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Chapter

Introduction

Contents
1.1 Matching and marketdesign . . . . ... ... ... .. ... . ... ... 1
1.2 Time line of the main evolution of matching and market design . . . . ... .. 3

1.1 Matching and market design

1.1 Matching theory, a name referring to several loosely related research areas concerning matching,
allocation, and exchange of indivisible resources, such as jobs, school seats, houses, etc., lies at

the intersection of game theory, social choice theory, and mechanism design.

1.2 Matching can involve two-sided matching, in markets with two sides, such as firms and work-
ers, students and schools, or men and women, that need to be matched with each other. Or
matching can involve the allocation or exchange of indivisible objects, such as dormitory rooms,

transplant organs, courses, summer houses, etc.

Recently, matching theory and its application to market design have emerged as one of the suc-

cess stories of economic theory and applied mechanism design.

1.3 The economics of “matching and market design” analyzes and designs real-life institutions. A

lot of emphasis is placed on concrete markets and details so that we can offer practical solutions.
1.4 Labor markets: the case of American hospital-intern markets:

o Medical students in many countries work as residents (interns) at hospitals.
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o In the U.S. more than 20,000 medical students and 4,000 hospitals are matched through a
clearinghouse, called NRMP (National Resident Matching Program).

« Doctors and hospitals submit preference rankings to the clearinghouse, and the clearing-

house uses a specified rule (computer program) to decide who works where.
 Some markets succeeded while others failed. What is a “good way” to match doctors and
hospitals?
1.5 School choice:
« In many countries, especially in the past, children were automatically sent to a school in
their neighborhoods.

« Recently, more and more cities in the United States and in other countries employ school
choice programs: school authorities take into account preferences of children and their

parents.

« Because school seats are limited (for popular schools), school districts should decide who

is admitted.

« How should school districts decide placements of students in schools?
1.6 Kidney exchange:

« Kidney exchange is a preferred method to save kidney-disease patients.
« There are lots of kidney shortages, and willing donor may be incompatible with the donor.
« Kidney exchange tries to solve this by matching donor-patient pairs.
o What is a “good way” to match donor-patient pairs?
1.7 Targets:
« Efficiency: Pareto efficiency, individual optimality, ordinal efficiency, ex ante efficiency, ex
post efficiency; etc.
o Fairness: stability, anonymity, envy-freeness, equal treatment of equals, efc.
o Incentives: strategy-proofness, nonbossiness, efc.

« Easy for participants to understand and use.
1.8 Reading:

« Information for the Public: Stable matching: Theory, evidence, and practical design.
o Scientific Background: Stable allocations and the practice of market design.

» Roth (2015).

 Sakai (2013).


http://www.nrmp.org/
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/popular-economicsciences2012.pdf
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/advanced-economicsciences2012.pdf

1.2. Time line of the main evolution of matching and market design 3

1.2 Time line of the main evolution of matching and market design

Matching Markets: The Path Between Theory & Practice
Timeline Key Two-Sided Matching Allocation via One-Sided Matching

Combinatorial
Contributions Priorities (Unit-Demand Indivisible Goods Allocation) ~Optimization
1960
Gallai
MTAMKIK(’} Edmonds
MTAMKIK 64 CIM 65
1970
Shapley & Scarf
IME 74 Hylland & Zeckhauser
JPE77
1980 Kelso & Crawford||Dubins & Freedman Roth

Econometrica 82 AMM 81 MOR 82

Roth
E 84
Roth

1990 1990

Balinski & Sonme:
JET 99

Abdulkadiroglu &
Sonmez JET 99

Agb‘dul]mdl/r\\ég[]{unf Roth, Sonmez &
>onmez - Unver QJE 04

2000

Hatfield & Milgrom
AER 05

JET 05
2010 Echenique Sonmez & Switzer|
AER 12 JET 10 *” 2011
NRMP & School Choice Reforms in: Kidney Exchange Clearinghouses:

Real Life [ various other labor markets New York City New England Program for Kidney Exchange

Practice summarized in Roth & Peranson AER 99 Boston Allience for Paired Donation
Chicago New Orleans National Matching Scheme (England)
Denver for Paired Donation ©
England National KPD Pilot Program (USA)

Figure 1.1: Overview (Taken from Sénmez’s lecture notes).

Two-sided matching

1.9 In 1962, deferred-acceptance algorithm by David Gale and Lloyd Shapley.

@ David Gale and Lloyd Shapley, College admissions and the stability of marriage, The American
Mathematical Monthly 69 (1962), 9-15.


http://en.wikipedia.org/wiki/David_Gale
http://en.wikipedia.org/wiki/Lloyd_Shapley
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(a) Lloyd Stowell Shapley. (b) David Gale.

