuals that have prior belief cannot have different posterior beliefs, after knowing each

other’s posterior beliefs (notice that it is essential that the posterior beliefs be common knowledge).

Theorem (Aumann’s agree to disagree): In a two-person game with finite states, assume that there is a common

prior belief y. For an event E, let
Bl — {weQ: u(E| Pi(w) = pand u(E | Pj(w)) = p;}-

Then CK EWiitti] = (if ji; # pj.

Proof. (1) Suppose that C K Elriits] £ (), Letw® € C K El#iits], Then, there is a self-evident event F C Elriits]

that contains w°.

(2) Thus, F is a union of members of each player’s information partition, i.e., F' = Uy Ay and F' = U, B,.

(3) For any k, take an w € Ay, then we have P;(w) = Ay. Since F' C El#i#], we have
W(E | Ay) = p(E | Pi(w)) = .

(4) Therefore,

WENF) = p(EN (Updy)) = Z p(E N Ag) o-additivity
k
= Z wE | Ag) - p(Ag) Conditional probability

k
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8.36

8.37

8.38

8.39

8.40

= iy p(Ag) p(E | A) = i
k
= u; - p(F) o-additivity

Similarly, n(E N F) = p; - p(F). Consequently, 1; = p1; (Here we assume that every state is of positive
probability, and hence ;1(F') > 0). A contradiction.

O

Remark: The intuition is that if a player knows that her opponents’ beliefs are different from her own, she should
revise her beliefs to take the opponents’” information into account. Of course, this intuition does not make sense if
the player thinks her opponents are simply crazy; it requires that she believes that her opponents process informa-
tion correctly and that the difference in the beliefs reflects some objective information. More formally, Aumann’s

result requires that the players’ beliefs be derived by Bayesian updating from a common prior.

Application: For a Bayesian game, an assumption often made is that the players have identical prior beliefs. This
result implies that under common prior assumption, it can not be common knowledge that the players assign

different posterior probabilities to the same event.

Corollary: In a two-player game with finite states, assume that there is a common prior belief. Let f: 2 — Rbea

random variable. Then it can not be common knowledge that E; [f | w] > Ex[f | w] at some state w.

Proof. (1) Suppose that it is common knowledge that E1[f | w] > Eq[f | w].
(2) Let
wo € F C{we Ef | Pi(w) > Elf | B},
where F is a self-evident event.

(3) Then for allw € F, we have

~

pw

(4) Thus,

which is a contradiction.

O

Remark: It must be also true that, when two individuals have the same prior beliefs and common knowledge about

their posteriors, they must have the same posterior expectation over random variables.

Remark: This result fails if the players merely know each other’s posteriors, as opposed to the posteriors’ being

common knowledge.

Example: () has four equally likely elements, a, b, c, d, player 1’s partition is II; = {{a, b}, {c,d}}, player 2’s
partition is I, = {{a,b,c},{d}}. Let E be the event {a,d}. That at a, player 1’s posterior of E is ¢ (E) =
pl{a,d} | {a,b}] = 3, and player 2’s posterior of E is ¢2(E) = p[{a,d} | {a,b,c}] = 1.

Moreover, player 1 knows that player 2’s information is the set {a, b, ¢}, so player 1 knows g2(F). Player 2 knows

that player 1’s information is either {a, b} or {c, d}, and either way player 1’s posterior of E is £, so player 2 knows

q1(E). Thus, each player knows the other player’s posterior, yet the two players” posteriors differ.
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8.41

8.42

8.5

8.43

8.44

However, the posteriors are not common knowledge. In particular, player 2 does not know what player 1 thinks
q2(E) is, as w = ¢, is consistent with player 2’s information, and in this case player 1 believes there is probability 1
that g2(E) = 3 (ifw = ¢) and probability § that g2(E) = 1 (ifw = d).

Example [OR Exercise 76.1]: Common knowledge and different beliefs. Show that if two individuals with parti-
tional information functions have the same prior then it can be common knowledge between them that they assign
different probabilities to some event. Show, however, that it cannot be common knowledge that the probability

assigned by individual 1 exceeds that assigned by individual 2.

Example [OR Exercise 76.2]: Common knowledge and beliefs about lotteries. Show that if two individuals with
partitional information functions have the same prior then it cannot be common knowledge between them that
individual 1 believes the expectation of some lottery to exceed some number 7 while individual 2 believes this
expectation to be less than 7. Show by an example that this result depends on the assumption that the individuals’

information functions are partitional.

No-trade theorem

Reference: Milgrom and Stokey (1982).

When the players’ posteriors are consistent with a common prior, even though they may have different expectations
over a random variable in some state, the knowledge that the both sides are willing to trade reveals extra information.
Incorporating this extra information into the model destroys the incentive to bet.

Example: Q = {1,2,3,4}, p(i) = 1. Player 1’s information partition II; = {{1,4},{2,3}}, and player 2’s
information partition II = {{1,2},{3,4}}. When trade occurs, payoffs are as follows: 71 = w — 1.9 and

Ty = 1.9 — w; otherwise, each player will receive 0.

Now the true state is w = 2. Consider player 1 firstly:

(1) [Level 0] Player 1’s expectation on w is 2.5, and player 2’s expectation on w is 1.5. Hence, both players are
willing to trade: players 1 and 2’s expected payoffs are 0.6 and 0.4. But to actually to carry out this trade, the

players must know that each other is willing to do the trade.

(2) [Level 1 for player 2] Player 2 knows that player 1 is always willing to trade: in player 2’s opinion, w could be
1 or 2, but player 1’s expected payoff is always 0.6 no matter w is 1 or 2. Thus, the fact that player 1 indeed is
willing does not initially tell player 2 anything.

(3) [Level 1 for player 1] If player 1 knows that player 2 is willing to trade, then player 1 knows player 2 knows
w € {1, 2}; otherwise player 2 is not willing to trade.

Moreover, since player 1 knows w € {2, 3}, player 1 knows w = 2. So player 1 still wants to do the deal.

(4) [Level 2 for player 2] Since player 2 knows player 1 knows player 2 initially wants to trade, player 2 knows
player 1 knows player 2 knows w € {1, 2}. Hence player 2 knows player 1 knows w € {1,2}.

Player 2 also knows that player 1 can distinguish 1 and 2, so player 2 knows player 1 knows w = 2, and player

2 knows w = 2 at the same time.

So player 2 in the end refuse to trade.

As long as the fact that trade is acceptable is not common knowledge, revealing the fact changes the players’ beliefs

in a way that destroy the incentive to trade.
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8.45 We consider the case of players with a utility function defined by u;(a(w),w) where a: 0 — A is a contract that

associates each state with an action or transfer.

8.46 Definition: We say that b is ex ante efficient if there is no function a: €2 — A such that for all ¢
E [ui(a(w), w) | Pi(w)} >E [ui(b(w)7 w) | Pi(w)] ,
or equivalently, that a >; b for all 4.
8.47 Theorem: If b is ex ante efficient, then it can not be common knowledge that a >; b for all <.

Proof. (1) For sake of notational simplicity, write u; (a(w),w) = U;(a,w) and u; (b(w),w) = U;(b,w).

(2) Assume that
{we Q|E[Ui(a,w) — Us(b,w) | Pi(w)] > 0foralli}

is common knowledge at wyp.

(3) Let F be a self-evident event containing wy. Then
E [Ui(a,w) — U;(b,w) | F] > 0 foralli.
(4) With this, we can create a contract ¢: €2 — A such that

bw), ifwégF,
a(w), ifweF.

(5) We have therefore that b could not have been ex ante efficient since ¢ =, b for all i:

E[Ui(¢,w) = Ui(b,w)] = E[Ui(¢,w) = Ui(b,w) | F] + E[Ui(¢,w) = Ui(b,w) | F*]

E c,
E[Ui(a,w) — Us(b,w) | F1+0> 0,

which is a contradiction.

O

8.48 Remark: This theorem implies that, when the common prior assumption holds and a contract b is ex ante efficient,

there can be no trade, even after the agents receive (potentially different) new information.

Notice that the theorem can also be weakened, using a weaker concept to efficiency, in which b 2Z; a for all ¢ and

~t

for all a, with > holding for at least one , for some a.

8.6 Speculation

8.49 Reference: Harrison and Kreps (1978).
8.50 Consider the following scenario:

o Time is discrete: t = 1,2, .. ..

o A continuum of investors, with unlimit wealth.
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+ A single asset in the economy, which pays dividend d; € {0, 1} at the end of each period.

o Two types of investors ¢ € {1, 2}, with different beliefs @); over the distribution of the dividend. Both believe

o

o There is common knowledge over @);.

that it follows a Markov process:

NI N
D= N
—_

o

=)

o,

)

[~}

I
1
S =
_ o
[ |

« Players have utility >_;~, 6'd;, where § = 2.

8.51 Consider the expected present value of holding an asset forever V?(d), when the most recent dividend is d:

5 1 3 5 1 3
1 = —_— = = - 1 = — s — = —
V(O)*1—5 2 2 Vi) 1—-6 2 27
5 5
2 — . — 2 = — =
VA0) = +—50=0, VA =y 1=3

8.52 Whenever there is disagreement over the value of the asset, there must be trade, as the investors that attribute to
it a lower value will wish to sell to those that attribute to it a higher one. To calculate the resulting price, we can
observe that:

p(de) = 6 maxEi[di1 + p(deta) | di,

since,
o if the price is lower than the expression on the right-hand side, investors that believe it has a higher value will
compete for it, increasing its price;
o if the price is higher than the expression on the right-hand side, investors wish to sell the asset and repurchase

it the next period.

8.53 Whend; = 1, thetype 2 investor believes that the value of the asset is the maximum possible, therefore her valuation

must be what drives the asset price:
p(1) =& - maxBi[dir1 + p(de) | de = 1] = 8- Bo[dis +p(ditr) | dy = 1) = 6[1 + p(1)].

Then we have 5

p(1) = 13 =3.

8.54 When d; = 0, the type 2 investor believes that the value of the asset is forever 0, therefore the price must be driven

by type 1’s valuation:

0+ p(0) +51 —i—p(l).

p(0) =4~ mf‘XEi[dtH +p(diy1) | dy = 0] =6 - Eq[di1 + p(diy1) | dy = 0] =6 9 2

Then we have 1
p(O) = N

8.55 Observe that the price p(0) is a price resulting from speculation:

o The type 1 investor is willing to pay so much for the asset (at time ¢, when d; = 0) only because she believes

the investors of type 2 will, with some probability, purchase it back for a higher value than it actually worth.
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8.56

8.7

8.57

8.58

8.59

8.60

8.61

« Her actual valuation of the asset is of only V1(0) = 3 < 2 = p(0).

In this example with a common prior, we obtain speculative trade as a result.

Characterization of the common prior assumption

Example: Suppose Q2 = {1,2,3,4}. There are two players with the information structure I, = {{1,2},{3,4}}
and IT, = {{1,3},{2,4}}. Let Prob; and Prob be the posterior beliefs of players 1 and 2, respectively. Denote
s =Proby(1|{1,2}),¢t = Probi(3 | {3,4}), y = Proba(1 | {1,3}) and z = Proby(2 | {2,4}).

It is easy to verify that there is a common prior if and only if

s 1—t y 1—2z

1—5s5 ¢ zl—y z

Interpretation: Call {1,2} and {3, 4} type 1 and type 2 of player 1. Call {1,3} and {2,4} type 1 and type 2 of

72— times more likely that player 2 is also type 1. If -2~ /7% > 1,

then player 1 thinks that player 2 is more likely to be type 1 when he is type 1. The equation above means that the

player 2. Type 1 of player 1 believes that it is

ratio of the likelihood ratio must be the same for the two players. If one player believes that the types of the players

are positively correlated then the other player will believe the same.
Reference: Samet (1998).

Let f: © — R be a random variable with f((a,a)) = f((b,b)) = 1 and f((a,b)) = f((b,a)) = —1. There exists
no common prior 7 such that
Ei(f|w)>0>Ey(f |w)forallw e .

On the other hand, it is easy to find p; and py such that E; (f | w) > 0 with respect to p; and Eo(f | w) < 0 with
respect to pa, e.g, p1({(a;a)}) = p1({(b;b)}) = 1/2,and p2({(b, a)}) = p2({(a, 0)}) = 1/2.

Theorem (Samet (1998)): In a two-player game with finite states, there is no common prior if and only if there exists
arandom variable f: €2 — R such that

Ei(f |w)>0>Ea(f |w)forallw € Q.

(The “if” part is due to Aumann)
In other words, under common prior it can never be common knowledge that 1’s expectation of f is always positive

when that of 2 is always negative.

Proof. (1) There is no common prior, then X; and X can be strongly separated, that is, there are g: {2 - Rand
¢ € R, such that
X1-g>Cc>2T2-g

for each z1 € X and 22 € Xo.

(2) Subtracting c and write f = g — c1, we have

- f>0>2o- f.
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3)

Thus, for each w, take x1 = p1 (P (w)), and 25 = po(Pe(w)), then
Ei(f |w)=p(Pi(w)) - f>0> p2(Po(w)) - f =Ea(f | w).

O

8.62 Lemma: Let K1, Ko, ..., K, be convex, closed subsets of the simplex A™ in R™. Then N?_, K; = @ if and only if
there are f1, fo, ..., fn in R™, such that Z;L:l fi=0,and x;f; > Oforeachz; € K;,fori =1,2,...,n.

Proof. (1) Consider the bounded, closed and convex subsets of R™", X = x?_; K; and

(2)
3)

(4)
(5)
(6)
(7)

(8)
9)

(10)
(11)

Y ={(pp,...,p) eR"™ | pec A™}.

Clearly, N"_, K; = () if and only if X and Y are disjoint

X and Y are disjoint if and only if there is a constant cand g = (g1, 92, . - -, gn) € R™", where g; € R™ for
each 4, such that for each x = (21, 22,...,2,) € X andy = (p,p,...,p) €Y,

r-g>c>y-g.

Moreover, we may assume that ¢ = 0 (by subtracting -~ from all the components of g).
Hence, Y ! ,x;-g;>0and) ; p-g; <O.
Since Y, p - g; holds for all p € A™ and therefore it is equivalent to >~ ; g; < 0.

Moreover, whereas the coordinates of x; are non-negative, increasing the coordinates of the g; does not change

the first inequality, and hence the intersection of K;s is empty if and only if there is ¢ such that

n n
Zgi =0, and le -g; > 0.
i=1 i=1

Let Z; be the point that minimizes x; - g; over K.

Whereas Z?: 1%; - g; > 0, there are constants ¢; such that
n
Zi-g;i+c; >0fori=1,2,...,n, and Zci =0.
i=1

Denote by 1 the vector of 1s in R™ and define f; = g; + ¢; 1.
Then >  fi => gi =0andforeachz; € K;, x; - f; > Z; - fi = Ty - i + ¢;T;1 > 0,as %, - 1 = 1.
O

8.63 Theorem (Samet (1998), Morris 1995): There exists a common prior if and only if there areno fi, fa, ..., fn € R,
suchthat Y | f; = 0,and E; f; > Oforalli € N.

8.64 Note that two players can make a bet that both sides expect to win in the ex-ante stage if and only if they have

different priors. The above theorem says that if the posterior beliefs of the two players are inconsistent with a

common prior, then they can still make a bet that both sides expect to win in the interim stage. The key is that all

types of players 1 and 2 agree to have player 2 pay f to player 1 in the proof above. Hence, the fact the players agree

to the bet does not reveal extra information.
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8.8

8.65

8.66

8.67

8.68

8.69

8.70

8.71

Unawareness

Reference: Dekel, Lipman and Rustichini (1998).

Unawareness is a real-life phenomenon associated with an unconscious mental state directed toward, or lacking
of positive knowledge about, a definite event. Unawareness can play an important role in economic implications.
For example, unforeseen contingencies could prevent contracting parties from writing a complete contract with

contingencies of which they were unaware at the contractual date.

Unawareness of something is related to a complete lack of positive knowledge regarding it. In particular, “knowing

that not knowing an event” can not be called “being unaware of the event”.
Example: Consider the following simple version of a story from Sherlock Holmes.

o There are 2 states b (dog barks) and b (dog does not bark).
o At b, Watson is aware that there is an intruder;

« At b, Watson is not aware this.

Question: Is Watson, at b, “unaware” b?

Somewhat surprisingly, the concept of “unawareness” can not be modeled in any standard state space!

We consider a standard state-space model
<QV K? U>7

where () is a state space which has partitional information structure, K : 2 — 2% is the knowledge operator, and
U: 2 — 29 is the unawareness operator.
For an event F, U(FE) represents the event that decision-maker is unaware of E.
Dekel, Lipman and Rustichini (1998) suggested three axioms for unawareness:
o Plausibility: U(E) C =K (E) N -K(-K(E)).
« KU introspection: K(U(E)) = 0.
o+ AU introspection: U(E) C U(U(E)).
Plausibility means: if decision-maker is unaware of an event, then it must be the case that the event is unknown
and it is not known that the event is unknown.
KU introspection means: decision-maker shouldn’t know he is unaware of the event.

AU introspection means: decision-maker should be unaware he is unaware of the event.

Dekel, Lipman and Rustichini (1998) showed that standard state-space models preclude sensible unawareness.

Theorem: Assume (€2, K, U) is plausible and satisfies KU introspection and AU introspection. Then

(1) If K satisfies necessitation, i.e., K (2) = €, then for every event £, U(E) = {.
(2) If K satisfies monotonicity, i.e., K (FE) C K(F') whenever E C F, then for all events F and F', U(E) C
~K(F).
Statement (1) says that “necessitation” implies that decision-maker is never unaware of anything.

Statement (2) says that “monotonicity” implies that decision-maker, being unaware of anything, knows nothing.
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8.72 Proof. (1) By AU introspection and plausibility,
U(E) CUU(E)) C-K(-K(U(FE))).

By necessitation, U (F) = () for all E.
(2) By monotonicity, K (F) C K () for all F. Hence monotonicity implies U(F) C ~K(F) forall F and F.
O
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In the traditional game theory, we appeal informally to assumptions about what the players know. We here use the
model of knowledge to examine formally assumptions about the players’ knowledge and information that lie behind
various solution concepts. This line of research can help to understand the applicability and limitations of our analysis to

economic phenomena.

This approach analyzes games in terms of the rationality of the players and their epistemic state: what they know or
believe about each other’s rationality, actions, knowledge, and beliefs. It provides precise treatments of epistemic matters

in games.

The epistemic program adds to the traditional description of a game a mathematical language for talking about the

rationality or irrationality of the players, their beliefs or knowledge, and related epistemic aspects.

9.1 Epistemic conditions for Nash equilibrium

9.1 Given a fixed strategic game G = (N, (4;), (u;)), a model of knowledge for game G is given by

M(G) = <Qa (B)a (ai)v (Ni»,
where

o ) is the set of states;
o P; is i’s partitional information function;
e a;(w) is ¢’s action at w;

o ti(w) is ¢’s belief at w, which is a probability measure on A_; = X j2;A;.

147



9.1. Epistemic conditions for Nash equilibrium 148

IF 92
IFm 93
¥ 94
9.5
9.6
9.7
¥ 98
9.9

Say “i is rational at w” if a;(w) is a best response of player i to his belief y;(w) in A (a,i (P (w))) , where
a—i(Pi(w)) = {a—;(w'): w' € Py(w)}.

In words, 7 is rational at w if 4’s action at w maximizes his expected payoft with respect to the belief that ¢ holds at

w, where the belief is required to be consistent with his knowledge (support(p;(w)) C a—;(FP;(w))).

The event that 7 is rational is defined as

R; = {w: iisrational at w}.

Let R = N;enR; denote the event that everyone is rational.

We now seek sufficient epistemic conditions for Nash equilibrium that are in a sense as “spare” as possible.

Proposition 1: Let

we ﬂ (Ri OKi({w’ |la_i(w') = a,i(w)}>).

iEN
Then a(w) is a Nash equilibrium.
The condition in the Proposition can be restated as follows:
o i is rational at w: a;(w) is a best response of i to his belief y;(w), which is consistent with his knowledge:
support(p;(w)) C a—;(P;(w)), i.e., w € R;.
« i knows the other players actions: P;(w) C {w’ | a_;(w') = a—i(w)}, ie, w € K;({w | a_i(w') =
a—i(w)}).
Proof. (1) Sincew € K;({w’ | a—;(w') = a_;(w)}), we have P;(w) C {w’ | a_;(w’) = a_;(w)}, and hence
a—i(Pi(w)) = {a—i(w) W' € P(w)} = {a—i(w)}.
(2) Sincew € R;, a;(w) is a best response of i to p;(w) = 1 0 a_;(w).
O
Remark: Though very simple, this proposition is significant; it calls for “mutual knowledge” of the action choices,

with no need for “common knowledge/any higher order knowledge”. For rationality, not even mutual knowledge is

needed; only that the players are in fact rational.

A mixed strategy of a player can be interpreted as another player’s conjecture about the player’s choice. The sec-
ond result provides some epistemic condition for this kind of equilibrium in beliefs: In two-person games, if the
rationality of the players and their “consistent” conjectures are mutual knowledge, then the conjectures constitute

a mixed-strategy Nash equilibrium.

Proposition 2: Suppose that each player’s belief is consistent with his knowledge. Let

we (Kj(Ri)ﬂKj({w'|ui(w’):ui(w)})).

i.=1,25i%]
Then (p2(w), p11(w)) is a mixed-strategy Nash equilibrium.
The condition in the Proposition can be restated as follows:

« Each player’s belief is consistent with his knowledge: support(u;(w)) C a;(P;(w));
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o j knows that 7 is rational;
o j knows i’s belief: P;(w) C {w' | ps(w') = ps(w)}.
9.10 Proof. (1) Leta] € support (4;(w)). Since j’s belief is consistent with his knowledge, there is w* € P;(w) such
that a; (w*) = a?.
(2) Sincew € K;(R;), we have w* € Pj(w) C R;, and hence a] = a;(w*) is a best response of i to 1, (w*).
(3) Byw € K; ({w' | pi(w’) = pi(w)}), wehavew* € Pj(w) C {w’ | pi(w') = p(w)}, and hence a} = a;(w*)
a best response to p; (w*) = ;i (w).
O

9.11 The following example demonstrates that Proposition 2 does not have an analog when there are more than two

players.
L R L R
U230 200 U|0,0,0]0,20
D |0,3,0]0,0,0 D |3,0,0]3,2,0
A B
State «@ 8 ~ § € 13
Probability | 32/63 16/63 8/63 4/63 2/63 1/63
1’s action U D D D D D
2’s action L L L L L L
3’s action A B A B A B

s partition | {«} {8 ~} {o e} {¢}
2’s partition {a B} {7 0} {e 3
3spartition | {a} {8} {v} {o} {e} {&}

Let the set of statesbe 2 = {a, 3,7, 6, €, £} and let the players’ action functions and information functions be those
given in the table at the bottom of the figure; assume that the players’ beliefs are derived from the same prior, which

is given in the first row of the table.

Consider the state . All conditions in Proposition are satisfied:

o Since each player’s belief at § is defined from the common prior, each player has a belief that is consistent with

his knowledge.

o For player 1, She knows that the state is either J or ¢, so that she knows that player 2’s information is either
{~,0} or {¢,£}. In both cases player 2 believes that with probability 2 the pair of actions chosen by players 1
and 3is (D, A) and that with probability § itis (D, B). Given this belief, the action L is optimal for player 2.
Thus player 1 knows that player 2 is rational.

Player 2 knows that player 1’s information is either {3,v} or {4, €}. In both cases player 1 believes that with
probability 2 players 2 and 3 will choose (L, B) and that with probability  they will choose (L, A). Given
this belief, D is optimal for player 1. Thus, player 2 knows that player 1 is rational.

Player 3 knows that player 1’s information is {4, €} and that player 2’s information is {+y, }. Thus, as argued
above, player 3 knows that players 1 and 2 are rational.

In the three states -y, § and e, player 3’s belief is that the pair of actions of players 1 and 2 is (D, L), and thus
in the state J players 1 and 2 know player 3’s belief. They also know she is rational since her payoffs are always

Z€r0.
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However in the state J the beliefs do not define a Nash equilibrium. In fact, the beliefs at § are not common
knowledge, e.g., the players’ belief about each other’s behavior do not even coincide: player 1 believes that player
3 chooses A with probability % while player 2 believes that she does so with probability % Neither of these beliefs

together with the actions D and L forms a mixed-strategy Nash equilibrium of the game.

9.12 Remark: Aumann and Brandenburger (1995) show that if all players share a common prior and in some state
rationality is mutual knowledge and the players’ beliefs are common knowledge then the beliefs at that state form
a mixed-strategy Nash equilibrium even if there are more than two players. The key point is that if the beliefs of
players 1 and 2 about player 3’s action are common knowledge and if all the players share the same prior, then the

beliefs must be the same.

9.2 Epistemic foundation of rationalizability

8 9.13 We show that the notion of rationalizability is the logical implication of CK R.

Proposition 3: Letw € CK R. Then a(w) is a rationalizable strategy profile.

9.14 Proof. (1) Sincew € C'K R, there exists a self-evident event /' C R withw € F.
(2) Foreachi € N, define
Z; ={a;(w') | € F}.
Therefore, for each w’ € F, a_;(P;(w')) C Z_;.
(3) Sincew’ € R;, a;(w’) is a best response for player i to the belief 11;(w') € A(Z_;).

O

¥ 9.15 Proposition 4: Let a* be a rationalizable action profile. Then there is a model of knowledge M (G) such that
a* = a(w) for somew € CKR.

9.16 Proof. (1) Itsuffices to show that there exists M(G) such that a* = a(w) for some w in a self-evident event in R.

(2) Since a* is a rationalizable profile, there exists a product subset Z of action profiles that contains a* such that

for each i, each a; € Z; is a best response to some belief 11;(a;) € A(Z_;).

(3) Define
Q= {w ‘ w= (ai7/Li(ai))ieN}'

For any w = (aj, /”Li(ai))ieN in §, for each 4, let a;(w) = a;, pi(w) = pi(a;), and
Pi(w) = {w € Q| a;(w) = a;(w) and p; (') = p;(w)}.
Clearly, a_;(P;(w)) = Z_;. Thus, 7 is rational at every w, and hence €2 is itself a self-evident event in R.

9.17 In finite strategic games, we have
CKR = R* = IENBR = [ESDA.

9.18 Example [OR Exercise 81.1]: Knowledge and correlated equilibrium.
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9.3

9.4

Epistemic foundation of correlated equilibrium

The electronic mail game

9.19 Example (from http://www.zhihu.com/question/29009853): 18 & B MG F v &6 k4T — IR, —/

9.20

9.21

9.22

WEERN TS, —MERH, BRRATAEER o4 8 HINAK Y RS Kb, AR
A 5 B 4B K, EF AN EBRAE RS H, RAEAL—EHAT T LA B
B Sk, BEY R AARBIR, EFE N —ERr R R G55 R AR H S,
B LE LUIR 2B R AN ERAT LI

AR ? R

WAMBERTKE BRAK, WRT —ARERERTESREHNE, RREHEET LA
BR#EL, HAMTEREHEEAEARE RS (HARERF RIS R T R 3I). BR
WS AR T g, AN Rk R 8 E R T, hHRENRET AL
KERRHF, EAMT WA T A T e, BRI, RALENMEE
oty S A A e RN M) K BRAA B ¥, HRAF A
REREH K

A B A B
A| MM | 1,—-L A 0,0 1,—L
B| -L,1 0,0 B|-L1| MM
G, (probability 1 — p) G} (probability p)

Figure 9.1: The parameters satisfy L > M > landp < 3.

o In G, (resp. Gy), the players get a positive payoft, M, if both choose the action A (resp. B).

o If they choose the same action but it is the “wrong” one they get 0. If they fail to coordinate, then the player
who played B gets —L, where L > M. Thus, it is dangerous for a player to play B unless he is confident
enough that his partner is going to play 5 as well.

« G, is more likely to occur, and G, occurs with probability p < %

If the true game is common knowledge between two players, then it has a Nash equilibrium in which each player
chooses A in G, and B in Gj.

If the true game is known initially only to player 1, but not to player 2. we can model this situation as a Bayesian

game that has a unique Bayesian Nash equilibrium, in which player 1 chooses A in G, and Gy, and player 2 chooses
A.
o The true game is known initially only to player 1, but not to player 2.

o Player 1 can communicate with player 2 via computers if the game is G. There is a small probability e > 0 that
any given message does not arrive at its intended destination, however. (If a computer receives a message then
it automatically sends a confirmation; this is so not only for the original message but also for the confirmation,

the confirmation of the confirmation, and so on)
« If a message does not arrive then the communication stops.

« At the end of communication, each player’s screen displays the number of messages that his machine has sent.
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Figure 9.2

9.23 Model as a Bayesian game. Consider Figure 9.2:

9.24

9.25

9.26

Define the set of states to be
0= {(Ql,QQ) (S Z+ X Z+: Ql = QQOI’Ql = Q2+1}.

In state (g, q), player 1’s computer sends ¢ messages, all of which arrive at player 2’s computer, and the gth message

sent by player 2’s computer goes astray.
In state (g, ¢ + 1), player I’s computer sends ¢ + 1 messages, and all but the last arrive at player 2’s computer.

The signal function 7; of player 7 is defined by
7i(Q1, Q2) = Q.
Player 1’s information partition is
I = {{0.0},{(1.0), (LV}AR D, @D} {@a = 1. (@)}, }-
Player 2’s information partition is

T, = {{(0,0), (LO} {11, 2D} {22, 3.2} (@) (@a+ D} b

Each player’s belief on €2 is the same, derived from the technology (characterized by ¢) and the assumption that the
game is G, with probability 1 — p:

p(0,0)=1—p, plg+1,9)=pe(l—e)*, plg+1,q+1)=pe(l e
Denote by G(Q1, Q2) the game that is played in the state (Q1, Q2); that is, G(0,0) = G, and G(Q1,Q2) = Gy
otherwise. In each state (@)1, Q2), the payoffs are determined by the game G(Q1, Q2).

Question: If € is small then with high probability each player sees a very high number on his screen. When player
1 sees “1” on her screen, she is not sure whether player 2 knows that the game is G, and consequently may hesitate
to play B. But if the number on her screen is, for example, “17” then it seems to be “almost” common knowledge
that the game is G, and thus it may seem that she will adhere to the more desirable equilibrium (B, B) of the game
Gy.

Proposition: This game has a unique Bayesian Nash equilibrium, in which both players always choose A.

Proof. We shall prove it by induction.
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(1)

(2)

In any equilibrium, player 1 must choose A when receiving the signal 0.

1;1(17;)); if he chooses B then
—p+pe

. Therefore player 2 must also choose A when receiving the signal

When player 2’s signal is 0, if he chooses A, then his expected payoft is at least
. . —L(1—p)+Mpe
his expected payoft is at most R

0 in any equilibrium.
Assume inductively that when received signal is less than g, players 1 and 2 both choose A in any equilibrium.

Consider player 1’s decision when receiving the signal ¢. Player 1 believes (g, g — 1) with probability z =

pe(1—€)?? 2 _ 1 1—c
pe(1—e€)29—2+4pe(l—e)29—1 — 2—e¢ 2—e”

If player 1 chooses B, then her expected payoff is at most — Lz + M (1 — z) under the induction assumption;

> 1 and (g, ¢) with probability 1 — z =

if player 1 chooses A, then her expected payoft is at least 0. Thus, player 1 should choose A.

Similarly, player 2 chooses A when receiving the signal g.

O

9.27 Rubinstein’s electronic mail game tells that players’ strategic behavior under “almost common knowledge” may be

very different from that under common knowledge. Even if both players know that the game is G and the noise € is

arbitrarily small, the players act as if they had no information and play A, as they do in the absence of an electronic

mail system.

Rubinstein’s electronic mail game also tells us how even an extreme large iteration if mutual knowledge can fall

short of actual common knowledge.
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Extensive games with perfect information
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We investigate games with perfect information in which each player is perfectly informed about the players’ previ-

ous actions at each point in the game. The standard solution concept for such games is the notion of “subgame perfect

equilibrium” in which each player is required to reassess his plans as play proceeds.

10.1 Extensive games with perfect information

10.1 Definition: An extensive game with perfect information is defined as:
I'=(N,H, P, (z)).

o Aset N of players.
o A set H of sequences that satisfies the following three properties.

- 'The empty sequence (} is a member of H.

- If (a*)E_| € H (K may be infinite) and L < K then (a*)E_, € H.

~ Ifan infinite sequence (a*)$., satisfies (a*)E_, € H for every positive integer L then (a*)2 | € H.

Each member of H is a history; each component of a history is an action.

A history (a*)K_| € H is terminal if it is infinite or if there is no a ™! such that (a*)

terminal histories is denoted ~Z.

o Afunction P: H\ Z — N that assigns to each non-terminal history a member of N.

K41
k=1

€ H. The set of

P is called the player function, and P(h) is the player who takes an action after the history h.

155
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10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

o For each player ¢ a preference relation on Z.
The game tree is a convenient representation for a extensive game.

After any non-terminal history h player P(h) chooses an action from

A(h) = {a: (h,a) € H}.

If the set H of possible histories is finite then the game is finite. If the length of every history is finite then the game
has a finite horizon. For an extensive game I" denote by ¢(I") the length of the longest history in I'; we refer to £(T")
as the length of I.

Definition: A strategy s, of player ¢ in the extensive game I is a function that assigns an action in A(h) to each
non-terminal history h € H \ Z for which P(h) = i.

A strategy specifies the action chosen by a player for every history after which it is his turn to move, even for histories

that, if the strategy is followed, are never reached.

For each strategy profile s = (s;) in the extensive game I', we define the outcome O(s) of s to be the terminal

history that results when each player ¢ follows the precepts of s;.

Definition: A Nash equilibrium of I' = (N, H, P, (17;)) is a strategy profile s* such that for every player i we have

O(s*;,s;) i O(s;, s;) for every strategy s; of player i.

Proposition: s* is a Nash equilibrium of I if and only if it is a Nash equilibrium of the strategic game derived from
I.

Example: Consider the following extensive game I

0,0 2,1

Figure 10.1: Non-credible threat.

The strategic game derived from I is as follows:

« 2 players.
« Ay ={L,R}, Ay ={L',R'}.

o Payoffs are as follows:

Player 2

L/ R/
L[00]21

Player 1 RI12]12

There are two Nash equilibria: (L, R’) and (R, L’).
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10.2 Subgame perfect equilibrium

10.10

10.11

IF" 10.12

5" 10.13

10.14

IF" 10.15

10.16

¥ 1017

In the example above, consider the Nash equilibrium (R, L"), L' is not credible for player 2 since R’ is strictly better
than L’ for him.

Nash equilibrium requires that each player’s strategy be optimal, given the other players’ strategies. Of course, what
a strategy calls for at a decision node that is not reached can not matter for a player’s payoff; the action assigned to

a contingency matters only if one is called upon to implement it.

Nash equilibrium does not require that a strategy prescribe an optimal action for decision nodes not reached (un-

reached information sets) during the course of equilibrium play.

Thus, a Nash equilibrium does not require that the prescribed action be optimal for all contingencies, but rather
only for those reached over the course of equilibrium play (i.e., the sequence of play that occurs when players use

their equilibrium strategies).

Definition: For history h € H, the subgame I'(h) is defined as
<Na H|h> Plha (z>\:1 |h)>7

where

« H]|p, is the set of sequences h’ of actions for which (h, h') € H.
o P|j, is defined by P|;, (k') = P(h,h') foreach b’ € H|.
o ~i |nisdefined by b/ 7; |ph" ifand only if (h, ') 7=; (h,h"").

Definition: A subgame perfect equilibrium of I" is a strategy profile s* such that for every subgame I'(h) with
P(h) = i we have

On (8™ ;ln, 85 1n) i |nOR(8™ ;| 8i|n) for every strategy s; of player i,

where s;|, is 7’s strategy restricted to I'(h) and O, is the outcome function of I'(h).
Proposition: s* is a subgame perfect equilibrium if and only if s*|;, is a Nash equilibrium in every I'(h).

Definition (The one deviation property): The profile s* is said to satisfy the one deviation property if for every ¢
and every h € H with P(h) =i,
On(sZilns 87 |n) Zi [nOn(sZiln, t:)

for every strategy t; of player 7 in I'(h) that differs from s} |, only in the action it prescribes after the initial history
of I'(h).

Interpretation of the one deviation property: For each subgame the player who makes the first move can not obtain

a better outcome by changing only his initial action.
Theorem: In a finite-horizon game I', the profiles s* is a subgame perfect equilibrium if and only if s* satisfies the
one deviation property.

Actually, in any perfect-information extensive game with either finite horizon or discounting, a strategy profile is a

subgame perfect equilibrium if and only if it satisfies the one deviation property.
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10.18

10.19

10.20

10.21

¥ 1022

Idea of proof: If a strategy profile is not subgame perfect then some player can deviate and obtain a strictly higher
payoff, say by e > 0, in some subgame. Now look at the last deviation. If it makes the player better off, then the
strategy does not satisfy the one deviation property. If it does not makes the player better off, then the player will
still be better off without the last deviation. The same argument can be repeated until we find a single beneficial

deviation.

Proof. “=7: Trivial.

« »

<~

(1) Suppose that s* is not a subgame perfect equilibrium. Then ¢ can deviate profitably in I'(h').

(2) Then there exists a profitable deviant strategy s; of player ¢ in I'(h’) for which s;(h) # s}|n(h) for a number

of histories & not larger then the length of I'(h'); since I has a finite horizon this number is finite.

(3) From among all the profitable deviations of player ¢ in T'(h") choose a strategy s, for which the number of
histories h such that s;(h) # s} |5/ (k) is minimal.

(4) Let h* be the longest history h of I'(h') for which s;(h) # s¥|n ().

(5) Then the initial history of I'(h/, h*) is the only history in T'(h’, h*) at which the action prescribed by s; differs
from that prescribed by s} 5.

(6) Further, s;|p+ is a profitable deviation in I'(h’, h*), since otherwise there would be a profitable deviation in

T'(h') that differs from s}|p after fewer histories than does s; (contradicts to the choice of s;), i.e., without

this deviation, e.g. (S;|n/—p=, S} |n*)-

(7) Thus s;|(p p+) is a profitable deviation in I'(A’, h*) that differs from 57 |(/ 5+ only in the action that it pre-
scribes after the initial history of T'(h/, h*).

O
For extensive games with infinite horizon, a strategy profile may not be a subgame perfect equilibrium although it
satisfies the one deviation property.

Example: In the following one-player game, the strategy in which the player chooses S after every history satisfies

the one deviation property, but is not a subgame perfect equilibrium.

Figure 10.2: In infinite-horizon games, one deviation property #- subgame perfect equilibrium.

Note that Theorem 10.17 only works for subgame perfect equilibrium in games with perfect information. It is not

true for Nash equilibrium, and it is not true for subgame perfect equilibrium in games with imperfect information.

Theorem (Kuhn’s Theorem): Every finite extensive game with perfect information has a subgame perfect equilib-

rium.

Proof. LetT' = (N, H, P, (7Z;)) be a finite extensive game with perfect information. We construct a subgame
perfect equilibrium of " by induction on £(I"(h)). We also define a function R that associates a terminal history
with every history h € H and show that this history is a subgame perfect equilibrium outcome of the subgame
T'(h).
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(1) If¢(T'(h)) = 0, i.e., his aterminal history of I, define R(h) = h. Since there is no feasible action, R(h) = h

is a subgame perfect equilibrium outcome in T'(h).

(2) Suppose that R(h) is defined for all h € H with ¢(T'(h))
L(T(h*)) = k + 1 and let P(h*) = i. Since {(T'(h*)) =
Define

for some k > 0. Let h* be a history for which

<k
k + 1 wehave {((T'(h*,a)) < kforalla € A(h*).

s;(h*) € argmax R(h™*, a),
a€A(h*)

and define R(h*) = R(h*, s;(h*)). Itis clear that R(h*) is a subgame perfect equilibrium outcome in I'(h*).

By induction we have now defined a strategy profile s in I'; by the one deviation property, this strategy profile is a

subgame perfect equilibrium of I'. O

10.23 The procedure used in proof of Kuhn’s theorem is often referred to as backwards induction. Backwards induction

will eliminate the Nash equilibria that rely on non-credible threats or promises.

10.24 Example: Backwards induction.

0,0 2,1

Figure 10.3: The procedure of backwards induction.

(1) There are two non-terminal histories: () and L.
(2) For L, it is player 2’s turn to move. If he chooses L', he will get 0; otherwise he will get 1. Then R(L) = R'.

(3) For 0, it is player 1’s turn to move, and he has 2 choices: L and R. If he chooses R, he will get 1; otherwise,
the subgame I'(L) is reached, and the equilibrium outcome therein is 2 for player 1. Thus, he will choose L.

(4) Now we have a strategy profile: player 1 chooses L and player 2 chooses R’ at histories () and L respectively,

which is a subgame perfect equilibrium.

Note that we can not obtain the other Nash equilibrium (R, L’) in backwards induction.

10.25 For games with finite horizon, Kuhn's theorem does not necessarily hold.

Consider the one-player game in which the player chooses a number in the interval [0, 1), and prefers larger num-
bers to smaller ones. This game has a finite horizon (the length of the longest history is 1) but has no subgame

perfect equilibrium, since [0, 1) has no maximal element.
10.26 For infinite-horizon games with the requirement that after any history each player have finitely many possible ac-
tions, Kuhn’s theorem does not necessarily hold.

In the infinite-horizon one-player game the beginning of which is shown in Figure 10.4 the single player chooses
between two actions after every history. After any history of length k the player can choose to stop and obtain a

payoft of k+1 or to continue; the payoff if she continues for ever is 0. The game has no subgame perfect equilibrium.

10.27 Kuhn’s theorem makes no claim of uniqueness.
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Figure 10.4

10.28 Proposition: Say that a finite extensive game with perfect information satisfies the no indifferent condition if
z ~; ' forall j € N whenever z ~; 2’ for somei € N,

where z and 2’ are terminal histories. Then, by induction on the length of subgames, every player is indifferent
among all subgame perfect equilibrium outcomes of such a game. Furthermore, if s and s’ are subgame perfect
equilibria then so is s”, where for each player i the strategy s/ is equal to either s; or s}, that is, the equilibria of

game are interchangeable.

10.3 Examples

10.29 Example: Stackelberg model of duopoly.

Consider the Stackelberg model of duopoly where two firms produce a homogeneous product. The price for the
product it P(Q) = a — Q if @ < a and 0 otherwise, where QQ = g1 + g2 and g; is the output level of firm i. The
cost function of firm 4 is ¢;g;. Due to the restriction of technology, firm 1 can produce either ¢ or ¢q;, where

@1k > g1 > 0. Firm 2 can produce any quantity go > 0. Assume a — 15, > max{cy, 2¢; — o }.

The game takes place in two stages:

o Firm 1 chooses a quantity ¢; € {qi1,q11}-

« Firm 2 observes ¢; and then chooses a quantity go > 0.

For i = 1, 2, the payoff to firm ¢ is given by
7Ti(q17q27x) = QZP(Q) — CiQ;.

Denote { = a — g1, — qu — 2¢1 + ca.

(i) Find the backwards induction outcomes for £ > 0 and £ < 0 respectively.
(if) For & > 0, find all the subgame perfect equilibria.

(iif) For & > 0, find a Nash equilibrium in which firm 1’s strategy is different from its strategy in the subgame

perfect equilibrium.
Answer. O

10.30 Example: Each of two firms, A and B, will choose a number between 0 and 1 which represents the “location” Let

x4 and x g be the numbers chosen by A and B, respectively. The payoft function for firm A is given by

w (37 r )_ %7 iffL’AS(EB,
A\TA, B | _ zates "
— =5, 1xTa > Tp,
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10.31

10.32

where x 4 is the number chosen by A and x g is chosen by B. The payoff function for B is ug(z4,zp5) = 1 —
ua(xa,zp). Assume that A chooses the number first, and B, after observing x 4, chooses 2. Formulate the
problem as an extensive game, and find all pure-strategy subgame perfect equilibria and all pure-strategy Nash

equilibria.

Answer. (i) Given x4,
1- %a lfo < g,

up(ra,rp) = .
BT

ifxa > xp.

1 — 24428 achieves the maximal 1 — 24 when x5 = x4, and 24122 has the supremum x4 when z

approaches to x 4.

Therefore,

N[

e Whenzy < %, 1—x4 > x4,and hence up will achieve the maximal 1 —x 4. Inthiscaseuy = x4 <

e« Whenz, > %, x4 > 1 — x4, and hence there is no best response for player B. In this case ug =
1—x4< %

Thus, player A will choose 3 due to backwards induction. However, there is no subgame perfect equilibrium

since there is no best response for player B when he faces x4 > 1.
(ii)
O

Example: There are n lions in a clearing in the jungle, along with one dead lamb, and the lions are ranked from
Ly (highest) to L,, (lowest). The lions move sequentially, in order of rank, and they can choose to eat or not to
eat. They are hungry (payoff: 0), and therefore prefer to eat (payoff: 1), but they are also cautious; they will not
eat if eating will lead to their death (payoff: —1). The lions have reason to be fearful, because they are narcoleptic,
cannibalistic, and cowardly: if they eat, they fall asleep immediately, at which time they will be prey to the next lion
in the sequence, who will eat only sleeping lions. Finally, the lions are finicky, so they will eat only recently dead,
or newly asleep, meat—they will not eat meat (i.e. sleeping lions or the dead lamb) that has been passed over by
others. In other words, if the dead lamb is not eaten by the first lion L1, then no lion will choose to eat this dead
lamb; if a sleeping lion L; (¢ = 1,2,...,n — 1) is not eaten by the next lion L; 1, then no lion will choose to eat
this sleeping lion L;.

Represent this problem as an extensive game. What is the subgame perfect outcome if there are six lions in the

pride? What if there are seven lions in the pride?

Answer. (i) When there are six lions, the game tree is as follows:

By backwards induction, the subgame perfect outcome is “L; does not eat”

(ii) When there are seven lions, the game tree is as follows:

By backwards induction, the subgame perfect outcome is “L; eats, and Lo does not eat”

Example: Splitting four coins/Ultimatum with a finite number of alternatives.

Players 1 and 2 are bargaining over how to split 4 coins. Player 1 proposes to take s; coins (s; should be an integer),
leaving (4 — s1) coins for player 2. Then player 2 either accepts or rejects the offer. If player 2 accepts the offer, then
the payoffs are s1 coins to player 1, and (4 — s1) coins to player 2. If player 2 rejects the offer, then the payoffs are

zero to both.
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~1
N N |IN [N [N N —1
0 1 -1 -1 1 1
0 0 1 -1 -1 -1 .
0 0 0 1 -1 -1
0 0 0 0 1 -1
0 0 0 0 0 1
0 0 0 0 0 0
Figure 10.5
1 E2E3E4BS5EGETE |
N N |IN [N [N O|IN N —1
~1
0 1 -1 -1 -1 -1 -1 1
0 0 1 -1 -1 -1 -1 1
0 0 0 1 -1 -1 -1 .
0 0 0 0 1 -1 -1
0 0 0 0 0 1 -1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
Figure 10.6

(i) Find all the pure-strategy Nash equilibria.

(ii) Find all the pure-strategy subgame perfect equilibria.

Answer. Figure 10.7 is the game tree.

0,4

0,0

1,3 0,0 22 00 3,1 00 4,0

Figure 10.7

0,0

It is easy to see that player 1’s strategy space is S; = {0, 1,2, 3,4}. Since a strategy is a complete plan of actions in

every contingency when a player is called upon to make, a strategy for player 2 can be represented as a function

f: S — {A,R}
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For example,
A, if81 :0,274;
R, ifs;=1,3

f(s1) =

is a strategy of player 2 in which player 2 will accept if player 1 offers 0, 2 and 4, and otherwise she will reject.
Thus, the space of all strategies of player 2 is the set of all functions from S; to { A, R}. We denote it by S5.
(i) (1) Player I's best-response correspondence: Given a strategy f of player 2, note that for any s; € f~1(A),

player 2 will accept the offer. Hence, given £, player 1 will choose the maximum in f~!(A). Since f~*(A)

is a subset of S7, the maximal always exists. Thus, player 1’s best-response correspondence is

Sl; lffil(A)zmﬁ
Bi(f) =4 51, if 0 is the maximum of f~1(A);
{s*}, if f~1(A) hasa maximum s* # 0.

(2) Player 2’s best-response correspondence: note that player 2’s strategy is a function

{f €82: f(s1) = A}, ifsy <4
Sa, if s; = 4.

By (s1) =

That means for any s; < 4, player 2 will accept. If s; = 4, player 2 is indifferent between the two actions

(accept or reject).
(3) We can use various combinations of the conditions in the expression of B} and Bj to construct all the
Nash equilibria:
« When f*~1(A) 21
« When f*1(4) = {
« When f*~1(A) = 0, (s}, f*) is a Nash equilibrium if and only if s = 4.

0}, (s%, f*) is a Nash equilibrium if and only if s} = max f* ' (A);
0}, (s7, f*) is a Nash equilibrium if and only if s7 = 0 or 4;

(ii) For each given s;, we need to consider a corresponding subgame, displayed in Figure 10.8. We know if f* is

2
A R
S1, 1-— S1 0, 0
Figure 10.8

subgame perfect, f*(s1) = A for any s; < 4. Hence, if (s, f*) is subgame perfect, f* should be either f;
or f3:
A, ifSl :0,1,2,3;
fi(s1) = or f5(s1) = Aforall 5.
R, ifSl =4.

It is easy to check that there are 2 subgame perfect equilibria: (s} = 3, f1) and (s7 = 4, f3).

10.33 Example: Ultimatum with jealousy.
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Players 1 and 2 are bargaining over how to split a dollar. Player 1 proposes to take a share s; of the dollar, leaving
(1 — s1) for player 2. The share s; can be any real number in the interval [0, 1]. Then, player 2 either accepts or
rejects the offer. If player 2 accepts the offer, the payoffs are as; + (1 — «)(2s7 — 1) to player 1, and 5(1 — s1) +
(1 — B)(1 — 2s1) to player 2. If player 2 rejects the offer, the payoffs are zero to both. In this game, they may care

about the difference between the shares as well as his/her own share.

(i) Supposea = 8 = % Find all pure-strategy subgame perfect equilibria.

(ii) Suppose that v and j3 are real numbers in the interval [0, 1] and that « 4+ 8 > 0. Find a pure-strategy subgame
perfect equilibrium.

Answer. Figure 10.9 is the game tree.

S1

as1 + (1 —a)(2s1 — 1) 0
Bl—s1)+(1-0)(1—-2s1) 0

Figure 10.9

(i) The payoffs when player 2 accepts the offer are 351 — 4 to player 1 and 1 — 2s; to player 2. Clearly, player

2’s payoff 1 — 351 > Oifand onlyif s; < 2. In order to be a subgame perfect equilibrium, player 2’s strategy
must be as follows:

accept ifs; < " accept if s <

*
82 = 5 82 =

Wiy Wl
Wi Wl

reject ifs; > reject if s; >

Note that, if player 2 uses the strategy s4*, then there is no best choice for player 1. Therefore, the strategy

profile yielding the backwards induction outcome can only be the following subgame perfect equilibrium:

(ii) The payoffs when player 2 accepts the offer are sy +(1—a) (251 —1) to player 1and 5(1—s1)+(1—5)(1—2s1)

to player 2. It easy to see that player 2’s payoff 3(1 — s1) + (1 — 8)(1 — 2s1) > Oifand onlyif 57 < 5=

m. In

order to be a subgame perfect equilibrium, player 2’s strategy must be as follows:

‘H

accept ifs; < ﬁ " accept if s1 < 5=
9 82 =
reject ifs; > 2% reject if s; > 2%

*_

=

™!
™!

Note that, if player 2 uses the strategy s3*, then there is no best choice for player 1. If player 2 uses the
strategy s, then player 1’s optimal strategy s} = ﬁ yields a payoft of %_ﬁaﬂ > 0 (because v, 5 € [0, 1]
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and o + 8 > 0). Therefore, the strategy profile yielding the backwards induction outcome can only be the

following subgame perfect equilibrium:

(51 = 525, 55).

10.34 Example: Splitting one dollar/Ultimatum with an infinite number of alternatives.

Players 1 and 2 are bargaining over one dollar (divisible) in two periods: In the first period, Player 1 proposes s;
for himself and 1 — s; for player 2. In the second period, player 2 decides whether to accept the offer or to reject
the offer. If player 2 accepts the offer, the payoff are s; for player 1 and 1 — s; for player 2. If player 2 rejects the
offer, the payoff are zero for both players.

(i) Describe all strategies of player 1 and player 2.
(ii) Find all Nash equilibria.
(iii) Find a subgame perfect equilibrium of the game.

(iv) Find a Nash equilibrium which are not subgame perfect.

Answer. Figure 10.10 is the game tree.

S1

Figure 10.10

(i) It is easy to see that player 1’s strategy space is S; = [0, 1]. Since a strategy is a complete plan of actions
in every contingency when a player is called upon to make, a strategy for player 2 can be represented as a
function

f:0,1] — {4, R}.

For example,
A, if0< s < g
fls1) =
R, otherwise
is a strategy of player 2 in which player 2 will accept if player 1 offers any s; < 3 and otherwise she will reject.

Thus, the space of all strategies of player 2 is the set of all functions from [0, 1] to {4, R}. We denote it by Ss.

(ii) (1) Player 1’s best-response correspondence: Given a strategy f of player 2, note that for any s; € f~1(A),

player 2 will accept the offer. Hence, given f, player 1 will choose the maximum in f~1(A) if it exists.



10.3. Examples 166

Thus, player 1’s best-response correspondence is

==

J, i fTHA) =0
], if0 is the maximum of f~1(A);

Bi(f) = o ,
{s*}, if f71(A) has a maximum s* # 0;

=

if f~1(A) has no maximum.

(2) Player 2’s best-response correspondence: note that player 2’s strategy is a function

{f € Sy f(Sl) = A}, if0 < sy <1;
Sa, ifs; = 1.

B3(s1) =

That means for any s; < 1, player 2 will accept. If s; = 1, player 2 is indifferent between the two actions

(accept or reject).
(3) We can use various combinations of the conditions in the expression of B} and Bj to construct all the
Nash equilibria:
« When f*~1(A) 2 {0}, (s7, f*) isaNash equilibrium ifand only if s7 = sup 7 HA) = max f*(A);
« When f*~1(4) = {0}
« When f*71(A) = 0, (s}, f*) is a Nash equilibrium if and only if s = 1.

0}, (s7, f*) is a Nash equilibrium if and only if s7 = 0 or 1;

(iii) For each given s1, we need to consider a corresponding subgame, displayed in Figure 10.11. We know if f*

2

81,1—81 0,0

Figure 10.11

is subgame perfect, f*(s1) = A forany s; < 1. Hence, if (s, f*) is subgame perfect, f* should be either f;
or f3:
A, ifsy <1
fi(s1) = or f5(s1) = Aforall s1.
R, if S1 = 1.

It is easy to check that only (s = 1, f5) is the unique subgame perfect equilibrium.

(iv) (st =1, f* = R) is a Nash equilibrium but not a subgame perfect equilibrium.

10.35 Example [JR Exercise 7.29]: Take-it-or-leave-it game.

A referee is equipped with NV dollars. He places one dollar on the table. Player 1 can either take the dollar or leave
it. If he takes it, the game ends. If he leaves it, the referee places a second dollar on the table. Player two is now
given the option of taking the two dollars or leaving them. If he takes them, the game ends. Otherwise the referee
places a third dollar on the table and it is again player 1’s turn to take or leave the three dollars. The game continues

in this manner with the players alternately being given the choice to take all the money the referee has so far placed
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10.36

on the table and where the referee adds a dollar to the total whenever a player leaves the money. If the last player
to move chooses to leave the /V dollars the game ends with neither player receiving any money. Assume that IV is

public information.

(i) Without thinking too hard, how would you play this game if you were in the position of player 1? Would it

make a difference if [V were very large (like a million) or quite small (like 5)?
(ii) Calculate the backward induction strategies. Do these make sense to you?
(iii) Prove that the backward induction strategies form a Nash equilibrium.

(iv) Prove that the outcome that results from the backward induction strategies is the unique outcome in any Nash

equilibrium. Is there a unique Nash equilibrium?

Two players, A and B, take turns choosing a number between 1 and 9 (inclusive). The cumulative total of all the
numbers chosen is calculated as the game progresses. The player whose choice of number takes the total to exactly

100 is the winner. Is there a first mover advantage in this game?

10.4 Three notable games

10.37

10.38

Father-Son-CEO-Manager game.

Player 1 (an entrepreneur) has to decide whether to sell the firm (action L) or to delegate control to his son (player
2). Player 2 can then decide to manage the firm himself (action Ls) or hire player 3 (CEO) to run the business. The
CEOQ, in turn, may or may not delegate control to player 4 (a manager). The manager can, then, either exert effort
to manage the business well (action L), or shirk (action R4). Assume that the game, actions, and resulting payofts

as depicted in the following figure are all common knowledge.

Father

0,4,4,1 0,0,0,1

Figure 10.12: Father-Son-CEO-Manager game.

There are two subgame perfect equilibria: (L1, Ra, Rs, L4) and (L1, Ra, L3, R4), which share the same payoff

(1,1,1, —1). However, players can do better through an course of actions (R1, Lo, -, -).

The chain-store game.

A chain-store (player C'S) has branches in K cities, numbered 1,2, ..., K. In each city k there is a single potential
competitor, player k. In each period one of the potential competitors decides whether or not to compete with player
C'S; in period k it is player k’s turn to do so. If player k decides to compete then the chain-store can either fight
(F) or cooperate (C'). The chain-store responds to player £’s decision before player & + 1 makes its decision. Thus
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k
In Out
CS
F C 5,1
0,0 2,2

Figure 10.13: The chain-store game.

in period k the set of possible outcomes is Q = {Out, (In, C), (In, F')}. The structure of the players’ choices and

their considerations in a single period are summarized in the following figure.

There are two assumptions:
« At every point in the game all players know all the actions previously chosen. The set of histories is
(UiZo@") U (U (@ x {In})),
where QF is the set of all sequences of k members of (), and the player function is given by P(h) = k + 1 if

h € Q¥and P(h) = CSifh € Q* x {In},fork=0,1,..., K — 1.

o the payoff of the chain-store in the game is the sum of its payoffs in the K cities.

This game has a multitude of Nash equilibria: in period &, player k and chain-store choose (Out, F') or (In,C).

This game has a unique subgame perfect equilibrium: every challenger choose In, and the chain-store always
chooses C. In city K the chain-store must choose C, regardless of the history, so that in city K — 1 it must do the

same, continuing the argument one sees that the chain-store must always choose C.

Although the chain-store’s unique subgame perfect equilibrium strategy does indeed specify that it cooperate with
every entrant, it seems more reasonable for a competitor who has observed the chain-store fight repeatedly to believe
that its entry will be met with an aggressive response, especially if there are many cities still to be contested. If a
challenger enters then it is in the myopic interest of the chain-store to be cooperative, but intuition suggests that it

may be in its long-term interest to build a reputation for aggressive behavior, in order to deter future entry.

10.40 The centipede game.

1,0 0,2 3,1 24 53 4,6

Figure 10.14: The centipede game.

The set of histories in the game is



10.5.

Iterated elimination of weakly dominated strategies 169

The player function is defined by
1, ift=0,2,4;
2, ift=1,3,5.