Figure 1.2

Gale and Shapley asked whether it is possible to match m women with m men so that there is
no pair consisting of a woman and a man who prefer each other to the partners with whom they
are currently matched. They proved not only non-emptiness but also provided an algorithm for

finding a point in it.
1.10 Shapley and Shubik (1972) and Kelso and Crawford (1982) introduced variants of the two-sided
matching model where monetary transfers are also possible between matching sides.

€ Lloyd Shapley and Martin Shubik, The assignment game I: the core, International Journal of
Game Theory 1 (1972), 111-130.

@ Alexander S. Kelso and Vincent P. Crawford, Job matchings, coalition formation, and gross
substitutes, Econometrica 50:6 (1982), 1483-1504.

(a) Martin Shubik. (b) Vincent Crawford.

Figure 1.3
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1.11 In 1982, impossibility theorem by Alvin Roth.

@ Alvin Roth, The economics of matching: stability and incentives, Mathematics of Operations
Research 7:4 (1982), 671-628.

Figure 1.4: Alvin Roth.

Roth proved that no stable matching mechanism exists for which stating the true preferences is

a dominant strategy for every agent.

1.12 Gale and Shapley’s short note was almost forgotten until 1984, when Roth showed that the
same algorithm was independently discovered by the National Residency Matching Program
(NRMP) in the United States.

@ Alvin Roth, The evolution of the labor market for medical interns and residents: a case study in
game theory, Journal of Political Economy 92 (1984), 991-1016.

1.13 Recently, new links between auctions, two-sided matching, and lattice theory were discovered;
for example, matching with contracts by Hatfield and Milgrom in 2005.

© 1. W. Hatfield, P. R. Milgrom, Matching with contracts, American Economic Review 95 (2005),
913-935.


http://en.wikipedia.org/wiki/Alvin_E._Roth
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(a) Paul Milgrom. (b) John Hatfield.

Figure 1.5

One-sided matching

1.14 In 1974, top trading cycles algorithm by David Gale, Herbert Scarf and Lloyd Shapley.

@ Lloyd Shapley and Herbert Scarf, On cores and indivisibility, Journal of Mathematical Economics
1 (1974), 23-28.

Figure 1.6: Herbert Scarf.

In the other branch of matching theory, allocation and exchange of indivisible goods, the basic
model, referred to as the housing market, consists of agents each of whom owns an object, e.g.,
a house. They have preferences over all houses including their own. The agents are allowed
to exchange the houses in an exchange economy. Shapley and Scarf showed that such a market
always has a (strict) core matching, which is also a competitive equilibrium allocation. They also
noted that a simple algorithm suggested by David Gale, now commonly referred to as Gale’s top

trading cycles algorithm, also finds this particular core outcome.


http://en.wikipedia.org/wiki/David_Gale
http://en.wikipedia.org/wiki/Herbert_Scarf
http://en.wikipedia.org/wiki/Lloyd_Shapley
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In 1994, Jinpeng Ma provided an axiomatic characterization (known by MA’s characterization)

of top trading cycles algorithm.

€ Jinpeng Ma, Strategy-proofness and the strict core in a market with indivisibilities, International
Journal of Game Theory 23 (1994), 75-83.

The TTC algorithm is the only mechanism that satisfies individual rationality, Pareto efficiency
and strategy-proofness for the classic Shapley-Scarf model. This makes the TTC a natural choice

for other related situations.

1.15 In 1979, Hylland and Zeckhauser proposed the house allocation problem.

© Aanund Hylland and Richard Zeckhauser, The efficient allocation of individuals to positions,
Journal of Political Economy 87:2 (1979), 293-314.

(a) Aanund Hylland. (b) Richard Zeckhauser.

Figure 1.7

1.16 In 1999, Atila Abdulkadiroglu and Tayfun S6nmez proposed YQMH-IGYT (you request my

house—I get your turn) algorithm for the house allocation problem with existing tenants.

€ Atila Abdulkadiroglu and Tayfun Sénmez, House allocation with existing tenants, Journal of
Economic Theory 88 (1999), 233-260.



1.2. Time line of the main evolution of matching and market design 8

(a) Atila Abdulkadiroglu. (b) Tayfun Sénmez.

Figure 1.8

1.17 In 2003, Atila Abdulkadiroglu and Tayfun Sénmez proposed school choice problem.
@ Atila Abdulkadiroglu and Tayfun Sénmez, School choice: a mechanism design approach, Amer-
ican Economic Review 93:3 (2003), 729-747.
1.18 In 2004, Alvin Roth, Tayfun Sénmez and M. Utku Unver proposed kidney exchange problem.

@ Alvin E. Roth and Tayfun Sénmez, M. Utku Unver, Kidney exchange, Quarterly Journal of Eco-
nomics 119 (2004), 457-488.

Figure 1.9: M. Utku Unver.