The game has unique subgame perfect equilibrium; in this equilibrium each player chooses S in every period.

Now assume that there is a Nash equilibrium that ends with player 7 choosing S in period ¢. If ¢ > 2 then player j
can increase his payoff by choosing S in period ¢t —1. Hence in any equilibrium player 1 chooses .S in the first period.
In order for this to be optimal for player 1, player 2 must choose S in period 2. The notion of Nash equilibrium
imposes no restriction on the players’ choices in later periods: any pair of strategies in which player 1 chooses S in

period 1 and player 2 chooses .S in period 2 is a Nash equilibrium.

In the unique subgame perfect equilibrium of this game each player believes that the other player will stop the game
at the next opportunity, even after a history in which that player has chosen to continue many times in the past.

Such a belief is not intuitively appealing.

After a history in which both a player and his opponent have chosen to continue many times in the past, the basis

on which the player should form a belief about his opponent’s action in the next period is far from clear.

10.5 Iterated elimination of weakly dominated strategies

10.41

10.42

Let I be a finite extensive game with perfect information in which no player is indifferent between any two terminal

histories. Then I" has a unique subgame perfect equilibrium.

We now define a sequence for eliminating weakly dominated actions in the induced strategic game G of I' (weakly
dominated strategies in I') with the property that all the action profiles of G that remain at the end of the procedure

generate the unique subgame perfect equilibrium outcome of I'.

Let h be a history of I' with P(h) = i and ¢(I'(h)) = 1 and let a* € A(h) be the unique action selected by
the procedure of backwards induction for history h. Backwards induction eliminates every strategy of player ¢ that
chooses an action different from a after history h. Among these strategies, those consistent with & (i.e., that choose
the component of h that follows A’ whenever 1’ is a subhistory of i with P(h’) = 4) are weakly dominated actions
in G. Perform this elimination for each history h with £(T'(h)) = 1.

Then we turn to histories h with ¢(I'(h)) = 2 and perform an analogous elimination; we continue back to the
beginning of the game in this way.

Every strategy of player ¢ that remains at the end of this procedure chooses the action selected by backwards induc-
tion after any history that is consistent with player i’s subgame perfect equilibrium strategy. Thus in particular the

subgame perfect equilibrium remains and every strategy profile that remains generates the unique subgame perfect

equilibrium outcome.

Example:

H ={0,(A),(B),(A,C), (A D), (A C E),(ACF)},S = {AE,AF, BE, BF}, S, = {C, D}.

(1) Consider (A, C) firstly. For player 1, E is better than F, then the strategy AF is weakly dominated by AE: if
player 2 chooses D, AF and AF yield the same payoff; if player 2 chooses C, AFE is strictly better than AF".
AF is eliminated.

(2) Then consider (A), and it is player 2’s turn. D is better than C given that player 1 will choose E when he
choose C' here. Then the strategy C' is weakly dominated by D: if player 1 chooses BE or BF', then C' and
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2,0 0,2

Figure 10.15: Iterated elimination of weakly dominated strategies.

D yield the same payoff; if player 1 chooses AE, then D is strictly better than C'. Note that AF has been

eliminated, and will be not considered any longer. C'is eliminated.
(3) Lastly, consider . It is player 1’s turn. AE is weakly dominated by BE, and eliminated.
(4) BE, BF and D remain.

We will see that every strategy of player ¢ that remains at the end of this procedure chooses the action selected by

backwards induction after any history that is consistent with player i’s subgame perfect equilibrium strategy.
For player 1, his subgame perfect equilibrium strategy is BE, consistent history can be () and (B). At the history
(), the outcomes BE and BF both suggest that player 1 choose B, same as the equilibrium behavior.

10.43 Note, however, that other orders of elimination may remove all subgame perfect equilibria.

Consider the strategy example above.

C D
AE [2,0 ][ 1,1
AF [0,2 ] 1,1
BE [3,3]3,3
BF [3,3]3,3

(1) AE is weakly (actually strictly) dominated by BE, and eliminated;

(2) D is weakly dominated by C, and eliminated;

(3) AF is weakly dominated by BF', and eliminated,;

(4) (BE,C) and (BF, (') remain, but neither of them are subgame perfect equilibria.

10.6 Forward induction
10.44 In the following game, player 1’s strategy set is
S1 = {(Book, O), (Book, F), (Outside, O), (Outside, F)},

and player 2’s strategy set is {O, F'}.

Consider its reduced strategic form:
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Book Outside

2,2 0 F
O
F

=™
O
[l k=]
wio

Figure 10.16: Forward induction.

@) F

Book | 2,2 | 2,2
O 131]0,0
F100]13

F is strictly dominated for player 1 by Book, and eliminated. Then F’ is weakly dominated for player 2 by O, and
eliminated. Finally, Book is strictly dominated by O for player 1. The outcome that remains is (O, O).

This sequence of eliminations corresponds to the following argument for the extensive game:

(1) If player 2 has to make a decision he knows that player 1 has not chosen Book.
(2) Such a choice makes sense for player 1 only if she plans to choose O.

(3) Thus player 2 should choose O also.
The logic of such an argument is referred to in the literature as “forward induction”

10.45 Two individuals are going to play the battle of sexes. Before doing so player 1 can discard a dollar (take the action

D) or refrain from doing so (take the action 0); her move is observed by player 2.

Player 1’s strategy set is
S1 = {000,00F,0FO,0FF, DOO, DOF, DFO, DFF},

and player 2’s strategy set is {OO, OF, FO, FF'}.

1
0 D
O F 0 F
03,1100 o[ 21 ]-1,0
Fl0,0]1,3 F|l-1,0] 0,3

Figure 10.17: Forward induction.

The reduced strategic game is as follows:
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OO0 OF FO FF
00 31 31 00 ] 0,0
oF [ 0,0 | 0,0 | 1,3 | 1,3
DO [ 21 | —1,0| 2,1 | —1,0
DF[-1,0]| 0,3 | -1,0] 0,3

Weakly dominated actions can be eliminated iteratively as follows.

(1) DF is weakly dominated for player 1 by 00;

(2) F'F is weakly dominated for player 2 by F'O;

(3) OF is weakly dominated for player 2 by OO;

(4) OF is strictly dominated for player 1 by DO;

(5) FO is weakly dominated for player 2 by OO;

(6) DO is strictly dominated for player 1 by 00.
The single strategy pair that remains is (00, OO): the fact that player 1 can throw away a dollar implies, under
iterated elimination of weakly dominated actions, that the outcome is player 1’s favorite.
An intuitive argument that corresponds to this sequence of eliminations is the following.

(1) Player 1 must anticipate that if she chooses 0 then she will obtain an expected payoff of at least 2, since for

every belief about the behavior of player 2 she has an action that yields her at least this expected payoff.

(2) Thus if player 2 observes that player 1 chooses D then he must expect that player 1 will subsequently choose
O (since the choice of F can not possibly yield player 1 a payoff in excess of 3).

(3) Given this, player 2 should choose O if player 1 chooses D; player 1 knows this, so that she can expect to
obtain a payoft of 2 if she chooses D.

(4) But now player 2 can rationalize the choice 0 by player 1 only by believing that player 1 will choose O (since

F can yield player 1 no more than 1), so that the best action of player 2 after observing 0 is O. This makes 0
the best action for player 1.
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11.1 Game theory deals with situations in which people’s interests conflict. The people involved may try to resolve
the conflict by committing themselves voluntarily to a course of action that is beneficial to all of them. If there
is more than one course of action more desirable than disagreement for all individuals and there is conflict over
which course of action to pursue then some form of negotiation over how to resolve the conflict is necessary. The

negotiation/bargaining process may be modeled using the tools of game theory.

11.2 Reference: Section 4.4 in Fudenberg and Tirole (1991), Section 2.1D in Gibbons (1992), Chapter 7 in Osborne and
Rubinstein (1994), Osborne and Rubinstein (1990), Rubinstein (1982), Stdhl (1972).

11.1 A bargaining game of alternating offers
11.3 Players 1 and 2 are bargaining over one dollar. Let z; denote the share of player 7, 7 = 1, 2. The set of agreements is
X = {(331,%‘2) S Ri | 1+ X9 = 1}.

B¥"  11.4 The game lasts for T periods (T could be infinite).

(1) In period 1, player 1 makes an offer, 21 for himself and 23 for player 2. If player 2 accepts (A), then they split
the dollar according to the offer. If player 2 rejects (R), then they move to period 2.

(2) In period 2, they exchange roles with player 2 making an offer 22 for himself and % for player 1, and player

1 decides whether to accept.

173
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(3) In general, player 1 makes offer in odd periods, and player 2 makes offer in even periods.

(4) The game continues until an agreement is reached or after the end of period 7.

11.5 Convention: We will assume that a player accepts whenever he is indifferent between accepting and rejecting. All

payofls are evaluated from the current period.

B¥"  11.6 Ifan agreement (21, 2) is reached in period ¢, then player i receives payoff
ui(:ri7 t) = (551’17

where §; € (0, 1) is player ¢’s discount factor. The discount factors are assumed to be common knowledge.
BE"  11.7 If no agreement is reached after T — 1 periods, then an exogenous settlement d = (s1, s2) (breakdown’s payoff
profile) is enforced in period T', where s1 + s3 < 1.

One typical breakdown’s payoft profile is (0, 0).

11.2 Bargaining games with finite horizon

11.8 For finite 7', we can find the subgame perfect equilibria by backwards induction.

11.9 Suppose T = 3 and d = (1, $2). The unique subgame perfect equilibrium can be determined by the backwards
induction.

51,52

Figure 11.1

(1) In period 2, player 1 can obtain s; in the next period by rejecting player 2’s present offer. Thus, player 1 will
reject the offer (2%, x3) if and only if 2 is strictly worse than 1 s1.

Based on this observation, player 2 can obtain at least 1 — ;51 in period 2.

(2) In period 1, player 2 knows that he can obtain 1 — d; 1 in the next period. Hence, by the same reasoning, he

will accept the present offer if and only if

LE% Z 52(1 — (5151) = 52 - 6152517
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ie., QL‘% S 1-— (52 + 51(5281.

(3) Hence, in the subgame perfect equilibrium player 1 offers

(1 — 2 + 610251, 02 — §10251)

z1(3) z3(3)

and player 2 accepts in period 1.

11.10 Suppose T = 5. This case is equivalent to the case T' = 3 with the breakdown’s payoff profile (1 — 2 + 1281, 02 —
51 (52 S1 ) .

Hence player 1’s equilibrium share is:
l‘ik(5) =1- 52 -+ 5152(1 — 52 -+ 615251) = (]. — 52)(1 —+ 5152) —+ (5152)251

11.11 By induction, when T" = 2n + 1, we have player 1’s equilibrium share

n—1

x*{(2n + 1) (1 — 62) (5152)Z + (5152)”81

s
Il
o

11.12 When T' = 2n + 2, we know that if the game proceeds to period 2, player 2 will obtain

n—1

(1—101) 2(5152)i + (8192)" s2

=0

So, in this case, player 1 equilibrium share is

n—1
x1(2n—|—2)—1—52 1—(51 Z 5152 —52 5152)
=0

11.3 Bargaining games with infinite horizon

11.13 We will focus on the case d = (0, 0).

11.14 The set of Nash equilibria of a bargaining game of alternating offers is very large, and almost any division of the
dollar can be obtained as a Nash equilibrium outcome. In particular, for any z* € X there is a Nash equilibrium
in which the players immediately agree on 2* (i.e. player 1’s equilibrium strategy assigns 2* in period 1 and player

2’s strategy assigns A to ™).

One such equilibrium is that in which both players always offer * and always accept a proposal x if and only if

T =x*.

11.15 For many specifications of the players’ preferences there are Nash equilibria in which an agreement is not reached
immediately. For example, for any agreement x and period ¢, there is a Nash equilibrium for which the outcome is

the acceptance of  in period t.

One such equilibrium is that in which through period ¢ — 1 each player demands the whole dollar and rejects all

proposals, and from period ¢ on offers x and accepts only =.
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11.16

11.17

11.18

11.19

11.20

11.21

11.22

¥ 11.23

The notion of Nash equilibrium does not exclude the use of “incredible threats” Consider the Nash equilibrium in

which both players always offer ©* = (z7, 23) and player i accepts a proposal z if and only if z; > .

Take a particular proposal = (x1, x2) such that 27 = 27 and x5 > x2 > d225. Then in the equilibrium player

2’s strategy dictates that he rejects such a proposal . This “threat” induces player 1 to offer *.

Player 2’s threat is incredible, given player 1’s strategy: the best outcome that can occur if player 2 carries out
his threat to reject x is that there is agreement on z* in the next period, an outcome that player 2 likes less than

agreement on x in the previous period, which he can achieve by accepting x (since x5 > Jax3).

Since T' = 00, we can no longer find subgame perfect equilibria by backwards induction (since there is no final

period). In this case, we need to use an extra trick to final the equilibrium.

Recall: A strategy profile is said to satisfy the one deviation property if for each subgame the player who makes the

first move can not obtain a better outcome by changing only his initial action.

Proposition: In any perfect information extensive game with either finite horizon or discounting, a strategy profile

is a subgame perfect equilibrium if and only if it satisfies the one deviation property.

This property is extremely useful in games with an infinite horizon, such as the current bargaining game or infinitely
repeated games. In these games, since the players have an infinite number of strategies, it is hard to show that any
particular strategy is a best response. The one deviation property says that we need only to show that at every

decision node a player will not deviate in that decision node and follow the equilibrium strategy in the future.
Proof. OR 123.1 O
Consider Equations in 11.11 and 11.12. Let T" go to infinity, then we have

k 1. * _ 1_62 ko q1s * _
r, = Tlgnooxl(T) = m, Ty = Tlgnoox2(T) = 62

1-6
1 =610

Note that the limit is the same whether T is odd or even.

Let (y5(T),y3(T)) denote the equilibrium division when we interchange the roles of the players and let player 2

make offer in period 1. When 7" goes to infinity, the equilibrium share will become

. e« 1—02 . e L—01
1 :Tlgnooyl(T) = 511_7(%, Y2 ZTIgnooyz(T) T 1600,

Note that

Y] = 0127 and x5 = 02y5.

Theorem (Rubinstein, 1982): In the bargaining game with infinite horizon, there is a unique subgame perfect equi-

librium where

« in every odd period, player 1 offers (27, 23) and player 2 accepts any zo > x5,

« in every even period, player 2 offers (y7, y3) and player 1 accepts any y; > y7.

Therefore, the subgame perfect equilibrium outcome is that player 1 offers

1— 6, 1-6
5
(1—5152’ 21—5152)

and player 2 accepts in period 1.

This theorem says that in each period the players will behave as if in a extremely long finite horizon game.
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11.24 Note that the game is stationary: the subgame starting from any period ¢ looks exactly like the original game. This
is an extremely important property because it implies that if a strategy profile is an equilibrium in period ¢, it will

be an equilibrium in the next period as well.

11.25 Proof of subgame perfection.
(1) To show that the strategy profile is subgame perfect, we need to show that no player can gain by deviating
once immediately and follow the equilibrium strategy in the future.
(2) Inall odd periods:

« Obviously, player 1 will not be strictly better off by proposing (1,1 — x1) with 1 < z7}.
o If player 1 offers (z1, 1 — x1) with x; > =7, then player 2 will rejects the offer and player 1 will obtain

S1y; = 61a} < a}

in the next period, making him worse off.

« If player 2 rejects =3, then he will obtain y5 in the next period. Hence it is a best response to accept any

T > Goys = xh.

(3) The case for even periods is similar.

11.26 Proof of uniqueness.

(1) LetZ; and 2, denote the maximal and minimal subgame perfect equilibrium payofs for player 1 when player
1 is the proposer respectively. Let > and y,, denote the maximal and minimal subgame perfect equilibrium

payofls for player 2 when player 2 is the proposer respectively.

(2) Consider an odd period. Since player 2 can get at least y,, in the next period by rejecting player 1’s offer, in

any subgame perfect equilibrium, player 1 must offer player 2 at least d2y,,. Hence,
1 <1-— 52y2.

(3) On the other hand, considering an even period, player 1 can get at most Z; in the next period by rejecting

player 2s offer. It would not be an equilibrium for player 2 to offer more than §,Z; to player 1. Hence,
Yy >1—-06121.
(4) Combining the two inequalities, we have
T1 <1—=02(1 —61Z1) = 1 — 92 + 010271,

which means that
. 1—4s N
T — =]
V=160, !

(5) Interchanging the roles of the players, the same arguments imply that

Y2 <1—01xy, andz; > 1 — dafo.
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(6) Combining the two inequalities, we have
2y > 1—=02(1 = d1zy) =1 — 02 + 01022,

which means that
1— 4, .
T — =]
== 1— 6109 !
(7) Since we know Z; > x,, it follows that 7 = Z; = x,. By the same logic, we can show that y; = ¢o = Yy

(8) This shows that the subgame perfect equilibrium payoftis unique. Given this, it is obvious that the equilibrium

itself must also be unique.

O

11.27 Remark: If discount factors are not assumed to be common knowledge, then bargaining can last for more than one

period in the alternating offers model.

11.4 Properties of subgame perfect equilibria in Rubinstein bargaining games

11.28 Efficiency: The structure of a bargaining game of alternating offers allows negotiation to continue indefinitely.
Nevertheless, in the unique subgame perfect equilibrium it terminates immediately; from an economic point of

view, the bargaining process is efficient (no resources are lost in delay).
To which features of the model can we attribute this result? We saw that in a Nash equilibrium of the game, delay

is possible. Thus the notion of subgame perfection plays a role in the result.

11.29 Stationarity: The subgame perfect equilibrium strategies are stationary: for any history after which it is player ¢’s
turn to offer an agreement he offers the same agreement, and for any history after which it is his turn to respond to

a proposal he uses the same criterion to choose his response.

We have not restricted players to use stationary strategies; rather, such strategies emerge as a conclusion.

11.30 First mover advantage: There is a first-mover advantage even though there are many periods of negotiation.

Suppose that §; = §3 = J, then the only asymmetry in the game is that player 1 moves first. Player 1’s equilibrium
payoff is 11? which exceeds 3, but approaches 1 as § tends to 1. Thus if the players are equally and only slightly
impatient, player 1’s first mover advantage is small and the outcome is almost symmetric.

Player 1 gets the whole dollar if 6, = 0, since a myopic player 2 will accept any positive amount this period rather

than wait one period. However, even if §; = 0 player 2 does not get the whole dollar if 5 < 1.
11.31 The breakdown share is irrelevant: the division is entirely driven by the discounts factor.

11.32 Effect of changes in patience: A player’s share increases with his discount factor and decreases with his opponent’s
discount factor, and player 4’s payoff converges to 1 as 6; — 1. That is, fixing the patience of player 2, player 1’s

share increases as she becomes more patient.

11.33 Letexp(—r;A) be player ¢’s discounting factor, where r; is player ¢’s discounting rate and A is the duration of each

period. Then the subgame perfect equilibrium payoff profile converges to ( L2 o > as A — 0.

ritre? ritre
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11.5 Bargaining games with cost

11.34 Consider the following two-player bargaining game. Each player 7 incurs the cost ¢; > 0 for every period, that is,

player ¢’s payoff if the agreement is concluded in period ¢ is z; — ¢;t.

11.35 Proposition [OR Exercise 125.2]: If ¢; < cg, then the bargaining game has a unique subgame perfect equilibrium
where in every odd period, player 1 offers (1,0) and player 2 accepts any x2 > 0, and in every even period player

2 offers (1 — ¢, ¢1) and player 1 accepts any y; > 1 — 1.
Proof. Omitted. O

11.36 Proposition [OR Exercise 125.2]: If ¢; = co = ¢ < 1, then the game has many subgame perfect equilibrium
outcomes including, if ¢ < %, equilibria in which agreement is delayed.

Proof. Omitted. O

11.6 n-person bargaining games

11.37 Reference: David P. Baron and John A. Ferejohn, Bargaining in Legislatures, American Political Science Review 83
(1989), 1181-1206.

11.38 Consider the following n-person bargaining game:

n (odd) players try to allocate one dollar among them. Let

X={zeR} | <1}

be the set of feasible allocations.
o The game is played for T periods (T could be infinite).
o In any period ¢, a player is chosen as a proposer with probability %
o The proposer suggests how to divide the one dollar, i.e., chooses some x = (z1, z3, ..., z,) from X.

« The player vote publicly and sequentially (in some order). If the proposal is approved by the majority, then it

is implemented and the game is over.

Otherwise the game moves on to the next period.
o If no proposal is approved by the end of the game, then everyone receives 0.

o Each player’s discount factor is § € (0, 1), which is common knowledge.
11.39 Suppose T = 2.

(1) In period 2, whoever is chosen as a proposer can request everything.

(2) Inperiod 1, the proposer can buy one vote by paying %. Hence the proposer can pay % to 251 players so that

his proposal just gets the majority votes.
11.40 Suppose T' = oco. We first focus on symmetric stationary subgame perfect equilibrium, where

(i) the distribution of proposals is same independent of histories,
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(ii) every player except for the proposer is treated symmetrically by the equilibrium proposal,

(iii) the equilibrium voting behavior is the same across all the players.

11.41 Theorem: Foranyd € (0, 1), there exists the unique symmetric stationary subgame perfect equilibrium. In equilib-
rium, the proposer always proposes to distribute % to randomly selected 21 players. Player i votes for the proposal

if and only if the proposal assigns player ¢ at least %.

11.42 Proof. (1) Itis easy to prove that it satisfies the one deviation property.

(2) Take any symmetric stationary subgame perfect equilibrium. Every player’s equilibrium payoff in the begin-
ning of each period must be the same. Denote this by v.

n—1

(3) Each proposer is guaranteed to receive at least 1 — v 52 by paying dv to

players.

(4) To minimize expense, it must be the case that the proposer pays exactly §v to 25 players. Note that each

other player is in the coalition with probability 5. So v must satisfy

1 -1 —-11
vz(l—évn >+n —dv.
n 2

n 2

Hence, v = %
11.43 Once stationarity is dropped, then many allocations can be supported by subgame perfect equilibria.

In fact, any allocation can be supported if there are many players and the players are patient.

11.44 Theorem: Suppose that n > 5 and Z&Jr_ll) < § < 1. Then any € X can be achieved by a subgame perfect

equilibrium where

o every proposer proposes z if there has been no deviation by any proposer. This proposal is accepted by every
player immediately.

o if player j deviates and proposes y # x, then
(1) itis rejected by some majority M (y) that does not include j,
(2) the next proposer proposes z(y) € X such that z;(y) = 0 and everyone in M (y) votes for z(y).

o if the next proposer k proposes w # y instead of y in the previous step, then repeat the previous step with
(z(w), k) instead of (2(y), 7).

11.45 Proof. (1) No proposer has an incentive to deviate from x because then the continuation payoft is 0.
(2) Consider (j,y)-phase. We define M (y) and z(y) as follows:
« M(y) is a group of 2+ players such that j ¢ M (y) and >ieM(y) Yi is minimized.
° 2 = ) . - Y ;
zi(y) =0fori ¢ M(y)and z;(y) € v fori € M(y).
(3) No proposer in (j, y)-phase (even player j) does not have an incentive to deviate and propose something

different from z(y) because then the continuation payoff is 0.
(4) Everyone votes for 2 and every player in M (y) votes for z(y) (a deviation just causes a delay).
(5) Finally we need to make sure that M (y) rejects y in favor of z(y) in the next period.

o This is trivially satisfied for ¢ € M (y) such that y; = 0.

« Fori € M(y) withy; > 0, we need 6z;(y) > y;, whichis § >3-, /() Yk The least upper bound of

ke (y) Yk 18 505 y> which is less than 1if n > 5.
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O

11.46 Remark: In this construction, if 7 is the pivotal voter (voting 4+ -th “yes”) in M (y) and z;(y) = 0, then i is playing

a weakly dominated strategy by voting for z;(y). This can be fixed easily by considering a slightly more complicated
transfer: it is possible to perturb z;(y) slightly so that dz;(y) > y; holds for every i € M (y).
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A repeated game is simply a situation in which players have the same encounter over and over, i.e., the same game
is played repeatedly. The game that is played repeatedly is known as the stage game. The stage game itself could be a
simultaneous move game or a sequential move game. If the stage game is played finitely many times then we have a

finitely repeated game. If the stage game is played infinitely many times then we have an infinitely repeated game.
Repeated games generate fundamentally different incentives from isolated interactions, providing explanations to:
« collusion (oligopoly, procurement auctions, sports, efc.)

o cooperation (human, animals)

Repeated games often admit a simple characterization of the set of equilibrium payoffs, known as the “folk theorem”
If the players’ actions are observed at the end of each period, it becomes possible for players to condition their play on
the past play of their opponents, which can lead to equilibrium outcomes that do not arise when the game is played only

once.

References: Chapter 5 in Fudenberg and Tirole (1991), Chapters 2 and 3 in Mailath and Samuelson (2006), Takahashi
(2014).

12.1 Infinitely repeated games
12.1 The game begins in period 0. In each period, n players play a simultaneous-move stage game.

183
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o Playerset N = {1,2,...,n}.

o Let A; denote player 7’s stage-game action set, and A(A;), the set of probability distributions over A;, serves

as player ¢’s stage-game mixed action set. Let A = x7*_; A;.

o Letu;: A — R denote player i’s stage-game payoff function. Let u = (u1, ug, . .., up).
Furthermore, we have the following notations:

o Feasible payoffs

F = cou(A) = convex hull {x € R" | there exists a € A such that u(a) = z}.

o The minmax value

v, = min max u;(a;, _;).
ai€X ;i A(Aj) a;i €A,

It is the minimum payoft a player can guarantee himself regardless of the other players’ strategies. A payoff u;

is individually rational in the repeated game if it is not less than w,.

The minmax action profile
a', = argmin  max uy(a;,a_;),
o EX 2 A(Ay) 1iEA

i _ i
a; = argmaxu;(a;, a’ ;).
a; €A;

« Feasible and weakly individually rational payofts

F, ={x € F | foreachi, z; > v,}.
o Feasible and individually rational payoffs

F., ={x € F|foreachi, z; > v,}.

12.2 Example: Infinitely repeated prisoners’ dilemma. The stage game is as follows:

H c
H| 1,1 | -1,2
cl12,-1] 0,0
Figure 12.1

In this stage-game,

o I is the gray region in Figure 12.2.
e v, =0fori=1,2.
o By =FN{(ur,uz) | ug,ug > 0}.

« Fii =FnN {(ul,u2) | Up, Uy > 0}
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12.3

12.4

12.5

12.6

12.7

(1,1)

Ui

Figure 12.2

In the beginning of each period, the players observe actions chosen in last. For each t € {0,1,2,...}, a t-period

history is a vector

ht = (0,a° at,... a""),

s __ S S S
where a® = (af,as,...,a

) is the action profile chosen in period s for s = 0,1, ...,¢ — 1. The “null” history, 0,

serves no real function. It is inserted for consistency in notation.
Let H? denote the set of all t-period histories.

The set of all possible histories is H = U, H.

Players choose their stage-game action based on what has happened in the past.

A period t’s (behavior) strategy for player ¢ is

t.
g;:

A repeated-game strategy of player 7 is

g;: H — A(AZ)
that describes player ¢’s strategy in every period.
Let 3; denote the set of repeated-game strategies of player i.

An outcome (or full history, or path) is an infinite sequence of action profiles a = (a°,a?, ..., a’,...).

The players discount future payoffs by a common discount factor § € [0, 1).

When the outcome is a = (a’,al,. .., a’,...), player i’s discounted payoff is

Z 8tu;(at).
t=0

The discount factor can be interpreted as a preference for the present over the future. It can also be interpreted as

one minus the probability that the game determinate in that period.

If a player always gets z in each period, then her discounted payoft is 1=5.

In most applications, it is mathematically more convenient to work with the normalized discounted payoff (also
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12.8

I 129

¥ 12.10

called average payoft):
(1-9) Z §tu;(at).
t=0

Since the normalized discounted payoff is just a monotone transformation of the discounted payoft, they represent

the same underlying preferences.

If a player receives a stage-game payoff x in each of the first ¢ periods and y in each of all subsequent periods, then

her normalized discounted payoft is a weighted average of  and y:
t—1 oo
s=0 s=t

If a player always gets x in each period, then her normalized discounted payoff is also  (compare with the dis-
counted payoft 1%5).
A repeated-game strategy profile o induces a probability distribution over the set of full histories.

If o is a pure strategy profile, then player 7’s normalized discounted payoff is
o
Ui(o) = (1=68) ) 6'ui (a'(0)),
t=0

where a! (o) is the induced action profile in period .

As usual, the normalized discounted payoff to player i from a profile of behavior strategies o is the expected value

of the payoffs of the realized outcomes, also denoted U; (o).
LetU = (Ul, UQ, ey Un)

Definition: A strategy profile o is a Nash equilibrium if U; (o) > U; (0}, 0—;) for any player i and any s strategy
ol.
Proposition: If o is a Nash equilibrium, then U(o) € F}.

Proof. (1) Fix any Nash equilibrium o.

(2) U(o) can be represented as a convex combination of u(a) as follows:

U(o) = 3 n(@)Ula),

a€A

o0

where p(a) = (1 —6) > 8" Prob,(a’(c) = a) for each a € A. Thus, we have U(c) € F.
=0

(3) For each 4, define o} by o}(h) € arg maxu;(a;,o—;(h)) for any h.

a;

(4) Since o is a Nash equilibrium, we have U;(c) > U; (0}, 0_;), where

Ui(ol,0_;) = (1 —0)E,_, Z&t maxu;(a;,o_;(h))| > (1 —9) Zétyi =v,.
t=0 ' t=0

Thus, we have U (o) € F.
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BE" 12,11

12.12

IS 12,13

12.14

BE" 12.15

¥ 12.16

For any history h* € H, we define the continuation game to be the infinitely repeated games that begins in period

t, following history h.

For any strategy profile o, player i’s continuation strategy after ht, o;|;: : H — A(A;), is given by
oilnt (W) = a(h'h') forany b’ € H,
where h'h/ is the concatenation of the history h! followed by the history A'.

Note that o; |, € %;.

Note that the same stage game is played repeatedly and the stage-game payoffs depend only on actions taken in that
period. Thus, history influences only the future actions of the players. This also means that the game is stationary—
starting from any period ¢, any continuation game from period ¢ onwards is exactly the same as the original game.

Non-stationary repeated games are difficult to analyze.

Definition: A strategy profile o is a subgame perfect equilibrium if for any player i € N, any periodt € {0,1,2,...},
any history h' € H* and any strategy o, € 3;,

Ui(oilnt,o—ilpt) > Ui, 0—i|pt).

That is, o is subgame perfect if it induces a Nash equilibrium in every continuation game.

There are a lot of subgames (infinitely many) and for each subgame there are a large number of possible deviations
(also infinitely many)! It is impossible to verify a strategy profile is subgame perfect by brute force. In the following

we shall go through two fundamental results that are crucial to the analysis of repeated games.

We say that a strategy profile o does not have profitable one-shot deviations if for any player ¢ € N, any history h,

and any action a;,

Us(oln) = (1= 8) - uilaz,0-i(h)) + 8y o—i(h)(a) - Us(0lnasa_.)-

Equivalently, for any o; € 3J;, define
U(oi) ={Bi € i | B} = o7 forall s > 1}.

U (0;) is the set of strategies that are identical to o; from period 1 onward.

A strategy profile o does not have profitable one-shot deviations if for any player i € N, any periodt € {0,1,2,...},
and any history h € HY,

Ui(oilnt,o—ilpt) > Ui(o}, 0—;|pe) forall o} € U(oy|pe).

A strategy profile does not have profitable one-shot deviations if no player can gain by deviating only in the first
period of every continuation game including those that are off the equilibrium path of o. It is weaker than the notion
of subgame perfect equilibrium because the latter concept allows players to deviate in more than one periods. There
are still an infinite number of subgames to check but at least the number of first period deviations is finite (as the

number of stage-game actions is finite).

Theorem (One-shot deviation principle): A strategy profile o is subgame perfect if and only if it does not have
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12.17

12.18

profitable one-shot deviations.

Idea of proof: It is obvious that a strategy profile has one deviation property if it is a subgame perfect equilibrium.

We need to show a strategy profile is a subgame perfect equilibrium is it has one deviation property.

The formal proof is tedious, but the basic idea is quite simple. If a strategy profile is not subgame perfect then some
player can obtain a strictly higher payoff, say by € > 0, in some continuation game by deviating. Since future payoffs
are discounted, the player must be better off by deviating by only in the first T" periods for some finite 7. Now look
at the last deviation. If it makes the player better off, then the strategy profile does not have one deviation property.
If it does not makes the player better off, then the player will still be better oft without the last deviation. The same
argument can be repeated until we find a single beneficial deviation. For a complete proof, see Page 25 in Mailath
and Samuelson (2006).

It is probably that Bellman and Shapley in 1950s should take credit for the one-shot deviation principle in the
contexts of single-agent dynamic optimization problems and of stochastic games, respectively.

Observation: If a* is a Nash equilibrium of the stage game, then the strategy profile “each player ¢ plays o} from
now on” is a subgame perfect equilibrium.

Moreover, if the game has m Nash equilibria {a}"; of the stage game, then for any map j: {0,1,2,...} —

{1,2,...,m}, the strategy profile “play o/ (*) in period ¢” is a subgame perfect equilibrium as well.

Infinitely repeated prisoners’ dilemma. The stage game is as follows:

H c
H| 1,1 | -1,2
cl12,-1] 00
Figure 12.3

H is the cooperative action, and C' is the uncooperative action. When a game is repeated many times, it seems that

some sort of “cooperative” behavior might be induced. We will consider two types of strategies:

o Player ¢’s trigger strategy:
- in period 1, player ¢ plays the cooperative action;

- inany period ¢, player ¢ plays the cooperative action if no one has played the uncooperative action in the

past; otherwise, plays the uncooperative action.
o Player ¢’s tit-for-tat strategy:
- in period 1, player ¢ plays the cooperative action;

- in any period ¢, player ¢ plays the action her opponent chooses in the previous period.

12.2 Trigger strategy equilibrium

12.19

In the infinitely repeated prisoners’ dilemma, player ¢s trigger strategy is as follows:

o in period 1, player ¢ chooses H;

« in any period ¢, player ¢ chooses H if no one has chosen C' in the past; otherwise, chooses C.
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12.25

12.26

To check whether the trigger strategy profile is a subgame perfect equilibrium, we need to make sure that no player
can deviate once profitably in any subgame. Although there are infinite many of them, subgames all belong to one

of two types:

« no player has deviated before and the continuation strategy is the same as the initial strategy;

« some player has deviated before and the continuation strategy for each player to play C' in all future periods.
Consider the subgames of the first type.

« If a player follows the equilibrium strategy, then she will obtain 1 in each period, and her equilibrium payoft

is therefore equal to 1.

o If she deviates and play C, she receives 2 in the current period and 0 in all subsequent periods (since according

to the equilibrium strategy, they will play C' after someone has deviated). The deviation payoffis (1 — 4) - 2.

A player will not deviate if and only if
(1-¢)-2<1,

thatis, § > %

Consider the subgames of the second type.

o The players are supposed to play C' in all periods, regardless of history. The equilibrium (normalized dis-
counted) payoft for each player is 0.

« If player 1 deviates and play H in the first period and C in all future periods, assuming that the other player
is following the equilibrium strategy, her deviation payoffis (1 — ) - (—1) which is less than 0.

Hence, player 1 will be worse off if she deviates.
Hence, this strategy profile is a subgame perfect equilibrium if and only if § > 0.5.

This is known as a trigger strategy equilibrium. Note that both players playing C' is a Nash equilibrium in the stage
game. In a trigger strategy, each player begins playing a cooperate action (H in this case) and continue to do so
until someone has deviated. Any deviation will “trigger” or cause a shift to the punishment phase where the players

play stage-game Nash equilibrium in all future periods.

Note that in general playing a stage-game Nash equilibrium in every period regardless of history is also a subgame
perfect equilibrium. Since by definition deviation from a stage-game Nash equilibrium will not be profitable in the
current period, and if the strategy is history dependent, then the current deviation will not increase future payofts.
Hence, the deviation will not be profitable for the whole game. Thus, a trigger strategy profile will be an equilibrium

as long as it is unprofitable to deviate from the initial cooperation phase.

Example [G Section 2.3.C]: Collusion between Cournot duopolies.

Suppose there are 2 firms in a Cournot oligopoly. Inverse demand is given by P(Q)) = a — @, where Q = ¢1 + ¢2
and ¢; is the quantity to be produced by firm ¢. Each firm has a constant marginal cost of production, ¢, and no

fixed cost. Consider the infinitely repeated game based on this stage game.

What is the lowest value of § such that the firms can use trigger strategies to sustain the monopoly output level in

a subgame perfect equilibrium?
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12.27 Example [G Exercise 2.15]: Cournot model.

Suppose there are n firms in a Cournot oligopoly. Inverse demand is given by P(Q) = a — @, where Q =
g1+ - - - + g, and g; is the quantity to be produced by firm ¢. Each firm has a constant marginal cost of production,

¢, and no fixed cost. Consider the infinitely repeated game based on this stage game.

What is the lowest value of § such that the firms can use trigger strategies to sustain the monopoly output level in

a subgame perfect equilibrium?

Answer. Calculate firm ¢’s production and profit in the collusion, Cournot competition, and deviation from pun-

ishment cases, respectively:

2
+ Cooperative production and profit: In the collusion, the production is ¢i = %<, and profit is 7§ = (a;nc) ;
+ In-cooperative production and profit: In the Cournot competition, production is ¢;" = {—, and profit is
_ (a=0)?,
T =

« Deviation production and profit: For each j # i, firm j produces ¢§ = %<, then firm ¢ can increase its profit

_ (n+14)(a—c) _ (n4+1)%(a—c)?

by producing ¢¢ = and profit is mfl = S e

For each 4, consider the following trigger strategy T; for firm s:

o In period 1 produce ¢

« Inperiod? (¢ > 1), produce g; if every firm j has produced g5 in each of the t — 1 previous stages; otherwise,

produce ¢}".

Fix firm ¢, and assume that each other firm j # i chooses the trigger strategy 7. We want to find the condition

which guarantees the trigger strategy T to be firm ¢s best response.

o If firm ¢ does not choose the trigger strategy, then we consider the following two cases:

- If firm ¢ always chooses the cooperative production ¢ in every stage game (it is a strategy for firm ¢, but
not the trigger strategy), then the payoff is as same as the payoff when it chooses trigger strategy.

— If firm 7 deviates in some period and the profit maximizer is g¢. Without loss of generality, we assume
that period ¢ is the first period when firm i deviates, then it can get at most 7¢ in this period.
From period (¢ + 1) on, every other firm j will produce in-cooperative production ¢}*. Thus firm i will
receive at most 7} in each of the subsequent periods, and period ¢’s present value of its discounted payoft

from period ¢ onwards is at most
7l +orm + 82 4 =l -

It is easy to understand when looking at the following table, where * means we do not know exactly the

action of firm i in that period.

Period 1 (- jt=1¢t | t+1 | t+2 | t+3
Firm j # i @G || g g | q; q;
Firm ¢ q | - q5 q¢ * * *
Firm ¢’s payoff || «{ | --- ¢ | wd | <am | <7 | <7l

« If firm 7 chooses the trigger strategy T, then it will receive 7§ in each period, and period t’s present value of

its discounted payoff from period ¢ onwards is

&+ Omé + 82§+ = 5
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o In order for firm ¢ to play trigger strategy 7;, we should have

Lt d . om"
105 2™ T 125
. (n+1)2
that is § Z m
(n+1)?

Since lim,,, o @ = 1, the lowest value of § approaches 1. That is, as n increases, a larger ¢ is required to

+1)2+4n
deter the deviation. In other words, there is more incentive to deviate the trigger strategy. O

12.28 Example [G Exercise 2.13]: Bertrand duopoly model with homogenous products.

Find 6 > 0 such that the trigger strategy is a subgame perfect equilibrium for the game which infinitely repeats the

stage game of Bertrand model with homogeneous products described in the lecture.

Answer. Calculate firm 4’s price and profit in the collusion, Bertrand competition, and deviation from punishment

cases, respectively:

(a—c)?,
8 >

« Cooperative price and profit: In the collusion, the price is pf = %+, and profit is 7§ =

« In-cooperative price and profit: In the Bertrand competition, price is p;* = ¢, and profit is 7] = 0;

« Deviation price and profit: Firm js price is pj = a¥c firm i # j can increases its profit by choosing a price
)
pd < a'z"c , but as close as possible to ‘“2”, and profit is almost equal to monopoly profit 7¢ = %.

For each i, consider the following trigger strategy 7; for firm i:

o In period 1, choose price pf.

« Inperiod , choose pf if firm j chooses price p§ in each of the ¢ — 1 previous periods; otherwise, choose price

pi

For any %, assume that firm j # ¢ chooses the trigger strategy 7’;. We want to find the condition which guarantees

the trigger strategy T; to be firm ¢’s best response.

o If firm ¢ does not choose the trigger strategy, then we consider the following two cases:

- Iffirm 7 always chooses the cooperative production p§ in every stage game (it is a strategy for firm ¢, but

not the trigger strategy), then the payoft is as same as the payoft when it chooses trigger strategy.

— If firm 7 deviates in some period and the profit maximizer is p¢. Without loss of generality, we assume
that period ¢ is the first period when firm 4 deviates, then it can get at most 7¢ in this period.
From period (¢ + 1) on, firm j # i will choose in-cooperative price p/*. Thus firm i will receive at
most 7, = 0 in each of the subsequent periods, and period ¢’s present value of its payoff from period ¢
onwards is at most
d

.

It is easy to understand when looking at the following table, where * means we do not know exactly the

action of firm 4 in that period.

Period 1o | t=1| ¢ | t+1 ] t+2 | t+3
Firmj #4 || p§ pi | pi| P | v | Py
Firm ¢ D D5 pd * * *

Firm ¢’s payoff || 7 ¢ | wd | <am | <7l | <7l
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o If firm ¢ chooses the trigger strategy T;, then it will receive 7§ in each stage, and the present value of its
discounted payoft from ¢-th stage onwards is

T+ omé + Pl 4 = 17265.

In order for firm 7 to play trigger strategy 7}, we should have

s d

125 2 Tis
thatis § > % O

12.29 Example: Reputation.

The king has borrowed 100 dollars from the lender at 10% interest. The King can repay or renege. The King may
need a loan in future periods with a probability b. A loan is worth 125 dollars to the King.

o Lender’s strategy: The lender initially provides a loan when needed and continues to do so as long as the king
has repaid past loans. If the king ever reneges, then the lender refuses to lend to him again.

o The king’s strategy: Repay the initial loan and any future loan if he has always repaid it in the past. If he ever
reneges, then he reneges on all future loans.

Lender: If the king has always repaid his loans, then lending to him again yields a payoft of 10 on each loan. If,
instead, the king has reneged on a past loan, then, according to the king’s strategy, he’ll renege on all future loans.
In that case, the lender does not want to lend to him. The lender’s strategy is then optimal.

King:

o Ifheeverreneged, then it is indeed optimal for him not to repay a loan, since, according to the lender’s strategy,
he won’t get a future loan regardless of what he does. His payoff from repaying the loan is —110, while it is
zero from reneging.

o Suppose the king has always repaid in the past and has an outstanding loan. If he repays the loan his payoff is

—110 + 15b8 + 15602 + - - - = —110 + 1562
The payoff is zero in all periods from reneging.
« It is then optimal for the king to repay the loan when
—110 +15b%5 > 0 <= § > 175355
The king repays a loan to preserve a reputation conducive to securing more loans. Asb — 0, § — 1. cooperation
becomes more difficult if future probability of a loan is low.
12.30 Example: In the infinitely repeated prisoners’ dilemma, we define another strategy s} of player 7 as follows:

o in period 1, play H;
o in period t > 2, if the outcome of the previous period is either (C, C) or (H, H), play H; otherwise, play C.

Find the condition on ¢ under which (s7, s3) is a subgame perfect equilibrium.
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12.3 Tit-for-tat strategy equilibrium

12.31

12.32

12.33

12.34

12.35

12.36

12.37

A problem with trigger strategies is that they are too unforgiving—once someone has deviated, they will play the
in-cooperative action forever. This will not work well in situations where players may deviate by mistake or due to

mis-communication.
A potential alternative to trigger strategies is tit-for-tat. In tit-for-tat:

o in period 1, a player begins with playing H;
o in all future periods, she will choose the action her opponent chooses in the previous period. That is, a player

will cooperate if her opponent cooperate in the last period and will defect if her opponent defect in the last

period.
Tit-for-tat strategy profile has many nice features.

o The strategy is simple, so it is easy for a player to learn that the other player is playing tit-for-tat.

« Unlike trigger strategies, it will not get stuck in the punishment phase forever. It was the winner in the famous
repeated prisoners dilemma tournament conducted by Axelrod in which strategies devised by well-known

game theorists were pitched against each other. It did better than many much more complicated strategies.
Subgames all belong to one of four types:

o the last period’s action profile is H H;

« the last period’s action profile is HC;

« the last period’s action profile is C H;

o the last period’s action profile is CC.
To determine whether tit-for-tat is a subgame perfect equilibrium, we need to check whether the players would
want to deviate in any subgame. Since the game is symmetric, we only need to consider player 1.
Consider the subgame of the first type (the last period’s action profile is H H): The equilibrium payoff is 1.

If player 1 deviates, she will get 2 in the current period. The current period outcome will be C'H, so the continuation

path in the next period willbe: HC,CH, HC, ... The deviation payoft is therefore equal to

(1-6)-(2-0+282 -8 +--) =32

Player 1 will not deviate if and only if

—_
IV
=

£l
il

thatis, § > %

Consider the subgame of the second type (the last period’s action profile is HC): The equilibrium payoft is

(1-08)-(2—8+20% -3 +...) =22,

Player 1 is supposed to choose C, if she deviates to H, then she will get 1 in the current period. So the continuation
path in the next period willbe: HH, HH, HH, ... So the deviation payoff is 1.

Player 1 will not deviate if

—[o
£

il
IV
—_
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12.38

12.39

12.40

12.41

thatis, § < 3.

Consider the subgame of the third type (the last period’s action profile is C H): The equilibrium payoff is
§—
(1=0)- (1420 —6>+26°—---) = .
Player 1 is supposed to choose H, if she deviates to C, then she will get 1 in the current period. So the continuation
path in the next period will be: CC, CC,CC, ... So the deviation payoft is 0.

Player 1 will not deviate if

20—1
it = U

thatis, § > %
Consider the subgame of the fourth type (the last period’s action profile is CC): The equilibrium payoft is 0.

Player 1 is supposed to choose C, if she deviates to H, then she will get —1 in the current period. So the continuation
path in the next period willbe: CH, HC,CH, . .. So the deviation payoff is

(1—6)- (1420 -6 428 —--.) = 2=

Player 1 will not deviate if

20—1
0295

thatis, § < %

All four conditions can be satisfied simultaneously if 6 = 0.5. Hence, tit-for-tat strategy profile is subgame perfect

only if § is exactly equal to 0.5.

Intuitively, the problem of tit-for-tat strategy is that it does not distinguish whether a C'is played as a deviation or
as a punishment. Hence, after one player plays C' as a punishment, the other player will play C in the next period,
leadingtoa CH, HC,CH, . .. cycle. The game will not return to the cooperation path HH, HH, HH, . . ..

12.4 Folk theorem

12.42

Y 1243

12.44

The “folk theorems” for repeated games asserts that if the players are sufficiently patient then any feasible, individ-

ually rational payofts can be enforced by an equilibrium.

Folk theorems refer to a collection of results concerning the set of feasible subgame perfect equilibrium payoft
profiles as the discount factor converges to one. Since the equilibrium payoff set is increasing in J, these results

provide an upper bound on the set of payoffs that can be achieved through intertemporal cooperation.
This is called the “folk theorem” because it was part of game theory’s oral tradition or “folk wisdom” long before it

was recorded in print.

Theorem (Folk theorem): For every payoffs v € U with u; > v, forall ¢ € IV, there exists a § < 1 such that for all
d € (9, 1) there is a Nash equilibrium with payoffs .
Proof. (1) For simplicity we shall assume that there is a pure-strategy profile a such that u(a) = u.

(2) Consider the following strategy for each player i

o play q; in period 1, and continue to play a; as long as
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- the action profile in the previous period is a;
- the action profile in the previous period differed from a in two or more components;
« if in some period player ¢ is the only one not to follow a, then each player j # i plays g;- for the rest of

the game.

(3) In period t, player ¢ deviates, then she will receive at most max, u;(a) in period ¢, and at most v, in periods

after period t. Thus, player 7 obtains at most
(1-9) m;\xui(a) + 0v;,
which is less than u; as long as § exceeds ¢, defined by
u; = (1-=19;) m;txui(a) + 4,0,

(4) Since u; > v,, the solution ¢, is less than 1.
(5) Taking § = max; J, completes the proof.
O

12.45 Under the strategies used in the proof, a single deviation provokes unrelenting punishment. Now, such punishments
may be very costly for the punishers to carry out. For example, in a repeated quantity-setting oligopoly, the minmax
strategies require player ¢’s opponents to produce so much output that price falls below player i’s average cost, which
may be below their own costs as well. Since minmax punishments can be costly, the question arises if player ¢ ought
to be deterred from a profitable one-shot deviation by the fear that her opponents will respond with the unrelenting

punishment specified above.

More formally, the point is that the strategies we used to prove the Nash folk theorems are not subgame perfect.
This raises the question of whether the conclusion of the folk theorem applies to the payoffs of subgame perfect

equilibrium.

12.5 Nash-threats folk theorem

¥ 12.46 Nash-threats folk theorem (Friedman (1971)): Let a* be a Nash equilibrium of the stage game with payoffs e. Then
foranyu € U such thatu; > e; foralli € N, thereisad < 1 such thatforall 6 € (d,1) there is a subgame perfect

equilibrium with payofts .

12.47 Friedman’s theorem shows that any payoff profile that strictly dominates e can be supported by subgame perfect

equilibria when the players are sufficiently patient.

12.48 Proof. (1) For simplicity we shall assume that there is a pure-strategy profile a such that u(a) = w.

(2) The following strategy profile, commonly known as a trigger strategy profile, is a subgame perfect equilibrium

when § converges to one.

« Cooperation phase: in period 1, player 7 chooses a,. Continue to play a; as long as & has been chosen in
all previous periods. Switch to the punishment phase if some player has deviated from a.
« Punishment phase: player i chooses a; in every period regardless of history.

(3) Since a* is a Nash equilibrium of the stage game, to show that the strategy profile is a subgame perfect equi-

librium, it is sufficient to show that no player wants to deviate from the cooperation phase.
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(4) Let u; be player ¢’s maximum stage-game payoft. If player 4 deviates, she gets at most %, in the current period

and e; in all future periods. Her deviating payoff is at most

which is less than w;, player i’s equilibrium payoff in the cooperation phase, for § sufficiently close to one.

O

12.49 Note that player ¢’s equilibrium payoff will never be lower than v,. It turns out that for discount factor sufficiently

close to one, the converse is also true.

12.50 Example: Infinitely repeated prisoners’ dilemma. The stage game is as follows:

H c
| 1,1 | -1,2
Cc|12-1] 0,0
Figure 12.4

The set of feasible payoffs is the gray region in Figure 12.2, and Friedman’s theorem guarantees that any point in both
the gray region and the first quadrant can be achieved as the payoft in a subgame perfect equilibrium of infinitely

repeated prisoners’ dilemma, provided the discount factor is sufficiently close to one.

12.6 Perfect folk theorem

¥ 12.51 Two-person perfect folk theorem (Theorem 1 in Fudenberg and Maskin (1986)): In any two-person infinitely-
repeated game, for any u € U with u; > v, forall i = 1,2, there exists § < 1 such that forall 6 € (¢, 1) thereisa

subgame perfect equilibrium with payoff profile w.

12.52 Since the equilibrium payoff can not go below v,, this result says that when any strictly individually rational payoft

is a subgame perfect equilibrium payoff. Anything is possible in repeated games.

12.53 Proof. (1) For simplicity we shall assume that there is a pure strategy profile a = (a1, a2) such that u(a) = u.
Also assume that for (i,7) = (1,2),(2,1), the minmax action @’ is pure.' Let a = (a3, a}) denote the

“mutual” minmax action profile.

(2) Pick K sufficiently large so that for any ¢ = 1, 2,
K(u; — ui(a)) > maxu;(a) — u;.

(3) Consider the following strategy profile:
« Cooperation phase: play (a1, as) in each period. If either player deviates, the game goes to the punish-
ment phase.

« Punishment phase: play (a?, a) for K periods. If no player deviates during the K periods, return to the

cooperation phase. If any player deviates, restart the punishment phase.

f not, we have to add a “reward phase” to make each player 4 indifferent over all actions in the support of gg .
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(4) For cooperation phase, if player ¢ deviates, she gets at most
(1—-90)- (m;lxui(a) + dui(a) + -+ 4 6% ui(a) + 65 Ty + 652, 4 - >
=(1-9) m;lxui(a) + (6 — 65 Y uy(a) + 65 ;.
Player ¢ will not deviate if
u; > (1—9) m;lxui(a) + (6 — 68 Y uy(a) + 65wy,

that is,
maxu;(a) —u; < 6(1+ 84+ 05N (u; — ui(a)). (12.1)

—K(6—1)

Note that Equation (12.1) holds when ¢ is sufficiently close to one.

(5) For punishment phase, it is sufficient to show that the players do not have incentives to deviate in the beginning
of the punishment phase. (She has the highest incentive to do so in the first period of the punishment phase)
Player ¢’s equilibrium payoft is

(1 —6%)ui(a) + 6% u,.

If player 4 deviates, her payoff is at most
(1—5)'(% +oui(a) + -+ 0% ui(a) + 05 uy + 65 Py 4 - ) = (1=6)v;+(6=0" " ui(a) +6" u;.
Player ¢ will not deviate if

(1 —6%)ui(a) + 6%u; > (1 = 8)v, + (6 — 65 M uy(a) + 65wy,

that is,
v; —ui(a) < 6% (u; — ui(a)). (12.2)

Since u; > v; > u;(a), we can get d such that Equation (12.2) holds.

(6) Therefore there exists § < 1, such that for any ¢ € (d, 1), there is a subgame perfect equilibrium with payoff
profile u.

O

12.54 Note that this proof applies only to two-player games as it is generally impossible to minmax more than two players

simultaneously.

Example (Example 3 in Fudenberg and Maskin (1986)): In this game, player 1 chooses rows, player 2 chooses

columns, and player 3 chooses matrices. Note that whatever one player gets, the others get too.

A B B
0,0,0
11,1

b)

A
A 0 A [0,0,
B 0 B 0,0,

0
0

1,1,1]0,0
0,0,0 | 0,0

b)

For any § < 1 there does not exist a subgame perfect equilibrium in which the normalized discounted payoff € is

less than 1 (the mixed-strategy equilibrium payoff of the stage game).
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¥ 12.55 Perfect folk theorem (Theorem 2 in Fudenberg and Maskin (1986)): Assume that the dimensionality of U equals
the number of players. Then for any u € U, there exists § < 1 such that for all § € (J, 1) there exists a subgame

perfect equilibrium in which player i’s normalized discounted payoff is u,;.

Proof. (1) For simplicity, assume that there exists a pure action profile @ € A such that u = u(a). Also assume

that for each i, the minmax action profile a* = (a?,a’ ;) is pure.

(2) Since dim F' = n, there exist “player-specific punishments” u*, u?, ..., u™ € Fy such that
u; > ul, and uf > u! forall j # 1.

Again, for simplicity, assume that for each i, there exists a pure action profile a’ € A such that u’ = u(a?).
(3) Pick K sufficiently large so that
K(u} —v;) > maxu;(a) — ul
foranyi € N.
(4) Consider the following strategy for player i:

o Normal phase: play @, in each period. If player j deviates, the game goes to the punishment phase j.
If multiple players deviate simultaneously, we can ignore such deviations, or punish the “youngest” among

all deviators.

o Punishment phase j: play g{ for K periods and move to reward phase j if no one deviates; if player k

deviates, move to the beginning of the punishment phase k. (This rule applies even if k = j.)

o Reward phase j: play ag in each period. If player k deviates, move to the beginning of the punishment

phase k.
(5) For normal phase, if player ¢ deviates, she gets at most
—9) - | maxu;(a) + du;(a) + - -+ 6" u;(a) + ul 4+ w4
(1= (mgxus(a) + dusta) +++-+ 0% ) + 6l 4 542 4 )

= (1 — &) maxu;(a) + (6 — 65 )u;(a) + 65wl
Player 7 will not deviate if
u; > (1 — &) maxu;(a) + (6 — 65 )u;(a) + 05 ul.

This inequality holds since RHS approaches u! when 4 is sufficiently close to one.

(6) For punishment phase, it is sufficient to show that the players do not have incentives to deviate in the beginning
of the punishment phase. (She has the highest incentive to do so in the first period of the punishment phase)
Player ¢’s equilibrium payoft is

(1 —6%)u;(a) + 6% ul.

If player 4 deviates, her payoff is at most

(1-0) (ui(ai,gi_i)+5ui(g)+~ . ~+5Kui(g)+5KHuf+- .. ) = (1—6)u,»(ai,Qi_i)+(5—5K+1)ui(g)—kéKHuf.

2The reward phase j is not to reward player j, but to reward all other players. Without such a reward phase, player ¢ 7 j would not be willing
to play a] in punishment phase j since punishing player j can be costly to player i.
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Player ¢ will not deviate if

(1 — 68 Yu;(a) + 0%ul > (1 = d)ui(as, a’ ;) + (6 — 65 )uy(a) + 65 1l

79

which is equivalent to
(1= 0%)ui(a) +6%u; > ui(as, a’y).

—ul(6—1)

Since u;(ai,a’ ;) < v, and u! > v,, this inequality holds when 4 is sufficiently close to one.

(7) For reward phase, if player i deviates to a; in her own reward phase, she gets
(1= 6)ui(as, a’;) + (6 — 6% u(a) + 6% uj.
Player ¢ will not deviate if
ul > (1= 0)ui(ai, a' ) + (6 — 65 Hu(a) + 65,

which holds when 4 is sufficiently close to one due to the choice of T'.

12.56 Reference: Abreu, Dutta and Smith (1994).

12.57 A game satisfies the non-equivalent utilities condition (abbreviated as “NEU”) if for any ¢, j there exists no cand d
such that u; = ¢ + du;.

12.58 Folk theorem (Sufficiency): If a game satisfies NEU, then any strictly individually rational payoff can be supported

as a subgame perfect equilibrium as § goes to one.

12.59 A stage game satisfies the condition of no simultaneous minimizing (abbreviated as “NSM”) if no two players can

be simultaneously hold to their respective minimal attainable payoffs or below.

12.60 Folk theorem (Necessity): For any repeated game that satisfies NSM, NEU is a necessary condition for folk theorem.

12.7 Finitely repeated games

12.61 Theorem: If the stage game has a unique Nash equilibrium a*, then for a finitely repeated game (1" periods), there
is a unique subgame perfect equilibrium that is a repetition of the stage game Nash equilibrium. No cooperation is

sustainable.