Part 1

Two-sided matching



10




Chapter

Marriage

Contents
2.1 Theformalmodel . . . ... ... ... . ... ... . .. o . 11
2.2 Stabilityandoptimality . . . . ... ... Lo Lo o 12
2.3 Deferred acceptancealgorithm . . . . . ... ... .. ... . . . . .. 14
2.4 Properties of stablematchingsI . . ... ... ......... ... ..... 18
2.5 Properties of stablematchingsIT . . . ... ... ... .............. 24
2.6 Extension: Extending the men’s preferences . . . . ... ... ... ....... 28
2.7 Extension: Addinganotherwoman. . . . . ... ... ... . ... ... .. 31
2.8 Incentive compatibilityI . . ... ... ... ... ... . .. oo L. 34
2.9 Incentive compatibility IT . . . . . .. ... ... ... .. ... .. .. .. 41
2.10 Non-bossiness . . . . . . . . .o i e e 45

2.1 The formal model

1¥” 2.1 A marriage problem (#§#H 5] ) is a triple ' = (M, W, =), where

o M is a finite set of men,

o W is a finite set of women,

o == (Zi)icmuw is alist of preferences. Here

- 7 m denotes the preference of man m over W U {m},

- 7. denotes the preference of woman w over M U {w},

11
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- >, denotes the strict preference derived from —; for each: € M U W.
2.2 For man m:

o W >, w' means that man m prefers woman w to woman w’.
o w >,, m means that man m prefers woman w to remaining single.

e M >, w means that woman w is unacceptable to man m.
We use the similar notation for women.

2.3 If an individual is not indifferent between any two distinct acceptable alternatives, he has strict

preferences. Unless otherwise mentioned all preferences are strict.

2.4 In a marriage problem I' = (M, W, -), a matching (B *t) is a outcome, and is defined by a
function u: M UW — M U W such that
o forallm € M, if u(m) # m then u(m) € W,
o forallw € W, if p(w) # w then p(w) € M,
o forallm € M and w € W, u(m) = w if and only if u(w) = m (i.e., a matching is

mutual: you are matched with me if and only if I am matched with you).

We refer to pu(7) as the mate of 4, and p(¢) = ¢ means that agent ¢ remains single under the

matching .

2.5 A matching will sometimes be represented as a set of matched pairs. Thus, for example, the
matching

= wy wp we w3 (ms)
mi1 Mmoo M3 1My ms

has m; married to w4 and ms remaining single.

2.2 Stability and optimality
Let us focus on a fixed marriage problem I = (M, W, 7).

2.6 For two matchings 1 and v, an individual ¢ prefers p to v if and only if ¢ prefers 1(7) to v/(2).

Let o >nr vif u(m) 2 v(m) forallm € M, and p(m) >, v(m) for at least one man m.

~

Let p 7Zps v denote that either p >, v or that all men are indifferent between y and v.

The relation 7~ s gives a partial order on the set of stable matchings; see 2.37.
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)" 2.7 A matching s is Pareto efficient' (11 & #57 20) if there is no other matching v such that
o v(i) zZ; p(i) foralli e M UW,
o v(ig) =i, u(ip) for someig € M UW.
I¥" 2.8 A matching y is blocked by an individual ¢ € M U W if ¢ >, u(3).
A matching is individually rational® (> AZE ) if it is not blocked by any individual.

2.9 A matching y is blocked by a pair (m,w) € M U W if they both prefer each other to their
partners under g, i.e.,

W = p(m) and m =, p(w).

¥ 2.10 A matching y is stable (7% €) if it is not blocked by any individual or any pair.

Roughly speaking, a matching is stable if there are no individuals or pairs of individuals who

can profitably deviate from it.

2.11 Example: There are three men and three women, with the following preferences:

Table 2.1

All possible matchings are individually rational, since all pairs (m, w) are mutually acceptable.

The matching p given below is unstable, since (m, ws) is a blocking pair.

wp w2 w3

mp M2 M3

The matching p is stable.
’ wy w2 ws

mp Mm3 Mg

2.12 Proposition: Stability implies Pareto efficiency.

Tn general, Pareto efficiency or Pareto optimality is a state of allocation of resources from which it is impossible to
reallocate so as to make any one individual or preference criterion better off without making at least one individual or
preference criterion worse off.

2In general, individual rationality constraints are said to be satisfied if a mechanism leaves all participants at least as well
off as they would have been if they hadn’t participated. They are also called participation constraints or rational participation
constraints.
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Proof. (1) Suppose the matching p is not Pareto efficient, that is, there exists a matching v
such that v(7) ZZ; p(3) foralli € M UW and v(ig) >4, u(ip) for someig € M UW.

(2) Case 1: If v(ig) = 4o, then i is blocked by the individual iy. Contradiction.

(3) Case 2: Suppose v(ig) # ig, without loss of generality, denote iy by m, and v (i) = v(m)

by w. Hence we have w >, p(m).
(4) Since v(7) 77; pu(i) holds for all 7, we have m = v(w) 7y p(w).
(5) Since all preferences are strict, m -, p(w) if and only if m >, p(w) or m = p(w).