Proof. By backwards induction, at period 7', we will have that (regardless of history) a’ = a*. Given this, then we

T-1

have a = a*, and continuing inductively, a’ = a* for eacht = 1,2, ..., T regardless of history. O
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13.1 Extensive games with imperfect information

13.1 In extensive games with imperfect information, some player may have only partial information about the history

of the play.
We analyze this kind of games by assuming that each player, when choosing an action, forms an expectation about
the unknowns.
o These expectations are not derived solely from the players’ equilibrium behavior as in strategic games, since
the players may face situations inconsistent with that behavior.
o These expectations relate not only to the other players” future behavior as in extensive games with perfect

information but also to events that happened in the past.

BE"  13.2 Definition: An extensive game with imperfect information is defined as:

I'= <N7H7Pafcv(Ii)?(> )>

~t

o Aset N ={1,2,...,n} of players.
o A set H of sequences that satisfies the following three properties.

- The empty sequence () is a member of H.
- If (a*)K_, € H (K may be infinite) and L < K then (a*)E_, € H.

~ Ifan infinite sequence (a*)?2., satisfies (a*)£_, € H for every positive integer L then (a*)$, € H.

201
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13.5

13.6

13.7

Each member of H is a history; each component of a history is an action.

A history (a*)K_| € H is terminal if it is infinite or if there is no a® 1 such that (a*);_}' € H. The set of

terminal histories is denoted ~Z.

After any non-terminal history h player P(h) chooses an action from
A(h) ={a: (h,a) € H}.

o Afunction P: H\ Z — N U {c} that assigns to each non-terminal history a member of N U {c}.
P is called the player function, and P(h) is the player who takes an action after the history h.
If P(h) = c then chance determines the action taken after the history h.

« A function f, that associates with every history h for which P(h) = c a probability measure f.(- | h) on
A(h), where each such probability measure is independent of every other such measure.

o For each player i € N a partition Z; of {h € H: P(h) = i} with the property that A(h) = A(h') whenever
h and A’ are in the same member of the partition.
For I; € Z; we denote by A(I;) the set A(h) and by P(I;) the player P(h) for any h € I;.
Z; is the information partition of player ; a set I; € Z; is an information set of player i.

The information set containing the history h is denoted by I(h).

o For each player ¢ a preference relation on Z.

Definition: A pure strategy for a player is a complete plan of actions—specifies an action for the player in every
contingency; i.e.,
sit Ly — UIieIiA(Ii)
such that s;(1;) € A(I;).
s; can be rewritten as a vector (si(li>)1.€I-

Denoted by .S, the set of player ¢’s strategies.
We refer to games in which at every point every player remembers whatever he knew in the past as games with
perfect recall.

Let (N, H, P, f.,(Z;), (zZi)) be an extensive game and let X;(h) be the record of player i’s experience along the
history h: X;(h) is the sequence consisting of the information sets that the player encounters in the history h and

the actions that he takes at them, in the order that these events occur.

An extensive game has perfect recall if for each player ¢ we have X;(h) = X;(h') whenever the histories » and b’

are in the same information set of player q.

Examples of extensive games with imperfect recall.
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(®)

Figure 13.1: Extensive games with imperfect recall.

13.2 Mixed and behavioral strategies

13.8

13.9

13.10

13.11

13.12

Definition: A mixed strategy of player ¢ in an extensive game (N, H, P, f., (Z;), (Z:)) is a probability measure over
Si, usually denoted by «;.

A behavioral strategy of player i is a collection 3; = (53;(I;)) rer, € x1,e7;AA(L;) of independent probability

measures, where 3;(1;) is a probability measure over A(I;).

We denote by 5;(1;)(a) the probability assigned to the action a € A(I;).

Differences between mixed strategies and behavior strategies: Consider the following game.

Figure 13.2

For player 2, there are four pure strategies: (A4, C), (4, D), (B, C), (B, D). Hence, each player 2’s mixed strategy
can be writtenas o (A,C) + o (A, D) +~vo (B,C)+(1—a—p—7)o(B,D).

Each player 2’s behavioral strategy can be represented by (x 0 A+ (1 —x) o B,yo C 4+ (1 —y) o D).

behavior strategies is as follows. One can think of each pure strategy as a book of instructions, where for each of
the player’s information sets there is on page which states what choice he should make at that information set. The
player’s set of pure strategies is a library of such books. A mixed strategy is a probability distribution on his library
of books, so that, in playing according to a mixed strategy, the player chooses on book from his library by means
of a chance device having the prescribed probability distribution. A behavior strategy is a single book of a different
sort. Although each page still refers to a single information set of the player, it specifies a probability distribution

over the choices at that set, not a specific choice.

For any profile o = (0;);en of either mixed or behavioral strategies in an extensive game, we define the outcome
O(o) of o to be the probability distribution over the terminal histories that results when each player 7 follows the

precepts of ;.

Two (mixed or behavioral) strategies of any player are outcome-equivalent if for every collection of pure strategies

of the other players the two strategies induce the same outcome.
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13.13 Observation: For any behavioral strategy 3; of any player 7 in extensive games with perfect recall, the mixed strategy
defined as follows is outcome-equivalent: the probability assigned to any pure strategy s; (which specifies an action
si(I;) for every information set I; € Z;) is I, ez, 5i (L) (si(1;)).

In Example 13.9, for the behavioral strategy (x 0 A+ (1 — z) o B,y o C' + (1 — y) o D), the outcome-equivalent

mixed strategy can be defined as:
zyo (A, C) +a(l—y)o (A, D)+ (1 -x)yo(B,C)+(1-2z)(1-y)o(B,D).

13.14 Note that the derivation of the mixed strategy relies on the assumption that the collection (3;(1;)) is indepen-

dent.

I,€Z;

Consider the following imperfect recall game. The behavioral strategy that assigns probability p € (0,1) toa toa
generates the outcomes (a, a), (a, b), and b with probabilities p?, p(1 — p), and 1 — p respectively, a distribution
that can not be duplicated by any mixed strategy: the set of pure strategies are {a,b}. Any mixed strategy can
be represented by g o a@ + (1 — ¢) o b, which generates the outcomes (a, a) and b with probabilities ¢ and 1 — ¢

respectively.

Figure 13.3

13.15 Proposition (Kuhn, 1950 and 1953): For any mixed strategy of a player in a finite extensive game with perfect recall

there is an outcome-equivalent behavioral strategy.

13.16 Proof. (1) For any history h = (a',a?,...,a") define a pure strategy s; of player i to be consistent with h if for

every subhistory (a',a?, ..., a') of h for which P(al,a?,...,a') =i wehave s;(a',a?,...,a!) = al*L.

(2) Let 0; be a mixed strategy of player ¢. For any history h let 7; (h) be the sum of the probabilities according to

o; of all the pure strategies of player ¢ that are consistent with h.

(3) Let h and A/ be two histories in the same information set I; of player 4, and let a € A(h). Since the game has

perfect recall, the sets of actions of player ¢ in h and h’ are the same. Thus 7;(h) = m;(h’).

(4) Since in any pure strategy of player i the action a is taken after / if and only if it is taken after h’, we also have
mi(h,a) = m (W, a).

(5) Define a behavioral strategy 3; of player 4

milhoa) if m;(h) > 0
BiL)(@) =4 ™00 () >0,

immaterial, otherwise,

where h € I;.
(6) Let s_; be a collection of pure strategies for the players other than 4. Let & be a terminal history.

« If h includes moves that are inconsistent with s_; then the probability of A is zero under both «; and ;.

Now assume that all the moves of players other than ¢ in / are consistent with s_;.
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o If h includes a move after a subhistory ' € I; of h that is inconsistent with o; then ;(I;) assigns
probability zero to this move, and thus the probability of h according to 3; is zero.
o If h is consistent with o; then m;(h’) > 0 for all subhistories i’ of h and the probability of / according to

i (h',a)

B; is the product of =~ Ty over all (W', a) that are subhistories of h; this product is 7; (h), the probability

of h according to o;.

O
13.17 Remark: Kuhn’s Theorem allows us to focus on behavioral strategies.

13.18 Consider Example 13.9 again. For a mixed strategy awo (A, C)+ 5o (A, D)+~vo(B,C)+(1—a—pF—7)o(B, D),

the outcome-equivalent behavioral strategy can be defined as follows:
(a+B)ocA+(1—a—-B)oB,(a+7)oC+(1—a—7y)oD).

13.19 A Nash equilibrium of an extensive game is a strategy profile o* with the property that for every player i € N we
have

O(c*,;,07) i O(c”;, 0;) for every strategy o; of player .

Here o* could refer to pure-strategy profile, mixed-strategy profile, or behavioral-strategy profile.

13.20 In the following game, the unique pure-strategy Nash equilibrium is (L, R'). When adopting the strategy profile

(L, R'), player 2’s information set is not reached.

Player 2
L/ R/
L|22]22
Player 1 M | 3,1 | 0,2
R|10,2]1,1

But in this case player 2’s optimal action in the event that his information set is reached depends on his belief about
the history that has occurred. The action R’ is optimal if he assigns probability of at least 1 to the history M, while
L’ is optimal if he assigns probability of at most 1 to this history.

Thus his optimal action depends on his explanation of the cause of his having to act. His belief can not be derived

from the equilibrium strategy, since this strategy assigns probability zero to his information set being reached.

13.21 The solutions for extensive games that we have studied so far have a single component: a strategy profile. We will
study solutions that consist of both a strategy profile and a belief system, where a belief system specifies, for each
information set, the beliefs held by the players who have to move at that information set about the history that

occurred.

It is natural to include a belief system as part of the equilibrium, given our interpretation of the notion of subgame

perfect equilibrium. When discussing this notion of equilibrium we argue that to describe fully the players’ rea-
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soning about a game we have to specify their expectations about the actions that will be taken after histories that

will not occur if the players adhere to their plans, and that these expectations should be consistent with rationality.

13.3 Subgame perfect equilibrium

BF" 13.22 Definition: In an extensive game with imperfect information, the subgame after history h € H

o begins at a history h that is a singleton information set (but is not the game’s initial history), that is, I(h) =
{n}s

o includes all the histories following / (but no histories that do not follow h);

« does not cut any information sets (i.e., if A’ is a history following h, and 2" is in the information set containing

h/, then h" also follows h).

BF" 13.23 Definition: A strategy profile o is a subgame perfect equilibrium (abbreviated as “SPE”) of the extensive game with
imperfect information I' if o induces a Nash equilibrium in every subgame in I'. Here 0* could refer to pure-strategy

profile, mixed-strategy profile, or behavioral-strategy profile.
13.24 Example (nonexistence, Luttmer and Mariotti (2003)): The example has five stages.

« In stage 1, player 1 chooses a1 € [0, 1].

« In stage 2, player 2 chooses az € [0, 1].

« In stage 3, Nature chooses 2 by randomizing uniformly over the interval [-2 + a1 + a2,2 — a1 — as).
o After this, players 3 and 4 move sequentially.

The subgame following a history (a1, as, ) and the associated payoffs for all four players are shown in the following

figure. This game does not have a subgame perfect equilibrium.

0,0,0,CC 2&1,&2,270

Figure 13.4

13.25 Example: Consider the following game of complete information, where the three numbers below each terminal
node are the payoffs to player 1, player 2, and player 3 from top to bottom.
(i) How many information sets does player 3 have?
(ii) How many pure strategies does player 3 have? What are they?
(iii) How many subgames do you find in the above game?
(iv) Find all the pure-strategy Nash equilibria for the game.

(v) Identify those pure-strategy Nash equilibria which are subgame prefect or not.
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0,20,20 0,0,0 8,8,8 12,12,12  10,5,10  10,15,10  15,10,5  5,10,15

Figure 13.5

Answer. (i) Player 3 has two information sets: One is a non-singleton information set and the other is a singleton

information set.
(i) Player 3 has four strategies: SX, SY,TX,and TY.
(iii) Only one subgame.

(iv) In the following tables, one can find all the pure-strategy Nash equilibrium in the entire game. If player 1

chooses L:
Player 3
SX SY TX TY
AC | 0,20,20 0, 20, 20 0,0,0 0,0,0
Player 2 AD | 0,20,20 0, 20, 20 0,0,0 0,0,0
BC 8,8,8 8,8,8 12,12,12 | 12,12,12
BD 8,8,8 8,8,8 12,12,12 | 12,12,12
If player 1 chooses R:
Player 3
SX SY TX TY

AC [ 10,5,10 | 10,5,10 | 10,15,10 | 10, 15,10
Players AD [ 15.10.5 [ 510,15 [ 15,10,5 | 5.10.15
BC | 10,5,10 | 10,5,10 | 10,15,10 | 10,15,10
BD | 15,10,5 | 5,10,15 | 15,10,5 | 5,10,15

Subgame perfect equilibria: (L, BC,TY), (L, BD,TY), (R, AC,TY),and (R, AD, SY).
Not subgame perfect equilibria: (L, BC,TX) and (R, AC,TX).
O

13.26 Example: Consider the following game. In the game tree, the numbers at the top are payoffs to player 1 and the

numbers at the bottom are payofls to player 2, as usual.

(i) How many subgames are there in this game, not counting the whole game as one subgame?

(ii) Ifx > w0, then there are two pure-strategy subgame perfect equilibria. If z < x, then there is only one pure-
strategy subgame perfect equilibrium. Find this threshold value xy. What are the two pure-strategy subgame

perfect equilibria if x > x¢?

Answer. (i) 0. Thus, every Nash equilibrium is a subgame perfect equilibrium.

(ii) Consider the following payoft table:
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x, 1 —-2,0 2,0 -1,1
Figure 13.6
Player 2
L/ R/
L| 21 | =20
Player1 M | 2,0 | —1,1
R| 1,1 1,1

If z > 2, then there are two pure-strategy subgame perfect equilibria (L, L’) and (R, R'). Otherwise, there

is unique pure-strategy subgame perfect equilibrium (R, R’). Therefore zy = 2.

O

13.27 Example [G Exercise 2.6]: Market with three oligopolists.

Three oligopolists operate in a market with inverse demand given by P(Q) = a — Q, where Q = ¢1 + ¢2 + g3 and
g; is the quantity produced by firm 4. Each firm has a constant marginal cost of production, ¢, and no fixed cost.
The firms choose their quantities as follows:

o firm 1 chooses ¢; > 0;

o firms 2 and 3 observe ¢; and then simultaneously choose g2 and g3, respectively.

What is the pure-strategy subgame perfect outcome?

Figure 13.7

Answer. Figure 13.7 is the game tree. Given ¢;, suppose g1 < a — c (otherwise firm 1’s payoff is non-positive),

which implies @ — g1 > c. Note that firms 2 and 3’s pure strategies are both functions of ¢;.

The second stage is exactly a Cournot model of duopoly, with total demand o’ = a — ¢1, and marginal cost co =

c3 = ¢ < a — qi. Therefore the unique Nash equilibrium is (¢5(q1), ¢3(q1)) = (“=5—, =%4=).

For firm 1, consider the following optimization problem

* * 1
max qi(a—c—q —q3(q1) —q3(q1)) = max §q1(a—q1—0),

g1<a—c g1<a—c
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which has a unique maximizer ¢; = “5<. Hence ¢5 = q3 =

a—c

G -

a—c

Hence, the subgame perfect outcome is: firm 1 chooses “5

in the first stage, and firms 2 and 3 choose 5. [

13.28 Example: Consider strategic investment in a duopoly model. Firm 1 and firm 2 currently both have a constant
average cost of 2 per unit. Firm 1 can install a new technology with an average cost of 0 per unit; installing the tech-
nology costs 8. Firm 2 will observe whether or not firm 1 invests in the new technology. Once firm I's investment
decision is observed, the two firms will simultaneously choose output levels ¢; and g2 as in Cournot model. Here
let the price be P(Q) = 14 — Q if @ < 14 and 0 otherwise. What is the pure-strategy subgame perfect outcome of

the game?

Install Not install

Duopoly game, a = 14,¢; = 0,cp =2 Duopoly game, a = 14,¢; = co =2

Figure 13.8

Answer. Figure 13.8 is the extensive-form representation of the game. There are 2 stages:

o In the first stage, firm 1 choose “Install” or “Not install”;

« In the second stage, firms 1 and 2 play the Cournot Duopoly Game.

(a) Iffirm 1 chooses “Install” in the first stage, then a = 14, ¢c; = 0, ¢z = 2. Since 0 < ¢; < §, by Example 2.31,
the unique Nash equilibrium is (¢}, ¢3) = (2=2¢+e2 a=2¢ter) — (16 103 and firm 1s payoff is 19 (14 —

3°73 3
16 _ 1 4
610y 8 =204.

(b) If firm 1 chooses “Not install” in the first stage, then a = 14, ¢; = ¢z = 2 < a, and the unique Nash

equilibrium is (¢7, ¢3) = (%3<, 45¢) = (4,4). Firm Is payoff is 4(14 — 8 — 2) = 16.

Since 16 < 20%, the subgame perfect outcome is: firm 1 chooses “Install” in the first stage, and firms 1 and 2 choose

18 and 22, respectively in the second stage. O

13.29 Example: Three pirates jointly own 6 coins. They have to decide on an allocation which exhausts the coins. They
decide they should be democratic and choose the following rule: The oldest pirate proposes an allocation. If at least
half approve, it is enforced. Otherwise, the oldest pirate is executed. The same procedure is then followed with the

oldest pirate of the remainder proposing.

Assume that the pirates are perfectly distinguishable by seniority. Find all the pure-strategy subgame perfect out-

comes.

Answer. Denote by player i the i-th oldest pirate. Leta = (a1, az, a3) denote an allocation, where a1 +as+as = 6
and a; = 1,2,...,6. We assume the proposer always says “yes” There are three subgame perfect outcomes:
(6,0,0), (5,0,1) and (5, 1, 0). The game tree is as follows:

Note that, if the allocation a is rejected in the first period, then the second oldest pirate can enforce any allocation
a’ in the second period (and, hence, the second oldest pirate gets all the coins and the youngest pirate gets nothing).
So, in the second period, the second oldest pirate will choose the best allocation @’ = (0, 6, 0) that will be enforced.

We need only care about the strategies in the first period.
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13.30

Figure 13.9

To support the outcome (5, 1,0), for example, we may consider the following strategies by which the outcome
(5,1,0) is enforced in the first period:

Y, ifs1 = (0,6,0) Y, ifs # (6,0,0)
s1=(5,1,0), s5= , S5 = .
N, ifs; # (0,6,0) N, ifs; = (6,0,0)

Since (6, 0, 0) can not be approved by the specified strategies, the oldest pirate can get at most 5 coins and, therefore,
has no incentive to deviate from s} = (5, 1,0). Since the second oldest pirate will get all the coins and the youngest
pirate will get nothing if the game goes to the second period, both players 2 and 3 have no incentive to deviate,
respectively, from s} and s3. (Intuitively, since the second oldest pirate will get all the coins if the game goes to the
second period, the second oldest pirate may not accept the offer except a = (0, 6, 0); since the youngest pirate will
get nothing if the game goes to the second period, the youngest pirate may accept any offer.) Thus, the outcome

(5,1,0) can be supported by a subgame perfect equilibrium.
Analogous discussions also apply to the other two outcomes.
Y, ifs; =(0,6,0) Y, ifs; #(6,0,0)

s1=(5,0,1), s5= , S5 = .
N, ifs; #(0,6,0) N, ifs; =(6,0,0)

Example: Consider the following Bayesian game.
Nature selects Game 1 with probability 1%, Game 2 with probability 1%, and Game 3 with probability %3

Player 1 learns whether nature has selected Game 1 or not; player 2 learns whether nature has selected Game 3 or

not.

Players 1 and 2 simultaneously choose their actions: player 1 chooses either 7" or B, and player 2 chooses either L
or R.
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Payofts are given by the game selected by nature. In the cells of the tables, the first number is the payoff to player 1
and the second number is the payoff to player 2.

L R L R L R
T12,21]0,0 T1|2,2]0,0 T12,21]0,0
B |30 1,1 B 10,0 1,1 B|0,0] 1,1

Game 1 Game 2 Game 3

All of this is common knowledge. Notice that Game 2 and Game 3 are identical.

(i) Represent the above Bayesian game as an extensive game.

(ii) How many information sets does player 1 have?

(iii) How many information sets does player 2 have?

(iv) How many pure strategies does player 1 have? What are they?
(v) How many pure strategies does player 2 have? What are they?

(vi) Find the pure-strategy Bayesian Nash equilibrium. You should specify the strategy profile. Please show your
work.

Answer. (i) The game tree is given in Figure 13.10.

Nature

Figure 13.10

(ii) Two information sets for player 1.
(iif) Two information sets for player 2.

(iv) Four pure strategies for player 1: 7T, T B, BT, and BB (for each pure strategy, the first letter is the action to
take knowing that nature has selected Game 1, and the second letter is the action to take knowing that nature

has selected Game 2 or 3).

(v) Four pure strategies for player 2: LL, LR, RL, and RR (for each pure strategy, the fist letter is the action to
take knowing that nature has selected Game 1 or 2, and the second letter is the action to take knowing that

nature has selected Game 3).
(vi) The unique pure-strategy Bayesian Nash equilibrium is (BB, RR):
The first number is the payoff to type {1} of player 1, the second number is the payoff to type {2, 3} of player

1, the third number is the expected payoff to type {1, 2} of player 2, and the fourth number is the expected
payoff to type {3} of player 2 in each cell.

Remark: One may find the Bayesian Nash equilibrium by the following argument. Player 1 of type {1} must choose
B because it is the strictly dominant action in Game 1. Then player 2 of type {1,2} must choose R as his best
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Player 2
LL LR RL RR
TT | 2,2,2,2 | 2,3,2,0 ] 0,2,0,2 | 0,0,0,0
TB 20,3021 21102X0]01,11
Playerl sV 99 a%aga 747%7 5 7§7
BT [ 3,2,4,213,3,1,0 1,%,2,2 1,0,2,0
BB | 3,0,0,0 [ 3,301 | 1,3,1,0 [ 1,1,1,1

response regardless of player 1’s choice in Game 2. Then player 1 of type {2, 3} must choose B as his best response
regardless of player 2’s choice in Game 3. Finally, player 2 of type {3} should choose R because it is his best response
to player 2’s choice of B in Game 3. O

13.4 Perfect Bayesian equilibrium

13.31

13.32

BE" 13.33

Consider the subgame perfect equilibria of the following game.

2,1 0,0 0,2 0,1

Figure 13.11: Motivation of perfect Bayesian equilibrium

The induced strategic game is

Player 2
L/ R/
L|21]00
Player 1 M | 0,2 | 0,1
R|1,3]13

There are 2 Nash equilibria: (L, L’) and (R, R’). Note that the above game has no subgames. Thus both (L, L’)
and (R, R') are subgame perfect equilibria.

However, (R, R') is based on a non-credible threat: if player 1 believes that player 2’s threat of playing R, then
player 1 indeed should choose R to end the game with payoff 1 for himself and 3 for player 2 since choosing L or
M will give him 0.

On the other hand, if player 1 does not believe the threat by playing L or M, then player 2 gets the move and chooses
L’. Since L' strictly dominates R’ for player 2. The threat of playing R’ from player 2 is indeed non-credible.

For a given equilibrium in a given extensive game, an information set is on the equilibrium path if it will be reached
with positive probability if the game is played according to the equilibrium strategies, and is off the equilibrium path
if it is certain not to be reached if the game is played according to the equilibrium strategies, where “equilibrium”

can mean Nash, subgame perfect, Bayesian, or perfect Bayesian equilibrium.

A perfect Bayesian equilibrium (abbreviated as “PBE”) is a strategy profile o and a belief system p = (1, o, - - . , fin)»

where p; specifies i’s belief at each of his information sets, such that for every player 4,
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o Sequential rationality: At each of his information sets, o; is a best response to o_;, given his belief 1, at that

information set.

o Belief consistency: At information sets on the equilibrium path, his belief 14; is derived from Bayes’ rule using

the strategy profile o.

o Belief consistency +: At information sets off the equilibrium path, his belief 11; is derived from Bayes’ rule

using the strategy profile o where possible.

13.34 (o, pu) is a weak perfect Bayesian equilibrium (abbreviated as “WPBE”) if it satisfies “sequential rationality” and

“belief consistency”
13.35 Bayes’ rule: Given an information set I, where this information set contains n histories: k1, k2, ..., ky, if the
decision node k; will be reached with probability p; for each¢ = 1,2, ..., n, then the belief on this information set

should be as follows:

(a) Ifp1 +p2+ -+ pn # 0, then the player with the move should believe that the history k; has been reached

with probability
Di
pr+pettpa

(b) Ifp1 +pa + - + pnp = 0, the belief can be arbitrary.
13.36 It is clear that in a perfect Bayesian equilibrium (o, ), o is a subgame perfect equilibrium.

13.37 Theorem: There exists a (possibly mixed) perfect Bayesian equilibrium for a finite extensive game with perfect

recall.
Idea of proof: Backwards induction starting from the information sets at the end ensures perfection, and one can

construct a belief system supporting these strategies, so the result is a perfect Bayesian equilibrium.

13.38 Consider the game in Figure 13.11 again. We assume player 2 to believe that L has been played by player 1 with
probability p, shown in Figure 13.12.

Figure 13.12

Given this belief, we can compute player 2’s expected payoft:

p-1+(1—p)-2=2—p, ifplaying L/,
p-0+(1—p)-1=1-p, ifplaying R'.
R’ is not optimal at the information set with any belief. Thus (R, R’) is not a perfect Bayesian equilibrium.

13.39 Remark on “belief consistency +”: Consider the following game.

(1) The induced strategic game is
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1,2,1 3,3,3 0,1,2 0,1,1
Figure 13.13

LL’ LR RL RR
2,0,012,0,0]2,0,0] 20,0
1,2,13,3,3]0,1,2]0,1,1

WS

There are four Nash equilibria: (A4, L, L), (4, R, L"), (A,R,R')and (D, L, R).
(2) The game has a unique subgame: it begins at player 2’s only decision node.

We can represent this subgame as the following strategic game:

Player 3

L' R
L|21]33

Player 2 RILo[L1

The subgame has a unique Nash equilibrium: (L, R’). Therefore the unique subgame perfect equilibrium is
(D,L,R).

(3) Consider the Nash equilibrium (A, L, L"). To support L’ to be optimal for player 3, p should satisfy
p-1+2-(1-p)>p-3+(1-p)-1,

thatis p < 1. Thus (4,L,L’) and p € [0, 1] satisfy the requirements “sequential rationality” and “belief
consistency”.

1
3
equilibrium. Bayes’ rule results in p = 1 since player 2 plays strategy L although it is off the path.

(4) However, requirement “belief consistency +” can rule out (A, L, L') and p € [0, 3] as a perfect Bayesian

13.40 Example: Selten’s horse.

o The induced strategic game is
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3,3,2 0,0,0 4,4,0 0,0,1
Figure 13.14: Selten’s horse.

cL cR dL dR
4,4,0
3,3,2

bl

) )

11,1
3,3,2

) )

11,1
0,0,0

S Q

0,0,1
0,0,0

b)

There are two pure-strategy Nash equilibria: (C, ¢, R) and (D, ¢, L).

« For the Nash equilibrium (D, ¢, L), belief consistency implies p = 1. When p = 1, L is a best response for

player 3 given the belief (1, 0) on his information set.
o To support the Nash equilibrium (C, ¢, R) to be a perfect Bayesian equilibrium, we have 1 — p > 2p, that is,
p< 3
13.41 Perfect Bayesian equilibrium is a relatively weak equilibrium concept for dynamic games of incomplete information.
It is often strengthened by restricting beliefs on information sets that are not reached along the equilibrium path.
13.42 Example [G Exercise 4.10].

Two partners must dissolve their partnership. Partner 1 currently owns share s of the partnership, partner 2 owns
share 1 — s. the partners agree to play the following game: partner 1 names a price, p, for the whole partnership,
and partner 2 then chooses either to buy 1’s share for ps or to sell his or her share to 1 for p(1 — s). Suppose
it is common knowledge that the partners’ valuations for owning the whole partnership are independently and
uniformly distributed on [0, 1], but that each partner’s valuation is private information. What is the perfect Bayesian

equilibrium?

Answer. Figure 13.15 is the game tree.

For v1 € [0, 1], partner 1’s maximization problem is:
max[v; — p(1 — s)] Prob(vy — ps < p(1 — s)) + ps[1l — Prob(vy — ps < p(1 — s))].
P
Since Prob(ve — ps < p(1 — s)) = p, partner 1I’s maximization problem becomes:
maxfvy —p(1 — s)lp + ps(1 —p).

v1+s
2

By first order condition, we have p* = . Therefore, the perfect Bayesian equilibrium is: for v1,v2 € [0, 1],

" v+ 8 " SCH, ifv2 < P
si(v1) =p* = 5 sy(v2 | p) =

buy, ifve >p ’

partner 1’s belief about the partner 2’s valuation is a uniform distribution on [0, 1], and partner 2’s belief about the

partner 1’s valuation is a uniform distribution on [0, 1]. O
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Nature

ature

Partner 1 Partner 1

p p

ps  vy—(1—s8)p PSS wvy—(1—s)p Pps
vp—ps (1—s)p vh—ps (1—s)p v2—ps

Figure 13.15

13.43 Example [G Exercise 4.11].

A buyer and a seller have valuations v, and v,. It is common knowledge that there are gains from trade (i.e., that
vp > ), but the size of the gains is private information, as follows: the seller’s valuation is uniformly distributed
on [0, 1]; the buyer’s valuation v, = k - vs, where k > 1 is common knowledge; the seller knows v, (and hence vy)
but the buyer does not know v, (or vs). Suppose the buyer makes a single offer, p, which the seller either accepts

or rejects. What is the perfect Bayesian equilibrium when k£ < 2?2 When k£ > 2?

Answer. Figure 13.16 is the game tree.

Nature

seller

Up — P, P O)US
Figure 13.16

Clearly, the buyer has no incentive to offer p > 1, since the seller will accept p > v, and v; is uniformly distributed
on [0, 1].
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+ By backwards induction, the seller’s best response is

accept, ifv, <p
sy(vs | p) = :
reject, ifvg > p

Note that we assume seller will accept if v, = p. This will not affect the our analysis of the game since the
probability is zero for v, = p.

« The buyer’s maximization problem is:
max Ejvy —p | vs < p).
e [ b — P ‘ s > p]

Since vy = kv, the buyer’s maximization problem is:
p

— = —1)p%
Jmax, ; (kvs — p) dos 0?;%{1(k/2 )p

Therefore, the maximizer is

. 1, ifk>2

p = .
0, ifk<?2
« Each information set of buyer is reached, so buyer’s belief is a uniform distribution on [0, 1].

To summarize, the perfect Bayesian equilibrium is:

. . 1, ifk>2
Sp =P = )
0, ifk<?2
and for v, € [0, 1],
accept, ifvs <p
s5(vs | p) = { accept or reject, ifv, =p,
reject, ifvg >p
the buyer’s belief about the seller’s valuation is a uniform distribution on [0, 1]. O

13.5 Sequential equilibrium

13.44 An assessment is a pair (3, ;1) where (3 is a profile of behavioral strategies and 1 is a function that assigns to every

information set a probability measure on the set of histories in the information set.

K" 13.45 Let 8% ~~ 3 denotea “trembling sequence” { 37}12° | of completely mixed behavioral strategy profiles that converges
to a behavioral strategy profile 3.

BF" 13.46 Anassessment (3, ) is a sequential equilibrium (abbreviated as “SE”) of a finite extensive game with perfect recall
if there is {3*}2° , such that 8% ~» B, and foralli € N, I; € Z;,and k > 1

« Sequential consistency: 1% (I;) — u(I;), where u*(I;) € A(I;) is the belief on I; which derived from ¥ by

Bayes’ rule.
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o Sequential rationality: the restriction of 3; to information sets that succeed I; is ¢’s best response to the re-

striction of S_; to these information sets, using p(I;).

13.47 Example:

0,1 0,0 1,0 5,1

Figure 13.17

(1) The induced strategic game is

I R
L3333
M [0,1]0,0
R[1,0]5,1

There are two pure-strategy Nash equilibria: (L, L’) and (R, R’).
The set of mixed-strategy Nash equilibria is

{(R,R)}U{(L,aoL'+(1—a)oR)| 3 <a<l1}.

(2) Consider the assessment (3, i), where 51 = L, B2 = L' and u({ M, R})(R) = 0.
LetBf =(1— 1 —5)oL+toM+ 5 0R BE=(1—1%)oL + +oR. Then 8 ~ .
Given Y, (M) and (R) will be reached with probabilities  and 75 respectively. By Bayes’ rule, the belief
pF{{M,R})(M) = 1/#% = kiﬂ — 1 = pu({M, R})(M). Therefore, the sequential consistency is
satisfied.

Given y, it is clear that L’ is optimal for player 2. Given player 2’s strategy L', L is optimal for player 1. Thus,

the sequential rationality is satisfied.

Therefore, (3, (1) is a sequential equilibrium.

(3) Consider the assessment (3, 11), where 81 = R, 83 = R’ and u({M, R})(R) = 1.
LetBf = 1oL+ +oM+%20R Bk =10L' + %210 R Then " ~ 3.
Given B}, (M) and (R) will be reached with probabilities  and %72 respectively. By Bayes’ rule, the belief
uF({M,R})(R) = % = =2 5 1 = u({M, R})(R). Therefore, the sequential consistency is
satisfied.

Given y, it is clear that R’ is optimal for player 2. Given player 2’s strategy R’, R is optimal for player 1. Thus,

the sequential rationality is satisfied.

Therefore, (5, i) is a sequential equilibrium.
13.48 Example: Selten’s horse.

o The induced strategic game is
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3,3,2 0,0,0 4,4,0 0,0,1
Figure 13.18: Selten’s horse.

cL ¢cR dL  dR
11,1 1,1,1] 4,40
3,3,2 | 0,0,0 | 3,3,2

S Q

0,0,1
0,0,0

There are two pure-strategy Nash equilibria: (C, ¢, R) and (D, ¢, L).
Since the payoffs of (C, ¢, R) and (C, ¢, L) are the same. To support (C, ¢, x0 R+ (1 — &) o L) to be a Nash
equilibrium, o should satisfy:

1>3-1—a)and1>4-(1—«),

that is, o« > %.
Since the payoffs of (D, ¢, L) and (D, d, L) are the same. To support (D,yoc+ (1 — ) od, L) to be a Nash
equilibrium, 7 should satisfy:

3zy+4-(1—7),

: 1
that is, v > 3

« For any Nash equilibrium (C, ¢,v0 R+ (1 — @) o L) with o > 2, there is a sequential equilibrium (3, 1) in
which 81 (0)(C) =1, 82(C)(c) =1, B3(I)(R) = o, and p3(I)(D) = %,where I={(D),(C,d)}.

Let F(0)(C) =1 — 1, B5(C)(d) = %,and BE(I)(R) = a — 1. Then it is clear that 3% ~ 8.

Given (BF);, (D) will be reached with probability 1, and (C, d) will be reached with probability (1 — 1) -
13/1% = 2. Thus, by Bayes’ rule, the belief /5 (1) (D) = & = p3(I)(D). Therefore the sequential consistency
is satisfied.

Given the belief (%, %) on the information set I, L and R are indifferent for player 3. Thus, sequential ratio-
nality is satisfied.

« Any Nash equilibrium (D, o ¢ + (1 — 7) o d, L) with v > % is not part of any sequential equilibrium:

since the associated assessment violates sequential rationality at player 2’s (singleton) information set (since
4>1-v+4(1—7)).
13.49 Any sequential equilibrium is a perfect Bayesian equilibrium. The converse does not hold.

If (5, p) is a sequential equilibrium, then § is a subgame perfect equilibrium.

13.50 Existence: For every finite extensive game, there exists at least one sequential equilibrium.

This result is based on the results proved later.

13.51 Consider the following game.

It is easy to see there are two pure-strategy Nash equilibria: (L, L") and (R, R’), and both of them can be supported
as sequential equilibria. For the sequential equilibrium ((L, L’), 1), player 2 should believe, in the event that his
information set is reached, that with high probability player 1 chooses M.
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Figure 13.19

However, if player 2’s information set is reached then a reasonable argument for him may be that since the action
M for player 1 is strictly dominated by L it is not rational for player 1 to choose M and hence she must choose R.

This argument excludes any belief that supports (L, L') as a sequential equilibrium outcome.

13.52 Consider the following game.

1,0 0,0
F F
[Pl B strong () lq]
N . N
2 c 2
0,1 : 0.1 : 1,1
F . F

/ll/—pl Bowede @ [1—}'\
N N
2,0 3,0

b )

Figure 13.20

This game has two types of sequential equilibrium, as follows.

o Both types of player 1 choose B, and player 2 fights if he observes () and not if he observes B. If player 2
observes () then he assigns probability of at least 0.5 that player 1 is weak.

« Both types of player 1 choose (), and player 2 fights if he observes B and not if he observes Q. If player 2
observes B then he assigns probability of at least 0.5 that player 1 is weak.

The following argument suggests that an equilibrium of the second type is not reasonable.

(1) If player 2 observes that player 1 chose B then he should conclude that player 1 is strong, as follows. If player
1 is weak then she should realize that the choice of B is worse for her than following the equilibrium (in which

she obtains the payoff 3), whatever the response of player 2.

(2) Further, if player 1 is strong and if player 2 concludes from player 1 choosing B that she is strong and con-
sequently chooses IV, then player 1 is indeed better off than she is in the equilibrium (in which she obtains
2).

(3) Thus it is reasonable for a strong type of player 1 to deviate from the equilibrium, anticipating that player 2
will reason that indeed she is strong, so that player 2’s belief that player 1 is weak with positive probability

when she observes B is not reasonable.
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13.53 Example [JR Example 7.7].

13.6 Trembling hand perfect equilibrium

13.54 A trembling hand perfect equilibrium or simply perfect equilibrium (abbreviated as “PE”) of a finite strategic game

is a mixed-strategy profile o with the property that there exists a sequence (¢*)%2 of completely mixed-strategy

profiles that converges to o such that for each player i the strategy o; is a best response to o* ; for all values of k.

BE" 13.55 A trembling hand perfect equilibrium of a finite extensive game is a behavioral strategy profile 5 with the property
that there is a sequence {3%}2° | with 8% ~» Bsuch thatforalli € N, [; € T, and k > 1,

Ui (Bi(1:), B%(—1;)) > Ui (a, B¥(~1;)) foralla € A(L;).
Observation: A behavioral strategy profile is a perfect equilibrium if and only if it is a perfect equilibrium of the
agent-strategic-form of the game.

13.56 The basicidea is that each player’s actions be optimal not only given his equilibrium beliefs but also given a perturbed

belief that allows for the possibility of slight mistakes.

13.57 Example:

A B C
A[0,0]0,0]0,0
B[0,0]1,1]20
C0,0]0,2]22

There are three pure-strategy Nash equilibria (A4, A), (B, B) and (C,C). However, (B, B) is the only perfect

equilibrium.

o Consider (A, A). If player 2 chooses the mixed strategy (1 — €3 — €2) 0 A + €3 0 B + €3 0 C, then it is clear
that B is strictly better than A for player 1.

o Consider (C, (). If player 2 chooses the mixed strategy €1 0 A + €2 0 B + (1 — €1 — €3) o C, then it is clear
that B is strictly better than C' for player 1.

« Consider (B, B). Letof = 0% = (1 0 A+ 52 0 B+ 1 0 C). Then 0¥ ~ 0. It is clear that B is always
optimal for player i given ¢ for all k > 1. Therefore, (B, B) is a perfect equilibrium.

13.58 For every perfect equilibrium /3 of a finite extensive game with perfect recall there is a belief system p such that

(B, u) is a sequential equilibrium of the game.

Proof. (1) Let (%) be the sequence of completely mixed behavioral strategy profiles that corresponds to the se-
quence of mixed-strategy profiles in the agent strategic form of the game that is associated with the equilibrium

5.
(2) At each information set I; € Z;, define the belief 11(I;) to be the limit of the beliefs defined from 3* using

Bayes’ rule. Then (3, 11) is a consistent assessment.

(3) Since every player’s information set is reached with positive probability, by the one deviation property and the

continuity of payoff functions, f3; is a best response to S_; when the belief at I; is defined by 1(1;).
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(4) Thus (8, ) is a sequential equilibrium.

The converse does not hold. Consider the game in Example 13.57. (A4, A) and (C, C) can be supported as sequential
equilibria, but there are not perfect equilibria. O

13.59 Example: Selten’s horse

1,1,1

7 3

3,3,2 0,0,0 4,4,0 0,0,1
Figure 13.21: Selten’s horse.

« Any Nash equilibrium o = (C,c,a 0 R+ (1 — a) o L) with a > 2 is a perfect equilibrium strategy profile.

Foreach k,letof = (1— ) oC+ t oD, ok = 1:??2 oc+ 13/1% o d,and

aoR+(1—a)olL, ifa<l;
(1-$)oR+ 1oL, ifa=1.

k _
03 =

Then 0% ~ o and o; is optimal given o* , foralli € N and k > 1.
« Any Nash equilibrium (D, y o ¢ + (1 — v) o d, L) with y > 1 is not a perfect equilibrium since it is not a

sequential equilibrium.

13.60 Existence: Every finite strategic game has a perfect equilibrium. Every finite extensive game with perfect recall has

a perfect equilibrium and thus also a sequential equilibrium.

Proof. It suffices to show that every finite strategic game has a perfect equilibrium.
(1) Define a perturbation of the game I'(¢) by letting the set of actions of each player i be the set of mixed strategies
of player ¢ that assign probability of at least € to each action of player %.
(2) Every such perturbed game has a pure-strategy Nash equilibrium by Nash’s theorem.

(3) Consider a sequence of such perturbed games I'(¢¥) and their corresponding Nash equilibria o* in which
€® — 0. By the compactness of the set of strategy profiles, we can pick a subsequence {o*}>° of {a*}2°

such that %t ~ o.

(4) By the continuity of payoff functions, o is a perfect equilibrium of the game.

13.61 Summary:
PEG SE G PBE G SPE G NE.

13.62 Example [JR Exercise 7.48].

13.63 Example [JR Exercise 7.49].
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14.1 In this and the following two chapters, we consider situations in which an asymmetry of information exists among

market participants. Asymmetric information is usually distinguished by two types: adverse selection (£ [ # )

and moral hazard (38 18 X [&).

14.1 Adverse selection

14.2 In this section we look at problems of adverse selection where one party to a transaction knows things pertaining

to the transaction that are relevant to but unknown by the second party. Adverse selection models hidden char-

acteristics, where asymmetric information exists before the parties enter into a relationship. It refers to a market

process in which undesired results occur when buyers and sellers have asymmetric information (access to different

information); the “bad” products or services are more likely to be selected.

One example is the market of used cars. In the market, buyers often do not observe the quality of the cars, which

is privately information of the sellers. Due to the common existence of low quality used cars (the “lemons”—3%

223
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14.3

14.4

H N {E B % T, WK &), buyers will be reluctant to pay high price for a high quality car (the “peach”—([6] 2 Z 4
B WA (R 5 A B ] FE4Y), since they cannot tell its quality. As a consequence of low market prices, high
quality sellers are driven out of the market (they lose if they sell), and whoever sells on the market is more likely
to be selling a low quality car-adverse selection arises. As a result, buyer’s willingness to pay decreases further, and

eventually, the market of high quality cars disappears.

Another example is in life/health insurance. If premiums are set at actuarially fair rates for the population as a
whole, insurance may be a bad deal for healthy people, who then will refuse to buy. Only the sick and dying will

sign up. And premium rates then must be set to reflect this.

Simple example: There are two types of used cars: peaches and lemons. A peach, if it is known to be a peach, is
worth $3000 to a buyer and $2500 to a seller. A lemon, on the other hand, is worth $2000 to a buyer and $1000 to

a seller. There are twice as many lemons as peaches.

o Case 1: If buyers and sellers both had the ability to look at a car and see whether it was a peach or a lemon,

there would be no problem: Peaches would sell for $3000 and lemons for $2000.

o Case 2: If neither buyer nor seller knew whether a particular car was a peach or a lemon, we would have no
problem (at least, assuming risk neutrality, which we will to avoid complications): A seller, thinking she has
a peach with probability % and a lemon with probability %, has a car that (in expectation) is worth $1500. A
buyer, thinking that the car might be a peach with probability 1 and a lemon with 2, thinks that the car is
worth on average $2333.33. Assuming an inelastic supply of cars and perfectly elastic demand, the market
clears at $2333.33.

o Case 3: The seller, having lived with the car for quite a while, knows whether it is a peach or a lemon. Buyers
typically can not tell. If we make the extreme assumption that the buyers can not tell at all, then the peach
market breaks down.

Therefore, the expected value of the car to sellers is $2333.33, and that would be the maximal amount she is
willing to pay for the car. Given this, only sellers of lemons sell, because a peach values $2500 to sellers. So
the market attracts only sellers of lemons and the way it selects sellers is a version of adverse selection.
Moreover, if only lemons are put on the market, buyer’s beliefs update: they understand the logic behind
adverse selection (sellers of peaches are not willing to sell), the actually probability that they are facing a
peach is zero. As a result, we get as equilibrium: Only lemons are put on the market, at a price of $2000.
This example says that owners of good cars will not place their cars on the used car market. This is sometimes
summarized as “the bad driving out the good” (% T & K 1) in the market.

Akerlof’s model (Akerlof (1970)): Assume that there are just two groups of traders: groups one and two. Each

member in group 1 has a car, and each member in group 2 is a potential buyer.

(a) A buyer’s utility function is
Uy = M + % -q-n,
where M is the consumption of goods other than cars, g is the quality of the car, and n is the number of cars.
For sake of simplicity, we assume that n is 0 (not buy) or 1 (buy).
(b) A buyer has a budget constraint
Y2 =M +p-n,

where ¥ is the income, and p is the price of the used car.



14.1. Adverse selection 225

(c) A seller’s utility function is
up =M +q-n.

Note that the coefficient of quality in u; is 1 which is less than that in uy, 3. It means that the car is more
needed for buyers.
(d) A seller has a budget constraint
y1 =M +p-n.
14.5 Akerlof’s model with symmetric information.

If g is public information, then the trade occurs if and only if

< <3
q_p_2q7

and buyer and seller will both benefit from the trade.

14.6 Akerlof’s model with asymmetric information.

(1) A buyer’s expected valuation is
Eluo) =M + 2 -Elg] - n=M+32.p-n,
where 1 £ E[g] is the average quality of used cars. Therefore, the buyer’s aim is to maximize
Eluz] = y2 + (5 - —p) - n.

So, a buyer will buy (n = 1) if and only if

Sou>p

(2) The seller’s aim is to maximize her utility (not expected utility)
ur=y1+(q—p)-n

Therefore, a seller will sell (n = 0) her car if and only if
p=gq.

Assume that ¢ is uniformly distributed on [0, 2], and the seller knows g but the buyer only knows its distribution.

level 1 buyer knows the expected valuation is 2 = 1, and her highest buying priceisp = 3 - p = 2.

level 2 seller knows that buyer’s highest price is 3. Then only the cars with quality less than 2 will be sold.

level 3 buyer knows that only the cars with quality less than 2 will be sold, so she believes that ¢ is uniformly

distributed on [0, 2]. It is the first adverse selection.

Analogously, we have ;> = 2,and p? = 3 - 3 = 3. So the cars with quality higher than $ will be kicked off, and
9.

3
4
() )8

buyers believe that ¢ is uniformly distributed on [0
Repeat this process, p and g will converge to zeros, that is, the good cars may be driven out of the market by the
bad cars. Actually we have the bad driving out the not-so-bad driving out the medium driving out the not-so-good

driving out the good in such a sequence of events that no market exists at all.
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14.7 Signaling (f& 5 % #%) and screening ({5 5 #L%) are two primary solutions to adverse selection.

o In signaling the informed party moves first. For example, the seller of a high quality car can (costly) signal
to potential buyers by offering a long warranty, which is not affordable to low quality car sellers, as a way to
distinguish them from low quality car sellers. The insurance company may offer life insurance on better terms
if the insure is willing to accept very limited benefits for the first two or three years the policy is in effect, on
the presumption that someone suffers from ill health and is about to die is unwilling to accept those limited
benefits.

« In screening, the uninformed party moves first. For example, the uninformed party offers a term of exchange
such that the informed party can choose to accept or reject. For example, the uninformed buyer can ask for a
long enough warranty to screen out low quality sellers. The insurance market gives a better illustration, where
the insurance company, who is uninformed of conditions of the clients, offers different insurance packages,

and ideally, each type of clients only find one package acceptable.

14.2  Signaling

14.8 A signaling game is an extensive game of imperfect information involving two players: a Sender (S) and a Receiver

(R). The timing of the game is as follows.
(1) Nature drawsatypet; for the Sender from a set of feasible types T = {1, t2, . .., t } according to a probability
distribution P(t;).
(2) The Sender observes¢; and then chooses a message m; from a set of feasible messages M = {mq,ma, ..., my}.

(3) The Receiver observes m; (but not ¢;) and then chooses an action ay, from a set of feasible actions A =
{al, as, ... ,CLK}.

(4) Payofts are given by Us(t;, m;, ax) and Ug(t;, m;, ak).
A strategy for Receiver is a function from 7" to M, and a strategy for Sender is a function from M to A.
14.9 We translate the requirements for a perfect Bayesian equilibrium to the case of signaling games.

1. After observing any message m; from M, the Receiver must have a belief about which types could have sent
m;. Denote this belief by the probability distribution y(¢; | m;), where p(t; | m;) > 0 for each ¢; € T, and
ZtieT w(ti | mj) =1

2R. For each m; € M, the Receiver’s action a*(m;) must maximize the Receiver’s expected utility, given the

belief 11(t; | m;) about which types could have sent m ;. That is, a* (m;) solves

max pu(ti | mj)Ur(ti, my, ag).
ar€A
teT

2S. Foreacht,; € T, the Sender’s message m*(¢;) must maximize the Sender’s utility, given the Receiver’s strategy
a*(my;). That is, m*(¢;) solves

ngjUs(ti,mj,a*(mj)).

3. Let T} denote the set of types that send the message m;.
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For each m; € M, if there exists t; € T such that m*(¢;) = m, i.e,, Tj # (), then the Receiver’s belief at the

information set corresponding to 1m; must follow from Bayes’ rule and the Sender’s strategy:

_ Pt)
w(t; | mj) = 72%67} P(ti)'

14.10 A simple example:

2,4 0,2
u U
d . . d

1,5 : [%] : 3,2

Receiver Nature Receiver

3,3 . 3] . 4,1

u . . U
%Il/_ p] - ” " [1 _\Q'N
4,1 2,2
Figure 14.1

(1) Nature has two types ¢; and ¢2 with the same probability.
(2) The Sender observes t; and then chooses a message L or R.
(3) The Receiver observes the message and then chooses an action u or d.

(4) Payoffs depend on the type of Nature, the message of Sender, and the action of Receiver.

Sender’s strategies are: LL, LR, RL, RR, where m’m’ means that Sender plays m’ when facing type ¢1, and m”
when facing type to.

Receiver’s strategies are: uu, ud, du, dd, where a’a” means that Receiver plays o’ following L and a” following R.

Receiver has two non-trivial information sets. The believes on them are given in the game tree: (p, 1 — p) for the

left information set and (g, 1 — ¢) for the right information set.

We analyze the possibility of the four Sender’s strategies to be perfect Bayesian equilibria.

14.11 Case 1: Pooling on L. Suppose Sender adopts the strategy LL.

J — _ 1
(1) ByBayes'rule,p=1—p= 3.
11
272
35+ 4 -1 =3 for d. Thus, Receiver’s best response for message L is u.

(2) On the left information set, given the belief (3, 1), Receiver’s expected payoffis 3 -4 + 3 - 3 = Z for u and

(3) For the right information set, the belief (¢, 1 — ¢) can not be determined by Sender’s strategy, thus any belief

(¢, 1 — q) is available. Furthermore, both u and d are possible for some ¢ respectively.

Hence we need only to see if sending L is better than sending R for both types ¢; and ¢, and for one of v and

d.

(4) If u is the Receiver’s best response on the right information set, i.e., Receiver’ strategy is uu, then



14.2. Signaling 228

o For type t1, Sender’s payoft is 2 if L is sent, and 0 if R is sent. Hence sending L is optimal.

« For type t2, Sender’s payoff is 3 if L is sent, and 4 if R is sent. Hence sending L is not optimal.
(5) If d is the Receiver’s best response on the right information set, i.e., Receiver’s strategy is ud, then

« For type ¢, Sender’s payoff is 2 if L is sent, and 3 if R is sent. Hence sending L is not optimal.

o For type t9, Sender’s payoft is 3 if L is sent, and 2 if R is sent. Hence sending L is optimal.

Therefore, there is no perfect Bayesian equilibrium in which Sender plays LL.

14.12 Case 2: Pooling on R. Suppose Sender adopts the strategy RR.
(1) ByBayes'rule,q=1—¢q = 1.

11

272

1.2+ 1.2 =2ford. Thus, Receiver’s best response for message R is d.

(2) On the right information set, given the belief (3, 1), Receiver’s expected payoffis - 2+ £ - 1 = 3 for u and

(3) For the left information set, the belief (p,1 — p) can not be determined by Sender’s strategy, thus any belief

(p, 1 — p) is available. Furthermore, both w and d are possible for some p respectively.

Hence we need only to see if sending R is better than sending L for both types ¢1 and ¢2 and for one of u and
d.

(4) If u is the Receiver’s best response on the left information set, i.e., Receiver’s strategy is ud, then

« For type t1, Sender’s payoff is 2 if L is sent, and 3 if R is sent. Hence sending R is optimal.

o For type t9, Sender’s payoft is 3 if L is sent, and 2 if R is sent. Hence sending R is not optimal.
(5) If d is the Receiver’s best response on the left information set, i.e., Receiver’s strategy is dd, then

« For type ¢, Sender’s payoft is 1 if L is sent, and 3 if R is sent. Hence sending R is optimal.

« For type t9, Sender’s payoff is 4 if L is sent, and 2 if R is sent. Hence sending R is not optimal.

Therefore, there is no perfect Bayesian equilibrium in which Sender plays RR.

14.13 Case 3: Separation with ¢; playing L. Suppose Sender adopts the separation strategy L R.

(1) ByBayes rule,p =1andgq = 0.

(2) Based on these beliefs, d and d are Receiver’s best responses on the left and right information sets respectively.
(3) For type t1, Sender’s payoft is 1 when sending L and 3 when sending R. Thus L is not optimal.

(4) For type to, Sender’s payoft is 4 when sending L and 2 when sending R. Thus R is not optimal.

Therefore, there is no perfect Bayesian equilibrium in which Sender plays LR.
14.14 Case 4: Separation with ¢; playing R. Suppose Sender adopts the separation strategy RL.

(1) ByBayes rule,p =0andq = 1.
(2) Based on these beliefs, u is Receiver’s best response on the left information set. On the right information set,

u and d are indifferent for Receiver.
(3) If Receiver chooses u on the right information set, then for type ¢1, sending R is not optimal.
Now let receiver’s best response be d.
(4) For type t1, Sender’s payoft is 2 when sending L and 2 when sending R. Thus R is optimal.
(5) For type to, Sender’s payoft is 3 when sending L and 2 when sending R. Thus L is optimal.

Therefore, ((RL, ud), (p = 0,q = 1)) is a perfect Bayesian equilibrium.

14.15 Alternative method.
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Receiver
uu ud du dd
LL | 2535 ] 25,35 | 2.5,3 2.5,3
Sender LR | 3,25 2,3 2.5,3 1.5,3.5
RL | 1.5,2.5 | 3,2.5 2,1.5 | 3.5,1.5
RR | 2,15 2.5,2 2,1.5 2.5,2

The payoft profile in each cell is the expected payoft profile for two players given the prior probability of Nature.
For example, when Sender and Receiver choose RL and du respectively, their payoffs are:

(U5'7 UR) =

N =

0,2) + =(4,1) =(2,1.5).
—— ——

Nature chooses t Nature chooses to

DN | =

There is unique Nash equilibrium (RL, ud). Since Sender’s strategy is RL, then p = 0 and ¢ = 1. Based on
such believes, Receiver’s strategy is a best response. Therefore, ((RL,ud), (p = 0,q = 1)) is a perfect Bayesian

equilibrium.

Example: Beer and Quiche (Cho and Kreps (1987)).

Player 1 enters a restaurant to have breakfast, where there is a bully-player 2. Player 1 is either strong or weak; if he
is strong, he prefers Beer, and if he is weak, he prefers Quiche. Player 2 would enjoy from bullying (fighting) player
1 only if player 1 is weak, but he observes only player 1’s choice for breakfast (player 1’s signal) but not player 1’s

type. This game models armed negotiation.

1,0 0,0
F F
[p] B strong (@ [q]
N . N
3,1 : 0.9 : 2,1
2 c 2
0,1 . 0.1 . 1,1
F . F

%‘1/—]9] Povek @ [1%
2,0 3,0

) 3

Figure 14.2: Beer and Quiche.

Answer. Case 1: Pooling on B. Suppose player 1 adopts the strategy BB.
« p=20.9.
+ On the left information set, player 2 chooses IN. Hence, player 1 gets 3 if he is strong, and 2 if he is weak.

« On the right information set, player 2 should choose F’; otherwise player 1 choosing B when he is weak is not

optimal.

N|—

*q=
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((BB,NF),p=10.9,q < 3) is a perfect Bayesian equilibrium.
Case 2: Pooling on (). Suppose player 1 adopts the strategy QQ).
e = 0.9.
« On the right information set, player 2 chooses V.

o On the left information set, player 2 should choose F'; otherwise player 1 choosing () when he is strong is not

optimal.
«p< 3.
((QQ, FN),p< %, q= 0.9) is a perfect Bayesian equilibrium.
Case 3: Separation with “strong” playing B. Suppose player 1 adopts the separation strategy BQ).
e p=1landg=0.
« On the left information set, player 2 chooses V.

« On the right information set, player 2 chooses F'. However, player 1 will deviate from () to B when he is weak.
No perfect Bayesian equilibrium exists in this case.
Case 4: Separation with “strong” playing (). Suppose player 1 adopts the separation strategy Q).

e p=0andg=1.

o On the left information set, player 2 chooses F'. However, player 1 will deviate from B to () when he is weak.

o On the right information set, player 2 chooses V.

No perfect Bayesian equilibrium exists in this case.

Example [G Exercise 4.3]: Three-type signaling games.

Find all perfect Bayesian equilibria in the following signaling games.

Answer. Let (p1, p2, p3) and (q1, q2, q3) be player 2’s beliefs at the left and right information sets, respectively. Note
that u dominates d at the left information set. Therefore, we only need to consider the following induced strategic

game.

o T'= {tl,tg,tg}, M = {L,R},andA = {u7d}
« Payoft table:
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1,1 0,1
u u
L 11 R
. 1 .
f (1] (3] (1] P
1,0 : : 0,0
Receiver Receiver
2,1 . . 1,1
u . . u
L t2 R
. 1 .
- [p2] (3] (2] >
0,0 : : 1,0
Receiver Receiver
1,1 : : 0,0
U . . u
L t3 R
1
- [p3] (3] [g3] p
0,0 2,1
Figure 14.3
Receiver
uu ud

LLL [ 4/3.1 | 4/3,1
LLR | 1,2/3 | 5/3.1
LRL [ 1,1 1,2/3
LRR [2/3,2/3 | 4/3,2/3
RLL | 1,1 1,2/3
RLR [ 2/3,2/3 | 4/3.2/3
RRL | 2/3,1 [2/3,1/3
RRR [ 1/3,2/3 | 1,1/3

Sender

For example,

U(RLR,du) = Prob(t1) - U(R,u | t1) + Prob(t2) - U(L,d | t2) + Prob(ts) - U(R,u | t3)
1 1

1
3 3(0,0)—&—5(0,0):(0,1/3)

(0,1) +

There are two pure-strategy Nash equilibria (LLL, uu) and (LLR, ud), which are also the subgame perfect Nash

equilibria since there is no subgame.

o To check whether (LLL, uu) is a perfect Bayesian equilibrium, we need only to find beliefs, satisfying Re-
quirements 1, 2S, 2R and 3.
- Requirement 1: Assume the probability distributions on left and right information set are (p1, p2, p3)
and (q1, q2, q3), respectively, displayed in the figure, where p; + pa + p3 =1 + 2 + g3 = 1.
- Requirement 2S: Holds automatically. (since (LLL, uu) is a Nash equilibrium)
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- Requirement 2R: It is obvious that u is the best response for Receiver when Sender chooses L. To support

u to be a best response for Receiver when Sender chooses R, we should take g3 < %
- Requirement 3: Since Sender chooses LLL, Bayes’ rule implies p; = pa = p3 = % and q1, ¢o, g3 could
be arbitrary.
Hence, (LLL, uu) with player 2’s beliefs (p1, p2, p3) = (%, %, %) and (¢1, g2, q3) where g3 < %
o To check whether (LLR, ud) is a perfect Bayesian equilibrium, we need only to find beliefs, satisfying Re-
quirements 1, 2S, 2R and 3.
- Requirement 1: Assume the probability distributions on left and right information set are (p1, p2, p3)
and (¢1, g2, g3), respectively, displayed in the figure, where p; + p2 +p3s = g1 + ¢2 + g3 = 1.
- Requirement 2S: Holds automatically. (since (LLR, ud) is a Nash equilibrium)
- Requirement 2R: It is obvious that w is the best response for Receiver when Sender chooses L. To support
d to be a best response for Receiver when Sender chooses R, we should take g3 > %
- Requirement 3: Since Sender chooses L LR, Bayes’ rule implies p; = py = %, ps =0andq; = ¢2 =0,
q3 = 1.
Hence, (LLR, ud) with player 2’s beliefs (p1,p2,p3) = (%%70) and (q1,¢2,q93) = (0,0,1) is a perfect

Bayesian equilibrium.

O

14.18 Example: There are two players in the game: Judge and Plaintiff. The Plaintiff has been injured. Severity of the
injury, denoted by v, is the Plaintiff’s private information. The Judge does not know v and believes that v is uniformly
distributed on {0, 1, ...,9} (so that the probability that v = i is %0 foranyi € {0,1,...,9}). The Plaintiff can
verifiably reveal v to the Judge without any cost, in which case the Judge will know v. The order of the events is as
follows. First, the Plaintiff decides whether to reveal v or not. Then, the Judge rewards a compensation R which
can be any non-negative real number. The payoff of the Plaintiff is R — v, and the payoff of the Judge is — (v — R)?.

Everything described so far is common knowledge. Find a perfect Bayesian equilibrium.

Answer. 'The signaling game is as follows: types T' = {0, 1, ...,9}; signals M = { R, N'}, where R is “Reveal” and
N is “Not Reveal”; actions A = R..

Figure 14.4 is the game tree. From the game tree, there are 10 subgames, and Judge has 11 information sets
Iy, Ih, ..., Iy, where forv = 0,1...,9, I,, denotes that Plaintiff reveals v to Judge, and Iy denotes the case that

Plaintiff does not reveal the value.

Plaintiff’s strategy space is
S={s=(s0,81,---,99) | 8o =Ror N;v=0,1,...,9}.

For a particular strategy of Plaintiff s = (s, $1,. .., S9), S, is the action of Plaintiff when she/he faces injury v.

Judge’s strategy space is
Q={q9=(x0,21,...,29,210) | T, > 0,v=0,1,...,9,10}.

For a particular strategy of Judge ¢ = (2o, x1, - .., 9, Z10), Ty is the action of Judge at the information set I,,.

Given any strategy s of Plaintiff, let s~} (N) = {v: s(v) = N}, which denotes the set of Plaintiff’s types at which

the value is not revealed to Judge.
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Zo — Oa _(0 - 1,0)2

g Judge p Plaintif ~ )y Judge 210 — 0, —(0 — 210)?
1 . L10
I v=0 | 5] [po]
Judge R Plaiptif ~ ) Judge: 210 — 1, —(1 — 210)?
T 1 . Z10
=1, —(1—z)? h v="11l5] (1]
2 .
o —2,—(2 — x2) = Judge R Plaintiff N Judge: T10—2,—(2 — x10)2
. Z10
I v=2|[g] [p2]
Io
2o Judge R Plaiptif ~ ) Judge: T10 — 9, —(9 — 210)?
Z10
xg —9,—(9 — x9)’ I v=9 [l [po]
Figure 14.4

(1) Claim 1: In any perfect Bayesian equilibrium (s*, ¢*, p*), if Plaintiff chooses R when v = 0, that is s§; = R,

then Judge’s action on information set I should be 0, that is, 7, = 0.

(2) Proof of Claim 1: Otherwise, Plaintiff can be better off by deviating from R to N: If Plaintiff chooses R when
v = 0, then she/he will get 0 when v = 0; otherwise she/he will get 27, > 0. Therefore, such a strategy s*

can not be a strategy in a perfect Bayesian equilibrium, which is a contradiction.

(3) Claim 2: In a perfect Bayesian equilibrium (s*, ¢*, p*), if (s*) 71 (N) # (), then Judge’s strategy should be

where n = |[s71(NV)].

(4) Motivation of Claim 2: Based on Judge’s belief p*, her/his optimal action 27, should be weighted payoft
O-p5+1-pi+2-p5+---+9-pj.

Given Plaintiff’s strategy s*, Judge’s belief p* on the information set /1o can be determined by Bayes’ law.
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(5) Proof of Claim 2: (s*, ¢*) should be a subgame perfect equilibrium, and hence on the information set I,,(v =
0,1,...,9), Judge will choose optimal action based on her/his payoff —(v — x,,)2. Therefore, Judge’s action
on the information set I,, shouldbe v (v =0,1,2...,9).

On the information set I1, which is on the equilibrium path, only the branches v, where v € s~ (V) can be
reached. Thus, by Bayes’ rule, Judge believes that these branches are reached with equal probability, 7%, where
n = |s~1(N)|. Thus, Judge will choose the optimal action based on her/his expected payoff, and the optimal

action is the maximizer of the following maximization problem

L 2
max —— v —T10)°.
1020 N Z ( 10)
vEsT1(N)
By first order condition, it is easy to find the unique maximizer 3, = = > _ (N) V-

(6) Claim 3: In any perfect Bayesian equilibrium (s*, ¢*, p*), Plaintiff’s strategy s* should be

(7) Proof of Claim 3:

o Case 1: assume (s*)"1(N) = {vg}, where v # 0. Given such a Plaintiff’s strategy s*, that is, s*(vg) =
N, and s*(v) = R for others v, by Claim 2, Judge’s best response is

¢ =1(0,1,2,...,9,v9).

However, s* is not a best response for Plaintiff given Judge’s strategy ¢*(s): when v = 0, Plaintiff can be
better off if she/he chooses N rather then R: if she/he chooses R, she/he will get 0; otherwise, she/he will
getvg > 0.

o Case2: assume (s*)~!(IV) contains atleast 2 elements. Let v; = min(s*)~!(N),and vy = max(s*)"1(N).
Note that,

1
v < Xy = — v < Vs.
vEsTL(N)

By Claim 2, Judge’s best response is

* _ v
¢ =1012,...,9, > -
vEs~1(N)

However, s* is not a best response for Plaintiff given Judges’ strategy ¢*: when the injury is vo, Plaintiff
can get a higher amount v by revealing: if she/he chooses IV, she/he will get 27, — v2 < 0; otherwise
she/he will get 0.
Case 2 implies that there is at most 1 type at which Plaintift chooses NV in a perfect Bayesian equilibrium; and
Case 1 implies that this unique type can only be v = 0.
(8) Claim 4:
s*=(N,R,...,R), ¢"=(0,1,2,...,9,0)

with belief (1,0, ...,0) on I1g is a perfect Bayesian equilibrium.
(9) Proof of Claim 4: Routine.
(10) Claim 5:
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with belief (1,0, ...,0) on I1q is a perfect Bayesian equilibrium:

(11) Proof of Claim 5: By Claims 1, 2 and 3, this strategy profile could be a strategy profile in a perfect Bayesian

equilibrium. Assume Judge’s belief on the information set I1 is (p§, p3, - - -, p§), then Judge’s maximization
problem is

max —pi(z10 — 0)% = pi(x10 — 1)% — -+ — pi(x10 — 9)*.

£10Z

Then the unique maximizer is 75 = p§ - 0 +p7 - 1 + - - - + pg - 9. We have already known that 27, = 0, this

implies p; = 1 and pj = p5 = - -- = p§ = 0, that is, Judge believes that v = 0 with probability 1.

14.19 Akerlof’s model of market for “lemons”.

Suppose a seller wants to sell his used car. The seller knows what is the quality of the car, but the buyer does not.
The buyer knows only that the car could be a “good quality” car with probability 3 and a “lemon” with probability
1. If the car is good, the buyer’s valuation for it is $20,000 and the seller’s is $10,000. If it is a “lemon’, both buyer’s

and seller’s valuations are $0.

The seller can make two offers (asking price): $5,000 and $15,000. Then, the buyer can accept the offer (buy the

car) or reject the offer.

Find all the perfect Bayesian equilibria.

Answer. The following is the game tree.

—5,15 5,9
Y Y
Seller
N . N
0,0 : [%] : 0,0
Buyer Nature Buyer
5, —5 1 15,—15
v (3] v
Seller
1
%H/_ 2 i - ’ ! _\q'N
0,0 0,0
Figure 14.5

Case 1: Separation with type H playing 5.
In this case, p = 1, and ¢ = 0. It is easy to see that a*(5) = Y and a*(15) = N. At type H, sending 5 is not

optimal.
Case 2: Separation with type H playing 15.
In this case, p = 0, and ¢ = 1. Itis easy to see that a*(15) = Y and a*(5) = N. At type H, sending 15 is not

optimal.

Case 3: Pooling on 5.
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In this case, p = 3, and it is easy to see that a*(5) = Y. If a*(15) = Y or N, then at type H, sending 5 is not

optimal.
Case 4: Pooling on 15.

1

In this case, ¢ = %, and it is easy to see that a*(15) = N. When p > 1, we have a*(5) = Y. Then at type L,

sending 15 is not optimal.
When p < , we have a*(5) = N. Then at both types H and L, sending 15 is optimal.
Hence, <((15, 15),(N,N)),0<p< i,q= %) is a perfect Bayesian equilibrium. O

Example: The market for “lemons” with different prior probability.

Suppose a seller wants to sell his used car. The seller knows what is the quality of the car, but the buyer does not.
The buyer knows only that the car could be a “good quality” car with probability % and a “lemon” with probability
%. If the car is good, the buyer’s valuation for it is $20,000 and the seller’s is $10,000. If it is a “lemon’, both buyer’s

and seller’s valuations are $0.

The seller can make two offers (asking price): $5,000 and $15,000. Then, the buyer can accept the offer (buy the

car) or reject the offer.

(i) Would there be a separating perfect Bayesian equilibrium in this case?

(if) Find all the pooling perfect Bayesian equilibria.

Answer. The following is the game tree.

—5,15 5,5
Y Y

: Seller :
N . N
0,0 : [%] : 0,0
Buyer Nature  Buyer
5,—5 : L : 15,—15
Yoo 5 Sy
. Seller .
1
/ s L B
N N
0,0 0,0
Figure 14.6

(i) There is no separating perfect Bayesian equilibrium.
(if) The pooling perfect Bayesian equilibria are:
« ai(H) = ai(L) = 15,03(5) = a3(15) = Y, B*(5) € [1,1]), B*(15) = £,
e aj(H) = aj(L) = 15,a3(5) = N, a3(15) = Y, 8*(5) € [0, 1], 3*(15) = 2.
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14.21 Example: The market for “lemons” with an option of passing an inspection.

In the context of previous example, consider the following variation in which the seller has an option of passing an
inspection. If the inspection finds the car in good shape, the seller is charged $200 to get the proof of inspection.
Otherwise, he needs to pay $15,200 to have his car serviced and get the proof of inspection. In this case, the buyer’s
valuation for the serviced car is $20,000 and the seller’s is $10,000. Now, the seller has four choices: $5,000 with
inspection (“57”), $15,000 with inspection (“15¢), $5,000 without inspection (“5”), and $15,000 without inspection
(“157).

Show that

ai(H) = 15i,a7 (L) = 5,a5(5) = a5(15) = N,a5(5i) = a (152) =Y,
B*(5) = 0,4"(15) € [0, 3], 8% (50) € [0,1], B*(15i) =

is a separating perfect Bayesian equilibrium.

Answer. The following is the game tree.
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~5.2,15 48,5

-0.2,0 -0.2,0
—5,15 5,5
0,0 0,0
Buyer Buyer Nature Bu'yer Buyer
5,—5 : . - : 15,—15
B
Seller

/ 86)): 15— 5
N . : N
0,0 . ; 0,0

~10.2,15 ~0.2,5

~5.2,0 ~5.2,0

Figure 14.7

14.3 Job-market signaling
Literature: Spence (1970).

14.22 Spence’s model of education: A worker (the sender) knows his productive ability 8, while his employer (the receiver)

does not. The timing is as follows:
(1) Nature determines a worker’s productive ability, §, which can be either high (6) with probability p or low
(01, < Op) with probability pr..

(2) The worker, before entering the labor market, learns his ability and then chooses a level of education e €
[0, +00).
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(3) A employer observes the worker’s education (but not the worker’s ability) and then pays the worker a wage
w € [0, 4+00).

(4) The payoffs are w — § to the worker and —(6 — w)? to the employer (under the assumption of perfect com-

petition on the demand side).

14.23 The first-best outcome: suppose that 6 is perfectly observable. Then:

w=40,and e = 0.

14.24 The extensive form is as follows.

Nature

Figure 14.8

14.25 A strategy for the worker is (e, ey, ) which specifies actions for types H and L, where efr, e, € [0, +00).

A strategy for the employer is a wage schedule w(-) which depends on the observed signal (i.e. the level of educa-

tion).

14.26 ((e};,€},), w*(-), u*) is a perfect Bayesian equilibrium, where 1* (- | €) specifies the belief about the worker’s types

when the observed signal is e.

14.27 Pooling equilibrium: Both types choose the same level of education: e}; = e}, = e*.

By the definition of perfect Bayesian equilibrium, w*(e*) = pyfg + pr0r. To be a perfect Bayesian equilibrium
pooling on e*, the easiest way is to pessimistically believe that any deviation e # e* is from type L. Thus the wage
schedule should be:

pubu +prbr, ife=e",

0r, ife # e*.

w*(e) =

To be a perfect Bayesian equilibrium pooling on e*, each type of workers does not want to deviate from e*. Thus,

w*(e*) — 96 >0y He ,Ve o
eil éH <:>w*(e*)—9— > 0 < e* ng(GH—GL)GL.
w*(e*) — 0, >0y %,Ve o
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14.28

Therefore, ((e*,e*),w*(-), u*) is a pooling perfect Bayesian equilibrium, where

py, ife=e*
uw(H|e)= and 0 < e* <py(Oyg —01)0r.
0, ife#e*

Separating equilibrium: The two types of workers choose different levels of education: e}; > e} = 0 (the wage

paid to L is 01, independent of e,).

We consider the most pessimistic wage schedule:

“(e) O, ife=ej,
w*(e) =
O, ife#ejy.

To be a separating perfect Bayesian equilibrium, each type should have no incentive to mimic the other. Therefore,

O — ZH >0
H « <:>(9H—9L)9L§€*H§(9H—9L)9H.
eH
0 > 0g —
or,

Therefore, ((e};,0),w*(-), u*) is a pooling perfect Bayesian equilibrium, where

. 1, ife=e}y .
1% (H | 6) = and (9H — QL)QL S € S (GH — GL)QH
0, ife#e}

144 Cheap talk

Literature: Crawford and Sobel (1982), Krishna and Morgan (2008).

14.29

14.30

14.31

14.32

Cheap talk games are analogous to signaling games, but in cheap talk games the sender’s messages are just talk—

costless, nonbingding, nonverifiable claims.
Such talk cannot be informative in Spence’s signaling game: a worker who simply announced “My ability is high”
would not be believed.

It is because that all types have the same preferences over the receiver’s possible actions: all workers prefer high
wages, independent of ability. Therefore, a situation when two types of sender send different messages and the re-
ceiver responds differently to these messages is impossible at equilibrium: the sender-type who gets a less favorable

response is better off with changing his message to the one employed by the other type.
Real examples of cheap talk include:

o Monetary mystique: a central bank is unwilling to make precise statements about its policy objectives.

o Security analyst recommendations.
It turns out that in a variety of contexts cheap talk is informative. An example is an expert advising a politician. The
politician, after hearing the opinion of the expert, makes a decision which affects the payoffs of both players.

For cheap talk to be useful, the following conditions are necessary:
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« Different sender-types should have different preferences over the receiver’s actions.
o The receiver should prefer different actions depending on the sender’s type.
o The receiver’s preferences over actions should not be completely opposed to the senders. Otherwise, the

sender is worse off revealing true information about his type. Therefore, cheap talk cannot be informative in

this situation: the receiver will be mislead by the sender.

14.33 A decision maker (receiver) must choose some decision a. Her payoff depends on @ and on an unknown state of
the world 0, which is distributed uniformly on ©. The decision maker can base her decision on the costless message

m sent by an expert (sender) who knows the precise value of 6.
The decision maker’s payoft is

ur(0,a) = —(a—0)?,

and the expert’s payoff is
us(0,a) = ~[a — (0 + b))%,

where b > 0 is a “bias” parameter that measures how nearly agents’ interests coincide. Notice that the signal m is
irrelevant to the payoff functions, i.e., talk is cheap. Although the message space is independent of the state space,

we always let them be identical for sake of simplicity.

14.34 Because of the tractability of the “uniform-quadratic” specification, much of the cheap talk literature, restricts at-
tention to this case.
Quadratic loss means that the marginal cost is increasing in the distance between the state and action. It also means

that the players are risk-averse; they prefer a constant gap to a varying gap (depending on #) with the same mean.
14.35 Note that under this set up, the expert consistently prefers a bigger action than the decision maker (since b > 0).
A more general case, discussed in Melumad and Shibano (1991), is to have

us(0,a) = —[a — (A0 +b)]?,

in which case the difference between the ideal action of the expert and decision maker depends on §. When A is

greater than one and b is zero, the agent prefers a proportionally greater than action.

14.36 The sequence of play is as follows:

I >t |
L + 1

Expert learns Expert sends message m Decision maker chooses action a

Figure 14.9

« The expert learns her type § € ©;

o The expert sends a message m € © to the decision maker; the message may be random, and can be viewed as

a noisy estimate of 6;

« The decision maker processes the information in the experts message and chooses an action a, which deter-

mines players’ payoffs.
14.37 In this cheap talk game, a pure-strategy PBE of this game consists of

o astrategy for the expert, denoted m*(0): © — O,

« astrategy for the decision maker, denoted a*(m): © — R,
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o abelief system, denoted p*(- | m) € A(O),
such that

« Given the decision maker’s strategy a*(m), the expert of type 6 send a message m*(6) so that

m*(0) € argmaxus(0,a*(m),b).
meo

o The decision maker’s action a*(mn) satisfies

a*(m) € argmax/ ur(0,a)dp* (0| m).
a€R (C]

o p*(- | m) is derived via the Bayes’ rule whenever possible.

14.4.1 The model with two types

14.38 We first consider the simplest case in which © = {0}, 0 }. The decision maker initially regards the two states as
equally likely.

14.39 We now investigate the conditions under which communication can be informative. In this case, the strategy profile
m(0) = 0, a(m) = m and the beliefs system (0 | ) = 1 consist of a PBE.

In the following, we check the incentives facing the expert. Consider Figure 14.10, which shows the the expert’s

payofls in different states.

0r, Or, +0b O O +0b a

Figure 14.10: The expert’s payoffs with two states

(1) Clearly, the expert has no incentive to misrepresent the facts when the state is 6.

(2) If the state instead is 61, a truthful (and trusted) report by the expert induces a policy a = 6y,. This is smaller
than the expert’s ideal policy of 01, + b in state 0. If the expert instead claims that the state is 67, the policy
outcome will be @ = 5. The expert may prefer this larger policy, but it also might be too large even for her

tastes. The expert will report truthfully in state 67, if and only if

(O +b) =0, <0y — (0 +b).
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14.40

14.41

14.42

14.43

14.44

14.45

Notice that this inequality is satisfied for the case depicted in Figure 14.10.

(3) We can rewrite the inequality as a limitation on the size of the divergence in preferences; that is,

p< =0

= B (14.1)

When Equation (14.1) is satisfied, there exists a PBE with informative communication. In such an equilibrium,
the expert educates the decision maker about the state of the world. The equilibrium that results is fully revealing,

because the decision maker learns the true state for all possible values of the random variable 6.

When % >b> %, there also exists a PBE with uninformative communication:

Qutln — if) =0y 1
m(0) = 0p, a(f) = , (0 | Om) = (0L | On) = X w(lr | 0r) = 1.
0r, if = 0y,

When GngL > b, there exists a mixed-strategy PBE with uninformative communication:

1 1 1 1 1
m(f) = 50m + 501, a(m) = 50+ 501, w(Or | 0) = p(0r | 0) = >

They are babbling equilibria, where no information is conveyed from the expert to the decision maker.

When % >b> %, there exists a mixed-strategy PBE with partially informative communication:

m(0r) = 520 + 2210, a(fL) =0 p(fr | 0r) =1

If, in contrast, Equation (14.1) is not satisfied, the expert’s message lacks credibility. The decision maker would know
in such circumstances that the expert had an incentive to announce the state as 67 no matter what the true state
happened to be. For this reason, the expert’s message is uninformative, and the decision maker is well justified in
ignoring its content. In the event, the decision maker sets the policy a = % that matches her prior expectation
about the mean value of §. Evidently, the transmission of information via cheap talking requires a sufficient degree

of alignment between the interests of the decision maker and the expert.
In summary:

o When % > b, only babbling and fully revealing can be equilibrium.

o When @ >b> %, (mixed) babbling, fully revealing and (mixed) partially revealing can be equi-

librium.

o Whenb > @, the “unique” equilibrium is the babbling equilibrium.

Numerical example: Let 0, = 0,0 =1, % >b> %.

The comparison of the decision maker’s expected utility:

0 for fully revealing > — (1 — 2b) for partially revealing > —1 for babbling.

The comparison of the expert’s expected utility:

—b? for fully revealing > —1 (1 — b)? — 12 for partially revealing > —1 (% — )% — 1(4 + b)? for babbling.
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14.4.2 The model with three types

14.46

14.47

14.48

We then consider the case that © = {01, 057,05 }.

Similar with the two-state case, the 61 -type expert will reveal his information truthfully if and only if

O — 01,
<7
b< 5 ,

and the 6/-type expert will reveal his information truthfully if and only if

O —Om
< —.
bs 2

Therefore, truth-telling is a PBE strategy if and only if

bgmin{eM_9L79H—9]v[}.
2 2

Section 18.1 in Tadelis (2013).

14.4.3 The model with a continuum of types

14.49

14.50

14.51

We finally turn to consider the case that © = [0, 1]. As the number of possible states grows, full revelation becomes
ever more difficult to achieve. For a sender to be able to distinguish among all possible states, b must be smaller
than one-half of the distance between any two of them. But as the number of states tends to infinity—as it must,

for example, when 6 represents a continuous variable—this requirement becomes impossible to fulfil.

Proposition: If the expert is even slightly biased, all equilibria entail some information loss.

Proof. If the expert’s message always revealed the true state and the decision maker believed him, then the expert

would have the incentive to exaggerate the state: in some state 6, he would report 6 + b. O

Proposition: There always exists a “babbling equilibrium” in which the sender always send the same message and

the message is always ignored.

Proof. (1) Let the sender’s strategy be to send a message mq € [0, 1] regardless of 6.

(2) This means that the message is completely uninformative and receiver believes that 6 is distributed uniformly
on [0, 1].
(3) Conditioning on receiving the message my, receiver maximizes his expected payoft

1
IJIG%EQ ur(f,a) = [; —(a—0)>df = —% +a — a?,

which is maximized when a = %

(4) Let receiver’s off-equilibrium path beliefs be
Prob{ =1 | m #mo} =1

so that his off-equilibrium path best response to any other message is a = 1 as well.
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(5) Itis easy to see that sender is indifferent between any of his message and hence choosing m = my is the best

response.

O

14.52 Theorem (Theorem 1 in Crawford and Sobel (1982)): All the perfect Bayesian equilibria are equivalent to a partially

pooling equilibrium of the following form: the type space is divided into the n intervals (steps)

[x0 = 0,71), [T1,22), ..., [Tn—1,1 = 2p];

all the types in a given interval send the same message, but types in different intervals send different messages.

Idea of proof. Since in equilibrium a*(m) is weakly increasing, every points in between must send the same mes-

sage. O

We will refer to the message sent when 0 € [x;_1, ;] asm; fori =1,2...,n.
14.53 A two-step (n = 2) equilibrium (m*, a*, u*):

(1) Suppose all the types in the interval [0, z1) send one message m; while those in [z1, 1] send another message

mao.

(2) After receiving the message m4 from the types in [0, z1 ), the decision maker will believe that the expert’s type
is uniformly distributed on [0, 21 ), so the decision maker’s optimal action will be %}; likewise, after receiving

the message mz from the types in [z, 1], the decision maker’s optimal action will be itl

(3) For the typesin [0, z1) to be willing to send their message my, it must be that all these types prefer the action

IlJrl

% to the action ”31+1 ; likewise, all the types above 21 must prefer to -

(4) Since the expert’s utility is symmetric around her optimal action 6 + b, the type-0 expert prefers £ to £
if the midpoint between these two actions exceeds that type’s optimal action 6 + b, but prefers ’"1“ o G if

0 + b exceeds the midpoint.

(5) Thus, for a two-step equilibrium to exist, the x1-type expert must be indifferent between ’“T'H and 4
T+ b= 3L 4 Bt

thatis, x; = % — 2b.
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(6) Since the type space is © = [0, 1], 1 must be positive, so a two-step equilibrium exists only if b < %; for

b> i the players’ preferences are too dissimilar to allow even the limited communication.

(7) To complete the characterization of this two-step equilibrium, we address the issue of messages that are off the
equilibrium path. For example, let the expert’s strategy be that all types # < x1 send the message m; € [0, 1)
and all types § > 1 send the message mo € [21, 1]. Then we may let the decision maker’s off-path belief after
observing any message from [0, z1) \ {m1} be that 6 is uniformly distributed on [0, z1), and after observing
any message from [x1, 1] \ {ma2} be that 6 is uniformly distributed on [z1, 1].

14.54 An n-step equilibrium (m*, a*, pu*):
(1) By Bayes’ rule, pu* ((a,b) | m;) = v
(2) Sequential rationality implies that
a* (ml) — Ii+51?i71.
(3) In equilibrium, the z;-type expert must be indifferent between m; and m; 44 fori = 1,2,...,n — 1. Given

the quadratic-loss utility function, it must be that

(-ri + b) _ mi—12+a:i — xi+;i+1 _ (-’L'z 4 b),

equivalently,
(xi—&-l — ZL’Z) = (1’1 — xi—l) + 4b.
The width of each step increases by 4b.

(4) If the first step is of length d, then the boundary condition must imply
d+(d+4b) + -+ [d+ (n—1)4b] = 1,

equivalently,
nd +n(n—1)2b=1.

(5) Hence, given any n such that n(n — 1)2b < 1, there exists a value of d such that nd + n(n — 1)2b = 1. That

is, there is an n-step equilibrium as long as n(n — 1)2b < 1.
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14.55

14.56

14.57

14.58

14.59

(6) Since the length of the first step must be positive, the largest possible number of steps in such an equilibrium,

n*(b), is the largest value of n such that n(n — 1)2b < 1, i.e., n*(b) is the largest integer less than

1 /1.2
5 [1 +4/1+ b} .
Imprecise messages can still be credible when the interests of the expert and the decision maker do not align com-

pletely.

Remark: More communication can occur through cheap talk when the players’ preferences are more closely aligned.

But perfect communication cannot occur unless the players’ preferences are perfectly aligned.

i L= L * _ _ 1 _ 1 _ 4 _ 9
Numerical example: b = =5. Then n*(b) = 4,d = 15, ¥1 = 15, T2 = 16> T3 = 1g-
A 7
,
may”~

T 7 \

| ’ |

! , |

I e |

| e |

I /s I

| . |

e |

1 |

L7 |

s |

7 | |

ms”~ | |

—_— |

I e I I

| s | |

I 7/ I I

[ | |

I, | |

4 | |

7 I |

mo~ | | |

2 ‘ |

I , | | |

| 7 | | |

I . I I I
M4 | | |
— | | |
I I I )

T T T 1
Lo T1 T2 T3 T4

Remark: Theorem 14.52 crucially depends on the quadratic utility assumption. By this assumption, expert at dif-

ferent states has different points. This makes the expert has incentives to reveal some information.

However, if we assume that the expert’s utility function is monotonic in a, for example u;(6,a) = a — 6, then the

unique equilibrium is the babbling equilibrium.

n*(b) decreases in b but approaches infinity only as b approaches zero: more communication can occur through
cheap talk when the players’ preferences are more closely aligned, but perfect communication cannot occur unless

the players’ preferences are perfectly aligned.

If there exists an equilibrium with n messages, there must be other equilibria with less than n messages. It always
includes the babbling equilibrium in which the decision maker never listen the expert and the expert never convey

the true information.

Expected welfare analysis: let us rank the equilibria by evaluating the expected welfare of the decision maker and

the expert in each possible equilibrium.

x’%ﬂ“ if the decision

(1) Since the decision maker’s utility function is u,.(6,a) = —(6 — a)? and she sets a =

maker heard 6 is in [x;_1, ;].
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(2) Hence, the decision maker’s expected welfare is

n

2
T 1+ T 1 ' YR b2 (n? —1)
g / < 9) do = B (i —xi-1)° = 1oz + 3 )

i=1

(3) Likewise, the expert’s expected welfare is

Z/ (x S —0—b)2d9:Ur(n)—b2.

(4) Since U,(n) is an increasing function of n. Thus, we can conclude that in the ex ante sense, the more n we

get, the better equilibrium we achieve.

14.4.4 Optimal communication mechanism (the commitment case)

14.60

14.61

14.62

14.63

14.64

14.65

Literature: Melumad and Shibano (1991).

We consider the case where decision maker can commit to a decision rule (a strategy for the decision maker) which

is a mapping from the message space to the action space: a: © — R.
We still assume that © = [0, 1] and 6 is uniformly distributed on ©.

By the revelation principle we need to consider truth-telling mechanism in which the sender’s strategy is m () = 6

for all #. This requires the IC condition:
us(6,a(6)) > us(6,a(6"))
forany 4,6’ € ©.

Lemma: a: © — R is increasing.

Proof. Consider any two distinct § and ¢’. The IC condition implies:

2

—(a(0) —0—1)* > —(a(0') =0 —b)” and — (a(0') — 6" —b)" > — (a(8) — 0 —b)°.

These two inequalities yield

—(a(8) =0 —1)* — (a(0)) =0’ —b)* > — (a(0') — 6 —b)* — (a(6) — 6’ —b)".
That is,
(a() —a(0")) (0 —6") > 0.
Therefore, a is increasing. O
Lemma: If a is continuous and strictly increasing on (01, 6), then a(6) = 6 + b on (61, 62).

Proof. (1) Suppose that there exists 6 such that a(6) # 6 + b.
(2) Without loss of generality, assume a(6) > 6 + b.

(3) Since a is continuous and strictly increasing, there exists 8’ < 6 such that § + b < a(0') < a(6).
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(4) Then it is optimal for the sender under 6 to misreport 6. Contradiction.

14.66 Lemma: If a is discontinuous at 6, the discontinuity must be a jump discontinuity that satisfies
(i) us(0o,a™ (0o)) = us(bo,at(6p)), where a™ (6y) = limgrg, a(f) and a™ (6p) = limgye, a(6).
a=(6p), if6 € fa(6o) —b,6),
a® (), if0 € (6p,at(6p) — b].
(ii) a(fo) € {a™(6o),a™ (6o)}.

(ii) a(6) =

Proof. (i) Assumethatu, (60, a™(6p)) < us (6o, a™ (6p)). Then the sender will strictly prefer a™ (6) toa™ (6p) =~
a(6') at @’ slightly less than 6. Contradiction.

(ii) Since the sender’s favorite action when 6§ = a™(6y) — bis a~ (p), the IC condition requires that
a(a”(6o) —b) =a™ (bo).

Since a is increasing, a must be flat between [a ™ (6y) — b, 6p).

(iii) Assume thata(fy) € (a™(6o),a™ (6p)). Then the sender will strictly prefer a(6) to either a™ (6y) or a™(6p).

So will the sender when ¢’ is near 6 since u is continuous in #. Contradiction.

O

14.67 'The following figure depicts a general IC decision rule according to the previous lemmas.

a,
1+
(/
—
b/
0 1 0

Figure 14.11

14.68 Lemma: The decision rule a is everywhere continuous.

Proof. (1) Suppose that a is not continuous at 6.
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(2) Then we have

(0) _ a (9()), iff € [a’ (90) — b, 90)7
) at(6), 6 € (Bo,at(60) — bl.

(3) Note that replacing any segment of an IC decision rule by some other IC segment does not affect the IC

property of the decision rule.

(4) We will argue that (i) it is incentive compatible to replace this part of the rule by a’ () = 6+ b (the sender’s fa-

vorite action) and (ii) that the receiver will benefit from the change in contradiction to the assumed optimality
of a(9).
(5) When 6 < a™ () — b, wehave § + b < a™ (6p), and hence

(@ (B0) — 0 — )2 > —(a— 0 —b)>

forany a € (a™(6o),a™(6o)).

ay

Cl+ (90) fffffffffffff

!

Figure 14.12

(6) Therefore, the sender prefers a™(6g) toany a € (a™(6o), a*(6y)) when § < a™(6p) — b.
(7) Similarly, the sender prefers a™ (6) to any a € (a™(6o),a™(6p)) when 6 > a™(6y) — b.
(8) So, the change will not create incentives for the sender to deviate when 6 ¢ (a™(6o), a™ (6p)).

(9) When6 € (a(6p),a™ (o)), the sender will obtain his best action by telling the truth, so there is no incentive

to deviate.

(10) The receiver’s expected utility is, then,

a+(90)7b a+(00)7b
—/ (d'(0) — 0)2do = —/ (0+b—0)2d0 = b (at(60) —a (6)) -
O.*(a())*b a— (00)7b

(11) The receiver’s original expected utility is

6o at(60)—b fo—a~ (6o)
— / (a_ (0()) — 0)2 do — (a+(00) — 9)2 do = —/ £C2 d.’IJ,
a=(80)—b 6o 8o—a+t(0o)
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which s strictly less than —b2 (a™(6p) — a™ (o)) due to the Jensen’s inequality.

14.69 Theorem: The optimal decision rule is

0+0b, if6 <1-—2b,
1-0, ifd>1-—2b.

a =

Proof. (1) We have already shown that the optimal a must be continuous and equal § + b when it is strictly

increasing. This means that the optimal rule must be of the form

0+0b, it <9,
a*(0) =q0+b, ifoc(0,0),
0+b, if6>6.

(2) The receiver chooses § > 0 and @ € [0, 1] to maximize:

0 0 1
UT(Q,é)z—/O (Q+b—9)2d0—/9 b2d9—/§ (9_+b—0)d0.

(3) Itis easy to show that

ou, 2
% _—2/0 (0+b—6)dd <0,

which implies that " = 0.

(4) Similarly,
ou,
00

1
:-2/_ (G+b—0)do.
[

(5) By letting ‘98%

positive at 1. Therefore, U,. is maximized at §* = 1 — 2b.

= 0, we have § = 1 — 2bor § = 1. However, the second derivative is negative at 1 — 2b but

O

14.70 The optimal rule is to set a limit on the highest action the sender (who is biased for higher actions) can take and let

the sender picks the action.
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a,

Figure 14.13

14.71 Further readings: Krishna and Morgan (2004) and Golosov et al. (2014) on multi-stage communication, Battaglini
(2002) and Ambrus and Takahashi (2008) on multiple senders, Chen, Kartik and Sobel (2008) on equilibrium

selection.

14.5 Bayesian persuasion

14.72 Literature: Kamenica and Gentzkow (2011).

Reading: Gentzkow and Kamenica (2016), Gentzkow and Kamenica (2016), Li and Norman (2015), Wang (2013).

14.73 Consider an example of a prosecutor (sender) trying to convince a judge (receiver) that a defendant is guilty.

When the defendant is indeed guilty, revealing the facts of the case will tend to help the prosecutor’s case. When

the defendant is innocent, revealing facts will tend to hurt the prosecutor’ case.

Can the prosecutor structure his arguments, selection of evidence, efc. so as to increase the probability of conviction

by a rational judge on average?

14.5.1 Example

14.74 There are two states of the world: the defendant is either guilty or innocent. The judge must choose one of two

actions: to acquit or convict.

The judge gets utility 1 for choosing the just action (convict when guilty and acquit when innocent) and utility 0

for choosing the unjust action (convict when innocent and acquit when guilty).
The prosecutor gets utility 1 if the judge convicts and utility 0 if the judge acquits, regardless of the state.

The prosecutor and the judge share a prior belief g (guilty) = 0.3.
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14.75

14.76

14.77

The prosecutor conducts an investigation and is required by law to report its full outcome.

We can think of the choice of the investigation as consisting of the decisions on whom to subpoena, what forensic

tests to conduct, what questions to ask an expert witness, efc.

We formalize an investigation as distributions ¢(- | guilty) and q(- | innocent) on some set of signal realizations.

The prosecutor chooses ¢ and must honestly report the signal realization to the judge.

If the prosecutor chooses a fully informative investigation, one that leaves no uncertainty about the state, the judge

convicts 30 percent of the time.

However, the prosecutor can do better. For example, he can choose the following binary signal {7, g} such that
q(g | guilty) = 1and (g | innocent) = 2.

The first signal ¢ leads to a posterior

po()-ag )
wo(guilty) - q(g | guilty) + po(innocent) - q(g | innocent)

Mg = ,U/( ‘ g) = = %&nnocent + %6guilty~
That is, the sender says “this person is guilty enough to convict”. After observing g and knowing the posterior i,
her optimal action is convict, and the expected utility is § (By default, we assume that optimal action is convict

once convict and acquit are indifferent). Notice that the judge has probability % to choose an unjust action.
The second signal ¢ leads to a posterior

i = (- i) = a SN CAD
! wo(guilty) - q(i | guilty) + po(innocent) - q(i | innocent)

= 6innocent .

That is, the sender says “this person is innocent”. After observing 7 and knowing the posterior y;, her optimal action

is acquit, and the expected utility is 1.

Moreover, the probability of signal g is Prob(g) = p(innocent) - q(g | innocent) + uo(guilty) - q(g | guilty) =
0.7 x 2 4+ 0.3 x 1 = 0.6, and the probability of signal 7 is Prob(i) = 0.4.

This leads the judge to convict with (ex ante level) probability 60 percent. The judge knows 70 percent of defendants

are innocent, yet she convicts 60 percent of them!

Furthermore, she does so even though she is fully aware that the investigation was designed to maximize the prob-
ability of conviction. The expected utility of the judge is 0.6 x 1 + 0.4 x 1 = 0.7. When there is no persuasion,
the optimal action of the judge is acquit, and the expected utility is also 0.7. That is, the optimal expected utilities

of the judge are the same. This equivalence can be formally stated as the following statement:

f10(0) = Prob(g) - (6 | g) + Prob(i) - (0 | 4)

for 6 = guilty or innocent.

14.5.2 A model of Bayesian persuasion

14.78

14.79

There is a sender and a receiver. The state space O is finite and the action space is compact. The sender and the

receiver share the (full support) common prior z0(-) on ©.

Receiver has a continuous utility function u,.(a, ), and sender has a continuous utility function u(a, 6).
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14.80 The special feature of the model is that the sender’s strategy is to pick an information structure (or information
disclosure rule), which consists of a finite set M of messages and a mapping ¢: © — A(M). Here, g(m | 6)

describes the probability that the receiver hears the message m when 0 is the true state.

Note that the mapping ¢ can be induced by a joint distribution on states and messages.
14.81 The persuasion game works as follows.

(1) The sender selects the information structure (M, q).

(2) Given the information structure, the receiver selects an action rule (what to do following any message).

The sender is potentially informed but can choose to commit to public information acquisition and disclosure.

I ' L >l
L + + 1

Sender selects the A state 6 is drawn A message m is drawn from distribution Receiver chooses
information structure (M, q) from the prior j19 g(0) and shown to receiver an action a

Figure 14.14

14.82 In equilibrium:

« The receiver’s action rule is a best response to the information structure (for each realized message).

After observing the sender’s choice of information structure (), ¢) and a message realization m € M (drawn

by nature), the receiver forms the posterior 11, (-) € A(©) via Bayes’ rule:

po(0) - g(m | 0)
> grcoto(f) - q(m | 0')’

pm (0) =
and takes an action @(u,,) € A to maximize her expected utility

E,, [ur(a,0)] Zum -ur(a,).
=

If there are multiple best actions, assume that the receiver picks one of the optimizers that maximizes the
sender’s expected utility E, [us(a,0)] = > ycq pm(0) - us(a, 0).

o The sender selects the information structure (M, ¢) to maximize her expected utility given the receiver’s re-

sponse.

Given an information structure (M, g), let

be the probability that message m is heard.

The sender’s ex ante expected utility is

UM.0) = B By, [ (@0 ). 0)] | = 3 P0)| 32 i) s (@00

meM [A<C]

Given the receiver’s action rule, the sender chooses the information structure (M, ¢) to maximize his expected

utility.

14.83 Key assumption: The sender cannot distort or conceal information once the message is realized.
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14.84 We simplify the analysis further by noting that, without loss of generality, we can restrict our attention to a particular
class of information structures. Say that an information structure is straightforward if M/ C A and the receiver’s

equilibrium action equals the message realization.

In other words, a straightforward information structure produces a “recommended action” and the receiver always

follows the recommendation.
14.85 Lemma: The following are equivalent:
(i) There exists an information structure with the expected utility u}.

(ii) There exists a straightforward information structure with expected utility u?.

Proof. (1) By definition, (ii) implies (i).

(2) Given an information structure (M, ¢) with the expected utility u?, let
M®* ={m e M | a(ptm) = a} for eacha € A.

(3) Consider an information structure (M’, ¢’) with M’ = A and

d(al0)= " a(m]0).

meMe

(4) Foreacha € A, we have

Z 11, (0) - ur(a,0) = Z #06) - Lmepre alm 1 9) ~up(a,0)

0co ) orcotol0) X enaalm’ [ 0')
1
= /’(‘0 m 9 ’U,T(a) 0)
29/69 'uo(el) ! Zm’eMa m/ | 0/ OEZ@ mGZ]Wa | )
1
= fo(0 q(m | 0) - ur(a(pm), )
Yoo bo(8) X a(m’ | 07) g(:) m;;fa "

1
2 20' @,U/O(el) : Z /EMa / | 9’ ZMO Z m | 0) ur(a/?e)

06@ meMa
S AGRCA)
6cO

for each o’ € A. That is, a is an optimal response for the receiver to the realization a from ¢’.

(5) Sender’s expected utility under the new information structure is

UJM',¢)=> Pla [Zua usauaw)]

acA 0€®
:ZP [Z,ua g ( a,ﬂ)]
acA 0c®

meMa q(m | 0)
(X X atm]0)- @) [Z Za//eeﬂo 05 care alm 1677

a€EA 0'€c®meMe 0cO

S w®) Y atm | 6)u(atu).6)

acAHcO meMa
= Z [Zﬂm l‘m) 9)] = Us(MaQ)
meM e
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14.5.3 Simplified problem

14.86 An information structure (M, ¢) naturally induces a distribution over posterior beliefs.
Conversely, a distribution over posterior beliefs 7 € A(A(©)) is induced by an information structure (M, q) if
_ l6) - q(m | 6)
2o to(®)-g(m|0)
support(r) = {m }menr,
=Y. Y q(m|6)- () forall .

m: pym=p 0'€0

Hm (9)

for all 8 and m,

14.87 When both sender and receiver hold some posterior p, the sender’s expected utility is equal to

Us(p) = By [us(a(p),0)] = > p(0) - us(a(p), 0).

0€©

14.88 Since sender’s and receiver’s beliefs coincide, the sender’s utility from any distribution of posteriors 7 (induced by

some information structure) is

UL(r) = B, Uu0) = B [B, [@00.0)]] = X 70| X ui6) - a0

pEsupport(T) [ASIC)

14.89 A distribution of posteriors 7 is Bayesian plausible if the expected posterior probability equals the prior:

Erp= Y 7(w)-p=po
pEsupport(T)

14.90 Clearly, if 7 is induced by an information structure (M, ), then 7 is Bayesian plausible.

For each 0,

Y 7)) > Yo > am ) pol8) - ul6)

pEsupport(T) pEsupport(7) m: b =p 0’ €O

Z Z q(m | 6) - po(0) = po(0)

pEsupport(T) M i =H

14.91 Proposition: The following are equivalent:
(i) There exists an information structure (M, ¢) such that the expected utility Us (M, q) is u.

(ii) There exists a Bayesian plausible distribution of posteriors 7 such that the expected utility Us(7) is u?.

Proof. (1) Given an information structure (M, ¢), let 7 be the distribution of posteriors induced by (M, ¢). Then

vin= % r<u>[zu<9> ul (aw),e)}

JEsupport(T) 0O

= > [ > Zq(m9’)~uo(9’)}~[Zu(wus(a(u),e)

pEsupport(r) ~m: pm=p §’'€O 0cO
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S0 3T D am | 0) - po(6) - (6) - us (a(p), 0)

pEsupport(r) 0€EO m: pm=p 6’'€O

Y Y we®)atm[6)-us (a(u),0)

pEsupport(r) 0EO M pm=p

Z Z/J'O(e) : q(m | 9) "t Us (&(Mm)ve) = US(M7 Q)~

meM 0O

(2) Assume that 7 is a Bayesian plausible distribution of posteriors with the expected utility .

(3) Them we have

W= X )| ) uan.6)|.

pEsupport(T) 0cO
(4) Since © is finite, Carathéodory’s theorem' implies that there exists a Bayesian plausible 7* with finite support
such that
W= X | T o .0
pEsupport(T*) 0€©

(5) Define M so that support(7*) = {ttm }menr andlet g(m | 0) = T*(um)%-
(6) Clearly, U (M, q) = Us(7*).
O

14.92 The key implication is that to evaluate whether the sender benefits from persuasion and to determine the value of an
optimal information structure we need only ask how U, (7) varies over the space of Bayesian plausible distributions

of posteriors.

14.93 Simplified problem:
maximize U,(7) = E; Us(p)

subjectto  E; pu = po.

14.5.4 Optimal information structure

14.94 The focus on sender-preferred equilibria implies that U,(y1) is upper semicontinuous which in turn ensures the

existence of an optimal information structure.

14.95 Let U, be the concave closure of the function U, (1) : A(©) — R:

Us(u) = sup {v | (1, v) € co(Uy) } ,
where co(Uy) denotes the convex hull of the graph of Us.

14.96 Clearly, U,: A(©) — R is a concave function by construction. (check by yourself)
Actually, it is the smallest concave function that is everywhere weakly greater than U.

The following figure shows an example of the construction of Uy. In the figure, the state space is binary, and we

identify a distribution x4 with the probability of one of the states.

In convex geometry Carathéodory’s theorem states that if a point = of R lies in the convex hull of a set P, there is a subset P’ of P consisting
of d + 1 or fewer points such that z lies in the convex hull of P’.
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Figure 14.15

14.97 Proposition (Corollary 2 in Kamenica and Gentzkow (2011)): The expected utility of an optimal information struc-

ture is Uy (110 ), and revealing information structure is better than non-revealing if and only if Uy (110) > Us(pt0).

Proof. (1) Forany (u/,v) € co(Us), there exists a distribution of posteriors 7 such that
(:U'/a v) =E; (Ma Us(#)) :

(2) Thus, co(Us) is the set of (1/, v) such that if the prior is 4/, there exists an information structure with the

expected utility v.

(3) Hence, given the prior 110, Us(110) is the largest expected utility the sender can achieve with any information

structure.

O

14.98 The following figure shows the function U, (1), the concave closure U,, and the optimal information structure for

Example 14.74. In the figure, 1 denotes the probability that the state is guilty.

Us US US

R A ‘ S ‘ S + ‘
Us(p) S CUs(p) )/ - Us (:U’) |
| | N/ | S |
: : Ub(,UO) Y / : : ET US(M) 777/{“ : :

ol 1o o5 "0 1o 0.5 R, 1o 0.5 ok

Figure 14.16

U, is a step function: the prosecutor’s expected utility is 0 whenever 1 < % (since the judge will choose acquit)

and 1 whenever p > % (since the judge will choose convict).

The concave closure U is
" 2p, ifp > g,
Us(p) = ) ?
1, 1f,u > 5-
Itis clear U (110) > Uy (p0) and the expected utility of the optimal information structure is U (11). The prosecutor

can benefit from persuasion if and only if 119 < 1.



14.5. Bayesian persuasion 259

14.99

14.100

14.101

By simple calculation, the optimal information structure induces the distribution of posteriors 7*:

. 2.3

Let M = {i, g} such that yi; = 9 and 1y = 1. Then

)uq(gmlty) 312

po(guilty) 503 7
pg(innocent)  31/2
(

3
po(innocent) ~ 507 7

q(g | guilty) = 7" (u

q(g | innoncent) = 7 (ug)

Corollary (Remark 1 in Kamenica and Gentzkow (2011)): If Us(u) is concave, the sender does not benefit from

persuasion for any prior. If Us(u) is convex and not concave, the sender benefits from persuasion for every prior.
Proof. The sender benefits from persuasion is and only if there exists a 7 such that E.[Us(p)] > Us(E-[p]). O

We say “there is information the sender would like to share” if there is a posterior that is better for the sender than

the prior, that is, there exists y such that

= (6) - us(alp),0) > Y p(0) - us(alpo), 0).
6co 6co

In other words, there is a  such that, if the sender had private information that led him to believe y, he would

prefer to share this information with the receiver rather than have the receiver act based on (.

We say the reserver’s preference is discrete at belief 1 if the receiver’s expected utility from her preferred action a(u)
is bounded away from her expected utility from any other action, i.e., if there isan € > 0 such that for any a # a(u),
E, ur(a(p),0) > E, u(a,0) +e.

Proposition (Proposition 2 in Kamenica and Gentzkow (2011)): If there is no information the sender would share,
the sender does not benefit from persuasion. If there is information the sender would share and the receiver’s

preference is discrete at the prior, the sender benefits from persuasion.

Proof. (1) If there is no information the sender would share, then for any information structure 7 which induces

a distribution of posteriors 7,

E. Us(/j') <E: Eu Us(d(MO>7 9) = US(MO) .

Bayesian plausibility

Informally, any realization of message m leads the receiver to take an action a (., ) the sender weakly dislikes

relative to the default action a(uo). Hence, a completely noninformative information structure is optimal.

(2) Since the receiver’s preference is discrete at the prior 119, there exists an € > 0 such that for any a # a(uo),
S0 10(0) - wr(@10), 0) > Xy p0(6) - (0, 8) + €.

(3) Since u,(a,8) is continuous in 6, > -, p(6) - u,(a, ) is continuous in s

(4) Thus, thereisa 0 > 0 such that for any p1 € Bs(uo) and for any a # a(uo), Y_p p(0) - ur(a(po),0) >
29 14(0) - ur(a,0).

(5) Hence, a(p) = a(po) forany o € Bs(fo)-
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(6) Since there is information the sender would share, there exists 15, such that Y, 5, (0) - us(a(pn),0) >
>0 in(0) - us(alpo), 0)-

(7) Consider a ray from g, through pg. Since pg is not on the boundary of A(©), there exists a belief 11, on that
ray such that iy € Bs(uo) and po = ype + (1 — ), for some y € (0, 1).

(8) Consider the Bayesian plausible distribution of posteriors 7 = v + (1 — ) pp-
(9) We have

E; Ey us(a(p),0) = vUs(pe) + (1 —7)Us(pn)
> ’YZ/M(Q) . Us(d(/io)a@) + (1 - '7) Zuh(e) 'us(A(N’O)ve) = US(MO)'
0

0

Therefore, the sender benefits from persuasion.

14.102 Lemma: If A is finite, the receiver’s preference is discrete at the prior generically.
Proof. Omitted. O

14.103 Application: Lobbying.

Consider a setting where a lobbying group commissions a study with the goal of influencing a benevolent, but
nonetheless rational, politician. The politician (Receiver) chooses a unidimensional policy @ € [0, 1]. The state
6 € [0,1] is the socially optimal policy. The lobbyist (Sender) is employed by the interest group whose preferred
action is ag = af + (1 — a)fp with a € [0,1] and 6y > 1. Politician’s payoff —(a — 6)? and lobbyists payoff
—(a — ap)?.

Since politician’s payoff is —(a — 0)?, a(u) = E,,[0]. Given this a, we have

Us(n) = —(1 = )05 +2(1 — @)*00 E,[0] — o E, [07] + (200 — 1) (E,.[0])*.

1, strictly convex when o > 1, and strictly concave when a < 1.

Us is linear in ;t when o =
Therefore we have full disclosure if o > % and no disclosure if o < % There is thus a natural sense in which some
alignment of preferences is necessary for information to be communicated in equilibrium even when Sender has

the ability to commit.
Note that the lobbyist either commissions a fully revealing study or no study at all.

The optimal information structure is independent of 6. This is important because 6 also captures a form of dis-
agreement between the lobbyist and the politician. We might have expected communication to be difficult when
6o is much greater than one. Unlike o, however, 6y does not affect the way the lobbyist’s payoff varies across real-
izations of a message. The loss the lobbyist suffers from high values of 6 is thus a sunk cost and does not affect the

decision of how best to persuade.

14.6 Optimal information disclosure

14.104 Literature: Es6é and Szentes (2007), Rayo and Segal (2010). Zhang and Zhou (forthcoming)
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15.1 Signaling ({5 &t #) and screening (& 5 #i %) are two primary solutions to adverse selection. In screening, the

15.1

uninformed party moves first. For example, the uninformed party offers a term of exchange such that the informed
party can choose to accept or reject. For example, the uninformed buyer can ask for a long enough warranty to
screen out low quality sellers. The insurance market gives a better illustration, where the insurance company, who
is uninformed of conditions of the clients, offers different insurance packages, and ideally, each type of clients only
find one package acceptable.

The principal-agent model

15.2 Reference: Chapters 2 and 3 in Laffont and Martimort (2002).

261



15.1. The principal-agent model 262

15.3

15.4

155

15.1.

15.6

Consider a consumer (the principal) who wants to delegate to an agent the production of ¢ units of a good.

The value for the principal of these ¢ units is S(q) where S’ > 0, 5” < 0and S(0) = 0. The marginal value of the

good is thus positive and strictly decreasing with the number of units bought by the principal.

The production cost of the agent is unobservable to the principal, but it is common knowledge that the marginal
cost 6 belongs to the set © = {0y, 61, }. The agent can be either efficient (61,) or inefficient (6) with respective
probabilities 3 and 1 — /3. In other words, he has the cost function

¢(q,01) = 01,q with probability 5

or

¢(q,01) = 0 q with probability 1 — 3.

We denote by A@ = 0y — 01, > 0 the spread of uncertainty on the agent’s marginal cost.

The principal’s utility if she purchases ¢ units of the good and pays a monetary transfer ¢ to the agent is

S(q) —t,

and at this case the agent’s utility is
t— C(q7 9)

The economic variables are quantity produced ¢ and the transfer ¢ received by the agent. These variables are both

observable and verifiable by a third party such as a benevolent court of law.

Let A be the set of all feasible contract, that is,

A= {(q>t) | qERJmtER}'

The sequence of play is as follows:
: : f f > time
Agent discovers Principal offers Agent accepts or The contract
his type 0 a contract rejects the contract is executed
Figure 15.1

1 Complete information

First suppose that there is no asymmetry of information between the principal and the agent.

Then the principal will try to maximize her utility subject to inducing the agent to accept the proposed contract.
Clearly, the agent obtains 0 if he does not take the principal’s contract. So the principal will solve the following
problem:

maximize S(q) —t

naximize - S(q)

subjectto ¢t — ¢(q,0;) > 0.

The solution to this problem will be the first-best contract menu {(g;, t})};= g 1, such that

S'(q;) = 6.
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15.7

15.8

15.9

15.10

15.11

15.12

That is, the efficient production levels are obtained by equating the principal’s marginal value and the agent’s

marginal cost.
Since S” < 0and 0y > 01, we have
qar > G
i.e., the optimal production of an efficient agent is greater than that of an inefficient agent.

The complete information efficient production levels ¢}; and g7, should be both carried out if their social values,

respectively Wy = S(q};) — 0uql; and W} = S(q}) — 014}, are non-negative.

The social value of production when the agent is efficient, W7, is greater than when he is inefficient, namely W;:

g7, maximizes S(q) — 0rq

Wi = S(qz) —0rar = S(ay) —Orqm = S(qy) — Ougy = Wi

0L <0m

For trade to be always carried out, it is thus enough that production be socially valuable for the least efficient type,

i.e., the following condition must be satisfied
Wi = S(q) = Ongy 2 0,

a hypothesis that we will maintain throughout this section.

For a successful delegation of the production, the principal must offer the agent a utility level that is at least as
high as the utility level that the agent obtains from outside opportunity. We refer to these constraints as the agent’s

individual rationality constraints or participation constraints.

If we normalize to zero the agent’s outside opportunity utility level (i.e., his status quo utility level), these conditions
are written as
tp, —0pqr > 0andtyg — Ogqy > 0.

Obviously, the first-best contract menu { (g}, t}) };=n, 1. satisfies these conditions, if we let t} = 6;¢;.

To implement the first-best production levels ¢} and ¢j};, the principal can make the following take-it-or-leave-it
offers to the agent: If § = 6, (resp. 0p), the principal offers the transfer ¢] (resp. t3;) for the production level g7,
(resp. gj;) with 5 = Or.q7 (resp. t5; = Omqyy).
Whatever his type, agent accepts the offer and makes zero utility. The complete information optimal contracts are
thus (t5,¢7)if @ = 01, and (t5;, ¢5;) if @ = Op.

Under complete information delegation is costless for the principal, who achieves the same utility level that he could

get if he was carrying out the task himself (with the same cost function as the agent).

In Figure 15.2, we draw the indifference curves of a §1,-agent (heavy curves) and of a 0 -agent (light curves) in
the (g, t) space. The isoutility curves of both types correspond to increasing levels of utility when one moves in the

northwest direction. These indifference curves are straight lines with a slope 6 corresponding to the agent’s type.
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Ug=t— ()/[([ =0

Up,=t—0rLq=0

Figure 15.2: Indifference curves of both types

Since O > 6r, the isoutility curves of the ineflicient agent §; have a greater slope than those of the efficient
agent. Thus, the isoutility curves for different types cross only once. This property is called the single-crossing or

Spence-Mirrlees property.