(6) If m = p(w), then u(m) = w, which contradicts to w >,, p(m). Hence we have
m > p(w). Therefore 11 is blocked by the pair (m, w). Contradiction.

O

2.13 Exercise: Stability can not be implied by Pareto efficiency.

2.14 Question: Does a stable matching always exists? How to get a stable matching?

2.3 Deferred acceptance algorithm

® 215 Men-proposing deferred acceptance algorithm.

Step 1: (a) Each man m proposes to his first choice (if he has any acceptable choices).

(b) Each woman rejects any offer except the best acceptable proposal and “holds” the
most-preferred acceptable proposal (if any). Note that she does not accept him vyet,
but keeps him on a string to allow for the possibility that someone better may come

along later.

Step k: (a) Any man who was rejected at Step (k — 1) makes a new proposal to his most-
preferred acceptable potential mate who has not yet rejected him (If no acceptable

choices remain, he makes no proposal).
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(b) Each woman receiving proposals chooses her most-preferred acceptable proposal
from the group consisting of the new proposers and the man on her string, if any.

She rejects all the rest and again keeps the best-preferred in suspense.

End: The algorithm terminates when there are no more rejections. Each woman is matched
with the man she has been holding in the last step. Any woman who has not been holding

an offer or any man who was rejected by all acceptable women remains single.

2.16 Question: Why do we call this algorithm the “deferred acceptance” algorithm? Hint: Compare

it with the Boston mechanism 8.21.

2.17 Example of men-proposing deferred acceptance algorithm: There are five men and four women,

and their preferences are as follows:

mp Mz M3z Mg M5 | Wi ) w3 Wy
w1 Wg Wqg W1 W1 | M2 M3 M5 MM
w2 w2 W3 W4 W2 | M3 M1 M4 My
ws ws w1 w3 Wy ma mo mq ms
W4 w1 w2 w2 mg Mg M2 M2

Table 2.2
Step 1: m1, my, and my propose to w, and ms and mg propose to wy; wy rejects my and ms
and keeps m; engaged; w4 rejects ms and keeps mo engaged. That is,

wy w2 w3 Wy

TR R ma,ag|

Step 2: ms3, m4 and ms propose to their second choice, that is, to w3, w4 and ws respectively;

wy rejects mg and keeps my engaged:

w; w2 w3 W4

mi1 M5 M3 M4, PRI
Step 3: my proposes to his second choice, w2, who rejects ms and keeps ms engaged:

w1 wo ws w4

mi Mo, &g M3 My

Step 4: mj5 proposes to his third choice, w4, who rejects ms and continues with m,4 engaged.

Since ms has been rejected by every woman on his list of acceptable women, he stays
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2.18

¥ 219

single, and the matching is:

wp Wy W3 W4 (m5)

mp m2 M3 Mg Ms

Observation: As the algorithm proceeds, the tentative partners of a man is weakening, and the

tentative partners of a woman is improving.

Theorem on stability (Theorem 1 in Gale and Shapley (1962)): The men-proposing deferred

acceptance algorithm gives a stable matching for each marriage problem.

Proof. (1) It suffices to show that the matching p determined by the men-proposing deferred

acceptance algorithm is not blocked by any pair (m, w).
(2) Suppose that there is a pair (m, w), such that m # p(w) and w >, p(m).

(3) Then m must have proposed to w at some step and subsequently been rejected in favor of

someone (m/ in the figure) that w likes better.

(4) It is now clear that w must prefer her mate y(w) to m and there is no instability.
(5) Similar discussion applies to the pair (m, w) with m # p(w) and m >, p(w).
O

2.20 Quotation from Roth (2008): At his birthday celebration in Stony Brook on 12 July 2007, David Gale

¥ 221

related the story of his collaboration with Shapley to produce deferred acceptance algorithm by
saying that he (Gale) had proposed the model and definition of stability, and had sent to a num-
ber of colleagues the conjecture that a stable matching always existed. By return mail, Shapley

proposed the deferred acceptance algorithm and the corresponding proof.

Theorem on optimality (Theorem 2 in Gale and Shapley (1962)): The matching determined by
men-proposing deferred acceptance algorithm is at least as good as any other stable matching

for all men.

Proof. Let us call a woman “achievable” for a particular man if there is a stable matching that

sends him to her.

(1) For contradiction, suppose that a man is rejected by an achievable woman.
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2.22

2.23

2.24

2.25

2.26

(2) Consider the first step (say Step k) in which a man (call him m) is rejected by an achievable

woman (call her w).
(3) Then w keeps some other man m/ at this step, so m’ >=,, m.
(4) Let 11 be a stable matching where p(m) = w.

(5) Since this is the first step of DA where a man is rejected by an achievable woman, w >,

u(m’). Otherwise,

o Case 1: u(m’) >, w, then m' is rejected by an achievable woman p(m/) before Step
k.

o Case2: u(m') = w = p(m), which leads to m = m’. Contradiction.

(6) Thus, (m/, w) blocks u, contradicting the stability of .

O

Remark: Theorem 2.21 says that different stable matchings may benefit different participants.
In particular, each version of deferred acceptance algorithm favors one side at the expense of
the other side.

Remark: Intuitively, men may have different (individually) optimal matchings, since they have
different preferences. However, restricting to the set of stable matchings, the stable matching

resulting from men-proposing deferred acceptance algorithm is optimal for every man.

ForT' = (M, W, ), we refer to the outcome of the men-proposing deferred acceptance algo-
rithm as the man-optimal stable matching and denote it by ¢ [T'] or ™ [=] (when M and W
are fixed) or ™ (when M, W and - are fixed).

The algorithm where the roles of men and women are reversed is known as the women-proposing
deferred acceptance algorithm and we refer to its outcome p"V'[I'] or "V -] (when M and W

are fixed) or "' (when M, W and /- are fixed) as the woman-optimal stable matching.

These two matchings will not typically be the same. For Example 2.17, the matching obtained

when the women propose to the men is

wy w1 W2 W3 (m5)

myp Mmoo MMz 1My ms

It turns out that the stable matchings are not unique.

If some individuals may be indifferent between possible mates, i.e., some individuals’ prefer-

ences is not strict, Theorem 2.21 need not hold.

Example: There are three men and three women, and their preferences are as follows:
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mi mo M3 | Wi w2 w3
w2, w3 w2 W3 | M1 M1 My
w1 wp w1 | M2 M2 M3
ms
Table 2.3

The stable matchings are

wp w2 w3 w; w2 w3z
p1 = and o = ;
mz2 Mmp ms3 m3 M2 My

but there are no optimal stable matchings since

o 11(m3) =my p2(ms) and pa(ma) =m, p1(ma);

o p1(wa) =w, p2(we) and po(ws) =w, p1(ws).

2.4 Properties of stable matchings I

¥ 2.27 Decomposition theorem (Knuth (1976)): Let 1 and p’ be stable matchings in (M, W, =), where
all preferences are strict. Let M (1) be the set of men who prefers i to i/ and W () the set of
women who prefer yi to i/. Analogously define M (') and W (). Then p and p' map M (u')
onto W () and M (1) onto W (p/).

Proof. (1) Foranym € M (u'), we have pi/(m) >, p(m) 7m m, where the second inequal-
ity holds since f is stable and not blocked by any individual.

(2) Then p/(m) # m, and hence p/'(m) € W, denoted by w.

(3) Since p is a stable matching in (M, W, ), pu(w) 7w p/(w); otherwise the pair (m, w)
blocks .

(4) Furthermore, pu(w) >4 p'(w) otherwise p/(m) = w = p(m).
(5) We have p/(m) = w € W(u), and hence /(M (p')) C W ().

(6) Forany w € W (u), we have pu(w) =, p'(w) 7w w, where the second inequality holds

since (. is stable and not blocked by any individual.
(7) Then pu(w) € M, denoted by m.

(8) Since ' is a stable matching in (M, W, ), u/(m) >, p(m); otherwise the pair (m, w)
blocks 1.

(9) We have i/ (m) >, p(m) = wand p(m) >, m, then p/(m) =, p(m) = w.
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2.28

¥ 229

2.30

¥ 231

(10) We have m € M (p') and hence u(W (1)) € M (u').
(11) Since p and p' are one-to-one and M (') and W (1) are finite, the conclusion follows.

O

Remark: Decomposition theorem (Theorem 2.27) implies that if m prefers 11 to 1" and pu(m) =
w and p’'(m) = w’, then both w and w’ will prefer x’ to p. That is, both 1 and p’ decompose

the men and women as illustrated in Figure 2.1:

Mo M) MAME@UME) M)
4 » ! A ! 4 »
M< >‘Ll/ ‘LL MI H< >Iu/
o ’ HeR
w W) WAWEuw)) |+ W)

Figure 2.1: Decomposition theorem

Theorem (Knuth (1976)): When all the agents have strict preferences, if  and p' are stable
matchings, then p/ > pif and only if =y 1.

Proof. (1) p' = pifand onlyif M(u) = @ and M (p') # 0.
(2) This is equivalent to W (u') = () and W (1) # 0.
(3) This is equivalent to p >y '
[

Corollary: When all the agents have strict preferences, the man-optimal stable matching is the
worst matching for the women; that is, it matches each woman with her least-preferred achiev-

able mate.
Similarly, the woman-optimal stable matching matches each man with his least-preferred achiev-

able mate.

Rural hospital theorem® (Theorem in McVitie and Wilson (1970), Theorem 1 in Gale and So-

tomayor (1985)): The set of individuals who are matched is the same for all stable matchings.