15.13 The complete information optimal contract is finally represented in Figure 15.3 by the pair of points (A*, B*). For
each of those two points, the strictly concave indifference curve of the principal is tangent to the zero rent isoutility
curve of the corresponding type.

Note that the isoutility curves of the principal correspond to increasing levels of utility when one moves in the

southeast direction. Thus the principal reaches a higher profit when dealing with the efficient type.

t
[,', =1 ()11({ =0

Principal’s indifference

curve: S(q) —t=Vg
Up=1t—0g=0

Principals indifference
curve: S(q) —t=V;

Y

Figure 15.3: First-best contracts

We denote by V}; (resp. V') the principal’s level of utility when he faces the 8 -(resp. 61-) type. Because the
principal has all the bargaining power (complete information) in designing the contract, we have Vi = W}; (resp.

V= W7}) under complete information.
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15.14

In Figure 15.3, the payment t7 is greater than t7;, but we note that ¢7 can be greater or smaller than ¢7; depending

on the curvature of the function S(-), as it can be easily seen graphically.

15.1.2 Incomplete information

15.15

15.16

15.17

15.18

15.19

15.20

Suppose that the marginal cost 6 is the agent’s private information.
Consider the case where the principal offers the menu of contracts {(¢3 , ¢} ), (t37, ¢77) } hoping that an agent with
type 61, will select (¢} , ¢} ) and an agent with type 0 will select instead (¢, ¢};)-
From Figure 15.3, we see that B* is preferred to A* by both types of agents:
o The 0 -agent’s isoutility curve that passes through B* corresponds to a positive utility level instead of a zero
utility level at A*.
o The ff-agent’s isoutility curve that passes through A* corresponds to a negative utility level, which is less

than the zero utility level this type gets by choosing B*.

Offering the menu (A*, B*) fails to have the agents self-selecting properly within this menu. The efficient type
mimics the inefficient one and selects also contract B*. The complete information optimal contracts can no longer

be implemented under asymmetric information.
Definition: A menu of contracts {(¢1,qr), (tx, gm)} is incentive compatible when (t1, g1,) is weakly preferred to
(tr, qm) by the type-01, agent and (t g7, qpr) is weakly preferred to (¢1,, 1) by the type-0 agent.

Mathematically,

tr, —0rqr >ty — 0rqm, (IC)
tg —O0uqu > tr — Onqr. (ICH)

If amenu of contracts {(t1,, q1.), (tx, ¢ ) } is incentive compatible, then g7, > qg, which is called the monotonicity

constraint. Indeed,
By Equation (ICyr,)

Or(qa —qr) > tu —tr > 0ul(qu —qr),

By Equation (ICz)

and hence g — g7, < 0.

Definition: A menu of contracts {(¢1,,qr,), (tz, ¢m)} is individually rational if

tr, —0rqr >0, (IRL)
ty —O0rqy > 0. (IRg)

Under complete information, the principal is able to maintain all types of agents at their zero status quo utility level.
Their respective utility levels U; and Uj; at the first-best contracts satisfy

Up =t} —0rq; =0and Uy = t3; — Orqj; = 0.

Generally this will not be possible anymore under incomplete information, at least when the principal wants both

types of agents to be active.
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Let Up, = tr, — 0rqr and Uy = tg — Opqu denote the respective information rent (the utility in excess of the

reservation utility) of each type.

15.21 The principal’s problem is to solve

maximize B(S(qL) — tL) +(1- 5)(S(QH) - tH)

(qr.tr),(qu tw)

subject to Equations (ICy)-(IRg).

1522 Since Uy, =tr, — 0191, and Uy =ty — Omqp, the principal’s objective function can then be rewritten as

B(S(qr) — 0rqr) + (1 = B)(S(qu) — Omqn) — (BUL + (1 — B)UH) .

Expected social value/allocative efficiency Expected information rent

The incentive constraints and individual rationality constraints are rewritten as

Ur > Ug + Abgy, Icp)
U > Up — Abqgy, (ICH)
UL >0, (IR7,)
Ung > 0. (IR%)

15.23 Optimal contract without shutdown: Under asymmetric information, the optimal menu of contracts entails:

« No output distortion for the efficient type with respect to the first-best, ¢3* = ¢;. A downward output dis-
tortion for the inefficient type, ¢3¢ < ¢}; with

S (qP) =0 + %A&.

Here we assume that the equation above has positive solution. Otherwise ¢3¢ should be set at zero, and we are

in the special case of a contract with shutdown.

+ Only the efficient type gets a positive information rent given by
U = AOg3p.
o The second-best transfers are respectively given by
58 = 0rq; + A0 and £ = 0 q>.

15.24 Proof:

(1) Step 1: If g > 0, then the constraint (IR} ) is always strictly satisfied due to constraints (IC ) and (IR’;).
P L Yy y L H

(2) Step 2: The constraint (IR;) is binding at the optimal, i.e., Uy = 0. Suppose that Uy = € > 0. Then the
P H g p PP

principal can deceases Up by € and consequently also U}, by € and gain e.

(3) Step 3: The constraint (IC},) is binding at the optimal, i.e., U, = Afqy. Suppose that U, — Afqy = € > 0.
Then the principal can decrease Uy, by € and gain fJe.
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(4) Step 4: By Steps 2 and 3, we obtain a reduced program

maximize (3(S(qz) — 0rqr) + (1 — B)(S(qu) — Ouqu) — BAOqx.

qL,9H

Compared with the full information setting, asymmetric information alters the principal’s optimization simply
by the subtraction of the expected rent that has to be given up to the efficient type. The ineflicient type gets
no rent, but the efficient type 01, gets the information rent that he could obtain by mimicking the inefficient

type 6. This rent depends only on the level of production requested from this inefficient type.

(5) Step 5: The first order condition on ¢z, implies
S’ (¢3®) = 01, thatis, ¢3® = ¢}

Hence, there is no distortion away from the first-best for the efficient type’s output.

The first order condition on ¢ implies
(1=5)(5'(gir) — Om) = BAG.

This equation expresses the important trade-oft between efficiency and rent extraction which arises under
asymmetric information. The expected marginal efficiency gain (resp. cost) and the expected marginal cost
(resp. gain) of the rent brought about by an infinitesimal increase (resp. decrease) of the inefficient type’s
output are equated. Thus, the principal is neither willing to increase nor to decrease the inefficient agent’s

output.

(6) Step 6: We have the following inequality
qar =qi > G > G
—_———
57<0

and hence
Ug =0> AGqH — AQqL =U — AQqL.

That is, the constraint (IC/;) is strictly satisfied.

15.25 Starting from the complete information optimal contract (A*, B*) that is not incentive compatible, we can con-
struct an incentive compatible contract (B*, C') with the same production levels by giving a higher transfer to the

agent producing ¢; (Figure 15.4).
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i)
Up =t —0rqg = AOq3; ‘
Ul =t —60q=0
Principal’s indifference
curve: S(q) —t=Vz
U =t—0rg=20
Principal’s indifference
curve: S(q) —t=V;
q
Figure 15.4: Rent needed to implement the first-best outputs
The contract C' is on the f,-agent’s indifference curve passing through B*. Hence, the 01, -agent is now indifferent
between B* and C. (B*, C) becomes an incentive-compatible menu of contracts. The rent that is given up to the
61,-agent is now Afgqj;.
15.26 Rather than insisting on the first-best production level ¢}; for an inefficient type, the principal prefers to slightly

decrease g by an amount dg.

« By doing so, expected efficiency is just diminished by a second-order term %[5 (g};)|(dg)? since ¢j; is the

first-best output that maximizes efficiency when the agent is inefficient.

« Instead, the information rent left to the efficient type diminishes to the first-order A dq.

Of course, the principal stops reducing the ineflicient type’s output when a further decrease would have a greater
efficiency cost than the gain in reducing the information rent it would bring about. The optimal trade-off finally

occurs at (ASB, BSB) as shown in Figure 15.5.

t,
Up=1t—0rq= A0q% )
U =1¢— Og =0

Principals indifference
curve: S(q) —t = V3E
UP =t—0Lg=0

Principal’s indifference
curve: S(q) —t = V3P

Figure 15.5: Second-best contracts
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15.27 Optimal contract with shutdown.

(1) If the equation S"(¢58) = O + %A@ has no positive solution, ¢3¢ should be set at zero.
(2) Then B®® coincides with O and A® with A* in Figure 15.5.

(3) No rentis given up to the 61, -agent by the unique non-null contract (¢} , ¢} ) offered and selected only by agent
0r.

(4) The shutdown of the agent occurs when 6 = 6;..

With such a contract, a significant inefliciency emerges because the inefficient type does not produce. The benefit

of such a contract is that no rent is given up to the efficient type.

15.28 More generally, such a shutdown contract is optimal when

B(S(qr) —0ra;) > B(S(¢5®) — OLas® — Abgiy) + (1 — B)(S(a3) — Ouasy)

or, noting that ¢} = ¢3°, when
BAOqy; > (1= B)(S(a3) — Omayy)-

The left-hand side represents the expected cost of the efficient type’s rent due to the presence of the inefficient
one when the latter produces a positive amount ¢3. The right-hand side represents the expected benefit from
transacting with the inefficient type at the second-best level of output. Thus, shutdown for the inefficient type is

optimal when this expected benefit is lower than the expected cost.
15.29 When Inada condition S’(0) = +o0 is satisfied and lim,_,o S’(¢)g = 0, the shutdown is never desirable.

(1) 5 defined by S"(¢58) = 0 + %A@ is necessarily strictly positive since S’(0) = +o0.
2) 5
S(qzr) — (0m + mm)qi}* = S(q3) — S'(a%)ar

is strictly positive since S(g) — S’(q)q is strictly increasing with ¢ and is equal to zero for ¢ = 0. Hence,
BAOqy < (1= B)(S(ayw) — Ondir)

and the shutdown of the least efficient type does not occur.

15.1.3 The revelation principle

15.30 In the above analysis, we have restricted the principal to offer a menu of contracts, one for each possible type.

« First, one may wonder if a better outcome could be achieved with a more complex contract allowing the agent

possibly to choose among more options.

« Second, one may also wonder whether some sort of communication device between the agent and the prin-
cipal could be used to transmit information to the principal so that the latter can recommend outputs and

payments as a function of transmitted information.

The revelation principle ensures that there is no loss of generality in restricting the principal to offer simple menus
having at most as many options as the cardinality of the type space. Those simple menus are actually examples of

direct revelation mechanisms for which we now give a couple of definitions.
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15.31

15.32

15.33

15.34

15.35

Definition: A direct mechanism is a mapping g: © — A.

The principal commits to offer the transfer ¢(¢) and the production level ¢(6) if the agent announces the value ¢
forany § € ©.

Definition: A direct mechanism g is truthful if it is incentive compatible for the agent to announce his true type for

any type, i.e., if the direct mechanism satisfies the following incentive compatibility constraints:
t(0r) —0rq(0r) = t(0n) — 0Lq(0n) and t(0n) — Orq(Or) = t(0L) — Orq(6L).

A more general mechanism can be obtained when communication between the principal and the agent is more
complex than simply having the agent report his type to the principal. Let M be the message space offered to the
agent by a more general mechanism. This message space can be very complex. Conditionally, on a given message
m received from the agent, the principal requests a production level ¢(m) and provides a corresponding payment
t(m).

A mechanism is a message space M and a mapping §: M — A.

When facing such a mechanism, the agent with type 6 chooses a best message m™*(6) that is implicitly defined as
t(m*(0)) — 0G(m*(0)) > t(m) — 0G(1m) for all i in M.

The mechanism (M, §) induces therefore an allocation rule a(f) = (G()m*(6),(m*(0))) mapping the set of
types © into the set of allocations A.

Revelation principle: Any allocation rule a(6) obtained with a mechanism (M, §) can also be implemented with a

truthful direct mechanism.

Proof. Letg = gom™. O

15.1.4 General utility function for the agent

15.36

15.37

15.38

Consider a general cost function C(q, #) with the assumption

Cq >0, Cy >0, qu > 0, qug > 0.

The generalization of the Spence-Mirrlees property used so far is now
qu > 0.

This condition still ensures that the different types of the agent have indifference curves which cross each other at

most once. This condition simply says that a more efficient type is also efficient at the margin.
Optimal contract entails:

« No output distortion with respect to the first-best outcome for the efficient type, ¢5* = ¢} with

S'(q1) = Cq(qz, 0r)-
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A downward output distortion for the inefficient type, g3} < g}; with

S'(q5r) = Coldir: Onr)

and

') = Calathom) + TG

where ®(q) = C(q,0n) — C(q,0r) with @ > 0 and ®” > 0 from the assumptions made on C.
« Only the efficient type gets a positive information rent given by U® = ®(¢52).
« The second-best transfers are respectively given by t8 = C(q},0.) + ®(¢5¢) and t3F = C(¢3F, 0).
15.39 We still have
q =41 > qn > a3
o S'(q1) = Cy(q;..01) < Cylqy,0m) because Cyg > 0. Hence, using the fact that S(q) — C(q, 0 ) is concave
in ¢ and maximum for gj;, we have ¢] > ¢j;.

« ® > 0 implies that S’ (¢5F) > C, (¢, 0 ). Thus, ¢5° < ¢};.

15.1.5 Nonresponsiveness

15.40 Assume that the principal’s value function .S depends directly on € and is written as S(g, 6).

We still assume that .S, > 0 and S, < 0. Furthermore, we assume that S;9 > 1. This assumption simply means

that the marginal gross value of trade for the principal increases quickly with the agent’s type.

15.41 The first-best contracts are the solutions to the following problem.

maximize S(q,0;) —t
(gi,t:)€EA (2.6:
subjectto ¢t — ¢(q,0;) > 0.

Thus, the first-best productions are now defined by
Sq(dr,,0r) = 01 and Sy (g7, 0n) = O

15.42 Since S,(g* (), 0) = 6, by implicit function theorem, we have

dg* Sq0— 1
q q0 >

7@ =" —>0

Thus, ¢7 = ¢*(01) < ¢*(Ou) = ¢}
However, the monotonicity condition implies that ¢} > ¢7;.

That is, there exists a strong conflict between the principal’s desire to have the 0 -type produce more than the 67, -
agent for pure efficiency reasons and the monotonicity condition imposed by asymmetric information. This is what

Guesenerie and Laffont (1984) call a phenomenon of nonresponsiveness.

15.43 Nonresponsiveness makes screening of types quite difficult:
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(1) the second-best optimum induces screening only when ¢5® = ¢} and ¢}° defined by

S, (a3, 0m) = 0n + %AG

satisfy the monotonicity condition ¢3* > ¢%.
(2) When § is small enough, ¢3¥ defined above is close to the first-best outcome g},

(3) Thus, we have ¢3¢ > ¢5?, and monotonicity condition is violated.

Nonresponsiveness forces the principal to use a pooling allocation.

15.2 Pricing a single indivisible good

15.44

15.45

15.46

15.47

15.48

15.49

Literature:

A seller seeks to sell a single indivisible good. The seller herself does not attach any value to the good. Her objective

is to maximize the expected revenue from selling the good, that is, she is risk-neutral.

There is just one potential buyer. The buyer’s von Neumann-Morgenstern utility if he purchases the good and pays

a monetary transfer ¢ to the seller is § — ¢.

Here 0 is the number that we can interpret as the buyer’s valuation of the good. We shall refer below to 6 as the
buyer’s type.
We have assumed that the buyer’s utility is additively separable—the sum of the utility derived from the good and

the disutility resulting from the money payment.
We have also assumed that the buyer is risk-neutral with respect to money, that is, his utility is linear in money.

Utility functions that satisfy additive separability of utility and linearity of utility in money are referred to as “quasi-

linear” utility functions.

We assume that the value of 6 is known to the buyer, but it is not known to the seller. The seller has a subjective
probability distribution over possible values of 6. To be more precise, 6 is assumed to be a random variable with

the cumulative distribution function F' and the strictly positive density function f on [6, 6].

Our interest is in procedures for selling the good which the seller should adopt to maximize expected profits.

One obvious way would be to pick a price p and to say to the buyer that he can have the good if and only if he is
willing to pay p. In this procedure, the probability that the buyer’s value is above p, and hence he accepts a price
offer p,is 1 — F(p). Seller’s expected revenue is therefore p - (1 — F'(p)), and the optimal strategy for the seller is
to pick some price that maximizes p - (1 — F(p)).

Is picking a price p really the best the seller can do? What else could the seller do? The seller could, for example,
negotiate with the buyer. The seller could offer the buyer a lottery where in return for higher or lower payments the

buyer could be given a larger or smaller chance of getting the object.

Our objective is thus to study the optimality problem in which the seller’s choices are a lottery (design) and a
strategy in the game associated with the lottery and in which the seller’s objective function is expected revenue,
with the constraint that the buyer will choose an expected utility maximizing strategy and several other constraints

introduced below.
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IF" 15,50 A direct mechanism consists of functions g and ¢ where

q:160,0] = [0,1], ¢t:[0,0] —R.

The interpretation is that in a direct mechanism the buyer is asked to report 6. The seller commits to transferring
the good to the buyer with the probability ¢(#) if the buyer reports that his type is 6, and the buyer has to pay the
seller ¢(0) if he reports that his type is 6.

15.51 Given a direct mechanism (g, t), we define the buyer’s expected utility u(6) conditional on his type being 6 by
u(0) = 0q(0) — t(0).

IE 15.52 A direct mechanism (g, t) is incentive compatible (IC) if truth telling is optimal for every type 6 € [0, 0], that is, if

u(f) > 0q(0') —t(¢') forall 6,6’ € [0, 6)].

15.53 Lemma: If a direct mechanism (g, ) is IC, then g is increasing in 6.
Proof. Straightforward. O

15.54 Lemma: If a direct mechanism (g, t) is IC, then

 wu isincreasing,
o u is convex, and hence differentiable except in at most countably many points,

o for all 8 for which it is differentiable, it satisfies u'(8) = ().
Proof. (1) IC means that for all § we have

w(f) = max_0q(0) — t(0").
0'€[9,0]

(2) Given any value of 0, 0g(0’") — ¢(0’) is an increasing and affine (and hence convex) function of 6.

(3) The maximum of increasing functions is increasing, and the maximum of convex functions is convex. There-

fore, w is increasing and convex.
(4) Convex functions are not differentiable in at most countably many points.

(5) Consider any 6 for which u is differentiable. By IC we have

w(® +¢) — u(0) [(6 + €)q(6) — £(0)] — [09(6) — £(6)]

leijlo1 € = lelfl(} € = a(0).
Similarly,

g MO =0 =0 1000) =10 = [0 = Ja®) 0] _

el0 € T €lo € '

(6) Putting the two inequalities together, we obtain u/(6) = ¢(#) whenever w is differentiable.

15.55 Proposition (Payoff equivalence): Consider an IC direct mechanism (g, t). Then for all € [0, §] we have
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15.56

15.57

BE" 15.58

15.59

15.60

15.61

Proof. (1) wis convex, then u is absolutely continuous; see Corollary 17 in Royden (1988, Chapter 5).

(2) By Theorem 10 in Royden (1988, Chapter 5), it is the integral of its derivative.

Proposition (Revenue equivalence): Consider an IC direct mechanism (g, t). Then for all § € [0, §] we have
0
1) = 0) + 0a(6) — 0a(6)] ~ | a(a)da.

Proposition: A direct mechanism (g, ¢) is IC if and only if

¢ isincreasing.

o Forevery 0 € [0, 0] we have

t(0) = t(0) + [0q(0) — 8q(0)] — [ q(x)dz.

Proof. (1) The “only if” part is due to Lemma 15.53 and Proposition 15.56.

(2) For any 6 and 6', we have

0
[0q(0) — £(0)] — [6q(6") — £(6)] = / q(z)dz — q(6")(6 — 0') = 0.

’

O

A direct mechanism is individually rational (IR) if the buyer, conditional on his type, is willing to participate, that

is, if

u(f) > 0forall§ € [6,0].

Proposition: An IC direct mechanism (g, t) is IR if and only if u(8) > 0, or equivalently 0¢g(8) > ¢(9).
Proof. Due to Lemma 15.54.

Proposition: If an IC and IR direct mechanism (g, t) maximizes the seller’s expected revenue, then

0q(0) = t(0).

Proof. If 0q(0) > t(f), then the seller could increase expected revenue by choosing a direct mechanism with the

same ¢, but a higher ¢(9).

Remark: If the buyer has only two possible types, the revenue equivalence principle does not necessarily hold.

Let 0 and 67, be buyer’s types. Firstly, IR for the low type should be binding, that is, 6,¢(61) = ¢(01).
Next, IC for the high type should be binding. Otherwise, we have

0rq(0n) —t(0m) > 0mq(0L) — (L) > Orq(fL) — (A1) = 0.

Then the seller can increase ¢(6 ) without breaking IC and IR.

O
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15.62

15.63

15.64

Thus, we have
t(0n) =t(01) + [0nq(0n) — 0rq(0L)].

. 6 . o .
Since |, 0LH ¢(z) dx may not be zero, the revenue equivalence principle does not necessarily hold.
In the discrete case, the distance between two types allows the variety of the transfers.

For example, let 6, = 1, 67 = 2, Prob(6y) = Prob(dr) = 1, ¢(0) = 0,q(0x) = 1,t(0.) = 0,t(0g) = 2.

Let M be the set of all increasing functions ¢: [0, 8] — [0, 1].

Lemma:

o M is compact and convex.

o Let X be a compact, convex subset of a vector space, f: X — R be a continuous linear function. Then the

set E of extreme points of X is nonempty, and there exists an e € F such that f(e) > f(z).

« A function ¢ € M is an extreme point of M if and only if ¢() € {0, 1} for almost all 6.

The lemma above implies that the seller can restrict her attention to nonstochastic mechanisms. But a nonstochastic

mechanism is monotonic if and only if there is some p* € [0, 6] such that ¢(0) = 0if @ < p*and ¢(0) = 1if0 > p*.

Proposition: The following direct mechanism maximizes the seller’s expected revenues among all IC and IR direct

mechanisms:

. 0, iff <p* 0, iff <p*
p* € argmaxp(l — F(p)), q(0) = , 1(0) = :
pe(8,6] 1, iff > p* p*, iff > p*

It may seem that we have gone to considerable lengths to derive a disappointing result, namely, a result that does
not offer the seller any more sophisticated selling mechanisms than we are familiar with from elementary microe-

CONomics.

15.3 Nonlinear pricing

15.65

15.66

15.67

Literature:

Consider a transaction between a seller and a buyer, where the seller seeks to sell a good to the buyer.

The buyer’s utility if she purchases ¢ units of the good and pays a monetary transfer ¢ to the seller is
ub(Qv t, 0) = Gv(q) —t,

where v(0) = 0,v'(q) > 0and v"(q) < 0 for all ¢. The characteristics # > 0 is a number that we can interpret as
the buyer’s valuation of the good.

Assuming that the seller’s unit production costs are given by ¢ > 0, her profit from selling ¢ units against a sum of
money t is given by
us(g,t) =t — cq.

We assume that the value of 6 is known to the buyer, but it is not known to the seller. This seems plausible in many
contexts. Buyers often know better than sellers how well some particular product meets their preferences. We shall
refer below to 6 as the buyer’s type. While the seller does not know the buyer’s type, she does have a subjective

probability distribution over possible values of 6.
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15.68 The question of interest here is, what is the best, that is, the profit maximizing, contract (g, t) that the seller will be

able to induce the buyer to choose?

Let A be the set of all feasible contracts, that is,

A={(q,t)| ¢ >0,t € R}.

15.3.1 The model with two types

15.69 We suppose that set of possible characteristics

0= {QH,HL}, with 0 > 0r.

The first-best contract: perfect discrimination

15.70 If the seller can observe the types 6 of the buyer, she can then treat each type of buyer separately and offer her a

15.71

15.72

type-specific contract, that is, (g;, ¢;) for type 8; (i = H, L).

The seller will try to maximize her profits subject to inducing the buyer to accept the proposed contract. Assume

the buyer obtains 0 if she does not take the seller’s offer. So the seller will solve the following problem:
maximize t; — cg;
(qisti)€A

subjectto  0;v(g;) —t; > 0.
The solution to this program will be the first-best contract menu {(g;, t}) };=#, 1, such that

0;v'(¢f) = cand O;v(q}) =t fori = H, L.

Figure 15.6 illustrates the two first-best contracts when v(q) = V& ¢ = %, 0;, = 1and 0 = 2. The two curves
shown are the indifference curves corresponding to zero utility for the two types of the buyer. The lines tangent to
them are isoprofit curves, with equation ¢ = cq + K, where K € R. Note that the utility of the buyer increases

when going southeast, while the profit of the seller increases when going northwest.

Since Oy > 07, and v’ is decreasing, we have

qE > qL-
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0u-type buyer’s indiffer-
ence curve: Opv(q) =t

th

Seller’s isoprofit curve

01 -type buyer’s indiffer-
ence curve: Orv(q) =t
Seller’s isoprofit curve

T

Figure 15.6: Illustration of a first-best contract, where v(q) = /g, ¢ = %, 0 =land 0y = 2.

The second-best: optimal nonlinear pricing

15.73 We now consider the case where the seller cannot observe directly the buyer’s type. We assume that

Prob(6 = 601,) = fand Prob(d = 0y) =1—f.

If the seller proposes the first-best contracts (¢}, t}), the 6 5 -type buyer will choose (¢} , 3 ), the contract designed
for the 01 -type:

u(qr,tr,0m) = Ogv(ar) — tn = (0n — O0r)v(qr) + [Orv(ar) — 1L

where the inequality holds strictly whenever ¢; > 0. Thus, the two types cannot be treated separately any more.

Both will choose (g7} , t} ); see Figure 15.7.
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th

Seller’s isoprofit curve

Figure 15.7: The 6 -type buyer will choose (g , ¢}, ), where v(q) = /¢, ¢ = %,6, = 1 and 6 = 2.

T

0u-type buyer’s indiffer-
ence curve: Opv(q) =t

0 -type buyer’s indiffer-
ence curve

Seller’s isoprofit curve

01 -type buyer’s indiffer-
ence curve: Orv(q) =t

15.74 Our interest is in the best pair of contracts (the second-best optimum). At first sight, this looks like a hard problem,

as the contract set that the seller can use is potentially large. However, a simple, yet crucial result enables us to get

a handle on this optimization problem. The result says that we can restrict our attention to a small set of contracts.

15.75 A menu of contracts {(qr,tr.), (qzr, trr)} is incentive compatible when (g, t1,) is weakly preferred to (g, tzr) by

type-01, buyer, and (qp, t5r) is weakly preferred to (qr,, t,) by type-65 buyer; that is,

15.76 A menu of contracts {(qr,tr), (qm,tm)} is individual rational if

Orv(qr) —tr > 0rv(qu) — to,

Opv(qu) —tu > Ogv(qr) —tr,

Orv(0r) —tr >0,
QHU(QH) — tH Z 0,

15.77 'The problem of the seller is therefore to solve

subject to

max Bltr, —cqr] + (1 — B)[ta — cqul,

(qr.tr),(qm te)

Orv(gr) —tr > 0rv(gu) — tu,

Ouv(gu) —ta > O0gv(qr) —tr,

(IC)
(ICH)

(IRL)
(IRg)

(ICr)
(ICwH)
(IRp)
(IRg)
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15.78

15.79

15.80

15.81

15.82

15.83

Step 1: Equation (IRf) is not bind at the optimum. Indeed Equation (IR ;) will be satisfied automatically because
of Equations (IR) and (ICg):

Orv(qe) —tu > 0pv(qr) —tr > 0pv(qr) —tr > 0. (15.1)

Step 2: Equation (IRy) is bind at the optimum, so t;, = 6rv(qr). If Equation (IR;) was not bind, so would be
Equation (IRf7) by Equation (15.1). We then could increase ¢;, and ¢ by the same amount. This would increase

the seller’s profit without any effect on incentive compatibility.
Step 3: Equation (ICy) is bind at the optimum, so t;7 — t;, = O [v(qr) — v(gr)]. Assume not, then
Orv(qm) —tw > 0nv(qr) —tr > 0pv(qr) —tr > 0.

We can therefore increase ¢z without breaking incentive compatibility or individual rationality. This obviously

increases the seller’s profit, and hence the original contract cannot be optimal.
Step 4: ¢ > qr, at the optimum. To see it, we add Equations (IC;,) and (IC) and get
Orlv(qn) —v(qr)] = Or[v(gr) —v(gr)]-

Since O > 61, and v is increasing, we have ¢ > qr..

Step 5: Equation (ICy) is not bind at the optimum. This because

Orv(qr) —tr = Onviqr) —tr — (0m —0r)v(qr)

= GH’U((]H) —tg — (91.[ — HL)U((]L) By Equation (ICg)
=0rv(qu) —tu + (Ou — 00)[v(gn) — v(qr)]
>0rv(qn) —to By Step 4

Step 6: The seller’s problem now reduces to

max Bltr —cqr] + (1 — B)[tu — cqul,
(qr,tr),(qm tH)

subject to

Ouv(gr) —ta = Onv(qr) —tr,
9Lv(qL) — tL =0.

Substituting for the values of 7, and ¢y in the seller’s objective function, we obtain the following unconstrained

optimization problem:

max B[0rv(qr) — cqr] + (1 = B)[0nv(qn) — (O — 0r)v(qr) — cqul.

aL.qu
The following first-order conditions characterize the unique interior solution (¢5?, ¢3%) to the above program, if
this solution exists:

010’ (q3%) = cand 00" (¢5F) = — e > C
— B0ty
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¢ 0 -type buyer’s indiffer-
1 ence curve: Ogv(q) =1

01 -type buyer’s indiffer-

ence curve: Orv(q) =t

tr

SB
tL

Figure 15.8: Illustration of a second-best contract, where v(q) = /¢, ¢ = %, 0, =1,0g =2and 8 = %

15.85 ¢35 = ¢}y and ¢3° < gj.

The 01 -type buyer has no surplus, while the other type has a strictly positive information rent:

Onv(gy) =ty = Onv(qr’) — 7 = (O — Or)v(qr)-

15.3.2 'The model with a continuum of types

15.86 Suppose that @ is distributed according to F  on [6, ] (with density f > 0).

15.87 We assume that §v'(0) > c. This means that the largest marginal willingness to pay that the buyer might possibly
have is above the marginal cost of production. This assumption ensures that the seller and the buyer have an

incentive to trade at least for the largest type of the buyer.

15.88 A final assumption is that lim,_,~, #v'(q) < c. This means that even the highest type’s marginal willingness to pay
falls below c as ¢ gets large. This assumption ensures that the quantity that the seller supplies to the buyer is finite

for all possible types of the buyer.

15.89 A direct mechanism consists of functions g and ¢ where
q: 0 —->Ry, t:0—>R.

The interpretation is that the buyer is asked to report 6, and the seller commits to selling quantity ¢(6) to the buyer
and the buyer commits to paying ¢(0) to the seller.

15.90 Given a direct mechanism, we define the buyer’s expected utility u(0) conditional on her type being 6 by

u() = 0v(q(0)) — t(6).
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15.91 A direct mechanism (g, t) is incentive compatible (IC) if truth telling is optimal for every type, that is, if
0v(q(0)) — t(0) = Ov(q(0")) — t(¢") forall 6,6" € ©.
15.92 A direct mechanism is individually rational (IR) if the buyer, conditional on her type, is voluntarily willing to
participate, that is, if
u(f) > 0forall§ € O©.
15.93 Proposition: A direct mechanism (g, ¢) is incentive compatible if and only if ¢ is increasing, and
0
t(0) =t(0) + [Ov(q(ﬂ)) - Qv(q(Q))} + / v(g()) dz forall 6 € ©.
)
15.94 Proposition: An IC direct mechanism (g, t) is IR if and only if u(¢) > 0.
15.95 The seller’s problem reduces to
0 0
mx  U(o) = [ [ev(qw» - [ elatw) do - cq<9>] £(0)do.
q: [Q79]_)]R+ 9 2]
q 1s 1ncreasing
15.96 Since
0 0 0 o 6 6
/0 /‘9 v(q(z)) dz f(0)df = / / v(q(z)) f(0) dd dz = / v(q(z)) [ f(0)doda
o K 0
= / v(q(z)) (1 = F(z)) dz = / v(q(8)) (1 — F(9)) dob,
we have
0 0 0 0
Ut = [ 00®) 10080~ [ [ ola@)dzr@ra - [ ca@rso)e
(2] g Jo (2]
[ ota@) (0= 500 ca| 10010
= v(q - —cq
0 f(0)
15.97 If the seller can observe 6, then the seller can get the surplus 6v(gq(6)) — cq(8).
When 6 is not observable, the surplus 1(6) = v(q(6)) (9 - 1}1(!;()9)> — cq(0) (called virtual surplus) generated
by the transaction with buyer type 6 that the seller can recover from the buyer is lower than it would be if 6 were
observable. This can be seen from the fact that we subtract a positive term from 6 in 9(6). The subtracted term
represents the reduction in surplus recovered by the seller that is due to the constraint that she must offer incentives
to reveal  truthfully. This term is called the buyer’s information rent. § — 1}1([;()9) is called the virtual type of 6.
15.98 Suppose we ignore for the moment the constraint that ¢ must be increasing. Then the seller can choose ¢(6) for

each 0 separately to maximize the expression in the square bracket.

The first-order condition for maximizing (9) for given 6 is

v'(@)9(0) = c.

o If () < 0, then there is obviously no solution, and hence the optimal choice is ¢(#) = 0.
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o If¢(0) > 0and v’ (0)y(0) < ¢, since v’ is decreasing, ¢(0) = 0.
o If9p(0) > 0and v'(0)(6) > c, there is a unique solution.

15.99 Regular assumption: () is increasing in 6.

The optimal g is the intersection point of v’(g)(6) with ¢ or 0, whatever is greater. It is then easy to see that the

optimal g is increasing.

15.100 A sufficient condition for the regular assumption is that

I S ;f)()e) is increasing in . This condition is often referred
to as the “increasing hazard rate” condition. Think of F'() as the probability that an individual dies before time

6. Then 1 — F'(0) is the probability that the individual survives until time 6, and 7 g }‘?()9) can be thought of as the

conditional probability of dying at time 6 of an individual that has survived until time 6.

15.101 Proposition: Suppose that F is regular. Then an expected profit maximizing choice of g is given by

o Ifv'(0)4(0) < ¢, then ¢(0) = 0.
o Otherwise, ¢(0) is determined by v'(¢)¥ () = c.

15.102 Numerical example: Let © = [0, 1], ¢ = 1, v(q) = \/g and F(0) = 0.
(1) Regular assumption is satisfied since )(f) = 20 — 1 is increasing in 6.
(2) Next we determine for which values of 6 the optimal quantity ¢(#) equals zero:

V'(0)9(0) <0 & ¥(f) <0s 0 <0.5.

(3) If6 > 0.5, the optimal ¢(6) is given by v'(q)¥(6) = ¢, and so ¢(0) = (0 — $)*.
(4) The corresponding transfer ¢(6) is zero if # < 0.5, and if § > 0.5 it is given by

0 2
H6) = bu(a() - [ ola(o)do =5

ool =

2

(5) We can express the transfer ¢ as a function of ¢:

1 1
H0) = 54+ 5

where g € [0,1/4].

15.4 Insurance

Literature: Rothschild and Stiglitz (1976).

15.5 Sequential screening

15.103 Literature: Courty and Li (2000) and Chapter 11.2.1 in Borgers (2015).

15.104 The classic mechanism design approach considers a static framework, where agents observe private information
only once, and the mechanism implements a single allocation. The model of sequential screening developed by
Courty and Li (2000) analyzes a framework in which the allocation itself—the sale of a single indivisible good—is

still static, but the agents private information changes over time.
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15.5.1 A motivating example

15.105

15.106

15.107

15.108

Consider the demand for plane tickets. Travellers typically do not know their valuations for tickets until just before

departure, but they know in advance their likelihood to have high and low valuations.

A monopolist can wait until the travellers learn their valuations and charge the monopoly price, but more consumer
surplus can be extracted by requiring them to reveal their private information sequentially. (To be shown later.)
Suppose that one-third of all potential buyers are leisure travellers whose valuation is uniformly distributed on
[1,2], and two-thirds are business travellers whose valuation is uniformly distributed on [0, 1] U [2, 3].

Intuitively, business travellers face greater valuation uncertainty than leisure travellers.

Suppose that cost of flying an additional traveller is 1.

If the seller waits until travellers have privately learned their valuations, she faces a valuation distribution distribu-

tion that is uniform on [0, 3]. By solving

m;X%(?) -p)(p—1),

the optimal monopoly price is 2 with expected profit of %, thus excluding all leisure travellers as well as half of

business travellers who turned out to have low valuations.
Suppose instead that the seller offers two contracts before the travellers learn their valuation, one with an advance
payment of 1.5 and no refund, and the other with an advance payment of 1.75 and a partial refund of 1.

Leisure travellers strictly prefer the contract with no refund: since the valuation of a leisure traveller is at least 1
which is higher than the partial refund in the second contract, leisure travellers will never get refund when they

choose the second contract.
Business travellers are indifferent between the two contracts so we assume that they choose the contract with refund.
. 2.
The monopolist separates the two types and earns an expected profit of 5:
1 1 1 2
(LB -1)+3(15-1)+3(L.75-1) = 3,

—_—— —/ — Y—/ —
[0,1] (1,2] (23]

twice as much as the profits of charging the monopoly price after travellers have learned their valuations.

15.5.2 Optimal menu of refund contracts: two-type case

15.109 Consider a monopoly seller of airplane tickets facing two types of travellers, B and L, with proportions pp and

pr, respectively. Throughout this subsection, we will think of type B as the “business traveller,” and type L as the

“leisure traveller”

Suppose that the range of valuations is [v, 7).

15.110 There are two periods.

« In the beginning of period one, the traveller privately learns his type which determines the probability distri-

bution of his valuation for the ticket. The seller and the traveller contract at the end of period one.

« In the beginning of period two, the traveller privately learns his actual valuation v for the ticket, and then

decides whether to travel.
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The contract
is signed

Traveller learns
his valuation

Traveller learns the
distribution of his valuation

Figure 15.9

t > time

15.111 Each ticket costs the seller ¢. The seller and the traveller are risk-neutral, and do not discount. The reservation

utility of each type of traveller is normalized to zero.

15.112 The business type may value the ticket more in the sense of first-order stochastic dominance (FSD): type B’s dis-

tribution of valuation F'p first-order stochastically dominates the leisure type’s distribution F7, if

Fp(v) < Fp(v) forallv € [v,7].

It means that the business type has greater mean valuation.

Alternatively, the business type may face greater valuation uncertainty in the sense of mean-preserving-spread

(MPS): Fp dominates F, by MPS if they have the same mean and

v

It means that the business type has greater uncertainty.

Let f and fr, be the density functions of two types.

/U (Fp(u) — Fr(u)) du > 0 forallv € [v, ).

15.113 A refund contract consists of an advance payment a at the end of period one and a refund k that can be claimed at

the end of period two after the traveller learns his valuation.

Clearly, regardless of the payment a, the consumer travels only if he values the ticket more than k.

15.114 The seller offers a menu of refund contracts {(ap, k), (ar, k1) } hoping that a type- B traveller will select (ap, kp)

and a type- L traveller will select instead (ar,, kz.).

15.115 A menu of refund contracts {(ap, kp), (ar, kr)} is incentive compatible if

v

—ap + k’BFB(k‘B) —|—/
ks

—aL+kLFL(kL)+/ vdFp(v) > —a3+kBFL(kB)+/ vdFr(v)

kr

15.116 A menu of refund contracts {(ap, k), (ar, kr)} is individually rational if

v

—aB—|—kBFB(kB)—|—/ vdFp(v) >0

kB

o
—aL+kLFL(kL)+/ vdFL(v) >0
kr

UdFB(U) > —CLL—F]{;LFB(/{JL)—F/ UdFB(’U)

(ICB,1)

kL
(IC,B)

kB
(IRp)
(IRL)
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15.117 The profit maximization problem can be written as

maximize Z j I (at — ki Fy(ke) — 0(1 - Ft(kt)))

(apkp)
(an kr) t=B, L

subjectto  Equations (ICp 1,)-(IRy).

15.118 Lemma: Under either FSD or MPS, IR, and ICp 1, imply IR 5.

Proof. (1) ICp, 1, implies

—ap —|—/ max{kp,v}dFp(v) > —ar, +/ max{kr,v}dFg(v).

v v

(2) Case 1: Since max{ky,, v} is an increasing function of v, if Fiz dominates F', by FSD,
—ap + /v max{kr,v}dFp(v) > —ar + /U max{kr,v} dFg(v).
Case 2: Since max{kr,, v} is a convex function, if Fz dominates F';, by MPS, we also have
—ap+ / " max{ky. o} dFp(0) > —ay + / " max{ky. v} dFu(v).

(3) IRy, implies

—ay, —|—/ max{kr,v}dFL(v) > 0.

v

(4) Thus,

7(J,B+/ max{k:B,v}dFB(v) > 0.

v

That is, IR g holds.
O

The business type gets more utility than the leisure type from any refund contract, whether it is defined by greater

mean valuation or by greater uncertainty.

15.119 The lemma above implies that IRy, binds in the optimal menu of refund contracts, otherwise increasing both ar,
and ap by the same amount would increase profits.
Also, ICp 1, binds in the optimal menu of refund contracts, otherwise profit could be increased by increasing ap.

15.120 Substituting IRy, and ICp 1, into the objective function and ignoring IC; p, we obtain the following “relaxed”

problem:

PB - (aB — kpFp(kp) —c(1— FB(kB))) +pL- (GL —kpFr(kp) —c(1 - FL(k’L)))

(aB,kB),(ar,kL)

max pg - </kv vdFp(v) — /U vdFp(v) — kL Fp(kr) + kL Fr(kr) +/

kpkr B kL kL

Yopr- (/v vdFp(v) —e(1 - FL(k'L)))

kr

v

vdFy(v) —¢(1 - FB(kB))>

max pB/ vdFB(v)—ch/ 1dFB(U)+pL/ vdFL(v)—ch/ 1dFy(v)

kp,kL kp kg kr kr
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—pB/ vdFB(”)+pB/ vdFr(v) — pkrF(kr) + pekr Fr(kL)
k:L k?L

= max [ pato =) do+ [ oo - i)~ pa(vFnl0)

kp.kL Jk g kL

A —/ FB(U)dU> —ka’LFB(k’L)
L kL

kr

+pB (UFL(U) - /kz FL(“N”) +ppkrFr(kr)

v

= max /: pB(v—c)fB(v)dv—F/v pL(v—c)fL(v)dv—/ pa(FL(v) — Fp(v))dv.

ks.kL Jgp kr kL

S(kr) R(kr)

15.121 Since the choice of refund for the business type is unconstraint, it should be equal to ¢ to maximize the surplus from

the business type.

15.122 Let 5
Sthe) = [ (w=os)d

L

be the surplus from the leisure type, and
Riky) = / (Fu(v) - Fg(v)) dv
kr

be the rent to the business type, both as function of the refund to the leisure type.

The solution to the relaxed problem is given by

argmax pr,S(k) — ppR(k).
k

15.123 Proposition: Under either FSD or MPS, in the optimal menu of refund contracts, kg = cand ky, € argmax, pr,S(k)—
peR(k).
Proof. (1) It suffices to show that IC;, g is satisfied by the given {kp, k. }.

(2) Since ICp, 1, binds, we have

kB
aL—aB:/ UdFB(’U)—FkLFB(k‘L)—kBFB(k‘B)
k

kg kp kL

. — FB(U)dU+kLFB(kL)—kJBFB(k‘B): FB(’U)dU.
L kL kB

(3) Then we have

v v kL
—aL—f—kLFL(kL)—i-/k vdFL(v)z—aB—FkBFL(kB)—&-/k vdFL(v)—/k (Fg(v) — Fr(v)) dv.

(4) Thus, ICy, p is satisfied if and only if

kr
/ (Fp(v) — Fr(v)) dv <0.

kB

(5) Case 1: Ifthe solution to the relaxed problem has kj, = ¢, then fkkBL (Fp(v)—Fpr(v)) dv = 0. The proposition

follows immediately.
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(6) Case 2: Suppose that the solution k;, # ¢, and fkkBL (Fp(v) — Fr(v)) dv > 0.
(i) Now consider an alternative menu where the two types have the same refund c.
(ii) The surplus S(c) from type L is greater in the alternative menu.

(iii) The rent R(c) to type B is smaller in the alternative menu:

] kL o
Rlc) = /k (Fu(v) - Fg(v)) dv + / (Fu(v) — Fp(v)) dv < / (FL(v) - Fs(v)) do.

L ks kr

(iv) This contradicts the assumption that {kr, kp} solves the relaxed problem.

15.124 Consider the example in last subsection. By definition, the surplus function is

i ifk €[0,1),
S(k) = k—3k?, ifke[1,2],
0, ifk € (2,3],
and the rent function is
1k2, ifk €[0,1),
R(k) =<1 Lk —1)(k—2), ifke][1,2],
1(k—3)2, ifk € (2,3].

According to the proposition above, kg = ¢ = 1 and k;, = argmax, 3S(k) — 2R(k) = 0. Since IR, binds, we
have a;, = 1.5. Since ICp 1, binds, we have ap = 1.75. This verifies the optimality of the refund contracts given

in the last subsection.

15.5.3 Sequential screening: general type case

15.125 We assume that types are continuously distributed over © = [, 8] (§ > 0), with a density function g(#) > 0 and
distribution G(9).

Consumer type is privately learned before contracting.
15.126 Each type 0 is represented by a distribution of valuations over [v, 7], with a differentiable density function f(v |

) > 0 and cumulative distribution function F'(v | §). We assume that the conditional distributions f(v | §) have

the same support for all § € ©.
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15.127

15.128

15.129

15.130

15.131

15.132

15.133

We assume that the family F'(v | 0) (6 € O) is ordered in the sense of FSD so that

Fw|0)<F(v|0)for >0 andv e (v,0).

FSD captures the idea that a higher type 6 is good news about the buyer’s valuation v.

A (dynamic) direct mechanism consists of functions ¢ and ¢ where

q:[0,0] x [v,8] — [0,1], ¢:10,6] x [v,7] — R.
A dynamic direct mechanism requires the buyer to report her private information and their seems a straightforward
extension of static mechanisms.
For dynamic revelation principle, see Proposition 11.1 in Borgers (2015).

Given a direct mechanism, let u(6,v) = vq(0,v) — t(0,v), and

U@ o) = /U w(@,v)f(v]0)dv,

andU(0) =U(0 | 0).
A direct mechanism is incentive compatible if

(a) itisincentive compatible with respect to the ex post valuation v, meaning that truth telling about v is optimal

for every ex ante type 0 and every ex post valuation v:

w(B,v) > vq(0,v") —t(0,v") forall 0 € [0,0] and v,v" € [v, D).

(b) it is incentive compatible with respect to the ex ante type 6, meaning that truth telling about 6 is optimal for

every ex ante type 0 and any subsequent report about v:

002 [ @0 @) -t @) s 0

forall9,60" € [0,0] and all v": [v, 8] — [v,7].

A direct mechanism is individually rational if

U(f) > 0forallf € ©.

Proposition: A direct mechanism is incentive compatible if and only if it satisfies
u(0,v) > vq(0,v") —t(0,v") forall § € [0,0] and v,v’ € [v, 7],

and
U©)>U(]|0)forall 0,0 € ©.

Proof. (1) If a direct mechanism is incentive compatible, then it should satisfy the two equations above.

(2) Assume that the two equations above hold.
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(3) Since u(#,v) > vq(0,v") — t(6,v’") for all §, v and v’, we have
w(@,v) > vq(0',v"(v)) — (0, v"(v))

forall @, vandv”: [v, 7] — [v, 7).

(4) Since U(0) > U0 | 0) = [T u(0',v)f(v | 0) dv, we have

U(6) Z/Uu(e’,v)f(v 10) dvz/v g8, 07 (0)) — 07 ()] £ | 6) do.

15.134 Proposition: A direct mechanism is incentive compatible with respect to the ex post valuation v if and only if
« for every ex ante type 6, the function ¢(6, v) is increasing in v.
o for every ex ante type 6 and ex post valuation v: du(6,v)/0v = q(0,v).
« for every ex ante type 6 and ex post valuation v:

10.0) = 10.2) + (va(0.0) ~ 2a(0.0)) — | " (6,0 do.

v

The proof is the same as that of Proposition 15.57.
15.135 Proposition: If a direct mechanism is incentive compatible with respect to the ex ante type 6, then

o for every ex ante type 6:

0o -~ [ (0.0 201D g,

o for every ex ante type 6:

/Ut(e,v)f(v 10 dv

o 0 7 v /
= [ awoswi0dw [0 - @) e 0w+ [ a5 w

Proof. (1) Incentive compatibility implies

U(9+5)ZU(9|9+5)=/Uu(9,v)f(v|9+6)dv,

foralld € © and § > 0.
(2) Thus, we have

lim L0 +0) U ) hm/” w(0.0) W10+~ f]6) ,
640 510 v 5
:/ “w’“)?ﬁ)‘f(vara();_f(v‘e) dv:/”u(e,wwd%

where we exchange the order of taking the limit and the integral by Lebesgue’s dominated convergence theo-

rem.
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(3) Likewise,

lim
(4) Putting the two inequalities together we obtain

00 = [ oG = [Lao.n G

(5) Hence,

which completes the proof.

15.136 Proposition: If a direct mechanism is incentive compatible, then

t(0,v) =to(0) + vq(0,v) — /U q(0,v") dv’,

where ¢(0) is

[ v v / v v
0.0 - w00+ [ [ a0 @ ar [ [ 0.5 10) - a5 |0)] @ @

15.137 Proposition: If ¢(6, v) is increasing in 6 and v, then there exists a transfer schedule ¢(, v) such that the direct

mechanism (g, t) is incentive compatible.

15.138 Proposition: An incentive compatible direct mechanism is individually rational if and only if U(6) > 0.

15.5.4 Optimal selling mechanism

15.139
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16.1

16.1

16.2

Moral hazard models hidden action, where asymmetric information forms after the parties enter into a relationship.
A moral hazard is a situation in which a party is more likely to take risks because the costs that could result will not
be borne by the party taking the risk. Moral hazard arises because an individual or institution does not take the full
consequences and responsibilities of its actions, and therefore has a tendency to act less carefully than it otherwise

would, leaving another party to hold some responsibility for the consequences of those actions.

In a principal—agent problem, one party, called an agent, acts on behalf of another party, called the principal. The
agent usually has more information about his or her actions or intentions than the principal does, because the
principal usually cannot completely monitor the agent. The agent may have an incentive to act inappropriately

(from the viewpoint of the principal) if the interests of the agent and the principal are not aligned.

In particular, consider that a firm (the principal) hires a worker (the agent) to work on a project, which succeeds
with probability p if the worker exerts effort. The firm may only observe the outcome of the project but not the
agent’s effort level. In such a situation, the firm’s payment contract can only depend on the outcome, which is an
imperfect indicator of the worker’s effort level. If the worker is paid fixed wage or if the payment conditional on

success is not high enough, since effort is costly, the worker will shirk—moral hazard arises.

The principle-agent problem

A principal (employer) hires an agent (employee) for production. The agent can exert a costly effort e € {0,1}.

Exerting effort e implies a disutility for the agent that is equal to ¢)(e) with the normalizations ¢(0) = 0 and

291
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16.3

16.4

16.5

16.6

16.7

16.8

16.9

(1) = 1. The agent receives a transfer ¢ from the principal.

The agent’s utility is assumed to be

U= U(t) - ¢(€)7
where u is increasing and concave, and u(0) = 0. We also assume that h = u ™!, which is increasing and convex.

Production is stochastic, and effort affects the production level as follows: the stochastic production level g can only
take two values {g, g} with Ag 27— g > 0, and the stochastic influence of effort on production is characterized
by the probabilities

Prob(¢ =G| e=0) =mpand Prob(¢g =7 |e=1) = m,

with An £ 71 — 19 > 0.

Effort improves production in the sense of first-order stochastic dominance, i.e., Prob(q < ¢* | e) is deceasing with

e for any given production ¢*. That is, we have

Prob(¢ <gle=1)=1-m <1—m =Prob(g<q|e=0),
Prob(¢ < g|le=1)=1=Prob(g<q|e=0).

The value for the principal of these ¢ units is S(g) where S’ > 0, 5” < 0and S(0) = 0. The marginal value of the
good is thus positive and strictly decreasing with the number of units bought by the principal.

The risk-neutral principal’s expected utility is

Vi=m(5(q) - 1)+ (1 -m)(S(g) —1)

if the agent makes a positive effort e = 1, and

Vo =mo(S(q) —t) + (1 —m0)(S(q) — t)

if the agent makes no effort e = 0.

The problem of the principal is to decide whether to induce the agent to exert effort or not and, if he chooses to do

so, then to decide which incentive contract should be used.

Incentive compatibility: The principal wishes to induce the agent to exert effort, that is,
mu(t) + (1 —m)ut) — ¥ = mou(t) + (1 — mo)u(t).
Individual rationality: The agent is willing to exert effort, that is,
mu(t) + (1 —m)u(t) —¢ >0,

where we normalize the agent’s reservation utility at zero.

The timing is as follows:
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t t t t t > time
Principal offersa  Agentacceptsor  Agent exerts an The outcome The contract
contract {(f,£)} rejects the contract  effort or not q is realized is executed
Figure 16.1

16.2 Complete information

16.10

16.11

16.12

16.13

First assume that the principal can observe effort. Then the principal’s problem becomes:

maximize - (5(q) - )+ (1 —=m)(S(g) —1)

subjectto  mu(t) + (1 — m)u(t) — ¢ > 0.

Indeed, only the agent’s individual rationality matters for the principal, because the agent can be forced to exert a
positive level of effort. If the agent were not choosing positive effort, his action could be perfectly detected by the

principal, and hence the agent could be heavily punished.

Denoting the multiplier of the individual rationality constraint by y and optimizing with respect to ¢ and ¢ yields,

respectively, the following first-order conditions:

where t* and t* are the first-best transfers.

We immediately derive that pu = =5 = (=7 > 0, and finally that t* = #* = ¢*.

Remark:

o The transfer t* the agent receives is the same whatever the state of nature.

« Because the IR constraint is binding we also obtain the value of this transfer, which is just enough to cover
the disutility of effort, namely t* = h(v)). It is called the first-best cost C* of implementing the positive effort

level.

For the principal, inducing effort yields an expected payoft equal to

Vi =m8(q) + (1 —m1)S(q) — h().

Had the principal decided to let the agent exert no effort, e = 0, he would make a zero payment to the agent

whatever the realization of output. In this scenario, the principal would instead obtain a payoft equal to

Vo = mS(q) + (1 —m0)S(q)-

Inducing effort is thus optimal from the principal’s point of view when V; > Vj, i.e.,
ATAS > h(3), (16.1)

where AS = S(7) — S(q).
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16.14

16.15

The left-hand side of Equation (16.1) captures the gain of increasing effort from e = 0 to e = 1. This gain comes
from the fact that the return S(g), which is greater than S(g), arises more often when a positive effort is exerted.
The right-hand side of Equation (16.1) is instead the first-best cost of inducing the agent’s acceptance when he exerts

a positive effort.

The first-best outcome calls for e* = 1 if and only if ArAS > h(v).

16.3 Incomplete information with risk-neutral agent

16.16

16.17

16.18

16.19

16.20

If the agent is risk-neutral, we can assume that (up to an affine transformation) u(¢) = ¢ for all ¢ and h(u) = u for

all u.

The principal’s problem is

maximize 71(S(q) — )+ (1 —m1)(S(q) —t)

()
subjectto  mif+ (1 — )t — v > mot + (1 — mo)t
W1{+ (1 - Wl)ﬁ— d) Z 0.
IR condition should be binding; otherwise the principal can decrease ¢ or ¢ with breaking IR condition.
Let IC condition be binding. Then we have

— 1—7T0
tr =
A

*_ _To
Yandt* = Aﬂl/). (16.2)

The agent is rewarded if production is high, and his utility is t* — ¢ = 1;:1 P > 0.
The agent is punished if production is low, and his utility is t* — 1 = — Xt < 0.

The principal makes an expected payment
mt* + (L —m)t" =,

which is equal to the disutility of effort he would incur if he could control the effort level perfectly or if he was

carrying the agent’s task himself.

The principal can costlessly structure the agent’s payment so that the latter has the right incentives to exert effort.
Indeed, by increasing effort from e = 0 to e = 1, the agent receives the transfer ¢* more often than the transfer ¢*.
His expected gain from exerting effort is thus Aw(t* — t*) = v, i.e., it exactly compensates the agent for the extra

disutility of effort that he incurs when increasing his effort frome = 0toe = 1.
Therefore, we have shown: Moral hazard is not an issue with a risk-neutral agent despite the nonobservability of

effort. The first-best level of effort is still implemented.

Let us consider another pair of transfers

™ =8(q) = T*and t* = S(q) — T*,

where T is an up-front payment made by the agent before output realizes.
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These transfers satisfy the agent’s IC constraint since:

!

A —t7) = ATAS > h(y) = ¢,

where the inequality comes from the fact that effort is socially optimal in a first-best world (Equation (16.1)).

The up-front payment 7™ can be adjusted by the principal to have the agent’s IR constraint be binding:

T =mS(q) + (1 —m)S(g) — ¢

With the transfers ** and t*', the agent becomes residual claimant for the profit of the firm. The up-front payment
T is precisely equal to this expected profit. The principal chooses this ex ante payment to reap all gains from

delegation.

16.4 Incomplete information with limited liability

16.21 Let us consider a risk-neutral agent. Let us also assume that the agent’s transfer must always be greater than some

exogenous level —/, with [ > 0. Limited liability in both states are thus written as

t>—landt > —L.

16.22 'The principal’s problem is

maz({%l;;ize T (S(q) — 1) + (1 —7m1)(S(q) — t)

subjectto  mit+ (1 —m)t — v > mot + (1 — mo)t
7T1{+

(1-m)t—9 >
t> -1
t> -l

16.23 For [ > X2, the first-best outcome can be implemented, and one optimal transfers are given by Equation (16.2).

In this case, the agent has no expected limited liability rent.

16.24 For 0 <[ < X%, we conjecture that the IC condition and the limited liability condition for low production level
are only relevant constraints.
(1) The limited liability condition for high production level is obviously irrelevant (IC implies ¢ > % + ).

(2) The IR condition is also irrelevant:

7T1t_+(1—7r1)t—¢Z7r1(—l+%)+(1—7r1)(—l)—1/}=%1&—120.

(3) Since the principal is willing to minimize the transfers made to the agent, both constraints must be binding.

(4) Therefore,
A Aiﬁ and ** = —1.
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In this case, the agent’s expected limited liability rent is non-negative:
Rk * %k o
T 4 (L= )t — 1 = —l 4+ —=1p > 0.
Ar

16.25 Remark:

o Only the limited liability constraint for the bad state may be binding.

o When the limited liability constraint for the bad state is binding, the principal is limited in his punishments
to induce effort. The risk-neutral agent does not have enough assets to cover the punishment requested by the
principal if g is realized in order to induce effort provision. As a result, the agent receives a non-negative ex
ante limited liability rent. Compared with the case without limited liability, this rent is actually the additional

payment that the principal must incur because of the conjunction of moral hazard and limited liability.

o As the agent is endowed with more assets, i.e., as | gets larger, the conflict between moral hazard and limited
liability diminishes and then disappears whenever [ is large enough. In this case, the agent avoids bankruptcy
even when he has to pay the optimal penalty to the principal in the bad state of nature.

16.26 For the sake of simplicity, we assume [ = 0.

When the principal induces positive effort from the agent, his expected utility is

B!

Vit =m8(q) + (1 —m1)S(q) — A

When the principal gives up the goal of inducing effort from the agent, he can choose ¢ = ¢ = 0 and instead obtain
the expected utility level
Vo = m05(q) + (1 —m0)S(q).

It is worth inducing effort if V;** > V), i.e., when
ATAS > o + —0qp,
Am

The left-hand side is the gain of inducing effort, i.e., the gain of increasing the probability of a high production level.
The right-hand side is instead the second-best cost C** of inducing effort, which is the disutility of effort ¢ plus the
limited liability rent 2. This second-best cost of implementing effort obviously exceeds the first-best cost. It is

clear that the limited liability and moral hazard together make it more costly to induce effort.

16.5 Incomplete information with risk-averse agent
16.27 When the agent is risk-averse, the principal’s program is written as:

(£:1)

maximize 71(S(q) — )+ (1 —m1)(S(q) —t)

subjectto  myu(t) + (1 — mp)u(t) — ¥ > mou(?) + (1 — mo)u(t)
mu(t) + (1 — m)u(t) — ¢ > 0.
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16.28 Let @ = u(f) and u = u(t). Then the principal’s program can be written as:
maximize  m1(S(q) = (@) + (1 = m)(S(g) - h(w))
subjectto a4+ (1 —m)u— ¢ > mot + (1 — mo)u

mu+ (1 —m)u—1 >0.

Note that the principal’s objective function is now strictly concave in (@, u) because h is strictly convex. The con-
straints are now linear and the interior of the constrained set is obviously nonempty, and therefore it is a concave

problem, with the Kuhn and Tucker conditions being sufficient and necessary for characterizing optimality.

16.29 Letting A and x be the non-negative multipliers associated respectively with the constraints, the first-order condi-

tions of this program can be expressed as

1

1_
—(1 =TI (W) = NAT + (1 — 1) = —W”) ~ AAT 4+ (1 —m) =0,

where t** and t** are the second-best optimal transfers.
16.30 Rearranging terms, we get

L _ +)\gand#* —
w(te) T e T

Am
1—7T1.

Multiplying the left equation by 7; and the right equation by 1 — 7, and then adding those two modified equations,

we obtain - .
n= u’(fi*) + u/(t**l) > 0.
Hence, the IR condition is binding.
16.31 The IC condition implies
warz

and thus t** > ¢t**,

Therefore,

=2 (o ) 7O

and hence the IC condition is also binding.

16.32 Since the IR and IC conditions are binding, we have

ok 1 1 s’k 7&
B = o andutt =y - Ty,

and hence .

t* :h(¢+ ;;l@ and £** :h<¢—£;¢>.

16.33 The agent receives more than the complete information transfer when a high output is realized, t** > h(1)). When

a low output is realized, the agent instead receives less than the complete information transfer, t** < h(v).
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A risk premium must be paid to the risk-averse agent to induce his participation since he now incurs a risk by the
fact that t** < t**. Indeed, we have

¥ = mu(P) + (1 — m)uE™) < u(mf* + (1 —m)t™),

where the inequality follows from Jensen’s inequality. That is, the expected payment 7m12** + (1 — 7 )t** given by

the principal is thus larger than the first-best cost /()), which is incurred by the principal when effort is observable.
16.34 The second-best cost of inducing effort under moral hazard is the expected payment made to the agent

1

¢ =mtt 4 (L= m)e” =mi (v T )+ (= m)n (v - 250) > ) =7

where the inequality follows from Jensen’s inequality (h is strictly convex).

16.35 The benefit of inducing effort is still A7AS, and a positive effort e* = 1 is the optimal choice of the principal
whenever
ATAS > C* > C*.

16.6 n levels of performance

16.36 We consider a production process where n possible outcomes can be realized. Those performances can be ordered
so that
@1 <@z <--<g < <(gn

We denote the principal’s return in each of those states of nature by .S; = S(g;).

Let 7,1, be the probability that production g; takes place when the effort level is e;. We assume that 7;;, > 0 for all
pairs (i, k) with """ | m, = 1. We still denote Am; = ;1 — 0.

Only two levels of effort are feasible, i.e., e, € {0, 1}.

16.37 In this context, a contract is a n-uple of payments (¢1, ..., t,).

16.6.1 Limited liability
16.38 The principal’s program is
T 2
subject to i mit; — Y > zn:m-oti
i=1 i=1

n

Zﬂilti*#fzo
i=1
t; >0fori=1,...,n.

16.39 The IR condition is implied by the IC condition and LL conditions:

Zﬂ'ﬂti - = Z(Wﬂ — mio)ti — Y + Zﬂ'ioti >040=0.
i=1 i=1

i=1
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16.40 Denoting the multiplier of the IC condition by A and the respective multipliers of the LL conditions by &;, the

16.41

16.42

first-order conditions leads to
—mi1 + AT + & =0,

with the slackness condition &;t; = O foreachi =1,... n.

(1) For ¢ such that t,f* > 0, we have & = 0, and hence A = # for any such 1.

7TJ1

(2) If the ratios —

- are all different, there exists a single index j such that - is the highest ratio.

(3) Then the agent receives a strictly positive transfer only in this particular state of nature j, and this payment

is such that the IC condition is binding, i.e., t;* = - »ﬁw —. In all other states, the agent receives no transfer
J J
and t7* = O forall i # j.
. ey .. e 1eTs ) P o _ 50
(4) The agent gets a strictly positive ex ante limited liability rent 7, oo Y= P .

The important point here is that the agent is rewarded in the state of nature that is the most informative about the
fact that he has exerted a positive effort. Indeed, =" can be interpreted as a likelihood ratio. The principal
therefore uses a maximum likelihood ratio criterion to reward the agent. The agent is only rewarded when this

likelihood ratio is maximum.

The probabilities of success satisfy the monotone likelihood ratio property (MLRP) if =% is nondecreasing in
i.

A higher effort level increases the likelihood of a high production level more than the likelihood of a low production

level.

If the probability of success satisfies MLRP, the second-best payment ¢}* received by the agent may be chosen to be

nondecreasing with the level of production g;.

16.6.2 Risk aversion

16.43

16.44

16.45

16.46

Suppose now that the agent is strictly risk-averse.
The principal’s problem is

max1mlze E 71 (S
(t1,--stn)

subject to Z miu(t;) — v > Z miou(t

Zﬂ'“u(ti) — 1/1 Z 0
=1

The first-order condition (with multipliers A and p) leads to

=p+A Til 770 ) for all 4. (16.3)
w(t7) il

Multiplying each of these equations by 7;; and summing over 7 yields
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where E, denotes the expectation operator with respect to the distribution of outputs induced by effort e = 1.
Thus, the IR condition is binding, that is, E, (u(¢}*)) = 9.
16.47 Multiplying the equation above by m;;u(t}*), summing all these equations over ¢, and taking into account the
expression of 1 obtained above yields
A Z(Wil —mo)u(u;") | = Zﬂﬂu(tf*) <u’(t**) - M) = Zﬂ'zl[u(ﬁ*) — ¢ <u’(t**) - M)
i=1 i=1 4 i=1 v
16.48 Using the slackness condition A(>""_, (mi1 — mio)u(t;*) — ¢) = 0, we have
b = cov [ u(tr), —
St )
By assumption, u and v’ covary in opposite directions. Moreover, a constant wage t* = ¢** for all i does not satisfy
the incentive constraint, and thus ¢;* cannot be constant everywhere. Hence, the right-hand side is necessarily
strictly positive. Thus we have A > 0, and the IC condition is binding.
16.49 Coming back to Equation (16.3), we observe that the left-hand side is increasing in ¢} * since u is concave. For t* to

be nondecreasing with ¢, MLRP must again hold. Then higher outputs are also those that are the more informative

ones about the realization of a high effort. Hence, the agent should be more rewarded as output increases.
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17.1 Social choice
17.1 A society, denoted by (X, N, (*7;)), consists of
o Non-empty set X of mutually exclusive social states (or alternatives). Although X could be infinite, we focus
on the case that X is finite.
o Set N ={1,2,...,n} of individuals, where n > 2.
o Each individual 7 has his own preference -; over the set of social states. Let £ denote the set of preferences
on X.

17.2 To determine the social choice, we will need some ranking of the social states in X that reflects society’s preferences.
Ideally, we would like to be able to compare any two alternatives in X from a social point of view, and we would
like those binary comparisons to be consistent in the usual way.

A social preference relation, 77, is a complete and transitive binary relation on the set X of social states. For 2 and
yin X, weread x 77 y as the statement “z is socially at least as good as y”

17.3 Issue 1: How can we go from the often divergent, but individually consistent, personal views of society’s members
to a single and consistent social view?

17.4 Condorcet’s paradox: When we insist on transitivity as a criterion for consistency in social choice, certain well-

known difficulties can easily arise.
A society of three individuals and three alternatives x, y and z. The preferences of the individuals are as follows:

The outcome is determined by majority voting.

301
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Individual 1 Individual 2 Individual 3

T y z

y z T

z x Y
Table 17.1

(1) Inachoicebetween x and y, x would get two votes and y wold get one, so the social preference under majority

rule would be = > y.
(2) Ina choice between y and z, majority voting gives y > z.
(3) Because x > y and y > z, transitivity of social preferences would require that x > 2.

(4) Ina choice between y and z, majority voting gives z > x, which violates transitivity.

Hence, no single best alternative can be determined by majority rule.

17.2  Arrow’s impossibility theorem

17.5 Issue 2: How can we go from consistent individual views to a social view that is consistent and that also respects

certain basic values on matters of social choice that are shared by members of the community?
That is, we can imagine our problem as one of finding a “rule,” or function, capable of aggregating and reconciling

the different individual views represented by the individual preference relations 77, into a single social preference

relation 77 satisfying certain ethical principles.
IF" 17.6 Definition: A social welfare function I is a function from £" to L.

17.7 Arrow has proposed a set of four conditions that might be considered minimal properties the social welfare func-

tion, F', should possess. They are as follows.

U. Unrestricted domain. The domain of F' must include all possible combinations of individual preferences on
X.

PE. Pareto efficiency. For any pair of alternatives x and y in X, if ¢ >; y for all ¢, then = > y.

ITA. Independent of irrelevant alternatives. Let

Z=F(Z1, 22, Zn)s z/: F(tllvt/%vi/n)a
and let = and y be any two alternatives in X. If each individual i ranks = versus y under 7=, the same way that

he does under -}, then the social ranking of x versus y is the same under 2~ and ='.

D. Non-dictatorship. There is no individual ¢ such that for all z and y in X, x >, y implies x > y regardless of
the preferences 77; of all other individuals j # .

17.8 Remark:

 Condition U says that F is able to generate a social preference ordering regardless of what the individuals’
preference relations happen to be.
As we have seen before, this condition, together with the transitivity requirement on 7, rules out majority
voting as an appropriate mechanism because it sometimes fails to produce a transitive social ordering when

there are more than three alternatives to consider.
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« Condition PE says society should prefer x to y if every single member of society prefers z to y.
Notice that this is a weak Pareto requirement because it does not specifically require the social preference to
be for x if, say, all but one strictly prefer x to y, yet one person is indifferent between = and y.

« Condition IIA says that the social ranking of z and y should depend only on the individual rankings of z and
Y.

« Condition D says there should be no single individual who “gets his way” on every single social choice, re-

gardless of the views of everyone else in society.

BE"  17.9 Arrow’s impossibility theorem: If there are at least three social states, then there is no social welfare function F’ that

simultaneously satisfies Conditions U, PE, ITA, and D.
17.10 Proof. The strategy of the proof is to show that conditions U, PE, and IIA imply the existence of a dictator.

(1) Consider any social state, c. Suppose each individual places state ¢ at the bottom of his ranking. By PE, the

social ranking must place c at the bottom as well. See Table 17.2.

Z1 X2 Zn | %

k k *

¢c ¢ - ¢ |e¢
Table 17.2

(2) (i) Imagine now moving c to the top of individual 1’s ranking, leaving the ranking of all other states un-

changed.

(ii) Next, do the same with individual 2: move c to the top of 2’s ranking.

(iii) Continue doing this one individual at a time, keeping in mind that each of these changes in individual
preferences might have an effect on the social ranking.

(iv) Eventually, ¢ will be at the top of every individual’s ranking, and so it must then also be at the top of the
social ranking by Condition PE.

Consequently, there must be a first time during this process that the social ranking of ¢ increases. Let indi-

vidual m be the first such that raising c to the top of his ranking causes the social ranking of ¢ to increase.

(3) We claim that, as shown in Table 17.3, when ¢ moves to the top of individual m’s ranking, the social ranking

of ¢ not only increases but ¢ also moves to the top of the social ranking.

il t2 T fém ,ém#»l ce tn t
C c e C * PR *
* * * C & *

Table 17.3
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(4)

To see this, assume by way of contradiction that the social ranking of c increases, but not to the top; i.e., a 77 ¢
and ¢ 77, (3 for some states o, 3 # c. See Table 17.4.

zl i2 im ,>\:m+1 ~Tn i
C C C * *
a,f o, p a,fB a,f a,p | c
: B
* * % C C *
Table 17.4

Now, because cis either at the bottom or at the top of every individual’s ranking, we can change each individual

1’s preferences so that 3 >, «, while leaving the position of ¢ unchanged for that individual. See Table 17.5.

,>\:1 ,>:,2 te ,>\:m zm-&-l T zn r>\-/
c c - c * . * *
g B B B B |«

: : c
a o« « « a | B
* * * c c | *
Table 17.5

On one hand, # >; « for every individual implies by PE that 5 must be strictly preferred to v according to
the social ranking; i.e., 5 > a.

On the other hand, because the rankings of c relative to v and of ¢ relative to 8 have not changed in any
individual’s ranking (see Tables 17.4 and 17.5), IIA implies that the social rankings of ¢ relative to o and of ¢
relative to 5 must be unchanged; i.e., as initially assumed, we must have a - cand ¢ 77 5. But transitivity
then implies a - 3, contradicting 8 > «. This establishes our claim that ¢ must have moved to the top of the

social ranking.
Consider now any two distinct social states a and b, each distinct from c. In Table 17.3, change the profile of

preferences as follows: change individual m’s ranking so that a >, ¢ >,, b, and for every other individual

rank @ and b in any way so long as the position of c is unchanged for that individual. See Table 17.6.
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Z1 X2 o Zmo Zmetl Zn | 2
c c e % * *
a
Do a : c
a,b a,b c a,b a,b| c
. . b . .
b
* * * C &
Table 17.6

Note that in the new profile of preferences the ranking of a to c is the same for every individual as it was just

before raising c to the top of individual m’s ranking in Step (2). Therefore, by IIA, the social ranking of a and

c must be the same as it was at that moment, see Table 17.7. But this means that a = ¢ because at that moment

c was still at the bottom of the social ranking.

/>\:1 fé2 fém— 1 ?\jm fén i:
c c C * * *
a a a a CL a

Table 17.7

Similarly, in the new profile of preferences, the ranking of ¢ to b is the same for every individual as it was just

after raising c to the top of individual m’s ranking in Step (2), see Table 17.8. Therefore by IIA, the social

ranking of ¢ and b must be the same as it was at that moment. But this means that ¢ >~ b because at that

moment c had just risen to the top of the social ranking.

il i_,,2 ,->\__,m ,->\:m+1 i:n r>\_/
C C C * * C
b b b b b | b
* * * c c | *

Table 17.8

Therefore, as in Table 17.6, because a > c and ¢ > b, we may conclude by transitivity that @ > b. Note then

that no matter how the others rank @ and b, the social ranking agrees with individual m’s ranking. By IIA, and
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because a and b were arbitrary, we may therefore conclude that for all social states a and b distinct from ¢
a >, bimplies a > b.

That is, individual m is a dictator on all pairs of social states not involving c.

(5) The final step shows that individual m is in fact a dictator.
Let a be distinct from c. We may repeat the above steps with a playing the role of ¢ to conclude that some
individual is a dictator on all pairs not involving a.
However, recall that individual m’s ranking of ¢ (bottom or top) in Table 17.3 affects the social ranking of ¢
(bottom or top). Hence, it must be individual m who is the dictator on all pairs not involving a. Because a was
an arbitrary state distinct from ¢, and together with our previous conclusion about individual m, this implies

that m is a dictator.
O

17.11 Although Arrow’s theorem is a mathematical result, it is often expressed in a non-mathematical way with a statement
such as “No voting method is fair”, “Every ranked voting method is flawed”, or “The only voting method that isn’t

flawed is a dictatorship”.

More importantly, Arrow’s theorem says that a deterministic preferential voting mechanism—that is, one where
a preference order is the only information in a vote, and any possible set of votes gives a unique result—can not

comply with all of the conditions given above simultaneously.

17.3 Borda count, simple plurality rule, and two-round system

17.12 Borda count.

The Borda count is commonly used for making collective choices. Individual ¢ assigns a Borda count, B;(z), to
every alternative x, where B; () is the number of alternatives in X to which x is preferred by agent . Alternatives

are then ranked according to their total Borda count as follows:

Ty Bi(x)>Y Biy).
=1 =1

17.13 Example.

Individual 1 Individual 2 Individual 3

x Y z

Y z z

z x y
Table 17.9

x, y and z have 4, 3 and 2 points respectively.

17.14 Example: Consider 100 individuals who can be broken down into three groups based on their preferences over

three alternatives, x, y and z.
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40% 24% 36%

T y z

Yy z Yy

z T T
Table 17.10

x gets 40 x 2 = 80 points, y gets 24 x 2+ 76 x 1 = 124 points and z gets 36 x 2 + 24 x 1 = 96 points. With this

procedure y wins with z in the second place and z in the third place.
17.15 Borda count satisfies U, PE and D, but does not satisfy IIA.

17.16 Because it sometimes elects broadly acceptable candidates, rather than those preferred by the majority, the Borda

count is often described as a consensus-based electoral system, rather than a majoritarian one.

17.17 Borda count was developed independently several times, but is named for the 18-th century French mathematician

and political scientist Jean-Charles de Borda, who devised the system in 1770.

17.18 Reversal paradox.

Consider seven individuals and four alternatives {x, y, z, w}. The preferences are:

Individual 1 Individual 2 Individual 3 Individual4 Individual5 Individual6 Individual 7

z z

T z T

82N 8«
8w &<

Y T
w Y
z w

SIS

x x
Y Y
w w
Table 17.11

Total points: x : 12,y : 13, z : 11 and w : 6. So, y is the winner and the social ranking isy > x > z > w.

If the worst alternative w is eliminated, then the rankings are:

Individual 1 Individual 2 Individual 3 Individual4 Individual5 Individual6 Individual 7

T z T y z z y

Y T y z T T z

z y z x y Y T
Table 17.12

Total points: x : 7,y : 6 and z : 8. So, the winner is z and the ranking is z > z > y.

The social ranking is completely reversed! (Reason: failure of ITA.)

17.19 Simple plurality rule.
In this system the single winner is the person with the most votes (plurality); there is no requirement that the winner

gain an absolute majority of votes, but rather only a plurality, sometimes called a relative/simple majority.

17.20 Example: Consider 100 individuals who can be broken down into three groups based on their preferences over

three alternatives, z, y and z.
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40% 24% 36%

T y z

Yy z Yy

z T T
Table 17.13

With simple plurality rule, = gets 40%, y gets 25% and z gets 36%. So, x is the winner, although 60% rank it the

lowest!

17.21 Two-round system.

The two-round system (also known as the second ballot, runoff voting or ballotage) is a voting system used to elect
a single winner where the voter casts a single vote for their chosen candidate. However, if no candidate receives the
required number of votes (usually an absolute majority or 40-45% with a winning margin of 5-15%), then those
candidates having less than a certain proportion of the votes, or all but the two candidates receiving the most votes,

are eliminated, and a second round of voting occurs.

17.22 Example.

40% 24% 36%

T Y z

) z Yy

z T T
Table 17.14

In the first round, x gets 40%, y gets 24% and z gets 36%. If y is eliminated, in the second round x gets 40% and z

gets 60% of the votes and z is the winner.

17.23 Outcomes under different methods.

40% 24% 36%

T y z

Yy z Yy

z T T
Table 17.15

o Simple plurality rule: x is the best.
« Borda count: y is the best.

o Two-round system: z is the best.
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17.4 Gibbard-Satterthwaite theorem

17.24

17.25

17.26

17.27

17.28

17.29

17.30

17.31

17.32

We have focused solely on the task of aggregating the preference profile into a single preference for society. This

task, as we have seen, is a formidable one. Indeed, it can not be carried out if we insist on all of Arrow’s conditions.

Issue 3: Maybe Arrow’s impossibility theorem held because we required a whole preference ordering. So social
choice functions might be easier to find. Firstly We will need to redefine our criteria for the social choice function

setting; PE and IIA discussed the ordering.

Issue 4: Implicit in our analysis has been the assumption that the true preferences of each individual can be obtained
and that society’s preferences are then determined according to its social welfare function. But how, exactly, does

society find out the preferences of its individual members?

One possibility, of course, is to simply ask each individual to report his ranking of the social states. But this in-
troduces a serious difficulty. Individuals would be better off lying about their preferences than reporting them

truthfully if a false report leads to a better social state for them.

Thus, in addition to the problem of coherently aggregating individual rankings into a social ranking, there is the

problem of finding out individual preferences in the first place.

Definition: A social choice function is a function f: £™ — X. Specifically, for each preference profile (71,722
yeoosZn)s (1, 22, -+, Zon) 1s the society’s choice from X
Definition: A social choice function f is dictatorial if there is an individual ¢ such that whenever f (721,72, . .., Zn

) = x it is the case that z 77; y for every y € X.

Definition: A social choice function f is Pareto efficient if f(=1,72,...,22,) = x whenever z >, y for every
individual ¢ and every y € X distinct from .

Definition: A social choice function f is monotonic if whenever f (51,72, ..., Zn) = @ and for every individual
i and every alternative y the preference >} ranks x above y if 7-; does, then f(Z}, %5, ...,72,) = z.

An alternative x must remain the winner whenever the support for it is increased in a preference profile under

which x was already winning.

Definition: A social choice function f is strategy-proof when, for every individual, 4, for every pair 7Z; and 2} of

his preferences, and for every profile 7~_; of others’ preferences, we have
F(Zin =) Zi F(Zis i)
Example.

Individual 1 Individual 2 Individual 3 Individual 4

T z w T

Yy x Yy z

z w z w

w Yy x Y
Table 17.16

Apply Borda count. Total points: x : 8,y : 4, 2 : Tand w : 5. So, x is the best.



17.4. Gibbard-Satterthwaite theorem 310

Individuals 1 and 4 will tell the truth since the winner z is their top choices.

If individual 2 reports the preference z >4 w >2 y >2 x as shown in the following table, the total points are: x : 6,
y:5,z:7and w : 6, and hence z is the best. That is, individual 2 prefers z to x in the original ranking and would
like to lie.

Individual 1 Individual 2 Individual 3 Individual 4

x z w T

Y w Y z

z Y z w

w T x Y
Table 17.17

If individual 3 reports the preference z >3 w >3 y >3 x as shown in the following table, the total points are: x : 8,

y:3,z:9and w : 4, and hence z is the best. That is, individual 3 prefers z to x in the original ranking and would

like to lie.
Individual 1 Individual2 Individual 3 Individual 4
x z z x
y x w z
z w y w
w Y €T Y
Table 17.18
17.33 Lemma: Suppose that f is a monotonic social choice function and that f (=1, ..., 72,) = z, where 771, ..., 7, are

each strict rankings of the social states in X.

(i) Suppose that for some individual i, 27; ranks y just below z, and let =} be identical to 7; except that y is

ranked just above z, i.e., the ranking of x and y is reversed. Then either f(2Z}, ;) =z or f(Z}, Zi) = y.

~i) ~— T

(ii) Supposethatz],..., 2} are strict rankings such that for every individual 4, the ranking of z versus any other
social state is the same under 2=} as it is under ;. Then f(Z},..., 7)) = .

Proof. (i) Suppose that f(7}, ;) = z # x,y, then we have for every w € X z >; w whenever z >/ w, and
for every j # i and every w € X z =; w whenever z = w. Then by monotonicity f (i, 22—i) = z # =, 2

contradiction.
(ii) Routine.

O

17.34 Lemma: Let f be a monotonic social choice function and suppose that the social choice must be  whenever all
individual rankings are strict and x is at the top of individual m’s ranking. Then the social choice must be at least
as good as x for individual m when the individual rankings are not necessarily strict and x is at least as good for

individual m as any other social states.

r00f. emma 17.33. Argue contradiction and change preferences monotonically so that all preferences are
p ByL 17.33. Argue by dicti d change pref ically so that all pref

strict and z is at the top of m’s ranking. O
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17.35 Lemma: Let 2 and y be distinct social states. Suppose that the social choice is at least as good as « for individual ¢
whenever x is at least as good as every other social state for ¢. Suppose also that the social choice is at least as good

as y for individual j whenever y is at least as good as every other social state for j. Then i = j.
Proof. O

¥ 17.36 Gibbard-Satterthwaite theorem: If there are at least three social states, then every onto strategy-proof social choice

function is dictatorial.

This theorem is named after Allan Gibbard and Mark Satterthwaite.

17.37 Part 1: strategy-proofness implies monotonicity. Let (221,72, - .., Zn) be an arbitrary preference profile and sup-
pose that f(Z1,...,22,) = z. Fix an individual, 4 say, and let 7} be a preference for ¢ such that for everyy € X

distinct from x, x >} y if & 77; y. We shall show that f (2}, 72 ;) = =.

(1) Suppose, by way of contradiction, that f(Z2}, 7= ;) =y # .
(2) Given that the others report 2~_;, individual 7, when his preferences are 7; can report truthfully and obtain

the social state 2 or he can lie by reporting -; and obtain the social state y. Strategy-proofness requires that

lying can not be strictly better than telling the truth. Hence we must have z =, y.

(3) According to the definition of 7}, we then have x >/ y.

~1?
(4) Consequently, when individual i’s preferences are 7=/ he strictly prefers x to y and so, given that the others
report 2 _;, individual ¢ strictly prefers lying (reporting 2-; and obtaining ) to telling the truth (reporting 7=/
and obtaining y), contradicting strategy-proofness.

(5) We conclude that f(2}, =_;) = .

O

17.38 Part 2: onto and monotonicity implies Pareto efficiency. Let x be an arbitrary social state and let (*7;); be a prefer-

ence profile with z at the top of each individual’s ranking 7~;. We must show that f(>=1,...,7,) = .

r ~T

(1) Because f isonto, f(=],...,2.) = x for some (=},..., 7)) € L™

~1 )~

(2) Obtain the preference profile (>=); from (77}); by moving x to the top of every individual’s ranking =/

(3) By monotonicity, f(Z7,...,720) = .

~1» )~
(4) Because (7;); places z at the top of every individual ranking =; and f(*Z7, ..., ") = x, we can again apply
monotonicity and conclude that f (721, ...,7,) = x, as desired.
O

17.39 Part 3: | X| > 3, monotonicity and Pareto efficiency imply dictatorship. (1) Consider any two distinct social states
x,y € X and aprofile of strict rankings in which z is ranked highest and y lowest for every individual i. Pareto

efficiency implies that the social choice at this profile is x.

(2) Consider now changingindividual 1’s ranking by strictly raising y in it one position at a time. By monotonicity,

the social choice remains equal to x so long as y is below x in 1’s ranking.

(3) When y finally does rise above x, Lemma 17.33 implies that the social choice either changes to y or remains

equal to z.
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(4) If the social choice is x, then begin the same process with individual 2, then 3, etc. until for some individual
m, the social choice does change from x to y when y rises above z in m’s ranking. There must be such an
individual m because y will eventually be at the top of every individual’s ranking and by Pareto efficiency the
social choice will then be y. Tables 17.19 and 17.20 depict the situations just before and just after individual

m’s ranking of y is raised above x.

1ot Zme1l Zm Smal o+ Zn | Social choice
T x Y
* * * Y Y
Table 17.19
1t Zme1l Zm Zmal -+ Zn | Social choice
T x x : :
* * * Y Y
Table 17.20

(5) Consider Tables 17.21 and 17.22 below. Table 17.21 is derived from Table 17.19 (and Table 17.22 from Ta-
ble 17.20) by moving x to the bottom of individual ¢’s ranking for ¢ < m and moving x to the second last

position in ¢’s ranking for i > m.

1ot Zme1l Zm Tmal o+ Zn | Social choice
Y
x z
T z * Y Y

Table 17.21
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(6)

(7)

1t Zme1l Zm Smal o+ Zn | Social choice
: T T
T x * Yy Yy
Table 17.22

We wish to argue that these changes do not affect the social choices, i.e., that the social choices are as indicated
in the tables.

Note that the social choice in Table 17.22 must, by Lemma 17.33, be y because the social choice in Table 17.20
is y and no individual’s ranking of y versus any other social state changes in the move from Table 17.20 to
Table 17.22.

Note that the preference profiles in Tables 17.21 and 17.22 differ only in individual m’s ranking of x and y. By
Lemma 17.33, the social choice in Table 17.21 must be either = or y because the social choice in Table 17.22
is y. When the social choice in Table 17.21 is y, by Lemma 17.33, the social choice in Table 17.19 must be y,

a contradiction.

Because there are at least three social states, we may consider a social state z € X distinct from x and y. Since
the (otherwise arbitrary) profile of strict rankings in Table 17.23 can be obtained from the Table 17.21 profile
without changing the ranking of = versus any other social state in any individual’s ranking, the social choice
in Table 17.23 must, by Lemma 17.33, be x.

1o Zme1l Zm Tmal -+ Zn | Social choice
* e * x % e * X
z
Yy
z z z z
x x * Yy Y
Table 17.23

(8) Consider the profile of rankings in Table 17.24 derived from the Table 17.23 profile by interchanging the

ranking of = and y for individuals i > m.

Because this is the only difference between the profiles in Tables 17.23 and 17.24, and because the social choice
in Table 17.23 is x, the social choice in Table 17.24 must, by Lemma 17.33, be either z or y.

But the social choice in Table 17.24 can not be y because z is ranked above y in every individual’s Table 17.24
ranking, and monotonicity would then imply that the social choice would remain y even if z were raised to
the top of every individual’s ranking, contradicting Pareto efficiency.

Hence the social choice in Table 17.24 is x.
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17.40

17.41

17.42

1t Zme1l Zm Smal o+ Zn | Social choice
z
Y
z z z z
Y Y : Y Y
x x * x z
Table 17.24

(9) Note thatan arbitrary profile of strict rankings with x at the top of individual m’s ranking can be obtained from
the profile in Table 17.24 without reducing the ranking of = versus any other social state in any individual’s
ranking. Hence, Lemma 17.33 implies that the social choice must be - whenever individual rankings are strict
and x is at the top of individual m’s ranking.

Lemma 17.34 implies that even when individual rankings are not strict and indifferences are present, the social
choice must be at least as good as « for individual m whenever z is at least as good as every other social state

for individual m.

(10) So, we may say that individual m is a dictator for the social state x. Because x was arbitrary, we have shown
that for each social state z € X, there is a dictator for . But Lemma 17.35 implies there can not be distinct
dictators for distinct social states. Hence there is a single dictator for all social states and therefore the social

choice function is dictatorial.

O

Proposition: A social choice function f is strongly monotonic if whenever f(51,...,75,) = z and for every

individual ¢ and every alternative y the preference 2=/ ranks x above y if 77; does, then f(Z},...,2Z)) = =.

(2 r~n
Suppose there are two individuals, 1 and 2, and three social states, x, y, and z. Define the social choice function f
to choose individual 1’s top-ranked social state unless it is not unique, in which case the social choice is individual
2’s top-ranked social state among those that are top-ranked for individual 1, unless this too is not unique, in which

case, among those that are top-ranked for both individuals, choose x if it is among them, otherwise choose y.

(i) f is strategy-proof.

(ii) Show by example that f is not strongly monotonic. (Hence, strategy-proofness does not imply strong mono-

tonicity, even though it implies monotonicity.)

Proposition: Show that if f is an onto monotonic social choice function and the finite set of social states is X, then

for every z € X there is a profile, (>;);, of strict rankings such that f(>1,...,>,) = z.

Proposition: Show that when there are just two alternatives and an odd number of individuals, the majority rule
social choice function (i.e., that which chooses the outcome that is the top ranked choice for the majority of indi-

viduals) is Pareto efficient, strategy-proof and non-dictatorial.
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18.1 The theory of mechanism design can be thought of as the “engineering” side of economic theory. Much theoretical

18.2

18.1

18.3

work focuses on existing economic institutions. The theorist wants to explain or forecast the economic or social

outcomes that these institutions generate.

But in mechanism design theory the direction of inquiry is reversed. We begin by identifying our desired social

goal. We then ask whether or not an appropriate institution (mechanism) could be designed to attain that goal.

Almost any kind of market institution or economic organization can be viewed, in principle, as a mechanism.

Examples include: school choice, auction, kidney exchange, tax codes, contract design, etc.

Leonid Hurwicz defined a mechanism as a communication system in which participants send messages to each
other and/or to a “message center”, and where a pre-specified rule assigns an outcome (such as an allocation of

goods and services) for every collection of received messages.

The difficulty in mechanism design is that the individuals have private information and different objectives, and so
may not have the incentive to behave in a way that reveals what they know. The key point is how to design “incentive

compatible” mechanisms that can generate the information needed as they are executed.

Envelope theorem

Consider a one-agent decision problem

V(6) = max h(a,0),
a€A

315
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where a is the agent’s chosen action and § € © an exogenous parameter. In an auction, 6 could be bidder’s valuation,
and a bidder’s choice of bid.

18.4 A could be either discrete or continuous, but © is an interval.

18.5 Let a*(0) be the set of optimal choices, that is,

a*(0) = argmax h(a, 9).
acA

Let h,, and hg denote partial derivatives of h.

¥ 18.6 Theorem (Envelope theorem): Suppose for all § € ©, a*(6) in non-empty, and for all a and 6, hy exists. Let a(6)
be any selection from a*(6).

(i) If V is differentiable at @, then
V'(0) = hg (a(@), 0).

(i) IfV is absolutely continuous, then for any " > 6,

Proof of (i). (1) IfV is differentiable at 6, then

Vi) —tim YOI VO
el0 € el0 €

(2) Take a(6) € a*(0), then V(6) = h(a(6),0), and

V(@+e) = max h(a,0+€) > h(a(8),0 +¢).
(3) Then we have
h(a(0),0 + €) — h(a(6),0)

V(0) = tim LOFO=VO) — ho(a(0),6).
€l0 € €l0 €

(4) For the same number a(6), V(0 — €) = max, h(a,d — €) > h(a(d),0 — €), and hence

V/(e) _ lelfg V(@) _ Z:/(e — 6) < lelfg h(a(6)7 9) — g(a(9)7 0 — 6) _ hg(a(e), 9)

(5) So
he(a(0),0) < V'(0) < hy(a(),0).

O

Proof of (ii). (1) Absolute continuity: for all ¢ > 0, there exists 6 > 0 such that for any finite, disjoint set of
intervals {[zx, yr]}r=1,2,....m With >, [yx — 21| < 0,

S Vi) — Vi) <
k
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(2) Absolute continuity is equivalent to V' being differentiable almost everywhere and being the integral of its

derivative, so the second part follows directly from the first part.

O

18.7 Remark: The derivative of the value function is the derivative of the objective function, evaluated at the maximizer.
18.8 Corollary: Assume that

o foreacha € A, h(a,-) is differentiable,

« there exists B > 0, such that for alla € A and almostall 8 € ©
|he(a,0)| < B,

« a*(0) = argmax,_ , h(a,0) # 0.

Then V is Lipschitz continuous with Lipschitz constant 1, and hence absolutely continuous and almost everywhere
differentiable. Therefore the two formulas in Theorem 18.6 still hold.

Proof. For any two distinct 6 and ', we have

— ! == — / < — / < . — / = . — /_
[V(0) —V(0")] = | max h(a,b) raneajl(h(aﬁ)\_gleaidh(aﬁ) h(a,Q)\_gleaj‘(B 6 —6'|=DB-|0—06

acA

O

18.2 A general mechanism design setting

18.9 Mechanism design theory distinguishes sharply between the apparatus under the control of the designer, which we

call a mechanism, and the world of things that are beyond the designer’s control, which we call the environment.
18.10 An environment comprises three lists:

« alist of participants or potential participants,
« alist of the possible outcomes,
« alist of the participants’ possible types—that is, their capabilities, preferences, information, and beliefs.

A mechanism consists of rules that govern what the participants are permitted to do, and how these permitted

actions determine outcomes.
18.11 Mechanism theory evaluates alternative designs based on their comparative performance. Formally, performance
is the function that maps environments into outcomes.
The goal of mechanism design analysis is to determine what performance is possible and how mechanism can best
be designed to achieve the designer’s goals. Mechanism design addresses three common questions:
« Isit possible to achieve a certain kind of performance, for instance a map that picks an efficient allocation for
every possible environment in some class?
o What is the complete set of performance functions that are implementable by some mechanism?

« What mechanism optimizes performance according to the mechanism designer’s performance criterion?
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BS" 18.12 Setup:

o There are N agents. The set of agents is denoted by V' = {1,2,..., N}.
o The set of potential social decisions is denoted by D.

o Agent i’s information is represented by a type 6; which lies in a set ©;. Let = (01,05,...,0y),and © =
®1X@2X-~-X@N.

o Agents have preferences over decisions that are represented by a utility function. Agent ¢’s utility if decision d
is chosen, and agent ¢ pays transfer ¢; is:
vi(d, 0;) — ;.
BE" 18.13 A decision rule is a mapping d: © — D.

A decision rule d(-) is efficient if

> wi(d(6),60;) > vi(d',0;) foralld € ©and d’ € D,

% i

that is

d(0) € arg mavai(dl, 6;) forallf € ©.

deD 5

BE" 18.14 Agent ¢’s transfer function is a mapping ¢;: © — R. ¢;(6) represents the payment that ¢ receives based on the
announcement of types 6. Let t(6) = (t1(0),t2(6), ..., tn(0)).

A transfer function ¢ is said to be feasible if ) _, ¢;(¢) > 0 for all 6.

A transfer function ¢ is said to be balanced if ) °, ¢;(#) = 0 for all §. (d, t) satisfies budget balance if the transfer

function is balanced.
18.15 A pair (d, t) will be referred to as a social choice function.

18.16 The utility that i receives, if 6’ is the announced vector of types, and ¢’s true type is 6;, is

BZ" 18.17 A mechanism is a pair (M, g), where

o M = My x My x --- x My is a cross product of message spaces.

e g: M — D x R" is an outcome function.

18.18 Note that a social choice function (d,t) can be viewed as a mechanism, where M; = ©; and g = (d,t). This is

referred as a direct mechanism.

IE" 18.19 A social choice function (d, t) is implemented by a mechanism (M, g) if there exists a functionm = (my, ma, ..., my),

where each m;: ©; — M;, such that

(d(8),t(6)) = (g om)(6) for all 6.
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m

Types © Outcomes D x RV
Figure 18.1

We always require that m satisfies some equilibrium condition, for example m is a dominant strategy profile or a

Bayesian Nash equilibrium.

18.3 Revelation principle
18.20 A strategy m; € M, is a dominant strategy at 6;, if
vi (ga(mi,m—;),0;) — g, (mi,m_;) > vi(ga(mi, m_;),0;) — ge,(m};, m_;)

for all m_; and m.

BF" 18.21 A social choice function (d,t) is implemented in dominant strategies by the mechanism (M, g) if there exists
functions m; : ©; — M such that

o m;(6;) is a dominant strategy for each i and ¢; € O,

« g(m(0)) = (d,t)(9) forall 6 € ©.

BE" 18.22 A direct mechanism f = (d, t) is dominant strategy incentive compatible if 6; is a dominant strategy at 6; for each
iand 0; € O,.
That is, for all 6;, 6, and 6_;,

Vi (d(@l, 0_,'), HL) - ti(&i, 9_1) Z Vi (d(@;, 9_1'), 91) - tl(eg, 9_1)

¥ 18.23 Theorem (Revelation principle for dominant strategies): Ifa mechanism (M, g) implements a social choice function

(d, t) in dominant strategies, then the direct mechanism (d, ¢) is dominant strategy incentive compatible.

Proof. Note that (d, t)(0) = g(m(0)) for each 6.

Messages M

Types © Outcomes D x RN
(d,t) =gom

Figure 18.2: Revelation principle
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The powerful implication of the revelation principle is that if we wish to find out the social choice functions can

implemented in dominant strategies, we can restrict our attention to the set of direct mechanisms.

18.4 Payoft equivalence

¥ 18.24 Theorem (Payoff equivalence theorem): Suppose ©; = [0;,0;], v;(d, -) is differentiable, and there exists B > 0
such that for all d and 0, |2 (d, 0;)| < B. If the direct mechanism (d(-),#(-)) is dominant strategy incentive

compatible. Then for every 0,

.
v (d(0;,0-;),0;) — t;(0;,0—;) = v; (d(8;,0-:),0;) — t:(0;,0-;) + /0 j;h (d(s,0—;),s)ds.

18.25 Proof.
(1) Fixed 9_1', let h(9;7 91) = U; (d(&;, 9_1'), 01) - tl(ﬁi, 9_1) and V(GZ) = maX9§ h(@;, 01)

(2) Then we have 517;: = ggfj for all 6;.

(3) Since (d, t) is dominant strategy incentive compatible, we have

0; € argmax h(0.,0;),
0;

and hence V' (¢;) = h(6;,0,).

(4) By Corollary 18.8, we have
0;
vi)-vie) = [ e,
o, do;

that is,

V; (d(@l, 971‘), 9,) — ti('gi; 9,1') = V; (d(Ql, Q,i),Q» - ti(Qi7 972) + / dvl (d(s, 971‘), S) ds.

o, d6;

O

18.26 Corollary: Suppose ©; = [6;,0;], vi(d,-) is differentiable, and there exists B > 0 such that for all d and 6,

dou;
do;

0_,, there exists ¢;(0_;) € R, such that for all §;

(d,0;)] < B. If (d,t) and (d,t') are two dominant strategy incentive compatible, then for each ¢ and each

ti(05,0 i) —ti(0:,0_;) = ci(6-s).

Proof. By Theorem 18.24, we have

97; .
v; (d(0i7 0_i), 9i) —ti(05,0-;) = v; (d(Qm 9—1‘)7@) —t;(0;,0_;) + / du: (d(87 0_i), 5) ds.

o, d0;

97; .
v; (d(ameﬂ')?gi) —t5(0;,0-;) = v, (d(ng—i)ﬁi) —t5(0,,0—;) +/0 j;z

(d(s,0-;),s)ds.

Therefore,
ti(0:,0-3) — t5(0:,0-;) = ti(0;,0_;) — t1(0;,0_;) = c;(0_;).
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18.27 Remark: Suppose ©; = [0;,0;], vi(d,-) is differentiable, and there exists B > 0 such that for all d and 0,

18.28

gZT‘ (d,0;)] < B. Suppose that (d,t) is a dominant strategy incentive compatible mechanism. Then a direct

mechanism with the same decision rule, (d, '), is dominant strategy incentive compatible if and only if for every
i € N and every 0_,; € ©_, there is a number ¢;(0_;) € R such that

t:(0) = t;(0) + c;i(A—;) forall § € ©.

Theorem: Suppose that for every i € A the set ©; is a convex subset of a finite-dimensional Euclidean space.
Moreover, assume that for every i € A the function v;(d, 6;) is a convex function of 6;. Suppose that (d, t) is a
dominant strategy incentive compatible mechanism. Then a direct mechanism with the same decision rule, (d, t'),
is dominant strategy incentive compatible if and only if for every i € A and every §_; € ©_; there is a number
¢;(0_;) € R such that

t(0) = t:(0) + c;(6—;) forall § € ©.

Proof. The necessity part is obvious. See Krishna and Maenner (2001) for the sufficiency part. O

18.5 VCG mechanism

BE" 18.29

18.30

18.31

18.32

Definition: A direct mechanism (d, tV¢9) is called a Vickrey-Clarke-Groves mechanism if d is an efficient decision
rule, and if for every 4 there is a function
hii @71' — R,

such that
£VCS(g) = — Z v; (d(0),0;) + hi(0—;) forall @ € ©.
J#i

Exercise: How to derive transfer function of VCG mechanism?

In a VCG mechanism each agent 7 is paid the sum of the other agents’ utility from the implemented alternative
whereby utilities are calculated using the agents” reported types. This is the first term in the formula. This term
aligned agent s interests with utilitarian welfare. The second term is a constant that depends on the other agents’
reported types, and that does not affect agent ¢’s incentives. This constant can be used to raise the overall revenue

from the mechanism.

Proposition: VCG mechanisms are dominant strategy incentive compatible.

Proof. (1) Consider any agent ¢ and take §_; as given.

(2) Ifagent i is of type 6;, and reports that she is of type 6}, then her utility is:

v (d(0;,0-:),0;) + ZUJ‘ (d(6;,6-:),0;) — hi(0-:) = Z v (d(6;,6-:),65) — hi(6—s).

J#i JEN

(3) Note that h;(6_;) is not changed by agent ¢’s report. Only the first expression matters for ¢’s incentives.

(4) Since d is efficient, we have

> v (d(0:,0-1),0;) = > v (d(8),0-1).0;)

JEN JEN

for all ¢7.
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18.33

18.34

18.35

18.36

(5) Therefore, it is optimal for agent ¢ to report her true type.

O
Remark: Every efficient social choice function can be truthfully implemented in a dominant strategy by a VCG
mechanism.
Proposition: Suppose ©; = [0;,6;], v;(d, ) is differentiable, and there exists B > 0 such that for all d and 6,

% (d,0;)| < B. Suppose that (d, t) is a dominant strategy incentive compatible mechanism, and suppose that d
is efficient. Then (d, t) is a VCG mechanism.

Proof. Every dominant strategy incentive compatible mechanism that implements an efficient decision rule d must
involve the same transfers as the VCG mechanism up to additive constants ¢;(f_;) that may be added to any agent
i’s transfers. But adding such constants to a VCG mechanism yields by the definition of VCG mechanisms another
VCG mechanism. O

Proposition: Suppose that for every i, the set O, is a convex subset of a finite-dimensional Euclidean space. More-
over, assume that for every ¢ the function v;(d, ;) is a convex function of §;. Suppose that (d,t) is a dominant

strategy incentive compatible mechanism, and suppose that d is efficient. Then (d, t) is a VCG mechanism.

Proposition: If d is an efficient decision rule, (d, t) is dominant strategy incentive compatible, and the type spaces

are complete in the sense that
{vi(-,0;) | ; € ©;,} = {v: D — R} for each 1,
then for each i there exists a function h; : ©_; — R such that the transfer function ¢ satisfies
60) = hi(0-) — 3 v, (d(6),6,).
i

Proof. (1) Let d be efficient, (d, t) dominant strategy incentive compatible, and the type spaces complete.

(2) Note that for each i there exists a function h;: ©® — R such that

t(0) = ha(0) = Y _v; (d(9),0;)-
J#i
We need only show that h; is independent of 6;.

(3) Suppose to the contrary, that there exists 7, § and 6} such that h;(0) < h;(0_;,05).

[hi(6-4, 07) — hi(6)].

_ 1
(4) Lete = 5

(5) By dominant strategy incentive compatibility, it follows that
i (d(0-4,0:),0;) — t(0_4,0:) > vi(d(0_,0;),0:) —t(0_,0;),
that is,

vi(d(0-4,0:),0:) + > v; (d(0i,6:),60;) — hi(0—s, 65)
J#i

> v (d(0-:,07),0:) + > v0;(d(03,6;),0;) — hi(0_;,0}).
J#i
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Ifd(0) = d(6—;,0,), then we have

hi(0_;,0;) > hi(6),

which is a contradiction. Hence d(0) # d(0_;, 6}).

(6) Given the completeness of type spaces, there exists 8] € ©; such that

(d(e—lv % 9/, +Zv] 0—“ z J) =6
J#i

and

v;(d, 0)) + Z’UJ (d,0;) = 0foranyd # d(6_;,0;).
J#i

(7) Ifd(0_;,0) # d(6—;,0,), then by efficiency of d we have

0 = 0 (d0-0.0).00) + 3 vy (A0, 00).6,)
J#i

zvl(d( 17 1 0// +ZU] 1’ Z ):E>07
J#i

which is a contradiction. Hence, d(6_;,0) = d(0_;,05).

(8) By dominant strategy incentive compatibility, we have

Ui (d(e—l’ 9;)3 0;) - ti(a—u 01) > (d(e—’ta 9;/) 0;) - tl(e—ia 9/'/)7
Ui (d(ﬁ,h 0;/)’ 0;/) - ti(gflv 9;/) i (d(efi’ 0;)3 0;/) (9,“ 91)

Then t;(0_;,0.) = t:(0_;,0).

(9) Thus, the utility to ¢ from truthful announcement at 6/’ is
Ui (d(a—ﬁ 9;/) 0;/) - ti(o—h 9;/) =e—h; (0—17 91)

and by lying and reporting 6; at 6/, ¢ gets —h;(9).

(10) This contradicts dominant strategy incentive compatibility since h;(0) < h;(0_;,60;) — €.

18.5.1 Pivot mechanism

BZ" 18.37 One version of VCG mechanism is called the pivot mechanism, where

(0-:) = 21635(2 v;(d, 05).

J#i
18.38 In the pivot mechanism, ¢’s transfer becomes

PN g) = — Zvj (d(9),6;) + maxZuj d,b;)

J#i J#i

This transfer is always non-negative, and so the pivot mechanism is always feasible.
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18.39

18.40

18.41

18.42

18.43

18.44

18.45

o The term maxqep ;. ; v;(d, 0;) maximizes the sum of everyone else’s utility if i were ignored.
o Theterm >, v; (d(8),6,) is the maximum sum of other agents’ utility when i is taken into account.

Agent i get paid everyone else’s utility under the allocation that is actually chosen, i.e., 3~ ; v; (d(9),6,), and get
charged everyone’s utility in the world where you do not participate. That is, agent ¢ pays her social cost.

o Ifi’s presence makes no difference in maximizing choice of d in two cases, then ¢;(6) = 0, that is, agents who

do not affect the outcome pay 0.

o Otherwise, we can think of ¢ as being pivotal, and then ¢; represents the loss in value that is imposed on the

other agents due to the change in decision that results from ’s presence in society.

Definition: A social choice function (d, t) is (ex post) individually rational if for each agent 4, for each 6, and 6_;,
vi (d(8;,0-;),0;) — t;(6;,6_;) > 0.

Proposition: If the function v; is always nonnegative, the pivot mechanism is indvidually rational.
Proof. Routine. O

Proposition (Uniqueness of VCG transfers): Suppose ©; = [0,,0;], v(d, -) is differentiable, and there exists B > 0
such that for all d and 6 |vy(d, 6)| < B. If (d,t) is dominant strategy incentive compatible and d is efficient, then
there exists h; : ©_; — R, such that

t:(0) = t2V°(0) + hi(6_;) forall § € ©.

Proof. By Corollary 18.26, for two dominant strategy incentive compatible mechanisms (d, t) and (d, tP*°!), we
have
ti(0) = PV (0) + hi(6_,).

O

Proposition: Among all dominant strategy incentive compatible and individually rational mechanism, the pivot

mechanism has the largest expected budget surplus.
Proof. 22222 O

Example: Three agents run the pivot mechanism to decide whether or not to build an airport. Their reports are:

Agent ‘ Utility (build) ‘ Utility (not build) ‘ Payment

1 0 60 ?
2 45 15 ?
3 45 5 ?

What outcome will pivot mechanism given the above reports? If the outcome is to build, what are agents 2 and 3’s
payments?
Answer. Since 0 + 45 + 45 = 90 > 80 = 60 + 15 + 5, the outcome is to build the airport.

If agent 2 were not present, then the airport would not be built, and the other agents would get 60 + 5 = 65. The
other agents get utility 0 4 45 from the airport’s being built. So agent 2’s payment is 65 — 45 = 20.

If agent 3 were not present, then the airport would not be built, and the other agents would get 60 4+ 15 = 75. The
other agents get utility 0 4 45 from the airport’s being built. So agent 3’s payment is 75 — 45 = 30. O
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18.46 Example: A social planner wishes to build a road connecting A and F'. There are several agents who can build the
sub-road with some cost. The costs are presented in Figure 18.3; e.g., agent AB can build the part AB with cost
3. The cost is the agents private information, and they could lie about their cost. The planner’ goal is to find the
relevant agents to work together to build the entire road and minimize the total cost. What outcome will be selected
by the planner? In the outcome, what are the costs for agents AC', AB, BE and BF?

Figure 18.3: Building a road.

Solution. (1) Note that minimizing the social cost is equivalent to maximizing the negative of total cost, which

goes back to the familiar expression in VCG mechanism that the goal is to maximize something.
(2) Itis clear that the path ABEF will be selected.

(3) For agent AC" The smallest cost taking AC"s declaration into account is 5, and imposes cost 5 on agents other
than AC'. The smallest cost without AC’s declaration is also 5. So t4c = (—5) — (—5) = 0.

(4) For agent AB: The smallest cost taking A B’s declaration into account is 5, and imposes cost 2 on agents other
than AB. The smallest cost without AB’s declaration is 6. So t4p = (—6) — (—2) = —4.

(5) Foragent BE: tpgp = (—6) — (—4) = —2.
(6) Foragent BF: tpp = (—7) — (—4) = —3.
O

Note that £ F has more market power: for the other agents, the situation without EF' is worse than the situation
without BE.

18.47 The pivot mechanism is susceptible to collusion.

Agent ‘ Utility (build) ‘ Utility (not build) ‘ Payment

1 200 0 150
2 100 0 50
3 0 250 0

If agents 1 and 2 both increase their declared valuations by 50, we have

Agent | Utility (build) | Utility (not build) | Payment
1 250 0 100
2 150 0 0
3 0 250 0
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The choice is unchanged, but both of their payments are reduced. Thus, while no agent can gain by changing her

reporting, groups can.

18.48 Revenue monotonicity: The revenue that a mechanism would obtain would always weakly increase as adding agents

to the mechanism.

The pivot mechanism may violate revenue monotonicity.

Agent | Utility (build) | Utility (not build) | Payment
1 0 90 0
2 100 0 90
Agent | Utility (build) | Utility (not build) | Payment
1 0 90 0
2 100 0 0
3 100 0 0

Adding agent 3 causes the pivot mechanism to make the same choice but to collect zero revenue.

18.5.2 Balancing the budget

¥ 18.49 Theorem: There exists a VCG mechanism that satisfies budget balance if and only if for every i there is a function

gi: ©_; = R such that

18.50 Proof of necessity.

N

i=1

N
> i (d(9),6:) = > gi(0—;) forall 6 € ©.

(1) Suppose thata VCG mechanism (d(-), tY°S(-)) is budget balanced, then we have

N
Z hi(0-i) — Zvj

i=1 J#i

(2) This equality is equivalent to

N

i=1

(3) Hence, if we set for every i and 6_;,

gi(0_) =

hi(6_;)
N-1"

N
(d(9),0,) | = ZtiVCG(e) = 0.

N
D hi(0-) =D wi(d(9),05) = (N = 1)) vi(d(6), ;).

i=1 j#i

=1

we have obtained the desired form for the function 37, v; (d(6), 6;).

18.51 Proof of sufficiency.

(1) Suppose that Zfil v; (d(0), 6;) has the form described in the statement.

(2) For every i and every 6_; we consider the VCG mechanism with

hi(0_;) &

(N = 1)gi(6-,).
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(3) Then for every 6, the sum of agents’ payments is

N N N
> = hi(O_,;)Zvj(d(G)G)] =(N-1) |:Zg7 _) sz(d(ﬁ),ﬂi) =0.

i=1 i=1 j#i

18.6 Characterization of dominant strategy incentive compatibility

18.52 In this section, we focus on the environment:

« only one agent, whose utility is v(d, ) — ¢ when decision d is chosen and transfer is ¢.

e D isan interval in R.

.« ©0=10,0].
In this case, the strict dominant incentive compatibility is equivalent to the Bayesian incentive compatibility.

18.53 Definition: v: D x © — R satisfies strictly increasing difference (abbreviated as “SID”) if for each 6,0’ € D, for
each6,0' € ©,d" > dand ¢ > 0 implies

o(d,0") —v(d,0") > v(d,0) —v(d,0).

18.54 Lemma: If vgy(d, 0) = adae exists everywhere, then v has SID if and only if vgg > 0 for all (d,6) € D x ©.

18.55 Lemma: If v has SID, and (d(-), (-)) is incentive compatible, then d(-) is non-decreasing.

Proof.

(1) Fix 6’ > 6. Suppose (d(-),t(-)) is incentive compatible.
(2) Then we have
v(d(0),0) — £(0) = v(d(0),0) — £(0"),

thus,
v(d(6),0) — o(d(8'),0) = 1(6) — 1(0').
(3) Likewise,
v(d(0"),0) —t(0) > v(d(9),0") — t(0),
thus,

#0) — t(0") > v(d(6),8") — v(d(6'),8").

(4) Therefore,
v(d(0),0) —v(d(0'),0) > v(d(6),0") — v(d(¢),0").

(5) If we assume d(0) > d(¢’), then the equation above contradicts SID. Therefore, we must have d(6") > d(6).

O
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18.56 Lemma: Suppose v has SID. If (d(-), (-)) satisfies

v(d(0),0) —t(0) =v(d(8),0) —t(@) + | wve(d(s),s)dsforalld € O,

\ﬁ

and d(-) is non-decreasing, then (d(-), t(-)) is IC.

Proof.

(1) Fix 6,6 € ©.
(2) We have

<

I
<

(d(6,0)) — t(0) — v(d(0),0) + t(0)
0

(d(8,6)) —t(6) — v(d(6"),0') + £(6') + v(d(0),6") — v(d(6'),0)
4

o
; vg(d(s), s) d8+/9 vg(d(0"), s) ds
0
= // vg(d(s),s) —ve(d(0'),s)ds
(3) Since d(-) is non-decreasing and v has SID,
v(d(6,0)) —t(0) —v(d(0"),0) +t(0") > 0.

O

¥ 18.57 Theorem (IC characterization): If v has SID, then (d(-), t(-)) is IC if and only if envelope condition and mono-
tonicity condition hold.
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19.1 Set-up

19.1 A seller seeks to sell a single indivisible good. There are N' > 2 potential buyers. We denote the set of potential

buyersby N' = {1,2,...,N}.

19.2 Buyer ¢’ utility if he purchases the good and pays a transfer ti to the seller is: §; — ¢;.

19.3 The seller’s utility if she obtains transfers ¢; from buyersi = 1,2,..., Nis ), t;.

19.4 Buyer 7 knows 6;, but that neither the seller nor any other buyer j # ¢ knows 6;.

Buyer’s value 0; is distributed over [0;, 0;] according to the cumulative distribution function F; with associated den-
sity f;, where 0 < 6§, < 0;. Although we do not assume that the random variables §; have the same distribution for

different i, we do assume that they have the same support. This is for convenience only. For technical convenience,

we also assume that f;(6;) > O foralli € M andall §; € [0,,6;].

We assume that for ¢, j € N/ with ¢ # j, the random variables 6; and 6; are independent.