Proof. (1) Suppose that m is matched under ¢/ but not under p. Then m € M ().
(2) By decomposition theorem (Theorem 2.27), p maps M (1) to W ().

3This theorem is renamed as “J& 22 1 J# % % ¥ #” by Xiaoguang Chen and Tianchen Song for fun.
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(3) Som is also matched under . Contradiction.

2.32 Direct proof:

Proof. (1) Let ™ be the man-optimal stable matching and /. be an arbitrary stable matching.
(2) Since ™ is man-optimal, all the men that are matched in y are matched in p.

(3) Since M is woman-pessimal, all the women that are matched in ™ are matched in p
(why?).

(4) But for any given matching, the number of matched men and women are the same to each
other (why?).

(5) So the same set of men and women are matched in ' and j (exercise: complete the

argument).

O

For an alternative proof, see Ciupan, Hatfield and Kominers (2016).

2.33 Remark: One motivation is the allocation of residents in rural hospitals. Hospitals in rural
areas cannot fill positions for residents, and some people argue that the matching mechanisms
should be changed so that more doctors end up in rural hospitals. But the theorem says that it

is impossible as long as stable matchings are implemented.
If some men were matched in some stable matching and not in others, the latter may be unfair

to them. The theorem says that there is no need to worry.

2.34 In (M, W, ), when preferences are strict, for any two matchings u and 1/, define the following
function on M U W:

m if p(m) =, p'(m w), if g/ (w) = p(w
SV ar i (m) = p(m),  if p(m) =m p'( )’ V(1) = p(w), if ' (w) = ).

' (m), otherwise w'(w), otherwise

This function assigns each man his more preferred mate from x and 1/, and it assigns each

woman her less preferred mate.

Similarly, we can define the function p A p7 i/, which gives each man his less preferred mate and

each woman her more preferred mate.
2.35 Remark: 4 Vs ¢/ may fail to be matchings due to the following two ways.

o 1V 1/ might assign the same woman to two different men.
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o 1V p' might be that giving each man the more preferred of his mates at 1 and p’ is not
identical to giving each woman the less preferred of her mates.
Even when 1 Vr g/ and o App i are matchings, they might not be stable.
Exercise: Provide several examples (as simple as possible) to illustrate the points above.

2.36 Lattice theorem (Conway): When all the preferences are strict, if 1 and p’ are stable matchings

for (M, W, ), then the functions A = 1 Vs ' and v = p App i/ are both stable matchings.

Proof. We only prove the statement for .

(1) By definition, v Vs p' agrees with p/ on M (p') and W (u), and with 1 otherwise.
(2) By decomposition theorem (Theorem 2.27), A is therefore a matching.
(3) Itis trivial that A is not blocked by any individual in (M, W, 7).
(4) Suppose that some pair (m, w) blocks A.
(5) If m € M (i), then w >, A(m) = p/(m) =, p(m).

o Ifw € W(pu), then m >, A(w) = p/(w), and hence 1’ is blocked by (m, w).

o Ifw e W\ W(u), thenm =, AM(w) = pu(w), and hence p is blocked by (m, w).
(6) Ifme M\ M(y), thenw =, A(m) = p(m) Zm /' (m).

o Ifw € W(u), thenm >, AM(w) = p/(w), and hence 1’ is blocked by (m, w).

o Ifw e W\ W(u), thenm =, A(w) = u(w), and hence p is blocked by (m, w).

(7) Therefore, A is a stable matching.

O

2.37 Remark: The existence of man-optimal and woman-optimal stable matchings can be deduced

from the lattice theorem.

A lattice is a partially ordered set in which every two elements have a supremum (also called a
least upper bound or join) and an infimum (also called a greatest lower bound or meet). Lattice
theorem (Theorem 2.36) implies that the set of stable matchings is a lattice under 7~ 5 (defined
in 2.6), dual to 7.
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2.38 To compute all the stable matchings, see McVitie and Wilson (1971), Irving and Leather (1986)
and Section 3.2 of Roth and Sotomayor (1989).

2.39 Theorem on weak Pareto optimality for the men (Theorem 6 in Roth (1982b)): In a marriage
problem I' = (M, W, 7), there is no individually rational matching f (stable or not) such that
p(m) =, M (m) for all m € M, where ™ is the matching obtained by the men-proposing

deferred acceptance algorithm.

Proof. (1) Suppose that there exists such a matching .

(2) p matches every man m to some woman w = p(m) who has rejected him in the men-

proposing deferred acceptance algorithm, so
p(m) = M (m) Zn

holds for every m, and hence pu(m) € W for every m.
(3) Since M is a stable matching, u™ (w) =, m = p(w).

= W, and hence

~

(4) Since p is individually rational, pu(w)
M (W) >y = () g .

(5) Therefore, u™ (w) € M for every w with the form w = pu(m).
(6) Hence, y1( M) have been matched under M. That is, u™ (u(M)) C M.
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(7) Since yzand ™ are one-to-oneand pu(M) C W, wehave |u™ (u(M))| = | M|, and hence
WM (M) = M.

(8) Hence, all of M have been matched under * and p™ (M) = pu(M).

(9) Since all of M are matched under 1", any woman w who gets a proposal at the last step
of the algorithm at which proposals were issued has not rejected any acceptable man; oth-

erwise her waiting list is full, and some man is rejected at the last step.
(10) Thatis, the algorithm stops as soon as every woman in p™ (M) has an acceptable proposal.

(11) Since every man prefers i to ;1*/, such a woman w must be single under 1z, which contra-
dicts the fact that (M) = pu(M).

O

2.40 Remark: There is no other matching, stable or not, that all men prefer to .

We have already studied the sense in which it is as good a stable matching as the men can achieve,
but now we want to ask whether there might not be some other unstable matching that all the
men would prefer. If so, then we might conclude that, even at the man-optimal stable matching,

the men collectively “pay a price” for stability. However, this turns out not to be the case.

2.41 Example: ™ is not strongly Pareto optimal, that is, there exists an individually rational match-

ing p1, such that y(m) =, p*(m) for all m, and p(mg) >=m, #™ (mo) for some my € M.

There are three men and two women, and their preferences are as follows:

mi my ms | w wy

w1 wo mo mq
ms
Table 2.4
Then
MJW wy (M) wa
mq mao ms
Nevertheless

leaves ms no worse than under 1, but benefits m; and ms.
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2.5 Properties of stable matchings II

2.42 Definition: In a marriage problem I = (M, W, ), we say that a matching y/ weakly dominates
another matching y if there exists a coalition ) # A C M U W, such that p'(¢) 7; p(¢) and
W' (i) € Aforanyi € Aand p/(ig) >, 1(io) for some iy € A.

A matching p is in the core if there exists no matching 1’ which weakly dominates .

2.43 Theorem: In a marriage problem I" = (M, W, -}, the core equals to the set of stable matchings.

Proof. “=”: Assume that y is in the core.
(1) If p is blocked by an individual 4, then it is weakly dominated by any matching 1
with ¢/ (i) = 4 via the singleton coalition {i}.
(2) If uis blocked by a pair (m, w), then it is weakly dominated by any matching 1/ with
w'(m) = w via the coalition {m, w} .
“«<”: Assume that /1 is a stable matching.
(1) If uis not in the core, then p is weakly dominated by some matching p’ via a coalition
A. Hence, there exists ig € A such that u/(ig) >4, p(io).
(2) For notational simplicity, denote ig = m.
(3) Since i is individually rational, ’(m) >=,, pu(m) 7, m, and hence p/(m) € W.
Denote p/(m) by w.
(4) Since w € A, we have p/(w) 7y p(w).
(5) Clearly, i/ (w) = pu(w); otherwise, /' (m) = p(m). Thus, i/ (w) =, plw).
(6) The matching y is blocked by (m, w). It is a contradiction.

2.44 Remark: There is another version of core.

In a marriage problem I' = (M, W, -}, we say that a matching 1/ dominates another matching
w if there exists a coalition ) # A C M U W, such that p/(¢) =; u(i) and /(i) € A for any
i€ A

A matching 4 is in the core defined via strict domination if there exists no matching p/ which
dominates y.

Exercise: Show that the set of stable matchings, the core, and the core defined via strict domi-

nation are the same.

2.45 Theorem on strong stability property (Demange, Gale and Sotomayor (1987)): If 1t is an unstable

matching, then either there exists a blocking pair (m, w) and a stable matching /i such that

fi(m) Zm p(m) and fi(w) Zuw p(w),
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or 4 is not individually rational.

2.46 Blocking lemma (Hwang (unknown), Gale and Sotomayor (1985)): Let  be any individually
rational matching with respect to strict preferences 7~ and let M’ be all men who prefer 4 to
pM. If M’ is non-empty, there is a pair (m, w) that blocked p such that m € M \ M’ and
w e pu(M").

Proof. Case 1: Suppose u™ (M') # u(M").

(1) Choose w € pu(M’)\ p™(M"), say, w = p(m’).

(2) Then m/ prefers pu to ™, thatis, w = p(m’) = p*(m’).

(3) Since M is stable, we have m £ M (w) = u(w) = m'.

(4) Furthermore, m = p™(w) =, pu(w) = m’; otherwise m = pM(w) = p(w) = m
contradicts with the fact w € p(M’) \ pM (M’).

(5) Since pM(m) = w & p™ (M), m is not in M.
(6) Hence, ™ (m) 7= p(m).