The distributions { F; };c o are common knowledge among the buyers and the seller.

19.5 We will be interested in procedures that the seller can use to sell her good for revenue maximization.

329
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19.6 General criterions for the selling mechanism designer (i.e., seller):

o The mechanism designer can not force people to play—they have to be willing to play.
o The mechanism designer need to assume people will play an equilibrium within whatever game you define.
19.7 We assume that the seller has full commitment power—once she defines the rules of the game, the players have

complete confidence that she will honor those rules. This is important—you had bid differently in an auction if you

thought that, even if you won, the seller might demand a higher price or mess with you some other way.

19.8 Broadly speaking, mechanism design takes the environment as given—the players, their value distributions, and
their preferences over the different possible outcomes—and designs a game for the players to play in order to select
one of the outcomes. Outcomes can be different legislative proposals, different allocations of one or more objects,

etc.

Here we will focus on the auction problem—designing a mechanism to sell a single object, and try to maximize the
expected revenue or expected welfare. So the set of possible outcomes consists of who (if anyone) gets the object,

and how much each person pays.
19.9 A selling mechanism (B, 7, i) has the following components:

« aset of possible messages (or “bids”) B; for each buyer;

+ an allocation rule 7: B — A, where A = {(my,72,...,7n5) | 0 < m; < 1foralliand ) ;.\ < 1} is the
set of probability distributions over the set of buyers and seller A" U {0};

« apayment rule y: B — RV,

An allocation rule determines, as a function of all N messages, the probability ;(b) that ¢ will get the object.
A payment rule determines, as a function of all N messages, for each buyer i, the expected payment p;(b) that ¢
must make.

19.10 Example: Both first- and second-price auctions are mechanisms.

« The set of possible bids B; in both can be safely assumed to be &;.

o There is no reservation price, and

1, lfbl > max;-£; bj,

0, ifb; < max;«; bj.

o For a first-price auction,
bi, if b; > max;; bj,
0, ifb; < max;-£; bj.

For a second-price auction,
max;-«; bj if b; > max;«; bj
i (b) = L ’
0, ifb; < max;¢; bj.
19.11 Every mechanism defines a game of incomplete information among the buyers. An N-tuple of strategies 3,: ©; —
B, is a Bayesian Nash equilibrium of a mechanism if for all ¢ and for all §;, given the strategies 5_; of other buyers,

B:(6;) maximizes i’s expected payoff.
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19.2 The revelation principle for Bayesian equilibrium

19.12 A mechanism could, in principle, be quite complicated since we have made no assumptions on the sets ¢ of “bids”
or “messages.” A smaller and simpler class consists of those mechanisms for which the set of messages is the same
as the set of values—that is, for all 4, 3; = ©;. Such mechanisms are called direct, since every buyer is asked to

directly report a value.

19.13 Formally, a direct mechanism (g, t) consists of a pair of functions
¢: 0> A t: 0 RN,

where ¢;(6) is the probability that i will get the object, 1 — >, _ s ¢:(f) is the probability that the good is not sold,
and ¢;(0) is the expected payment by 1.

We refer to the pair (¢(6), ¢(9)) as the outcome of the mechanism at 6.

19.14 Theorem (Revelation principle for Bayesian equilibrium): Given a mechanism and a Bayesian Nash equilibrium for

that mechanism, there exists a direct mechanism in which

(i) itis a Bayesian Nash equilibrium for each buyer to report his or her value truthfully;

(ii) the outcomes are the same as in the given equilibrium of the original mechanism.

Proof. (1) Suppose that (B, 7, ;1) is a mechanism and 3 is a Bayesian Nash equilibrium of this mechanism.

(2) Letq: © = Aandt: © — RY be defined as follows:

Bids

)

Values > Outcomes

()0 B

Figure 19.1: Revelation principle for Bayesian equilibrium

(3) Itis clear that

Eo_, [qZ 91,9 —t;(6;,0- Z)]
= Eg_, [mi(Bi( i(0-4)) - 0i — i (Bi(6:), B-i(6-4))]
> Eg_, [m (»31 9' i(0-3)) - 0; — pi(Bi(07), B-i(0-4))]
= By, [0:(0),0_1) - 0, —tl(0{,0 )]

for all 9} € ©;, which implies that truthfully reporting is an equilibrium strategy for each buyer in the direct

mechanism (g, t), and its outcome is the same as in 3.

O
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19.15 Remark: This result shows that the outcomes resulting from any equilibrium of any mechanism can be replicated by
a truthful equilibrium of some direct mechanism. In this sense, there is no loss of generality in restricting attention

to direct mechanisms.

19.3 Incentive compatibility and individual rationality

19.16 Given a direct mechanism (g, t), define
QO = [ a(0h0-0f-0-) -,
to be the probability that ¢ will get the object when she reports her value to be 8/ and all other buyers report their
values truthfully.

Similarly, define
T6) = [ (60010 d0-,
O_;

to be the expected payment of ¢ when his report is 6 and all other buyers tell the truth.

Note that both the probability of getting the object and the expected payment depend only on the reported value

0/ and not on the true value 6;.

19.17 The expected payoft of buyer ¢ when his true value is 6; and he reports 6, again assuming that all other buyers tell

the truth, can then be written as
Qi(07) - 0; — Ti(6;).

19.18 The direct mechanism (g, t) is said to be Bayesian incentive compatible if truth telling is a Bayesian Nash equilib-

rium; that is, if for all 4, for all §; and for all 8,
Ui(0:) = Qi(0:) - 0 — Ti(0:) > Qi(05) - 0: — Ti(85).
We will refer to U; as the equilibrium payoff function.
19.19 Lemma: Ifa direct mechanism (g, t) is Bayesian incentive compatible, then for every 4, the function ); is increasing.

Proof. (1) Consider §; and 6} with 0, > 6.

(2) Bayesian incentive compatibility requires
Qi(0:) - 0; — Ti(0:) > Qi(6;) - 0; — T;(6;), and Q;(6;) - 0; — T;(0;) > Qi(0;) - 0; — Ti(65).

(3) Then we have
[Qi(0:) — Qi(0;)] - (6: — 0;) > 0,
and hence Q;(6;) > Q;(0Y).
O

19.20 Lemma: If a direct mechanism (g, t) is Bayesian incentive compatible, then for every 4, the function U is increas-
ing. It is also convex, and hence differentiable except in at most countably many points. For all 8; for which it is

differentiable, it satisfies

Ui (0:) = Qi(0:).
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Proof. (1) Bayesian incentive compatibility implies that for all §;,

Ui(6;) = max (Qi(0) - 6, — T,(0})).

(2) Given any value of 8}, Q;(8;) - 6; — T;(6;) is an increasing and affine (and hence convex) function.

(3) The maximum of increasing functions is increasing, and the maximum of convex functions is convex. There-

fore, U; is increasing and convex.
(4) Convex functions are not differentiable in at most countably many points.

(5) Then, by envelope theorem (Theorem 18.6), we have U/ (6;) = Q;(0;) whenever U; is differentiable.

Remark: Bayesian incentive compatibility is equivalent to the requirement that for all 6; and 6,
Ui(67) = Us(87) + Qi(6:) - (6; — ;).

This implies that for all 8;, Q;(6;) is the slope of a line that supports the function Uj; at the point 6;.

19.21 Proposition (Payoft equivalence): Consider a direct Bayesian incentive compatible mechanism. Then for all ¢ and

all 9;, we have

0;
UL(0:) = Us(6,) + /9 Qi(0}) do).

Proof. Since U; is convex, it is absolutely continuous. Since for all §; for which U, is differentiable, it satisfies

U/(0;) = Qi(0;), we have

UL(0) — Us(0;) = / Ul(6)) do, = / Q:(0!) a6,
0 0,

=i

O

19.22 Remark: Proposition 19.21 shows that the interim expected payofts of the different buyer values are pinned down

by the functions @); and the expected payoff of the lowest value. That is, Proposition 19.21 implies that up to an
additive constant, the interim expected payoff to a buyer in a Bayesian incentive compatible direct mechanism (g, t)
depends only on the allocation rule q.
If (¢, t) and (g, t') are two Bayesian incentive compatible mechanisms with the same allocation rule ¢ but different
payment rules, then the expected payoff functions associated with the two mechanisms, U; and U], respectively,
differ by at most a constant; the two mechanisms are payoft equivalent. Put another way, the “shape” of the expected
payoff function is completely determined by the allocation rule g alone. The payment rule ¢ only serves to determine
the constants U; (0,).

19.23 Proposition: A direct mechanism (g, t) is Bayesian incentive compatible if and only if for every 4

(i) Q; isincreasing;
(ii) For everyd; € ©;,
0;
U0 = Vi) + | Qul6l) .
9,

Proof. (1) Letf; > 6} € ©,.
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(2) Since @); is increasing, we have

Qi(07) 0! > / Qi(00) 6 = Qi(0) - (6; — 01).
0

%
(3) Since
0, 0; 0
JRCICOE [ -] ] Qu(0) 0! = Uy(6;) — U(6)),
6; 9; 9;
we have
Ui(0s) — Us(0;) > Qi(6;) - (0; — 0;).
(4) Then

Ui(0:) > Qi(07) - (0: — 07) + Us(67) = Qi(65) - (6: — 67) + Qi(67) - 07 — T3(07) = Qi(0;) - 0; — T;(65).

(5) If6; < 0, the argument is analogous.
O

19.24 Proposition (Revenue equivalence): Consider a direct Bayesian incentive compatible mechanism. Then for all i

and all 6;, we have

0;
Ti(6) = To(8;) + Qu(6:) - 6 — /9 Q:(0!) a6,

Proof. Since U;(6;) = Q;(0;) - 0; — T;(0;) and U;(8,) = —T;(8,), by Proposition 19.21, we have

0;
Qi(0;) - 0; — T;(0;) = =T (0,) +/9 Qi(6;) d0;.

O

19.25 Proposition 19.24 shows similarly that the interim expected payments of the different buyer values are pinned down
by the functions (); and the expected payment of the lowest value. Note that this does not mean that the ex post
payment functions ¢; are uniquely determined. Different functions ¢; might give rise to the same interim expected

payments 7;.

19.26 Proposition 19.24 generalizes the revenue equivalence principle in Theorem 4.58, to situations where buyers may

be asymmetric.

19.27 Example: Consider the symmetric case in which '} = F» = -+ = Fiy = F. Suppose we wanted to compare the
auctioneer’s expected revenue from the second-price auction with minimum bid 0 to the expected revenue from

the first-price auction with minimum bid 0.

In the second-price auction it is a weakly dominant strategy, and hence a Bayesian Nash equilibrium, to bid one’s

true value.

A symmetric Bayesian Nash equilibrium for the first-price auction is constructed in Proposition 4.25. This equi-
librium is in strictly increasing strategies. Hence this equilibrium shares with the equilibrium of the second-price
auction that the expected payment of the lowest value is zero (because this value’s probability of winning is zero),
and that the highest value wins with probability 1. Therefore, the equilibria imply the same values for 7;(0) and
Q;(0) for all 4 and 6;. The revenue equivalence theorem implies that the expected revenue from the equilibria of

the two different auction formats is the same.
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19.28

19.29

19.30

19.31

Proposition: A direct mechanism (g, ¢) is Bayesian incentive compatible if and only if for every ¢

(i) Q; isincreasing;
(ii) Foreveryf,; € ©,,
0;
1,00 = Ti0) + Qu0) 6~ [ Qe (19.0)
9;

Proof. Similar with proof of Proposition 19.23. O

Remark: We have now obtained a complete understanding of the implications of Bayesian incentive compatibility
for the seller’s choice. The seller can focus on two choice variables: firstly the allocation rule ¢, and secondly the

interim expected payment by a buyer with the lowest type: T;(6,).

As long as the seller picks an allocation rule ¢ such that the functions {Q; };car are increasing, she can pick the
interim expected payments by the lowest values in any arbitrary way, and be assured that there will be some transfer
scheme that makes the allocation rule Bayesian incentive compatible and that implies the given interim expected
payments by the lowest values. Moreover, any such transfer scheme will give she the same expected revenue, and

therefore the seller does not have to worry about the details of this transfer scheme.

A direct mechanism is individually rational if each agent, conditional on her type, is willing to participate, that is,
if
U;(6;) > 0 for all i and 6;.

We are implicitly assuming here that by not participating, a buyer can guarantee herself a payoft of zero.

Proportion: A Bayesian incentive compatible direct mechanism is individually rational if and only if for every 7, we
have
Ui(8;) = 0.

Proof. U, is increasing for Bayesian incentive compatible direct mechanisms. Therefore, U;(6;) is non-negative for

all 0; if and only if it is non-negative for the lowest 6;, which is zero. O

Since U;(8;) = —T;(6,), this is equivalent to the requirement that 7;(6,) < 0.

19.4 Expected revenue maximization

19.32

19.33

In this section we view the seller as the designer of the mechanism and examine mechanisms that maximize the
expected revenue—the sum of the expected payments of the buyers—among all mechanisms that are Bayesian
incentive compatible and individually rational. We reiterate that when carrying out this exercise, the revelation
principle guarantees that there is no loss of generality in restricting attention to direct mechanisms. Suppose that

the seller uses the direct mechanism (g, t).

We will refer to a mechanism that maximizes expected revenue, subject to the Bayesian incentive compatibility and

individual rationality constraints, as an optimal mechanism.

Expected revenue:
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(1) The expected revenue of the seller is

> Eo[Ti(0

iEN

where the ex ante expected payment of buyer ¢ is

(2) By substituting Equation (19.1), we have

Eq, [T,(0;) /Q 0 £:(0 de—/ / Qu(6]) d6.£:(0:) do

(3) Interchanging the order of integration in the last term results in

9 i 0; 0; 0,
/9 /6 Qi(ai)fi(ei)daidei/ei Qi(Gi)fi(ei)doidGi:/g (1— F,(6))Qi(6) .

0!

(4) Thus, we can write

0; _ m(n.
o (ri6)) = Tie) + [ (0 2200 ) aieanen

=i

=T;(6,) +/® (ei - W) ¢:(0)£(6) do.

(5) The seller’s objective therefore is to find a mechanism that maximizes

Sre+ Y [ (61550 ) were .

iEN iEN

subject to the constraint that the mechanism is
IC Bayesian incentive compatible, which is equivalent to the requirement that (); be increasing and that
Equation (19.1) be satisfied;
IR individually rational, which is equivalent to the requirement that 7;(6;) < 0.

19.34 We first ask which function ¢ the seller would choose if she did not have to make sure that the functions Q; are
increasing. In a second step, we introduce an assumption that makes sure that the optimal ¢ from the first step
implies increasing functions @);.

(1) Let

1-F;(6:)

fi(0:)

which is referred to as virtual valuation of a buyer with value 6;.

Yi(0;) = 0; — for all i and 6,

(2) Focus on

max/ [sz q:i( )de],
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then the optimal choice of ¢ without constraints is: for all ¢ and 6,

>0, if(6;) = maxjen ¥;(6;) > 0,

=0, otherwise.

2 (0)

19.35 Condition of regularity: for every i, the function 1), (6;) is strictly increasing.

Since
1

i (6;) = 0; — N0

where \; = f;/(1 — F;) is the hazard rate function associated with F}, a sufficient condition for regularity is that

for all 7, A; is increasing.

19.36 Lemma: If ¢);(6;) is strictly increasing, then Q; is increasing.
Proof. (1) Suppose 6, < 0;. Then by the regularity condition, 1, (0}) < 1;(6;).
(2) Forany@_;,if g;(0,,0_;) > 0, then

Vi(0;) = ;Té%(¢j(9j) >0,

and hence
¥i(0;) > max;(6;) > 0.
J#i
Therefore, qi(ﬁi,ﬁ_i) =1> qi(ﬁg,ﬁ_i).

(3) If ¢;(0;,0_;) = 0, it means the virtual value of bidder ¢ with value 6, is not the highest. Now when her value
is 0;, the virtual value is either still not the highest, which gives zero, or the virtual value becomes the highest

among all bidders which give strictly positive number. Thus ¢;(6;,0_;) > ¢;(0;,0_;).
(4) Therefore, (); is an increasing function.

O

19.37 Lemma: If a Bayesian incentive compatible and individually rational direct mechanism maximizes the seller’s ex-

pected revenue, then for every 4, T;(6,) = 0.

Proof. 1t is clear that T;(0,) < 0. If T;(6;) < 0, then the seller could increase expected revenue by choosing
a direct mechanism with the same ¢, but a higher T;(6,). By the formula for payments in Proposition 19.28, all
values’ payments would increase. O

When T;(6;) = 0, we have
0;
Ti(6:) = Qi(0:) - 0 —/ Qi(67) do;.
9,

19.38 Theorem: Suppose the design problem is regular. Then the following is an optimal mechanism:

>0, if;(0;) = maxjen 1p;(60;) >0,
%‘(9)

=0, otherwise,

and

0;
T,(0) = Qu(6:) - 0; /9 Qi(01) dt).
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19.39

19.40

19.41

19.42

Proof. Ttisclear that (g, t) is Bayesian incentive compatible and individually rational. It is optimal, since it separately

maximizes

S 0)and 3 [ 6(6)a0)10) 20

ieN ieN
overall g: © — A. In particular, it gives positive weight only to non-negative and maximal terms in
Z ¥i(0i)qi(0).
ieN

O

Remark: We have characterized the optimal choice of the allocation rule g and of the interim expected payments.
We have not described the actual transfer schemes that make these choices Bayesian incentive compatible and

individually rational.

In the optimal mechanism, the maximized value of the expected revenue is

Eg[max{t1(01),%2(02),...,¢¥n(0N),0}].

In other words, it is the expectation of the highest virtual valuation, provided it is non-negative.

One possible payment rule ¢ is
0;
6(0) = 000~ [ ai0}.0-) a0,
0

=i

It is clear that ¢;(6,,0_;) = 0 for all §_;, and hence

T:6) = [ 6(0.0-)14(0-1) &0 =0,
O_;
Let

V5(0—;) = inf{0; | 13(0;) > 0and ;(6;) > ;(0;) forall j # i}

as the smallest value for 7 that “wins” against 6_;.

Then

1, if6; > ﬁi(é’,i),
qi(0:,0-;) =
0, otherwise,

which results in

0; 0; —9;(0_;), if0; > 9;(0_;),
| ate0-)0; - (0, 100 000
9, 0, iff; < 191((9_1),
and so payment rule becomes
9:(0-;), ifq(0) =1,
P LI 0

That is, only the winning buyer pays anything: she pays the smallest value that would results in her winning.
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19.43

19.44

19.45

Corollary: Suppose the design problem is regular. Then the following is an optimal mechanism:

1, 1f¢l(01) > Max;=£; wj(GJ) and wl(ﬁz) > O,

%:(0) =
0, 1f1/11(91) < max;; d)j (9]'),

and
9i(0-:), ifqi(0) =1,

Example: Suppose that we have a symmetric problem so the distributions of values are identical across buyers. In
other words, for all 4, f; = f, and hence for all 4, 1); = 1). Now we have that,

9;(0_;) = max {wl(()),maxﬁj} .
J7#i

Thus, the optimal mechanism is a second-price auction with a reserve price r* = 1 ~1(0).

Remark: Note that in the case with asymmetric buyers, the optimal mechanism may sometimes give the good to a

buyer who does not have the highest value.

19.5 Maximizing welfare

19.46

19.47

19.48

19.49

Suppose that the seller is not maximizing expected revenue but expected welfare. So the seller uses the following

utilitarian welfare function, where each agent has equal weight:

iEN

Note that this seller is no longer concerned with transfer payments, and expected welfare depends only on the

allocation rule q.

By Lemma 19.19, the seller can choose any rule ¢ that is such that the functions @); are increasing. By Proposi-

tion 19.31, she can choose any transfer payments such that 7;(6,) < 0 for all 4.

If values were known, maximization of the welfare function would require that the object be allocated to the po-

tential buyer for whom 6; is largest.

Because transferring to the buyer for whom 6; is largest maximizes welfare for every type vector, it also maximizes

expected welfare.

In this case, it is clear that @); is increasing.

Proposition: Among all Bayesian incentive compatible, individually rational direct mechanisms, a mechanism

maximizes expected welfare if and only if for all ¢ and all 6:

6)
1, iff; > 6, forall j # i,
qi(0) = ’

0, otherwise.
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19.50

19.51

19.52

19.53

(i) N
T(0,) < Qi(6,) - 6 — /9 Qi(0%) do!.

Remark: Note that this result does not rely on regularity condition.

Differences between welfare maximizing and revenue maximizing mechanisms in the case that regularity condition

holds.

» Revenue maximizing mechanism allocates the object to the highest virtual type whereas the welfare maxi-
mizing mechanism allocates the object to the highest actual type. In the symmetric case, the functions ¢); are
the same for all ¢ and there is no difference between these two rules. But in the asymmetric case the revenue

maximizing mechanism might allocate the object inefficiently.

» Revenue maximizing mechanism sometimes does not sell the object at all, whereas the welfare maximizing
mechanism always sells the object. This is an instance of the well-known inefliciency that monopoly sellers

make goods artificially scarce.

Example: Suppose that ©; = Oz = [0, 1], and that §; and 6, are independently and uniformly distributed on

[0, 1]. Then F;(0;) = 6;, and

(A — __1—F1-(0i): o
Vi (0;) = 0; R0y 20, — 1.

Note that the regularity condition is satisfied.

In an expected revenue maximizing auction, the good is sold to neither bidder if

P1(61),12(02) <0,

that is,
91, 0y < %

If the good is sold, it is sold to bidder 1 if and only if

¢1(91) > %(02) < 601 > 0.
The expected revenue maximizing auction will allocate the object to the buyer with the highest value provided that
this value is larger than 3. A first- or second-price auction with reserve price 3 will implement this mechanism.

Example: Suppose that ©; = Oy = [0, 1], and that Fy(0;) = 67 and F»(63) = 205 — 63. Thus, buyer 1 is more
likely to have high values than buyer 2.

and

1—F5 (62
¥2(02) = 62 — f2<0(2> b= 36: -

N

Note that the regularity condition is satisfied.

In an expected revenue maximizing auction, the good is sold to neither bidder if

P1(01),12(02) <0,



19.5. Maximizing welfare 341

that is,
0, < %, and 0, < %

If the good is sold, it is sold to buyer 1 if and only if

P1(01) > P2(02) & 0 < 01 — ﬁ +1

921
1
Vs
Wy
K
buyer 2 .
K
K
7/
1 a
3 L
e buyer 1
_-'no sale
0 1 01

S

19.5.1 VCG mechanism

19.54 « Recall that an allocation rule ¢*: © — A is said to be efficient if it maximizes “social welfare”—that is, for all
0eco,

q*(#) € argmax Z q;9;.
€A jenN

When there are no ties, an efficient rule allocates the object to the buyer who values it the most.

o A mechanism with an efficient allocation rule is said to be efficient.

19.55 Given an efficient allocation rule ¢*, define the maximized value of social welfare by

w(0) 23 4 (0)0;,

JEN
when the values are z.

Similarly, define
w_i(0) £ q;(0)0;

J#i
as the welfare of agents other than i.
19.56 The Vickrey-Clarke-Groves (VCG) mechanism (q*, V%) is an efficient mechanism with the payment rule tV°¢: © —

RY given by
t;’CG(9> = —w,i(ei, 9,1') + hl(G,Z)
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19.57 Proposition: VCG mechanism is Bayesian incentive compatible: If the other buyer report values 6_;, then by re-

porting a value of 0., agent ¢’s payoff is

67 (01,6-)0; — t/°°(6;,6_:) = qF (6}, 6-0)6; — hi(6_) + Y _ ¢;(6},6-:)6);
J#
=3 q;(0;,0-:)0; — hi(6_;).
JEN

The definition of ¢* implies that for all 6_;, the first term is maximized by choosing 6, = 6;; and since the second

term does not depend on 6, it is optimal to report 6, = 6;.

Actually, the VCG mechanism is dominant strategy incentive compatible.
19.58 In the following, we consider a special VCG mechanism by taking h;(0_;) to be w(8,,6_;).

In this case, tY“%(0) is thus the difference between social welfare at ’s lowest possible value 6, and the welfare of

other agents at i’s reported value 6;, assuming that in both cases that the efficient allocation rule ¢* is employed.
19.59 s equilibrium payoft when the values are 6 is

67 (0)8; — t/°°(8) = 4 (0)6; — w(8;,0-0) + D 4} (6)6; = w(8) — w(8;, 6-.),
J#i

which is just the difference in social welfare induced by i when she reports her true value 8, as opposed to her lowest

possible value 8;.
19.60 Proposition: VCG mechanism is individually rational.

Proof. Since the VCG mechanism is incentive compatible, the equilibrium expected payoff function U, associ-

ated with the VCG mechanism,

U(0:) = Eo_, [w(0) — w(@;,0-,)]

is convex and increasing.

Clearly, UY°S(6,) = 0, and the monotonicity of UY“S implies that VCG mechanism is individually rational. [
19.61 Proposition: Among all mechanisms for allocating a single object that are efficient, incentive compatible, and in-

dividually rational, the VCG mechanism maximizes the expected payment of each agent.

Proof. If (¢*,t) is some other efficient mechanism that is also incentive compatible, then by the revenue equivalence

principle we know that for all 7, the expected payoff functions for this mechanism, say U;, differ from U by at

most an additive constant, say ¢; = U;(0;) — UYC(6;).

If (¢*, t) is also individually rational, then this constant must be non-negative—that is, ¢; = U;(6;) — UY (6;) > 0.

This is because otherwise we would have U;(0,) < UYS(6,) = 0, contradicting that (¢*,¢) was individually

rational.

Since the expected payoffs in (¢*, t) are greater than in the VCG mechanism, and the two have the same allocation

rule, the expected payments must be lower. O
19.62 Remark: Taking 8, = 0, then it is routine to see that the VCG mechanism is the same as a second-price auction:

Y95 (0) = w(0,0_;) — w—_i(0;,0—;) = w_;(0,0_;) — w_;(6;,0;),
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=3 [q;f(o, 0_i) —q;j(0s, 94)} 0j,

j#i
and this is positive if and only if §; > max;; 0;.

In that case, tY°5(6) is equal to max;z; 6;, the second-highest value.

19.5.2 AGYV mechanism

19.63 A mechanism is said to balance the budget if for every realization of values, the net payments from agents sum to

> ti(0) =0.

iEN

zero—that is, for all 0,

19.64 The Arrow-d’Aspremont-Gérard-Varet or AGV mechanism (also called the “expected externality” mechanism)
(q*,tASY) is defined by

Y (0) = % > Ep, [wj(60;,0-5)] =B, [w_i(6;,6-5)] .
N -1
i

So that for all 9,
> Y (9) =o.

ieN
19.65 It is easy to see that the AGV mechanism may not satisfy the individual rationality constraint.

19.66 Proposition: There exists an efficient, incentive compatible, and individually rational mechanism that balances the

budget if and only if the VCG mechanism results in an expected surplus.

Proof. By Proposition 19.61, if the VCG mechanism runs a deficit, that is
Ey [Z tXCG(H)} <0,

then all efficient, incentive compatible, and individually rational mechanisms must run a deficit, which can not
balance the budget.

We now show that the condition is sufficient by explicitly constructing an efficient, incentive compatible mechanism

that balances the budget and is individually rational.

(1) Since we know
UY%(0:) = Eo_, [w(0,0—;) — w(8;,0-)] = Eg_, [w(0;,0_)] — ¢]C,

where ¢S = Ey_,[w(0,,0_;)].

(2) Since (¢*,tV°%) and (¢*, tAV) are incentive compatible direct mechanisms, by revenue equivalence principle,
we have
UzAGV(al) = E(’—q‘, [w(elv 972)] - C?va

for some constant GV,
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(3) Suppose that the VCG mechanism runs an expected surplus, that is,

Eo [Zt}’“(@)} > 0.

ieEN

(4) Then

Bo [ S 190)] > B0 [ 30 149 (0)],

ieN ieN
where the right-hand side is exactly 0 due to the budget balance constraint. Equivalently,

E C}/CG > § C?GV )

1EN 1EN

(5) Foralli > 1, defined; = C?GV - c;’CG, andletd; = — Zivzz d;. Consider the mechanism ¢ defined by

t;(0) = t2V(0) — d;.

(6) Clearly, ¢ balances the budget, and is incentive compatible, since the payoff to each agent in the mechanism ¢

differs from the payoff from an incentive compatible mechanism, ¢*SV, by an additive constant.
(7) Foralli > 1,
[71(92) = UZAGV(@) +d; = UlAGV<492) + C?GV — CyCG = Ul\]CG(@) > 0.

Since Y-, d; =0and ), V¢ > 3", ¢SV, we have

VCG  AGV AGV _ VCG
dlz—gdizg(ci -y >t =

i>1 i>1

Thus
Ul(el) = UfGV(tgl) +diy > U{\GV(91) + C?GV — CYCG = UYCG(Hl) > 0.

Therefore, { is individually rational.

19.6 Dominant strategy mechanism

19.67 A direct mechanism (g, t) is dominant strategy incentive compatible if truth telling is a dominant strategy for each
type of each buyer, that is, for all i € N, all 6,0" and all §_,

0;qi(0;,0_;) — t;(0:,0_;) > 0;q:(0;,0_;) — t;(6;,0_;).

19.68 A direct mechanism (g, t) is ex post individually rational if for each type of each buyer participation is a dominant
strategy, that is, if for all¢ € I, all §; and all 6_,,

0:q:(0;,0_;) —t;(0;,6_;) > 0.

19.69 Proposition: A direct mechanism (g, t) is dominant strategy incentive compatible if and only if for every ¢ and



19.7. Bilateral trade 345

every 0_;,

(i) ¢i(6;,0_;) is increasing in 6.

(ii) for every 6;,

0;
ti(0i,0_i) = t:(0,,0_:) + 0:qi(0:,0 ;) — 0,q:(0,,0 ;) +/ i(0;,0_;) d;.
0

=i

19.70 Proposition: A dominant strategy incentive compatible direct mechanism (g, ¢) is ex post individually rational if

and only if for every ¢ and every 6_; we have

t:(0;,0-:) < 0,q:(0;,0_;).

19.71 A direct mechanism (g, ) is called a canonical auction if there are strictly increasing and continuous functions
1;: ©; = R for i such that for all 6 and 4,

if i (0;) > 0and ¢;(6;) > ¢;(0;) forall j # 4,

1
n
0, otherwise,

q:(0) =

where 7 is the number of agents & such that ¢y, (6x) = 1;(6;), and

%min{@é | ¢:(0;,0_;) >0}, ifg;(0) >0,
ti(0) =
0, otherwise,

for all 6.

19.72 Proposition: Every canonical auction (g, t) is DSIC and ex post IR. Moreover, for every i, u;(8;,60_;) = 0 for all
0_;.

19.7 Bilateral trade

19.73 A seller S owns a single indivisible good, and there is one potential buyer B.

19.74 The seller’s utility if her valuation is fg and she receives a payment ¢ is
(17d)'037t57

where d = 0 means “no trade” and d = 1 means “trade takes place”. Assume g is a random variable on O g = [0, 1]

with cumulative distribution function Fg and density fs.

19.75 The buyer’s utility if her valuation is 65 and she pays ¢ is
d-0p —tp,

where d = 0 means “no trade” and d = 1 means “trade takes place”. Assume 6 is arandom variableon © 5 = [0, 1]

with cumulative distribution function F'p and density f5.
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19.76 A direct mechanism (d, t) is efficient if

]-7 if 93 > 957
0, otherwise.
Note that the efficiency is a special case in Definition 18.13.

19.77 A direct mechanism (d, t) is (ex post) budget balanced if for each

t5(0) + ts(0) = 0.

19.78 Let D;: ©; — [0, 1] be the probability that trade takes place conditioning on agent i’s type.
Let T;: ©; — R be agent ¢’s expected transfer conditional on her type.

Let U;: ©; — R be agent ¢’s expected utility conditional on her type:

Us(fs) = (1 = Ds(0s)) - 0s — Ts(0s),
UB(QB) = DB(HB) -0 — TB(GB).

19.79 A direct mechanism (d, t) is interim individually rational if

Us(es) > g, and UB(GB) > 0.

¥ 19.80 Theorem (Myerson and Satterthwaite (1983)): In the bilateral trade problem, there is no mechanism that is efficient,

Bayesian incentive compatible, individual rational and budget balanced.
19.81 Proof.

(1) Consider an efficient and Bayesian incentive compatible mechanism (d*, ¢) which is interim individually ra-

tional.

(2) By payoff equivalence theorem on interim expected payoff (Theorem 18.24), we have

Ts(0s) = TE™(0s) — TE™'(1) + Ts(1),
Ts(0p) = TH™ (05) — TH"(0) + Tx(0).
pivot

(3) By the definition of pivot mechanism, we have Ug ™ (1) = UgVOt(O) =0.

(4) Since (d*,t) is interim individually rational, we have Ug(1) > 1 and Ug(0) > 0. Then
1+ Ts(1) =Ug(1) > 1, and T5(0) > 0.

(5) Thus,
Ts(0s) > TE"(8s), and T(0p) > T5" ().

(6) By the definition of pivot mechanism, we have

gy = {0 IR0 g
0, otherwise 0, otherwise

0s, iffp > 0g
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(7) This pivot mechanism runs an expected deficit of
Eg [t%7(0s,05) + 5% (0s,05)] = E¢ [max{fs — 0,0}] > 0.
(8) Therefore, we have
Eg [ts(0) +t5(0)] > Eq [t57(0s,0) + 15 (0s,05)] > 0,

which contradicts the budget balanced condition.
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Mechanism design: Provision of public goods

Contents
20.1 Set-UP . v v e e e e e e e e e e e e e e e e 349
20.2 Exanteandex postbudgetbalance . . . . . . .. ... Lo Lo Lo o e 350
20.3 Welfare maximization . . . . . . . . .. .. o e e e 352
20.1 Set-up

20.1 A community consists of N agents: N' = {1,2,..., N} where N > 2. They have to choose whether to pro-
duce some indivisible, non-excludable public good. We denote this decision by d € {0,1}. If the public good is
produced, then d = 1; otherwise d = 0.

20.2 Agent ¢’s utility is §;d — ¢; if the decision is d and she pays a transfer ¢; to the community. Here, §; is agent ¢’s
valuation of the public good.
20.3 Agent i knows 6;, but that neither the designer nor any other agent j # ¢ knows 6;.

Agent’s value 0; is distributed over [0, , 6;] according to the cumulative distribution function F; with associated den-
sity f;, where 0 < 8, < 0;. Although we do not assume that the random variables 6; have the same distribution for
different 7, we do assume that they have the same support. This is for convenience only. For technical convenience,
we also assume that f;(6;) > 0 foralli € N and all §; € [0,,0;].

We assume that for ¢, j € A with i # j, the random variables 6; and 6; are independent.

The distributions { F; };c - are common knowledge among the agents and the designer.
20.4 The cost of producing the public good is assumed to be ¢ > 0, so that a decision d implies cost cd.

20.5 A direct mechanism consists of functions ¢ and ¢

q: © = {0,1}andt: © - RV,

349
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20.6 Given a direct mechanism (g, t), define

Qi(9:) :/( qi(0:,0_3) f—i(0_;) dO_;

to be the interim conditional probability that the public good is produced, conditioning on agent 4’s type being 6;.

Similarly, define
T;(0;) = / ti(0;,0_3) f-i(0—_;)dO_;

to be the interim conditional expected value of the transfer that agent ¢ makes to the community, conditioning on
agent ¢’s type being 6;.

Agent i’s expected utility is defined as
Ui(0:) = Qi(0:) - 0; — Ti(6:),
conditioning on agent ¢’s type being 0;.

20.7 The direct mechanism (g, t) is said to be Bayesian incentive compatible if truth telling is a Bayesian Nash equilib-

rium; that is, if for all 4, for all 6; and for all 8},
Qi(0:) - 0; — Ti(0:) > Qi(0;) - 0; — T;(6;).

20.8 Proposition: A direct mechanism (g, ¢) is Bayesian incentive compatible if and only if for every i
(i) Q; isincreasing;
(ii) For everyd; € O,
Ti(6:) = Ti(6,) + Qi6:) -6, —/ Qu(61) o
20.9 A direct mechanism is individually rational if each agent, conditional on her type, is willing to participate, that is,
if
U;(6;) > 0 forall ; and 6;.

20.10 Proportion: A Bayesian incentive compatible direct mechanism (g, t) is individually rational if and only if for every

i, we have
Ui(Qi) > 0.

20.2 Exante and ex post budget balance

20.11 A direct mechanism is ex post budget balanced if for every § we have

Zt ) > cq(0

1EN

A direct mechanism is ex ante budget balanced if

/Zt d6>/®cq(9)f(9)d€.

’LGN
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20.12 Clearly, ex post budget balance implies ex ante budget balance.

20.13 Two direct mechanisms are equivalent if they have the same decision rule, and if for all agents ¢ and for all types
0;, 0., agent i’s expected transfers, conditional on agent s type being 6; and agent i reporting to be type 6/, is the

same in the two mechanisms.

20.14 Proposition: For every direct mechanism that is ex ante budget balanced, there is an equivalent direct mechanism

that is ex post budget balanced.

Proof. Suppose first that we have a mechanism for which the ex ante budget balance condition holds with equality.
Let ¢ be the payments in the ex ante budget balanced mechanism, and T’; (6;) the expected value of agent j’s transfer,

conditioning on agent 7’s type being 6;.

(1) We construct the payments in the ex post budget balanced mechanism by modifying the payments in the ex

post budget balanced mechanism.

(2) In the modified mechanism, if the type profile is 6, then agent 1’s payment is

w0 (w03 00) (T, )

coverage of ex post deficit expected deficit conditional on her own type

Then agent 1’s expected transfer, conditional on agent 1’s type being #; and agent 1 reporting to be type 67 is

/ . ( a,e_1>de_1+/ 9(01,0.1)~ 5" 1:(6;,0_1) o 1—/ cQu(0) -3 Ti(8,) d0_y = T1(6}),
@_1 @—1

-1 iEN 1EN

the same as the expected transfer in the original mechanism, conditional on agent 1’s type being 6; and agent

1 reporting to be type 6.

(3) In the modified mechanism, if the type profile is 6, then agent 2’s payment is

ta2(0) +  cQ1(61) — Zie./\/'ﬂ(el)

expected deficit conditional on agent 1’s type

Since the original mechanism is ex ante budget balanced,

/@ch1 (61) = > Ti(61) do_zf/ g(0) = Y " t:(0)do =

ieN ieN
and hence agent 2’s expected transfer, conditional on agent 2’s type being 5 and agent 2 reporting to be type

6%, is the same in the original mechanism.
(4) The modified transfer for agent ¢ # 1, 2 is the same as before, ¢;(9).
(5) Itis clear the modified transfers are ex post budget balanced.
If there is an ex ante budget surplus, we subtract from some agents payments a constant until the mechanism is

exactly budget balanced. Then we conduct the transformation described above. Then we add the constant again to

this agent’s payments. The mechanism that we obtain has the required properties. O

20.15 Intuitively, the ex post budget balanced mechanism in the above proof is constructed so that agent 1 covers the ex

post deficit, and agent 2 compensates agent 1 by paying to agent 1 a “fair” insurance premium.
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20.16 We shall assume that the mechanism designer in this section considers only ex post budget balanced mechanisms.
The above result makes clear that this is equivalent to requiring ex ante budget balance. We shall work with either

condition, whichever is more convenient.

20.3 Welfare maximization

20.17 We attribute to the mechanism designer a utilitarian welfare function with equal welfare weights for all agents:

> id— >t

ieN ieN
The mechanism designer’s objective is to maximize the expected welfare.

20.18 As the mechanism designer subtracts transfer payments in her welfare function, she would never raise transfers

larger than what is required to cover cost.

20.19 Itis clear that the optimal decision rule is

17 if Zie./\/ 01' 2 C,

0, otherwise.

q (0) =

20.20 As the utilitarian designer with equal welfare weights for all agents does not care how costs are distributed among

agents. Therefore, any transfer rules that satisfy

ifg*(0) =1,

S o) ="

PN 0, otherwise,

are optimal. We call these direct mechanisms “first best” They maximize welfare for any type vector 6, and therefore

they also maximize ex ante expected welfare.

20.21 Theorem: Anincentive-compatible and individually rational first best mechanism exists if and only if either ) 0, \ 0, >
corZieNéi <ec.

Proof of sufficiency. If ) ;.\, 0, > c then a mechanism where the public good is always produced and it is not
difficult to find a first best, incentive-compatible and individually rational mechanism. If }_,_\ 0; < c thena
mechanism where the public good is never produced and no agent ever pays anything is first best and incentive-

compatible and individually rational. O

20.22 The pivot mechanism is the mechanism that is given by the first best decision rule ¢* and by the following transfer
scheme:
(0) = 0,°(0,,0-3) + (a"(0) = 4" (6,,0-)) (¢ = >_0))
J#i
for all s and 6.
20.23 The second term equals the change to the social welfare of all other agents caused by agent s report, and hence

agent 5 pays only if her report is “pivotal” for the collective decision. Here we compare the actual outcome to the

outcome that would have occurred had agent ¢ reported the lowest type 0,. Agent ¢’s report changes the collective
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decision if ¢*(0) — ¢*(8;,0—;) = 1. In that case, agent ¢ pays for the difference between the costs of the project,

and the sum of all other agents’ valuations of the project.

20.24 Lemma: The pivot mechanism is incentive compatible and individually rational.

Proof. (1) We are going to show that truthful reporting is optimal whatever the other agents’ types 6_; are.
(2) If we leave out terms that do not depend on agent ¢’s report, then agent ¢’s utility if reporting 6 is:

0,07 (0,,0_:) — q* (6], 0_,) (c -3 9].) = ¢* (0, 9_i)( > 0 - c).
J#i

ieEN
(3) Because g™ is first best, agent ¢’s utility is maximized if she reports truthfully 6. This proves incentive com-
patibility.
(4) To verify individual rationality note that the expected utility of agent ¢ obviously equals zero if her type is §,.

(5) By aresult analogous to Lemma 19.20, all types’ interim expected utility is at least zero, and the mechanism

is individually rational.

O

20.25 Lemma: No incentive compatible and individually rational mechanism that implements the first best decision rule
q* has larger ex ante expected budget surplus (ex ante expected transfers as well), that is revenue minus cost, than

the pivot mechanism.

Proof. (1) The ex ante expected budget surplus from an incentive compatible mechanism is

S 1) - Y000+ [ a0)| X (01550 c]ﬂm .

iEN iEN © |JEN

(2) Thus, the ex ante expected budget surplus from an incentive compatible mechanism that implements the first
best decision rule ¢* equals the interim expected payments of the lowest types plus a term that is the same for
all such rules.

(3) If a mechanism is individually rational then the interim expected payments of the lowest types can be at most
such that the expected utility of the lowest types are zero, that is, 8,Q.(6,).

(4) For the pivot mechanism the expected utilities of the lowest types are exactly equal to zero.

(5) Therefore, no incentive-compatible, individually rational direct mechanism can have higher expected surplus

than the pivot mechanism.

O

20.26 Proof of necessity. (1) Assume that >, -0, < ¢ < Y, 0;. We show that the ex post budget surplus of the
pivot mechanism is always non-positive and with positive probability negative. This implies that the ex ante

expected budget surplus is negative.

(2) Consider first § such that ¢*(¢) = 0. In this case, there are no costs and no agent pays any transfer. Hence
the deficit is zero.

(3) Consider next 6 such that ¢*(6) = 1 and ¢*(6,,0—;) = 1 for every i € A. In this case each agent pays 0,.
However, ), \-8; < ¢, and hence there is a deficit.
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(4) Consider finally 6 such that ¢*(0) = 1, and ¢*(6;,6—;) = 0 for some . Let .J be the set of all i for which this

holds, and call these agents “pivotal” Then the total transfer is
S (e=D00)+ D bi=1Tle= (T =DD 6= > (0: - 0,).
ieJ j#i ieJe ieN ieJe
Since ¢*(0) = 1, ¢ < ), v 05> and hence the total transfer is at most
e = (7] =De—= > (6 =) =c— > (6; —8,)-
ieJe i€Je
Therefore, the total transfer is not more than c.

(5) Since the pivot mechanism has larger ex ante expected budget surplus among all IC, IR and first best mecha-
nisms, and the ex ante expected budget surplus is negative, no incentive compatible and individually rational

first best mechanism exists when >, 0, < ¢ < 3. 0;.
O

20.27
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21.1 Implementation
21.1 The essential part of mechanism design is implementation theory which, given a social goal, characterizes when

21.2

we can design a mechanism whose predicted outcomes (e.g. equilibrium outcomes) coincide with the desirable

outcomes, according to that goal.

An example: Consider a society consisting of two consumers of energy, Alice and Bob. An energy authority is
charged with choosing the type of energy to be used by Alice and Bob. The options—from which the authority

must make a single selection—are gas, oil, nuclear power, and coal.

Let us suppose that there are two possible states of the world. In state 1, the consumers place relatively little weight
on the future, i.e., they have comparatively high temporal discount rates. In state 2, by contrast, they attach a great

deal of importance to the future, meaning that their rates of discount are correspondingly low.
In each state, the consumers’ rankings in the two states are given in Table 21.1.

Assume that the energy authority is interested in selecting an energy source that both consumers are reasonably
happy with. If we interpret “reasonably happy” as getting one’s first or second choice, then oil is the optimal choice
in state 1, whereas gas is the best outcome in state 2. In the language of implementation theory, we say that the
authority’s social choice rule prescribes oil in state 1 and gas in state 2. Thus, if f is the choice rule, it is given in
Table 21.1.

Suppose, however, that the authority does not know the state (although Alice and Bob do). This means that it does

not know which alternative the choice rule prescribes, i.e., whether oil or gas is the optimum.

o Probably the most straightforward mechanism would be for the authority to ask each consumer to announce

Ta, 7B € {01,02} respectively. After receiving their reports, the following mechanism will produce the out-

355
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state 0, = i: 0y = ,>\:/
social goal f(61) =oil f(02) = gas
Alice Bob Alice Bob
gas nuclear | nuclear oil
preference oil oil gas gas
coal coal coal coal
nuclear gas oil nuclear
Table 21.1
comes as follows:
oil, TA =T = 61,
g(TA7TB): gas, TA =TB :627

Loy L .
5 0oil + 5 o gas, otherwise.

Note: Alice/Bob would always report states 62/, (respectively).

» <«

- If Alice reports 61, she may obtain “oil”, and if she reports 05, she may get “gas” “gas” is better than “oil”

for Alice no matter the true state is 61 or 05.

» < s

- If Bob reports 01, he may obtain “oil”, and if he reports 62, he may get “gas”. “oil” is better than “gas” for
Bob no matter the true state is 87 or 0.

Thus this mechanism implements the social goal only with a 50 percent chance.

o The following mechanism, which specifies set of players, set of actions for each player and outcome function,

can implement the social goal.

Bob Bob Bob
L R L R L R
.U oil coal .U |3,3]22 .U 1,422
Alice D | nuclear gas Alice D |1,4]|4,1 Alice D |41]33
Outcome function Preferences in 64 Preferences in 05
Figure 21.1

It is clear the Nash equilibrium outcome is “oil” when the true state is #; and “gas” when the true state is 6.

21.3 Definition: An environment (N, C, P, G) consists of

« afinite set NV of players, with |N| > 2,
« aset C of outcomes,
« aset P of preference profiles over C, with typical profile - € P,
« aset G of game forms/mechanisms with consequences in C.
- A strategic game form is a triple G = (N, (4;), g), where g: A — C'is an outcome function.
- An extensive game form is a tuple (N, H, P, g), where g: Z — C'is an outcome function.
A strategic game form G = (N, (4;), g) with a preference profile - induce a strategic game (N, (A;), 2Z'), where
a 2t bifand only if g(a) 7Z; g(b).
Similarly, a extensive game form with a preference profile induce a extensive game.

The game form can be regarded as the rules of the game.
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21.4 Definition: A choice rule f: P — C'is a function that assigns a subset of C' to each preference profile in P.

We refer to a choice rule that is a singleton-valued as a choice function.

21.5 Notation: For a game form G € G and a preference profile - € P, let S(G, ) denote the set of solutions under
the solution concept S of the game induced by G and .

21.6 Definition: Let (N, C, P, G) be an environment and S a solution concept.

The game form G € G with outcome function g is said to S-implement the choice rule f: P — C'if

9(S(G. %)) = f(x) forall 5 € P.

s /

Solutions

Figure 21.2

We say the choice rule f is S-implementable in (N, C, P, G) if there exists G € G with outcome function g which

S-implements f.

21.7 Definition: Let (N, C,P,G) be an environment in which G is a set of strategic game forms for which the set of

actions of each player 1 is the set P of preference profiles, and S a solution concept.

The strategic game form G = (N, (4;),g) € G truthfully S-implements the choice rule f: P — C if for every
preference profile 7~ € P we have

« every player reporting the “true” preference profile is a solution of the game:
a* € 8(G, ), af =7 foreachi € N.

o the outcome if every player reports the true preference profile is a member of f():
g(a*) € f(z), af = foreachi € N.

The choice rule f is truthfully S-implementable in (N, C, P, G) if there is a strategic game form G € G with
outcome function g, such that G truthfully S-implements f.

21.8 Remark: One important aspect of implementation theory is the requirement that all the solution outcomes lie in
the given choice rule.

The mechanism design literature focuses on incentive compatibility issues, asking whether a given outcome can be
induced as an equilibrium of some mechanism and generally ignores whether there are other undesired equilibrium

outcomes.

21.2 Implementation in dominant strategies

21.9 Definition: A profile ¢* € A in strategic game (N, (A4;), (2Z;)) is a dominant-strategy equilibrium (abbreviated as
“DSE”) if, for every player ¢, (a_;,a}) 7; (a—;,a;) foralla € A.
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21.10 Lemma (revelation principle for DSE-implementation): Let (N, C, P, G) be an environment in which G is the set

of strategic game forms. If f: P — C is DSE-implementable, then

o fis truthfully DSE-implementable.

o there is a strategic game form G* = (N, (A}),¢*) € G in which A} is P;—the set of all preferences for
player 4, such that for all - € P the action profile - is a dominant-strategy equilibrium of (G*, 7) and
97 (%) € f(2)

21.11 Proof of the second statement. (1) Let the strategic game form G = (N, (A;), g) DSE-implement f. Then for all
Z € P,g(DSE(G, Z)) = f(Z)-

~

(2) Foreachi € N, the set of dominant strategies of player ¢ depends only on Z;, so that for any Z € P we can
define a;(Z;) to be a dominant strategy for player i in the game (G, ) induced by G and 7.

(3) Clearly, (a;(2:)) ;e is a dominant-strategy equilibrium in the game (G, ), and

9((@(2)en) € FC2).
(4) Foreachi € N,let A =P, andg*: A* — C,
6"(2) = 9((ai(20) e )

It is clear that g* (7)) € f(X).

*

g
(Zi)ien A* = XienP; C
(ai(Zi))ien A

Figure 21.3

(5) Now suppose that there is a preference profile =7 for which 7Z; is not a dominant strategy for player j in the
game (G*, =) induced by G* and . Then there is a preference profile 7~’ such that

9" (2L 25) =5 97 (215 %),

and hence
gla—; (") a;(z))) =5 9(a—;(Z1,), a;(%;))-

That is, a;(77;) is not a dominant strategy of player j in (G, 7), a contradiction.

21.12 Proof of the first statement. (1) Define a new strategic game form G’ = (N, (A}), ¢') with A, = P and
9'((ZNien) = " ((Zhien),

where '€ A} = P.
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21.13

21.14

21.15

21.16

/

(w4 =PI : ¢
restriction[ restriction } /
(ZHien AT =P
Figure 21.4

(2) Fixapreference profile =-. Foranyj € N and any strategy profile (>7%);cn € A’ = PV since ((72F) k5, 225)

~

is a dominant-strategy equilibrium of (G*, ((22§) x5, 7;))> we have

9 (ki 2) = 9 (ks Z5 ) 23 07 ((SRkrin 20 ) = 9 (Z)knsn 27 ),

thatis, (7, ..., ) is a dominant-strategy equilibrium of (G’, 7).
| N| terms
(3) Moreover, it is trivial that ¢’ (=, ..., Z)) = ¢* ((Zi)ien) € F(2).
—_———

|N| terms

(4) Therefore, f is truthfully DSE-implementable.
O

Definition: We say that a choice rule f: P — C'is dictatorial if there is a player j € N such that for any preference
profile 7 € P and outcome ¢ € f(7) we have ¢ 2Z; ¢ forall¢' € C.

Gibbard-Satterthwaite theorem: Let (N, C, P, G) be an environment in which C' contains at least 3 elements, P
is the set of all possible preference profiles, and G is the set of strategic game forms. Let f: P — C be DSE-

implementable and satisfy the condition:
for every c € C, there exists - € P, such that f() = {c}. (21.1)

Then f is dictatorial.

Lemma (Gibbard-Satterthwaite theorem in social choice theory): Let C be a set that contains at least three members
and let P be the set of all possible preference profiles. If a choice function f: P — C satisfies Equation (21.1) and

for every preference profile 7 € P we have f(2Z—;, Z;) Z; f(Z—j, <)) for every preference relation 7' then f is

—Jr~j
dictatorial.

Proof. Since f is DSE-implementable by the game form G, any selection g* of f (i.e., g*(22) € f(5) forall 7z € P)
has the property that for every preference profile 2~ we have

9 (25 Z3) %3 97 (%5, Z5)

~—Jr~] N_j’Nj

for every preference relation 7.

Since f satisfies Equation (21.1), g* does also. Consequently by the lemma above g* is dictatorial, so that f is
also. O
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21.3 Nash implementation

21.17 Nash-implementable: g(NE(G, 2)) = f() forall 2Z.
Truthfully Nash-implementable: g*(a*) € f(22) N g*(NE(G*, ) for all -, where a} = 7 for all i.

21.18 Lemma (revelation principle for Nash implementation): Let (N, C, P, G) be an environment in which G is the set

of strategic game forms. If a choice rule is Nash-implementable then it is truthfully Nash-implementable.

21.19 Proof. (1) LetG = (N, (A;), g) Nash-implement f. Let (ai(>'))i6N be a Nash equilibrium in the game (G, 7).

~

(2) Define G* = (N, (4}), g*) in which A7 = P and ¢* ((Z%)ien) = 9((ai(Z7))ien) where Zic A7,

*

(=, %) A* = PINI g C
(@i(Z))ien A

Figure 21.5
(3) Clearly, a* = (7, ..., ) is a Nash equilibrium of the game (G*, 7-):
g (2 %) = 9(a-i(2), ai(2)) Zi 9(a-i(2),ai()) = " (27", 2)) forall Z'e A} =

(4) We also have g*(a*) = g((a:())ien) € f(Z), and hence f is truthfully Nash-implementable.
O

21.20 Definition (Maskin’s monotonicity): A choice rule f: P — C'is monotonic if whenever ¢ € f(Z) and ¢ & f(Z')
there is some player i € N and some outcome b € C' such that ¢ 7Z; bbutb >, c. (Compare with the monotonicity

in social choice theory)
In other words, if ¢ € f(7) does not fall in anyone’s ranking relative to any other alternative in going from = to 22/,

monotonicity requires that ¢ € f(2').

21.21 Proposition: Let (N, C, P, G) be an environment in which G is the set of strategic game forms. If a choice rule is

Nash-implementable then it is monotonic.

Proof. (1) Let the strategic game form G = (N, (4;), g) Nash-implement f.
(2) Letce f(Z)andc & f(Z).
(3) Since g(NE(G, ) = f(z) for all ZZ, there is a strategy profile a, such that
e gla) =¢
« a is a Nash equilibrium of the game (G, ),
« a is not a Nash equilibrium of the game (G, /).

(4) Therefore, there are a player ¢ and some strategy a; such that

b=gla_,a;) =; g(a) = cand c = g(a) Zi g(a_i, a;) = b.
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state 0, = i: 0y = ,>;/
social goal f(61) =oil f(62) = nuclear

Alice Bob Alice Bob
gas nuclear gas nuclear
preference oil oil oil oil
coal coal | nuclear | coal
nuclear gas coal gas
Table 21.2

21.22 Example:

This choice rule f does not satisfy Maskin’s monotonicity:

o oil = f(61) and oil # f(62);
« for player 1, “oil” is always better than “nuclear” and “coal’, and worse than “gas” in both states;

« for player 2, “oil” is always better than “coal” and “gas”, and worse than “nuclear” in both states.
Hence no mechanism NE-implements f.

21.23 Example:

state 0 == 0o =7/

social goal f(61) =oil f(02) = gas
Alice Bob Alice Bob

gas nuclear | nuclear oil

preference oil oil gas gas
coal coal coal coal

nuclear gas oil nuclear
Table 21.3

This choice rule f satisfies Maskin's monotonicity.
21.24 Example: Solomon’s predicament

“If it please you, my lord,” one of the women said, “this woman and I live in the same house, and while
she was in the house I gave birth to a child. Now it happened on the third day after my delivery that
this woman also gave birth to a child. We were alone together; there was no one else in the house with
us....Now one night this woman’s son died....And in the middle of the night she got up and took my son
from beside me while I was asleep; she put him to her breast and put her own dead son to mine. While
I got up to suckle my child, there he was, dead. But in the morning I looked at him carefully, and he
was not the child I had borne at all” Then the other woman spoke. “That is not true! My son is the live
one, yours is the dead one”; and the first retorted, “That is not true! Your son is the dead one, mine is
the live one” And so they wrangled before the king....“Bring me a sword” said the king; and a sword
was brought into the king’s presence. “Cut the living child in two,” the king said “and give half to one,
half to the other” At this the woman who was the mother of the living child addressed the king, for she
burned with pity for her son. “If it please you, my lord,” she said “let them give her the child; only do
not let them think of killing it!” But the other said, “He shall belong to neither of us. Cut him up.” Then
the king gave his decision. “Give the child to the first woman,” he said “and do not kill him. She is his
mother” All Israel came to hear of the judgement the king had pronounced, and held the king in awe,

recognising that he possessed divine wisdom for dispensing justice.
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Each of two women claims a baby; each knows who is the true mother, but neither can prove her motherhood.
Solomon tries to seduce the truth by threatening to cut the baby in two, relying on the fact that the false mother
prefers this outcome to that in which the true mother obtains the baby while the true mother prefers to give the
baby away than to see it cut in two.

Let a, b and d denote the outcomes “the baby is given to mother 17, “the baby is given to mother 2” and “the baby is
cut in two” respectively.
Let 6; and 65 denote states “mother 1 is the true mother” and “mother 2 is the true mother” respectively.
state 0 =17 Oy =7’
social goal f61)=a f(B2) =0
mother 1 | mother 2 | mother 1 | mother 2
reference N b a b
P b d d a
d a b d
Table 21.4
This choice rule f does not satisfy Maskin’s monotonicity:
« a=f(61) # f(02);
o For mother 1, a is always better than b and d no matter the state is 6; or 6;
« For mother 2, a is worse than b and d when state is 6;.

21.25 Remark on Solomon’s predicament. In the biblical story Solomon succeeds in assigning the baby to the true mother:
he gives it to the only woman to announce that she prefers that it be given to the other woman than be cut in two
(i.e., one says “don’t cut”). But, Solomon’s idea does not work from a game-theoretic view.

Indeed, the following Solomon’s mechanism g can not Nash implement f.
mother 2
cut  dont
d b
ther 1 cut
MOREL dont a d
Figure 21.6
Clearly, g[NE(601)] = b # f(61) and g[NE(02)] = a # f(62).

21.26 Definition: A choice rule f: P — C has no veto power (abbreviated as “NVP”) if ¢ € f(7) whenever for at least
|N| — 1 players we have ¢ 77; y forally € C.

21.27 Proposition (sufficient condition for Nash implementation): Let (N, C, P, G) be an environment in which G is the
set of strategic game forms. If |N| > 3 then any choice rule that is monotonic and has no veto power is Nash-
implementable.

21.28 Proof. (1) Let f: P — C be a monotonic choice rule that has no veto power.

(2) Define a game form G = (N, (4;), g) where A; = P x C x N and outcome function g((pi, ci, mi)ieN) as
follows:

If for some j € N, we have (p;, ¢;,m;) = (75, ¢,m) with ¢ € f(2) for all i # j then

cj, iferjc;
9((pi70i,mi)ieN) =7 T
c, otherwise.
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Otherwise g((pi, ¢;,™m;)icn) = ¢ where k is such that my, > m; foralli € N.
(3) Letc € f(). Definea; = (75, ¢,1) foralli € N. Then a* is a Nash equilibrium of (G, ) with g(a*) = «
since any deviation by j, say (7', ¢/, m'), affects the outcome only if the outcome is ¢ >~ ¢’.
Thus () € g(NE(G, 2)).
(4) Leta* € NE(G, 7). We shall show ¢* = g(a*) € f(2).
(5) Case 1: Suppose af = (7', ¢*,m/) foralli € N and ¢* € f(Z/).
If ¢* ¢ f(z) then the monotonicity of f implies that there is some player j and some outcome b € C such
that c* 27" band b ~; c*.
Hence, j would have a profitable deviation (77, b, 1) from the Nash equilibrium a*:
« j will get ¢* when he chooses a}.
+ j will get b when he chooses (22, b, 1) since ¢* 7 b.
« For player j, b -, c*.
(6) Case 2: Suppose af = (Z/,c¢*,m/) foralli € N butc* ¢ f(').
If there is some j and b € C such that b >; ¢* then j would like to deviate to (27, b, m”) with m” > m/:

« j will get ¢* when he chooses aj.
o j will get b when he chooses (77, b, m") since ¢* ¢ f(27) andm” > m/.
o Forj,b>=; c*.
Thus ¢* 7; yforalli € N and y € C, and hence by NVP ¢* € f(2).
(7) Case 3: Suppose a; # a; for some distinct ¢ and j.
Since |N| > 3, if there is an outcome b such that b >}, ¢* for some k # 4, then k would have a profitable
deviation (7Z/, b, m"") with m” > m, for all | # k:
o k will get ¢* if he chooses a}.
o k will get b if he chooses (2Z', b, m") since m” > my forall | # k.
o b=y ct.

Thus for all k£ # 7 we have ¢* 7 bforall b € C and, by NVP ¢* € f(X).



21.3. Nash implementation 364




o 22

Coalitional games

Contents
22.1 Coalitionalgame . . . . . . . . . L e e e 365
222 COTE . o v v e e e e e e e e e e e e e e 366
223 Shapleyvalue . . . . . . . L e e e e e e e 371
22.4 Nash bargainingsolution . . . . . . . . . . ... . e 376

22.1 Coalitional game

22.1 A coalitional game with transferable payoff (henceforth “coalitional game”) (N, v) consists of

« afinite set IV of players,
« afunctionv: 2V \ {0} — R.

Every member in 2V \ {(}} is called a coalition, and v(S) is called the worth of the coalition S. The function is

called the characteristic function.
22.2 In a coalitional game each coalition S is characterized by a single number v(S), with the interpretation that v(.5)
is a payoff that may be distributed in any way among the members of .S.

There is a more general concept, in which each coalition can not necessarily achieve all distributions of some fixed
payof; rather, each coalition S is characterized by an arbitrary set V'(S) of consequences. This concept is called a

coalitional game without transferable payoft.

22.3 Convention: If {41,142, ..., i; } isa set of players, we will sometimes write v(i1, @2, . . ., 4;) rather than v ({41, 42, ..., ¢; })

for the worth of {i1,142,...,4;}.
224 A coalitional game (N, v) is

« monotonic if T C S implies v(S) > v(T');
« cohesive if

K
v(N) > Z v(Sy) for every partition {S1, Sa, ..., Sk} of N;
k=1

365
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22.5

22.6

22.7

22.8

« super-additive if SNT = @ implies v(SUT) > v(S) + v(T).

It is clear that (N, v) is cohesive if it is super-additive.

We will assume that the coalitional games are cohesive or super-additive.

A coalitional game (N, v) is simple if v(.S) is either 0 or 1 for any coalition S.

S is a winning coalition in a simple game if v(S) = 1; a veto player in such a game is a player who is a member of

every winning coalition.

A coalitional game (N, v) is 0-normalized if v(i) = 0 for all i € Nj it is 0-1 normalized if it is 0-normalized and
v(N) =1.

i and j, elements of N, are substitutes in v if for all S containing neither ¢ nor j, v(S U {i}) = v(S U {j}).

i € N is called a null player if (S U {i}) = v(S) forall S C N.

22.2 Core

22.9

22.10

BE" 22,11

22.12

22.13

The core is a solution concept for coalitional games that requires that no set of players be able to break away and

take a joint action that makes all of them better off.

Let (N, v) be a coalitional game.
A vector ()¢ s of real numbers is an S-feasible payoff vector if v(S) = >, g 2.

We refer to an IV -feasible payoft vector as a feasible payoft profile.

The core of the coalitional game (N, v} is the set of feasible payoff profiles (z;);cn for which there is no coalition

S and S-feasible payoff vector (y;);cs for which y; > z; foralli € S.
If z is in the core, then z satisfies
o (individual rational) z:; > v(7) foralli € N,
+ (group rational) >,y #; = v(N).
A definition that is obviously equivalent is that the core is the set of feasible payoff profiles (z;);cn for which
> icg x(i) > v(S) for every coalition S.

Proof. “<”: Suppose that x = (x;);c N satisfies

Z x; = v(N), and le > v(S) for all coalition S.

iEN €S

Assume 7 is not in the core, that is, there exist a coalition S and y = (y;)ies, such that . cy; = v(S) and
yi > x; foralli € S. Thenwehave ), qy;i > > .. g xi > v(S5), a contradiction.

“=": Suppose that z = (z;);ecn does not satisfy

Z x; = v(N), and Z x; > v(S) for all coalition S.
ieN ies

If > ;e n Ti # v(IV), x can not be in the core.
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22.14

22.15

22.16

22.17

22.18

Suppose, then, that there is a coalition S such that

Zmi =v(S) — ¢,

i€s
where € > 0. For 7 € S, define .
Zi = T; + E
It is easily seen that ) ;¢ 2z; = v(S) and z; > w; forall i € S. Hence x is not in the core. O

The core is the set of payoff profiles satisfying a system of weak linear inequalities and hence is closed and convex.

Example: Two-person bargaining game.

N ={1,2},v(N) =1,and v(1) = v(2) = 0.
Answer. (x1,x2) is in the core if and only if

x1 > 0,20 >0, and z1 + 22 = 1.

O
Example: Three-person bargaining game.
N ={1,2,3},v(N) = landv(S) = 0forall S G N.
Answer. (x1, 2, x3) is in the core if and only if

1+ 22+ 23 =v(N) =1, and le >v(S) =0forallS G N.
i€S
The core is therefore the set
{(@1,22,23) | 21,22, 73 > 0,21 + 22 + 73 = 1}.

O
Example: Market with two sellers and a buyer.
N ={1,2,3},v(N) =v(1,2) =v(1,3) = 1,and v(S) = 0 for all other S C N.
Answer. z is in the core if and only if

T1+ret+xz3 =1, 11 +22>21, 27 +232>1, 21 20, 22 >0, 3 > 0.

Hence the core is {(1,0,0)}. O

Example: Three-person majority game.

Suppose that three players can obtain one unit of payoff, any two of them can obtain 1 independently of the actions

of the third, and each player alone can obtain nothing, independently of the actions of the remaining two players.

N ={1,2,3},v(N) =v(1,2) = v(1,3) = v(2,3) = land v(i) = O forall i € N.
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22.20

22.21

Answer. For x to be in the core, we need 1 + 192 + 23 =1, x; > O0foralli € N,x1 +xo > 1,21 + 23 > 1 and

29 + x3 > 1. There exists no x satisfying these condition, so the core is empty. O

Example: Modified three-person majority game.

N ={1,2,3},v(N) = 1,v(S) = a whenever | S| = 2and v(i) = 0foralli € N.

Answer. The core of this game is the set of all non-negative payoff profiles x for which 1 + z2 + z3 = 1 and

> icg Ti > o for every two-person coalition S. Hence the core is non-empty if and only if v < % O

Example: A majority game.

A group of n players, where n > 3 is odd, has one unit to divide among its members. A coalition consisting of
a majority of the players can divide the unit among its members as it wishes. This situation is modeled by the

coalitional game (N, v) in which |[N| = n and

L if|S] >4,

v(S) =

0, otherwise.

Answer. The game has an empty core by the following argument. Assume that « is in the core. If |S| = n — 1 then

v(S) = Lsothat )", ¢ x; > 1. Since there are n coalitions of size n — 1 we thus have

Z Zmizn.

{S:|S|=n—1} s€S

On the other hand, we have

Z szzz Z xizz:(n—l)xi:n—l,

{S:|S|=n—1}i€S i€EN {S: |S|=n—1,5>} iEN

a contradiction. O

Example: The drug game.

Joe Willie has invented a new drug. Joe can not manufacture the drug itself. He can sell the drug formula to
company 2 or company 3, but can not sell it to both companies. Company 2 can make a profit of 2 millions if it

buys the formula. Company 3 can make a profit of 3 millions if it buys the formula.

Let Joe, companies 2 and 3 be players 1, 2 and 3. Characteristic function v can be defined as
v(l) =v(2) =v(3) =0, v(1,2) =2, v(1,3) =3, v(2,3) =0, v(1,2,3) = 3.
Answer. x = (x1, T2, x3) is in the core if and only if x satisfies

T 20(1), T2 20(2), T3 20(3), xr1+ 13 > 2(4), 1+ o 23(5), o+ X3 20(6), xr1+ T2+ a3 :3(7)

(2), (5) and (7) imply
o =0 (8), T, +x3=23 (9)

(4), (8) and (9) imply
2§£ZJ1 S?), 1‘3:371‘1.
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Conversely, any x € X = {(z1,22,23) | 22 = 0,23 = 3 — 21,2 < x1 < 3} satisfies (1)-(7). Hence X is the

core. O
22.22 Example: An expedition of n people has discovered treasure in the mountains; each pair of them can carry out one

piece. A coalitional game that models this situation is (IV, v), where

%, if |.S| is even,
v(S) = 15]-1
5—, if [S]is odd.

Answer. If|N| > 4 is even then the core consists of the single payoff profile (1, 1,...,3).

If |N| > 3 is odd then the core is empty. O
22.23 Proposition: Let §; = v(N) —v(N \ {i}),i = 1,2,...,n, for a coalitional game (N, v), Then the core is empty if

Z?:l 0; < ’U(N)

Proof.

n n
v(N) > Z(Si > Zv(i),
i=1 i=1

which is impossible. O
22.24 Denote by C the set of all coalitions, and for any coalition S denote by RI the |.S|-dimensional Euclidian space in

which the dimensions are indexed by the members of S.
22.25 Denote by 15 € RVl the characteristic vector of S given by

1, ifie s,
(1s)i =
0, otherwise.

22.26 A collection (As)sec of numbers in [0, 1] is a balanced collection of weights if for every player i the sum of Ag over

all the coalitions that contain i is 1:

D Asls =1y
Sec

Example 1: the collection (Ag) in which Ay = 1 and Ag = 0 for all other S is a balanced collection of weights.

Example 2: let | V| = 3. Then the collection (\g) in which Ag = £ if |S| = 2 and Ag = 0 otherwise is a balanced

collection of weights; so too is the collection (Ag) in which A\¢ = 1if |S| = 1 and Ag = 0 otherwise.

BE" 22.27 A game (N, v) is balanced if
Z Asv(S) < v(IV) for every balanced collection of weights.
secC

22.28 One interpretation of the notion of a balanced game is the following. Each player has one unit of time, which he

must distribute among all the coalitions of which he is a member. In order for a coalition .S to be active for the
fraction of time Ag, all its members must be active in .S for this fraction of time, in which case the coalition yields
the payoff Agv(.S). In this interpretation the condition that the collection of weights be balanced is a feasibility
condition on the players’ allocation of time, and a game is balanced if there is no feasible allocation of time that

yields the players more than v(N).
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22.30

Each player is endowed with one unit of time that he allocates among the coalitions S; Ag is the fraction of his time
that each member of S allocates to the coalition S; the condition ) 4., Asls = 1y is a feasibility condition (for
every individual the sum of its amounts of his time he spends with each coalition must equal exactly the amount of

time he is endowed with).
Bondareva-Shapley theorem: A coalitional game has a non-empty core if and only if it is balanced.

Proof. Let (N, v) be a coalitional game.

“=": Let « be a payoff profile in the core of (N, v) and (Ag)sec a balanced collection of weights. Then

ZASU(S’) < Z)\Szgci = ZmiZAs = Z:L‘Z =ov(N),

Sec Sec i€S i€EN S3i i€EN

so that (N, v) is balanced.

“«<”: Assume that (N, v) is balanced. Then there is no balanced collection (Ag)sec of weights for which

Therefore the convex set

is disjoint from the convex cone

y € RINI+1 y = Z As(1s,v(S)) where Ag > Oforall S €C
SeC

since if not then 1y = ) .- Asls, so that (As)sec is a balanced collection of weights and } g Asv(S) >
v(N). Thus by hyperplane separating theorem there is a non-zero vector (o, a) € RV x R such that

(O‘Nvo‘)’yzo> (O‘Nva)’(lN’v(N)+6)

for all y in the cone and all € > 0. Since (1, v(N)) is in the cone, we have a < 0.

Nowletz = an/(—a). Since (15, v(S)) is in the cone for all S € C, we have z(S) = x-1g > v(S) forall S € C,
andv(N) > 1yx =),y @i Thus v(N) = ), @, so that 2 is in the core of (N, v). O

Example: n-person weighted majority game with weights (w;);c n and quota g is defined by

17 if ZiES w; 2 q,
0, if > cqwi<q.

v(S) =

A 0-1-normalized weighted majority game has a non-empty core if and only if there is at least one veto player.

Answer. “=7: Number the players in such a way that w; > ws > --- > w,. Then if there is at least one veto
player, player 1 is such a player, i.e., v(S) = 0if 1 ¢ S. Hence z = (1,0,...,0) is in the core: ),y x; > 1,
x; > 0foralli € N, and
Z 1, ifl e S, in which case v(S5) <1
T; =
ies 0, ifl &S, in which case v(S) = 0.
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This establishes sufficiency.

“«<”: Suppose there are no veto players. Consider the collection of coalitions S = { N\ {1}, N\ {2},
with balancing weights Ag = 1 forall S € S. We have

n—1
1 1 n—1
Aglg = —— 1g = =1
Z S48 nflZ ST 1 : N
Ses Ses .
n—1

..., N\{n}}

s0 S is a balanced collection. Since there are no veto players v(S) = 1forall S € S, 50 Y. g5 Asv(S5) = =2+ >

1 = v(NN). Hence by the Bondareva-Shapley theorem the core is empty. This establishes necessity.

22.31 The core of a 0-1-normalized weighted majority game with veto players 1,2,...,pis

P
z = (a1,a2,...,ap,0,...,0) | a; > Oforalli € N and Zaizl
i=1

n

O

Let S be such that v(S) = 1, then {1,2,...,p} C 5,50} . gx; = 1 = v(S). Let S be such that v(S) = 0, then
> iesi > 0=v(S). Henceany x = (a1,as,...,a,,0,...,0) witha; > Oforalli € Nand ! | a; = lisin

the core of the game, and the core consists of solely such points.

22.32 Proposition: Suppose player 1 is a null player, and (x1, z2, . .., x,,) is in the core. Then z; = 0.

Proof. By definition of core, we have

in >0({2,3,...,n}) =v({1,2,...,n}) :Zx

thatis, 1 < 0.

On the other hand, we also have

z1 2 v({1}) = v(0)

Il
o

and hence 21 = 0.

22.3 Shapley value

BF" 22.33 Given a coalitional game (N, v) where N = {1,2,...,n}, the Shapley value is an n-vector, denoted by ¢(v) =

(¢1(v), d2(v), ..., ¢y (v)), satisfying the following conditions:

S1. Symmetry condition: if ¢ and j are substitutes in v, then ¢;(v) = ¢;(v).
S2. Null player condition: if  is a null player, then ¢, (v) = 0.

S3. Efficiency condition: ), .\ ¢i(v) = v(N).

S4. Additivity condition: ¢; (v + w) = ¢;(v) + ¢;(w).

ITechnically, we should assume that coalition could be empty.
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22.37 Notation: Let y(s) =

¢;(v) is interpreted as the power of player ¢ in the coalitional game (IV, v), or what it is worth to ¢ to participate in
the game (N, v).

Conditions S1, S2 and S4 are weak restrictions which are easy to accept as “reasonable’, while S3 is much stronger.

Shapley theorem: Shapley value is uniquely determined:
Sli(n—|S 1= ,
o) = 3 PRI u @) @l = 1 gy S RSUL) @)
SCN\{i} ’ s=0 \ s SgN\{i},lS\:s

Proof. 1t suffices to prove the uniqueness. Let ¢ be a Shapley value of (IV, v). For each coalition .S, define a char-
acteristic function vg by
1, ifSCT,
vs(T) =
0, otherwise.

Note that for any real number «, members of N \ S are null players in the game (N, avg), and members of S are

substitutes for each other in the game (N, avg).

Hence by the null player condition, ¢;(avg) = 0 when ¢ ¢ S, and by the symmetry condition ¢;(avg) = ¢, (avg)
when ¢, 7 € S. Hence, by the efficiency condition

Z ¢i(avg) = avg(N) = «
ieN
Thusa = ), g ¢i(avs) = |S|ps(avs) for any i € S. Hence,
%, ifie S,

pi(avg) = { ¥
0, ifigs.

Now, each characteristic function can be regarded as a (2!l — 1)-vector, and there are 2/Vl — 1 coalitions. We
know ¢(awvg) for all v and S, so by additivity we know qﬁ(zl 1 @;vg, ) for all linear combinations ZZ 1 oyvg, of
the vg’s. Hence if we prove that the vg’s are linearly independent, we will have shown that ¢ is uniquely determined
by vg’s.

Suppose they are no linearly independent; then we may write

J
vs =Y Bivs,,
i=1

where |S| < |S;] for all ¢ and S;’s are different from each other and from S. Then

J J
=> Bivs,(S) =) Bi-0=0,
i=1 i=1

a contradiction. O

sl(n—s—1)!

— . Then we have

ilv) = D A(ISPl(SU{i}) —u(S)].

SCN\{i}
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22.38 Example: Two-person bargaining game.

N = {1,2},v(1,2) = 1,v(1) = v(2) = 0.
1

Since n = 2, we have v(0) = v(1) = 3.

For player 1, we have

S 10 {2}
o(SU{l}h) —v(S) [0 1
Table 22.1
Hence, ¢1 (v) = 03 + 13 = 1.
For player 2, we have
S 10 {1}
o(SU{l}) —v(S) [0 1

Table 22.2

Hence, ¢o(v) = 01 + 11 =

1
5-
For player 2, we can get ¢2(v) = 1 by efficiency condition directly.

22.39 Example: Three-person majority game.
N ={1,2,3},v(1) =v(2) =v(3) =0,v(1,2) = v(1,3) =v(2,3) =v(N) =1
1

Since n = 3, we have y(0) = (2) = £,and y(1) =

6
For player 1, we have
s 0 {2} (3 @3
o(SU{lh) —v(S) [0 1 1 0
Table 22.3

Hence, ¢1(v) = 05 + 1§ + 1§ + 05 = 5.

For player 2, we have
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22.40

22.41

22.42

S 10 {13 {3} {13}
v(SU{2}) —v(S) |0 1 1 0

Table 22.4

Hence, ¢ (v) = 0% + 1§ + 15 + 05 = 3.

For player 3, we can get ¢3(v) = 1 by efficiency condition directly.

Example: Market with two sellers and one buyer.

N =1{1,2,3},v(1,2,3) = v(1,2) = v(1,3) = 1,and v(S) = O for all other S C N.
Since n = 3, we have 7(0) = y(2) = £,and y(1) = ¢.

For player 1, we have

s 0 {2} {3} (23
o(SU{1})—ou(S) [0 1 1 1
Table 22.5
Hence, ¢1(v) = 01 + 13 +13 + 14 = 2.
For player 2, we have
S 10 {1} {3 {13}
o(SU{2})—u(S) [0 1 0 0

Table 22.6

Hence, ¢o(v) = 0% + 15 + 04 + 04 = ¢.

For player 3, we can get ¢3(v) = % by efliciency condition directly.

Note that the core allocation in the example above (1,0, 0) differs considerably from the Shapley value (2, ¢, #).
One can interpret that zero payoff to players 2 and 3 in the core allocation as the result of cutthroat competition

between them.

Example: Consider an n-person game in which the only winning coalitions are those coalitions containing player
1 and at least one other player. If a winning coalition receives a reward of $1, find the core and the Shapley value of

the game.

Answer. When n = 2, the solution is quite easy. (Exercise)

In the following, we assume n > 3. The characteristic function is

1, if|S] > 2, player 1 belongs to S,
v(S) =
0, otherwise.
(i) Core: Suppose (21,22, ..., Z,) is in the core. Then we have

n
in = 17 x; 2 0)
i=1

1 + Zml >1, forall S C {2,3,...,n}and S is non-empty.
i€S
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It is easy to see that the only solutionisz; = 1,29 = -+ = z, = 0: take S = {3,4,...,n}, we have
1+ 3+ -+ x, > 1, and hence x5 = 0. Similarly 23 = 24 = --- = x,, = 0. Therefore the core is
{(1,0,0,...,0)}.

(ii) Shapley value: For player i # 1, v(S U {i}) — v(S) = 1 if and only if S = {1}. Otherwise it is zero. Since

(1) = ﬁ, player ¢’s Shapley value is

1

ERTTE)

For player 1, we have
n

Gr(v) =1- ¢i(v) =

=2

()

n—1

n

Therefore, the Shapley value is

O

22.43 Consider the following cost allocation problem. Building an airfield will benefit n players. Player j requires an
airfield that costs c; to build, so to accommodate all the players, the field will be built at a cost of max; <<y ¢;.
How should this cost be split among the players? Suppose all the costs are distinctandlet 0 < ¢; < cg < -+ < ¢p.
Take the characteristic function of the game to be v(S) = —maxjcgc; for S C {1,2,...,n}.

(i) Let Ry = {k,k+1,...,n}fork =1,2,...,n,and define the characteristic function v, through the equation

—(cg — cp—1), IfSNRy # 0

0, ifSNRE =10

For convenience, let ¢y = 0. Show thatv = Y7, vg.
(ii) Find the Shapley value of the game v in the form of ¢;(v) = 22:1 aik(er —ek—1), 1 = 1,2,...,n, where

the coeflicients «v;;, are independent of ¢y, ca, . . ., Cp.

Answer. (i) For every coalition .S, we have

n max(S) n max(S) max(S)
Du(S) =D wmlS)+ > w9 =D w(S)=- (ck — Ck—1) = —Cmax(s) = V(5).
k=1 k=1 k=max(S)+1 k=1 k=1
(ii) Since
—(cp — cg—1), if max(S) >k
vg(5) = (
0, if max(S) < k
we have
. —(cx — cg—1), if max(S) <k <1
vp(S U{i}) — vk (S) =
, otherwise
and hence ¢ (v) = -+ = ¢—1(vk) = 0, and

Pr(vk) = = Pn(vr)
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1 nz % 3" (S U{i}) — ui(S)]
n )

-1
0 (ns |S|=s

3
—

;Z(HL) S mSUm) —u®l+ Y w(SUL) - ()]

s=0 |S|=s,max(S)<k |S|=s,max(S)>k
n—1
1 1 (k — 1>
= n—1 [_(Ck - ckfl)}
n s=0 ( s ) $

22.4 Nash bargaining solution

IE" 22.44 A two-person bargaining problem, denoted by (U, d), consists of
o U is the set of possible agreements in terms of utilities that they yield to 1 and 2. An element of U is a pair
u = (u1,ug).

o disapair (dq,ds), called the disagreement point or threat point.

If agreement u = (u1,u2) € U is reached, then 1 gets utility u; and 2 gets utility us. If no agreement is reached
then 1 gets utility d; and 2 gets utility do.

The set of two-person bargaining games is denoted by W'.
22.45 Convention: Assume that
U is compact and convex.
« U contains a point y for which y; > d; for i = 1, 2, that is, bargaining is worthwhile for both the players.

B¥" 22.46 The Nash bargaining solution is a mapping f: W — R? that associates a unique element f(U, d) with the game
(U, d), satisfying the following axioms:
N1. Feasibility: f(U,d) € U.
N2. Individual rationality: f(U,d) > d forall (U,d) € W.

N3. Pareto optimality: f(U, d) is Pareto optimal. That is, there does not exist a point (u1,u2) € U such that
up 2 fl(U7 d)7 ug > fQ(Ua d)) (uh UQ) 7é f(Ua d)

N4. Symmetry: If (U, d) € W satisfiesd; = dgand (1, x2) € U implies (x2,z1) € U, then f1(U, d) = f2(U, d).

N5. Invariance under linear transformations: Let a1, as > 0, b1,b2 € R, and (U, d), (U’,d’) € W where d;, =
aidZerl,z = 1,2, andU’ = {.’ﬁ € RQ ‘ Ty = A;Y; +bl,l = 1,2,y S U} Then fl(UlI,d;) = alfl(U,d) +b1,
i=1,2.
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N6. Independence of irrelevant alternatives: If (U, d), (U’,d') € W,d = d',U C U’,and f(U’,d’") € U, then
fU,d) = f(U",d).

The interpretation is that, given any bargaining problem (U, d), the solution function tells us that the agreement
u = f(U,d) will be reached.

22.47 Pareto optimality: there are no points in U that are “North-East” of f(U, d). See Figure 22.1.

Uz A

Figure 22.1: Pareto optimality.

22.48 Symmetry: suppose that (U, d) is such that U is symmetric around the 45° line and dy = ds, then f,(U,d) =
f2(U, d), that is, when everything in (U, d) is symmetric, the point f (U, d) is itself on the 45° line. See Figure 22.2.

Uz A

b

Figure 22.2: Symmetry.

22.49 Invariance under linear transformations: suppose we have two bargaining problems (U, d) and (U’, d’) with the

following property. For some vector b = (b1, ba),

d=d+b, U =UH+b.
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Then invariance under linear transformations imposes that

fU',d) = f(U,d) +0,

see Figure 22.3.

U2 A

O uy
Figure 22.3: Independence of utility origins.
Suppose we have two bargaining problems (U, d) and (U’, d’) with d = (0, 0) and the following property.
Ul = Uy, Ul = kolUs.

Then invariance under linear transformations imposes that

HU'd) =k f1(U,d),  fo(U',d) = ka2 fo(U, d).
In Figure 22.4, we depict a change for uz only with ky = 2.

Uz A

fg(U’, d) == 2f2(U, d)'

fZ(U) d)'

O AU.d) = AU d) iy

Figure 22.4: Independence of utility units.

22.50 Independence of irrelevant alternatives:
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Uz A

O Uy

Figure 22.5: Independence of irrelevant alternatives.

¥ 22.51 Theorem: A game (U, d) € W has a unique Nash solution u* = f(U, d) satisfying Conditions N1 to N6. Further-

more, the solution u* satisfies Conditions N1 to N6 if and only if
(uf = dy)(uy — da) > (ug — di)(uz — dp)
forallu € U,u > d, and u # u*.
22.52 Remark:
« Existence of an optimal solution: Since the set U is compact and the objective function is continuous, there
exists an optimal solution.
« Uniqueness of the optimal solution: The objective function is strictly quasi-concave. Therefore, maximization

problem has a unique optimal solution.

22.53 Part 1. We first prove that Nash bargaining solution satisfies the six axioms. The first two are automatically satisfied,

and we focus on other four.
N3. Pareto optimality: This follows immediately from the fact that the objective function (u; — dy)(us — d2) is
increasing in u; and us.

N4. Symmetry: Assume d; = do. Let u* = (uj, u3) be the Nash bargaining solution. Then, it can be seen that
(ub,uY) is also an optimal solution. By the uniqueness of the optimal solution, we must have (u}, u}) =
(ub, u}), thatis, uf = uj.

N5. Invariance under linear transformation: By definition, f(U’, d’) is an optimal solution of the problem

maximize (ul — G,ldl - bl)(UQ - (12d2 - bg)

subjectto  (uy,uz) € U’
Performing the change of variables v} = ajuy + b1, uh = aguz + ba, it follows immediately that f;(U’,d') =
aifi(U, d) + b; fori =1,2.

N6. Independence of irrelevant alternatives: Let U C U’. From the optimization problem characterization of the

Nash bargaining solution, it follows that the objective function value at the solution f(U’, d) is greater than
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or equal to that at (U, d). If f(U’,d) € U, then the objective function values must be equal, i.e., f(U’, d) is
optimal for U and by uniqueness of the solution f(U,d) = f(U’,d).

22.54 Part 2. We then show that if a bargaining solution satisfies the six axioms, it must be equal to f.
(1) Let g be a bargaining solution satisfying the six axioms. We prove that (U, d) = f(U, d) for every bargaining
problem (U, d).
(2) Given a bargaining problem (U, d), let z = f(U, d), and define the set

U'={(au+b)|ueUaz+b=(3,%),ad+b=(0,0)},

that is, we map the point z to (3, 3) and the point d to (0, 0).

(3) Since g(U, d) and f(U, d) both satisfy axiom N5 (invariance under linear transformation), we have g(U, d) =
f(U,d) if and only if g(U’,0) = f(U’,0) = (1, 3). Hence, to establish the desired claim, it is sufficient to
prove g(U’,0) = (3, 1).

(4) Letusshow thatthereisnowu € U’ suchthat u; +us > 1: Assume that thereisaw € U’ such thatu; +us > 1.
Lett = (1 —A)(3, 1) + A(u1, ug) for some A € (0,1). Since U’ is convex, we have ¢ € U’. We can choose A
sufficiently small so that ¢;t2 > 1 = f(U’,0), but this contradicts the optimality of f(U’,0), showing that
forallu € U’, we have ug + uy < 1.

(5) LetU"” = {(u1,u2) | u1 +ug <1,u; > 0,us > 0}. Then U’ C U” and (%, %) is on the boundary of U".

(6) By axiom N3 (Pareto optimality) and N4 (symmetry), g(U”, 0) = (%, %)

1

(7) By axiom N6 (Invariance under linear transformation), since U’ C U”, we have g(U’,0) = (%, 1), complet-
Y g 272 p

ing the proof.

22.55 Example: Find the Nash bargaining solution of the following problem.

U = {(u1,u2) | w1 +us <10,u; > 0,us > 0},
d=(2,4).

We need to maximize (u3 — dy) - (ug — do) = (u1 — 2) - (ug — 4).

The Nash bargaining solution lies on the frontier, so, we can assume that u; +u2 = 10. Hence, it suffices maximize

(Ul - 2)(10 — Uy — 4) = (Ul - 2)(6 - ul).

By first order condition, u} = 4 and u3 = 6.

22.56 Example: Two bargaining problems have identical threat points d = (0,0). In one case, the U; = {(u1,uz) |
uy +ug < 6,u; > 0,uz > 0}. In the other case, the Uz = {(u1,u2) | ug +ug < 6,u; > 0,0 < ug < 4}. Are

the Nash solution to these two bargaining problems the same?

22.57 Example: Dividing one dollar.
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Two individuals can divide a dollar in any way they wish. If they fail to agree on a division, the dollar is forfeited.

The individuals may, if they wish, discard some of the dollar. Thus, the set of outcomes is all possible divisions of
the dollar.
X ={(z1,22) | x1 + 22 < 1,21 > 0,29 > 0}.

Neither player receives anything in the event of disagreement. So, the disagreement outcome is (0, 0). Each player

is concerned only about his/her share of the dollar and prefers more to less.

The utility functions of the two players are u; and us.

U = {(ur(z1), uz(ws)) | 21 + 22 < L1 > 0,25 > 0},
d: (u1(0)7U2(0))

Players are either risk neutral or risk averse, then U is convex.

o First suppose that the players’ preferences are the same, so that they can be represented by the same utility
function, u. Then we have a symmetric bargaining problem. In this case, we know that the Nash solution is
the unique symmetric efficient utility pair (u(1/2),u(1/2)), which corresponds to the physical outcome in
which the dollar is shared equally between the players.

o If the players have different preferences, then equal division of the dollar may no longer be the agreement
given by the Nash solution. Rather, the solution depends on the nature of the players’ preferences.
To investigate this dependence, consider a simple example. Suppose that player 1 is risk neutral so that her
payoff function is u1 (x1) = 1 and player 2 is risk averse so that his payoff function is uz(22) = /2.
Maximize [u(x1) — u1(0)] - [ug(z2) — u2(0)] subject to 21 + z2 < 1.
u1(z1) = o1 and up(x2) = /72 give: maximize x1./Z3 subject to x; + x5 < 1.

When this is maximized, it must be the case that z1 + x5 = 1. So, we need to maximize

(1= 22)/@2.

The solution is x] = % and x5 = %
So, player 2’s share goes down. More generally, we can have the following intuition. If player 2 becomes more
risk averse, then player 1’s share of the dollar in the Nash solution increases. If player 2 is more risk averse

than player 1, then player 1’s share of the dollar in the Nash solution exceeds 1/2.

22.58 Example: Dividing one dollar. (cont.)

General analysis. o u3 = uz = u, and u is concave and «(0) = 0. It is a symmetric bargaining problem, and
hence f(U,d) = (3, 3), that is, the dollar is shared equally.

The bargaining problem is the optimal solution of the following problem

1 —_— = 1 - .
Jmax Uy (2)ua(l — 2) [0, u(z)u(l — 2)

We denote the optimal solution of this problem by z,,. By first order condition, we have
' (2)u(l — 2) = u(2)u' (1 — 2),

u (24,) _ u (1—2,,)
u(zy) w(l—zy) °

implying that



22.4. Nash bargaining solution 382

o Player 2 is more risk averse, i.e., u; = v and ug = h o u, where h: R — R is an increasing concave function

with ~(0) = 0. The Nash bargaining solution is the optimal solution of the following problem
Jmax, ur(z)uz(l —z) = Jmax, u(z)h(u(l — 2)).

We denote the optimal solution of this problem by z,. By the first order condition, we have

w' (2)h(z(1 — 2)) = u(2)h (u(l — 2))u'(1 — 2),

. . L/ v h, —2Zy u’ —2Zy
implying qu((;u)) = (u(;}b(uz(l),)zv(ﬁ Zv)

Since h is an increasing concave function and 2(0) = 0, we have

R'(t) < @ forallt > 0.

This implies that
w'(zy) _ u/(1—2z)
w(zy) — u(l—z,)’

and therefore z,, < z,,. This shows that when player 2 is more risk averse, player 1’s share increases.

O

22.59 Example: Imagine a firm that is a monopolist in the market for its output and in the labor market (hiring) as well.
At the same time, a labor union is a monopolist in the labor market (supplying). Letting L denote the level of
employment and w, the wage rate, suppose the union has a utility function u(L, w) = v/Lw. The firm’ utility is
its profit m = L(100 — L) — wL.

In this situation, the payoff set
U={(u,n) | u=+vLw, #=L(100 - L) —wL, L > 0,w > 0}.

The most natural threat on the part of the firm is to cease production, which means the union members will all
be without jobs. Similarly, the union can refuse to supply any labor to the firm, and, again, there will be neither

production nor jobs. That is, (0, 0) is the disagreement point.

The Nash bargaining solution maximizes the function
(u—dv)(m — da) = VIw(L(100 — L) — w)
for L > 0 and w > 0. Optimality conditions are both partial derivatives with respect to L and w being 0:
300 —5L —3w=0,100—-L—-3w=0

which results in

Thus, the Nash bargaining solution is

22.60 Example: Suppose the set U consists of the points lying on and within a circle of radius 2, having a center at (2, 2).
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If the threat point, d, is at (2, 2), what is the Nash bargaining solution? If the threat point, d, is at (0, 2), what is the

Nash bargaining solution?

Answer. U = {(u1,uz): (u1 —2)% + (uz — 2)% < 4}.

(i) d = (2,2). Consider the following problem:

maximize (u; — 2)(ug — 2) (22.1)
subjectto  (uy — 2)% + (ug — 2)? < 4 (22.2)
up > 2, ug > 2 (22.3)

Consider Equations (22.1) and (22.2), and apply the method of Lagrange multipliers, we will have

fur,ug, N) = (ug — 2)(ug — 2) — A[(u1 — 2)% + (ug — 2)% — 4]

ﬁ:0:>(’LL2—2):2)\(U1—2)
Ouy
ﬁ:O:>(U172):2)\(U272)
8u2
%zO#(u1—2)2+(uQ—2)2:4

The solutions are: (2 + /2,2 +v/2) and (2 — /2,2 — v/2). Note that only (24 V2,2 +1/2) satisfies (22.3).
Therefore, (2 + v/2,2 + v/2) is the unique Nash bargaining solution.

(i) d = (0,2). Consider the following problem:

maximize (u; — 0)(ug — 2) (22.4)
subjectto  (uy — 2)% + (ug — 2)% < 4 (22.5)
Uq 2 07 ug Z 2 (226)

Consider Equations (22.4) and (22.5), and apply the method of Lagrange multipliers, we will have

f(ul,u2, )\) = ’U,l(UQ — 2) — )\[(ul — 2)2 + (UQ — 2)2 — 4]

d
a—i:O:(uz—2):2)\(u1—2)
d
87’1,{2:0:>U1:2A(UQ_2)
)
%:oss(ulfz)u(uzﬂ)?:zl

The solutions are: (0,2) and (3,2 4 v/3), where the former is not Pareto optimal. (3,2 4 /3) is the unique

Nash bargaining solution.

O

22.61 Example: Player 1 and player 2 have been willed equal shares of an estate consisting of $200,000 cash and 100 acres
of farmland. Player 1 has a sentimental attachment to the land and values it at v; = $3,000 per acre, whereas
player 2 has no such attachment and values it at v = $1,000 per acre. Assume that their payoff functions are

linear in money and land at these rates: u;, = x; + v;y; if player ¢ receives x; dollars of cash and y; acres of land.
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The players may reach an agreement on dividing the land and money so as to maximize their payoffs. If they fail to

reach agreement they divide the land and money equally.

(i) Carefully draw the bargaining set and label the disagreement point.

(ii) Find the Nash bargaining solution.
Answer. (i) Assume in an agreement, the outcome is (21, x2) and (y1, y2), where
1 + x2 = 200000, y1 + y2 = 100, x1,22,y1,y2 = 0,
and corresponding payoffs are
uyp = 1 + 3000y1, ugz = x2 + 1000ys.

Hence, we have
uy + ug = 300000 4 2000y, uy + 3ug = 500000 + 20001,

and hence
300000 < uy + ue < 500000, 500000 < u; 4+ 3us < 900000.

Disagreement outcome is 1 = x2 = 100000, and y; = y2 = 50, and hence u; = 250000 and u2 = 150000,

which is a threat point in
U = {(u1,u2): 300000 < uq + uz < 500000, 500000 < u; + 3uz < 900000}.

(ii) Consider the following problem:

maximize (u; — 250000)(uz — 150000) (22.7)
subjectto  u1 + u2 < 500000 (22.8)
u1 + 3ug < 900000 (22.9)
300000 < ug + ug (22.10)
500000 < uy + 3usg (22.11)
up >0, ug >0 (22.12)

Consider Equations (22.7), (22.8) and (22.9), and apply the method of Lagrange multipliers, we will have

f(ul, Ug, )\) = (u1 — 250000) (UQ — 150000) — )\1[U1 + Ug — 500000] — A [u1 + 3ug — 900000]

ﬁ =0 = uy — 150000 = A1 + Ao
8U1

OF 02wy — 250000 = Ay + 32
8UQ

o

67]01 — 0 = uy + ug = 500000

of

Gag = 0=+ 3uz = 900000

The solution is: (300000, 200000). Note it satisfies Equations (22.10), (22.11) and (22.12). Therefore, it is the

unique Nash bargaining solution.
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22.62

22.63

S 0 {3}
v(SU{i}) —v(S) |vi v—u;

Table 22.7

O

Find the Shapley values of the game with N = {1, 2} and the characteristic function v. Now consider the bargaining
game where U = {(uy,us2) | ug + us = v(INV),u; > v({1}),us > v({2})} and d = (v({1}),v({2})). Find the
bargaining solution of the game (U, d).

Answer. Since n = 2, we have v(0) = (1) = 1. Denote v = v(N), v1 = v({1}) and vy = v({2}).

Vi+v—0;
— 5

(i) Shapley value. For player ¢, Hence the Shapley value for player ¢ is

(if) To get the Nash bargaining solution, we solve the following problem

max (u1 — v1)(u2 — v2).
U1 +u2=v,u1 >v1,U2 >V2

The solution is u} = “2="1_ Note that we need to check whether u} > v;.

Hence, both Nash bargaining solution and the Shapley value give the same result. O

Relation of Nash bargaining model to Rubinstein bargaining model:

Consider the variant of the bargaining game with alternating offers with exogenous probabilistic breakdown. As-

sume there is an exogenous probability « of breaking down.

We can assume without loss of generality that 6 — 1, since the possibility of a breakdown puts pressure to reach an

agreement.

It can be seen that this game has a unique subgame perfect equilibrium in which,

o Player 1 proposes x* and accepts an offer y if and only if y; > y7,

o Player 2 proposes y* and accepts an offer  if and only if 1 > =7,

where

’ 1 —

% 1—d2+(1—a)d1 % (17@)(17d2)+d1
Ty = Y 9o .

2—-a
Letting a — 0, we have 2} — 1 + 1(dy — da).
The optimization problem

max(z — dp)(1 — x — da),
gives Nash bargaining solution (1 + $(di — d2), & — 3(d1 — dz)), which coincides with the subgame perfect
equilibrium payofts.

That is, the variant of the bargaining game with alternating offers with exogenous probabilistic breakdown and

Nash’s axiomatic model, though built entirely of different components, yield the same outcome.
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23.1 Lattice

23.1 Definition: A partial order is a binary relation > over a nonempty set S which is reflexive, transitive and antisym-
metric, i.e., for all z, y and z in S, we have that:
« T >
e ifx >yandy > z,thenz > z;

e ifr >yandy > z,thenx = y.
A set S with a partial order > is called a partially ordered set, abbreviated as poset, denoted by (.5, >).
23.2 Definition: Let (.S, >) be a poset, T' a nonempty subset of S, and z( an element of S, then

o ¢ is a maximal element of T'if 2o € T and (Vx € T') = ¥ xo;
o xo is a minimal element of T if 2y € T'and (Va € T) 29 % w;
o xpisalargestelement of T if g € T'and (Vax € T') 29 > a3

o g is a smallest element of T'if g € T and (Vx € T) x > x0;
o xqisaupper bound of T if (Vax € T) xog > x;

o xqisalower bound of Tif (Vo € T') x > x0;

o xg is a supremum of 7" if z( is the smallest upper bound of T’

o xoisainfimum of T if x¢ is the largest lower bound of 7.

387
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BT 233

BS" 234

235

23.6

23.7

23.8

23.9

Definition: Let (.S, >) be a poset. (S, >) is a lattice if for each two-point set {x,y} C S, there is a supremum for
{x,y} (denoted by z V* y and called the join of z and y) in S and an infimum (denoted by x A y and called the

meet of z and y) in S.

The lattice (.S, >) is complete if every nonempty subset 7" of S has both infimum (denoted by infg 7" or A5 ,t) and
supremum (denoted by supg T or V. t) in S.

Definition: A sublattice (7', >) of alattice (.S, >) is a nonempty subset of (S, >) such that for every pair of elements
xzand yin T, both z V° y and 2 AS y arein 7.

A sublattice T of a complete lattice (.S, >) is called a closed sublattice if for every subset U of T the elements V.

and /\ert, as defined in S, are in 7. (The term “closed” is used here in the lattice theoretical sense)

Remark: A subset that is a lattice in its own right may not be a sublattice of a larger lattice. An example is as follows:

T = {(0,0),(1,0),(0,1),(2,2)} and S = R? with the product order.

Remark: A subset that is a complete lattice in its own right may not be a closed sublattice of a larger lattice. An
example is as follows:
T =[0,1) U{2} and S = [0, 2] with the natural order.

Lemma: Let (S, >) be a complete lattice, and T a closed sublattice of S. Then T is a complete lattice.

Proof. For any nonempty subset U of T, let z = V5., thenz € T..

 x is an upper bound of U in T
o Foranyy € T, ifforeveryt € U,t < y,thenz < y.

Based on the above discussion, « is smallest upper bound of U in T} i.e., Vi, = x € T. Similarly, we have
Ney €T O

Lemma: Let (S, >) be a complete lattice, S’ a closed sublattice of S, and T a closed sublattice of S. If T is a subset
of S, then T is a closed sublattice of S’.

Proof. (1) For any nonempty subset U of T, we would like to show V.t € T'and At € T.
(2) By Proposition 23.7, we know that S’ is a complete lattice, and hence y = er/ gt e s’
(3) Since T is a closed sublattice of S, we have © = \/ert eTcCys.
(4) Since S’ C S, wehavey > z.

(5) On the other hand, since z € S” is an upper bound of U, and y € S’ is the smallest upper bound of U in ',

we have x > y.
(6) Therefore, \/fE,U =y=x= Vi ,teT.
(7) Similarly, we have /\fEIUt eT.
O

Definition: Let (S, >) be a lattice. For subsets X and Y of S, we have X >, Yifforanyx € X,y € Y, it follows
thatz Ay € Yandx Vy € X. Wecall > the strong set order.
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23.10 Lemma: If S is a complete lattice, X and Y are in 2° (the power set of S), and X >, Y, then inf X > infY and
supX >sup?Y.

Proof. Foranyz € X andy € Y, 2 A%y € Yandx VS y € X since X > Y. Therefore, 2 > x AS y > infY
andsup X >z VS y >y, and hance inf X > infY and sup X > sup Y. O

23.11 Tarski’s fixed-point Theorem (Theorem 1 in Tarski (1955)): Let (S, >) be a nonempty complete lattice and f: S —
S an increasing function, if £ be the set of all fixed points of f, then F is nonempty and (E, >) is a complete lattice.

Step 1. Letu =sup{x € S| f(x) > z}.

(1) For every z with f(z) > , we have u > z.

(2) Since f is increasing, we have f(u) > f(x) > x.

(3) Since u is the supremum, we have f(u) > w.

(4) Since f is increasing, we have f(f(u)) > f(u), and hence f(u) € {x € S| f(z) > z}.

(5) Since u is supremum, we have u > f(u), and hence f(u) = w. That is, u is a fixed point of f, and E is

nonempty.

(6) Since EC {z € S| f(x) >z}, andu = sup{z € S| f(x) > x}, we have u is the largest element of E.

Similarly we have inf{z € S | f(z) < x} is the smallest element of E. O

Step 2. LetY be any subset of E/, and denote {x € S: supS > = > sup Y} by [sup Y, sup S].

(1) Since (S, >) is a complete lattice, we have ([sup Y, sup S], >) is a complete lattice.
(2) Foranyz € Y, wehavesupY > x and hence f(supY’) > f(z) = x. Therefore f(supY) > sup Y.
(3) For any z with z > sup Y implies f(z) > f(supY) > supY.

(4) Consider the restriction of f on [sup Y, sup S]:
f [supY,sup S| — [sup Y, sup S],

which is an increasing function on the complete lattice ([sup Y, sup S], >).
(5) Then the infimum v of all fixed points of f” is itself a fixed point of f’.

(6) Obviously, v is a fixed point of f and in fact the smallest fixed point of f which is an upper bound of all

elements of Y; in other words, v is the supremum of Y in (F, >).

Similarly the infimum of Y in (E, >) exists in S. O

23.12 Theorem (Theorem 1 in Zhou (1994)): Let (.S, >) be a complete lattice, ¥ is a correspondence from S to S, and F
the set of fixed points of ¥. If ¥(s) is a nonempty closed sublattice of S for every s € S, and ¥ is increasing in s,
then F is a nonempty complete lattice.

Step 1. To show E is nonempty.

(1) Consider the set
C = {c € S| there exists z. € ¥(c) such that z. < c}.

C is nonempty since sup S € C. Leta = AS.oc.
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(2) Forany c € C, there exists z. € ¥(c) such that z. < c.

(3) Since ¥ is increasing and a < ¢, we have ¥(a) <, ¥(c), and hence there exists y. € ¥(a) such that
Ye < ae(< 0).

(4) Lety = AS. .. Since ¥(a) is a subcomplete sublattice of S, we have y € ¥(a).

(5) Clearly y = AS.cye < AS.c = a. Since U is increasing and y € ¥(a), there is z € ¥(y), such that z < y.
Hencey € C.

(6) Since a = AS-c, a < y. Therefore,a = y € ¥(a), i.e,a € E.

Step 2: To show V5_pe € E and \3_ e € E.

Since E C C, based on Step 1, V5. pe = a € E. Similarly, we can show that AS_ e € E. O

Step 3: To show E is complete lattice.

It suffices to show that VZ ;e and AZ e exist for any U C E. Note that VZ_ ;e and AL e are respectively the

largest and smallest elements of U in E instead of S.

(1) Letb = \/ere, the largest element of U in S.

(2) Foranye € U C E, since e < band V is increasing, we have U(e) <, U(b). Moreover, since e € ¥(e),
thereis . € U(b), such thate < z..

(3) Letx = VE_, x., thenz > V5 ;e = b. Since ¥(b) is a subcomplete sublattice, z € ¥(b).

(4) Let S’ = [b,sup S|, @ a correspondence from S’ to S’ defined by ®(s) = ¥U(s) N S forall s € S’.
For any s > b, since U is increasing and x € ¥(b), there is x5 € U(s) with z; > = > b, and hence ®(s) is
nonempty for every s € S’.

Since both ¥(s) and S’ are subcomplete sublattices of S for every s € S/, ®(s) must be a subcomplete
sublattice of S’.
Since both ¥ and (2, which assigns each s € S’ the constant interval S’, are increasingon S, ® = ¥ N Q is
increasing on .S’.
Hence, S” and ® satisfy the assumptions of the theorem. Therefore, if we let b’ = /\fé 6 where E' is the
set of fixed points of ® on S/, then &’ € E’ according to Steps 1 and 2. Since B/ = E N .S’, b’ is indeed the
smallest fixed point that is larger than or equal to b.

(5) Sinceb = \/ere, foranye € U,b > eand hence b’ > b > e. That s, b/’ is an upper bound of U in E.
For any upper bound b of U in E, b’ is also an upper bound of U is S, and hence we have b” > b. Note that
b’ is the smallest fixed point that is larger than or equal to b, then b > ¥'.

Therefore b’ is the smallest upper bound of U in E, i.e., VIZ t =V € E.

K" 23.13 Let (S, >) be a lattice. An interval is a set of the form [z,y] £ {z € S | z < z < y}.

By the interval topology of a lattice (.5, >), we mean that defined by takeing the sets of the type (—o0, z] and [z, 00)

to form a sub-basis for closed sets.
8 23.14 Theorem: A lattice is complete if and only if it is compact in its interval topology.

Proof. See Theorem 20 in Birkhoft (1967). O

A sublattice of a complete lattice is closed in the lattice theoretical sense if and only if it is topologically closed in

the interval topology.
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23.2  Supermodular function

23.15 Suppose f is a real-valued function on a lattice (.S, >).

o If
flavy)+fleny) = f@)+ f(y)
for all x and y in .S, then f is called to be supermodular on S.
o If
vy + flzAny) > fz)+ fy)
for all noncomparable elements x and y in S, then f is called to be strictly supermodular on S.
23.16 Let S and T be two posets.
o Afunction f(x,t): S x T — R has increasing differences in (z, t) if for all z > 2/, the difference f(x,t) —
f(a’,t) is increasing in t.
« A function f(z,t): S x T — R has strictly increasing differences in (x, ) if for all # > 2/, the difference
f(z,t) — f(2',t) is strictly increasing in .
23.17 Proposition:
(a) (Theorem 4.1 in Topkis (1978)) Let (.9, >) be a nonempty lattice, and f: S — R a supermodular function on
S. Then argmax, ¢ f () is a sublattice of S.

(b) (Corollary 4.1 in Topkis (1978)) Let (.5, >) be a nonempty complete lattice, and f: S — R a supermodular

function on S which is upper semi-continuous. Then argmax_ ¢ f(z) is a nonempty closed sublattice of S.

Proof. (a) Foranyyand z inargmax_ g f(z), since f is supermodular and y and z are in arg max__ ¢ f(7), we
have 0 > f(yAz)— f(z) > f(y) — f(yV2z) > 0. Hence,y A zand y V z are in argmax . g f(z). Therefore,
argmax, ¢ f() is a sublattice of S. (Hence itself a lattice)

(b) By the previous part, argmax, ¢ f() is a sublattice of S.
By Theorem 23.14, S is compact with the interval topology. Since f is upper semi-continuous, we have that

argmax, ¢ f(x) is nonempty and compact. By Theorem 23.14 again, argmax . g f(z) is closed.

O

23.18 Topkis's monotonicity theorem: Let (.S, >) be alattice, and T a poset. Suppose f(z,t): SxT — Rissupermodular
inz € S for fixed t € T and has increasing differences in (z, t).
(a) (Lemma6.1in Topkis (1978)) Supposethatt > t'and X >, X',thenargmax, f(x,t) >, argmax ., f(z,t).
(b) (Theorem 6.1 in Topkis (1978), Theorem 5 in Milgrom and Shannon (1994)) In particular (when ¢ = ¢’ and

X =4 X'), the set of maximizers of f is a sublattice.

Proof. (a) By Theorem 23.17, argmax_ . y f(z,t) is a sublattice for any sublattice X and ¢t € T Choose y €
argmax, .y f(z,t) and z € argmax__ v, f(z,t'). Since X >, X', wehavey Az € X"andy V z € X.

Since f(x,t) is supermodular in z € S for fixed ¢ € T, we have

Ozf(y\/z,t)—f(y,t) Zf(zat)_f(y/\zvt)'
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Since f(x,t) has increasing differences in (z, t),
f(Zat) —f(y/\Z,t) > f(Z,t/) —f(y/\Z,t/) > 0.

Hence, f(y V 2,t) = f(y,t) and f(z,t') = f(y A 2,t'),ie,yV z € argmax, .y f(z,t) andy A 2z €

argmax, v, f(z,t"). Therefore, argmax .y f(z,t) > argmax, y, f(z,t').
(b) Trivial.
O

23.19 Theorem: Let (S, >) be a complete lattice, and T a poset. Suppose f(x,t): S x T — R is supermodularin z € S
for fixed ¢ € T and upper semi-continuous, and has increasing differences in (x,¢). Then argmax ¢ f(x,) has
a smallest element s(t) £ infargmax, g f(z,t), and a largest element 5(t) = supargmax, g f(z,t), and s(t)

and 35(t) are both increasing in ¢t € T'.

Proof. By Theorem 23.17, for each t € T, argmax, g f(,t) is a nonempty complete lattice, and hence has a

smallest element s(t) and a largest element 5(¢).

Ift > ¢/, then argmax ¢ f(x,t) > argmax_ g f(z,t') by Theorem 23.18. By Lemma 23.10, s(t) and 5(t) are

increasing. O

23.3 Supermodular games

23.20 Model:

o« N ={1,2,...,n} is the set of players.

« Each player i € N has a strategy set S; with typical element a;. Each strategy set .S; comes with a partial

order >;.

o S = x;5; endowed with product order, i.e., z > &’ if and only if x; >; 2} foralli € N.

Player i’s payoft function is f;(z;, z_;).
o Player ¢’s best-response correspondence ¥, : S_; — 5,

Vi(z_;) = argmax f;(x;, x—;).
z;€S;

U = Xi\I/il S — S.
o The set of Nash equilibria E = {z € S | z € U(z)}.

23.21 Theorem (Theorem 3.1 in Topkis (1979)): Suppose n is finite, and for each i € IV,

o (S;,>;) is a complete lattice;
o f;is supermodular in x; for fixed z_;;
o fi has increasing differences in (x;, z_;);

o fi is upper semi-continuous in z; for fixed z_;.
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Then the set of pure-strategy Nash equilibria of the game
I'=(N,(Si;=i)ien; (fi)ien)
is nonempty and has a largest equilibrium Z and a smallest equilibrium z.

Proof. By Theorem 23.19, sup ¥; and inf U; are increasing selections of ¥;, and therefore inf U = (inf ¥y, ..., inf¥,,)
is an increasing selection of W. From Tarski’s fixed-point theorem (Theorem 23.11), we have that z £ inf{x € A |
inf ¥ (z) < x} is a fixed point of inf U;, i.e., x = inf U(z) € ¥(z), and hence z is a fixed point of .

In the following, we will show = infE: for any y € E, we havey € ¥(y) and y > inf¥(y), and hence
y>inf{z € S|x>inf¥(z)} =z O
23.22 Theorem (Theorem 2 in Zhou (1994)): Suppose n is finite, and for each i € N,

o (S;,>;) is a complete lattice;
o fiissupermodular in x; € S;;
o fi has increasing differences in (x;, z_;);

« fi is upper semi-continuous in z; for fixed z_;.

Then the set of pure-strategy equilibrium of the game
I'= (N, (Si,>i)ien, (fi)ien)
is nonempty complete lattice.

Proof. By Theorem 23.17, we have ¥;(z) is a closed sublattice in .S; for every x € S.
By Theorem 23.18, we have U, () is an increasing correspondence.

Then apply Theorem 23.12. O
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o

Large games 1: large strategic games

24.1 Example (Example 1 in Noguchi and Zame (2006)): We consider a large number of agents living on the banks of a
long river. We identify locations with the interval T' = [0, 1], and assume the population is uniformly distributed

along the river, so the population measure 7 is the Lebesgue measure.

There are two commodities, each perfectly divisible. Each agent is endowed with one unit of each good: e(t) =
(1,1). Agents derive utility from their own consumption, but suffer a pollution externality from the consumption
of others who live upstream from them. If we choose directions so that upstream from s means to the left of s, and
write f(t) = (f1(t), f2(t)) for the consumption of an agent located at ¢, then the externality experienced by an

agent located at s is
ws.h)= [ s

Note that 7 is two-dimensional; write 7 = (1)1, 12) for the components of 7). The utility of an agent located at s who

consumes the bundle (z1, z2) when the consumption of all agents is described by f is
us(xla Z2, f) = (2 - 771(‘9) f))‘r% + (2 - 772(87 f))x%

In the individualistic framework, an equilibrium consists of prices p1, p2 (without loss, normalize so that p; +ps =
1) and a consumption allocation f = (f1, f2): T — R2 so that almost every agent optimizes in his/her budget set

and the market clears.

We claim that no such equilibrium exists.
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e 2.

Large games 2: large distributional games
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e 20

Stochastic games
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