(7) Furthermore, u™ (m) =, u(m); otherwise u(m’) = w = pM(m) = p(m)
(8) Hence, (m, w) blocks .
w € p(M')\ pM (M)
/ \‘M\
m' e M’ m & M’

Figure 2.2

Case 2: Suppose ™ (M') = p(M') = W',
(1) Let w be the last woman in W to receive a proposal from an acceptable member of M’ in
the deferred acceptance algorithm.

(2) Since p™(M’') = p(M’) and each m € M’ prefers u(m) to p™ (m), all w € W’ have
rejects acceptable men from M, and hence w has some man m engaged when she received

this last proposal.
(3) We claim (m, w) is the desirable blocking pair.

« misnotin M'; otherwise, after being rejected by w, he will propose again to a mem-
ber of W, contradicting the fact that w received the last such proposal.
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« Since m is rejected by w, m prefers w to his mate 1 (m) under . Since m ¢ M’,
m is not better off under y than under p, and hence m prefers w to p(m).
o In the algorithm, m is the last man to be rejected by w, so she must have rejected her

mate ;(m) under u before she rejected m. Hence, she prefers m to u(w).

2.47 Remark: Since m € M \ M’, we have u™ (m) 7=, pu(m).

Since w € p(M’), we have w = p(m') =, p™(m'). Then by stability of ™ we have
M (W) Zw p(w).

2.48 Proof of Theorem 2.45. (1) If u™[>] > pr v is not satisfied, the set M’ would be non-empty

2)

A3)

(4)

(5)

(6)

7)

~.

and the blocking pair (m, w) will satisfy
pMZI(m) Z p(m) and p™ [Z](w) Zw p(w),

so Theorem will be true with (m, w) and i = u™.

Henceforth, we therefore assume

,LLM[>'] ~m (and symmetrically MW[>] ZwW M-

~l ~ ~.

The set of stable matchings y1/ such that i/ >y u is non-empty since it contains p™ =],
and it has a smallest element p*, since the set of stable matchings is a lattice under the

partial order 2~ .

If * (w) > p(w) for some w, then Theorem holds with (p* (w), w) and p*. We can now

restrict our consideration to the case where
.
wZw i

Define a new preference profiles 7~’ by modifying - as follows:

o Each w who is matched under the stable matchings deletes from her preference list

of acceptable men all m such that p*(w) >, m.
o If p(w) >4 p*(w), then p*(w) is also deleted.
Clearly the second item must hold for some w; otherwise 1 = p*.

Let 11" [~'] be the man-optimal stable matching for (M, W, ==/). We will show that p [/
] is the matching [ of the Theorem.

First we claim ;% [>'] is stable under -
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(i) Since u"V ] Zw p Zw p*, 'V 5] (w) is acceptable for w under -/, and hence the
woman-optimal stable matching "V [=/] in (M, W, =’ is still "V [5).

(ii) Since u"'[] and M [/] are two stable matchings in (M, W, =='), we have p™ [~
| =4 Y [z], which is equivalent to p™ [=/] 7= "V [77] due to every man use the
same preference in 7~ and 7.

(iii) Suppose w is single under p™ [>='].

+ Then w is also single under "V [7], since both are stable matchings in (M, W, >/
).

o If w is part of a blocking pair for ;/*['] under =, that is, there exists m, such
that (m, w) blocks 1 [>='] under .

o We have
m =y M2 (w) = w,and w = @M 2] (M) T 1V [Z](m).

« Since 1"V 7] is stable in (M, W, -), we have

which contradicts the fact m =, w.
« Therefore, w can not be part of a blocking pair for ¢ [>~'] under =.
(iv) Suppose w is matched under M [==/].
o Then she prefers her mate to the men she has deleted.
« Hence she can not block with any deleted man and hence she belongs to no block-
ing pair.
(8) Next we show that * =p ™[]
(i) Ifnot, we have w = M [>=/](m) =, p*(m).
(ii) Then by stability of * we have p*(w) >, m.
(iii) By the definition of ==/, m is deleted by w, so w = p[='](m) is impossible.
(9) It follows that pi(m) =, p™[/](m) for at least one m.

(i) If not we have u* s ™[] = p.
(ii) By the definition of ==/, u '] # pu*.
(iii) It contradicts that ;1* is the smallest stable matching preferred by M to p.
(10) Finally, we apply the blocking lemma to the preference profile =’ for which p™[>'] is
man-optimal.

(11) Then there is a blocking pair (mg, wp) for y under 2=’ and hence under 7.
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(12) The proofis complete with ji = 12 [=/] as claimed, under the assumption that preferences

are strict, by Remark 2.47.

(13) To prove the theorem without the assumption that preferences are strict, we need the fol-
lowing additional observation. Let 1« be an unstable matching under non-strict prefer-
ences 7. Then there exists a way to break ties so that the strict preferences -’ correspond
to -, and every pair (m, w) that blocks p under = also blocks x under »-: If any agent =
is indifferent under - between p(x) and some other alternative, then under -/, x prefers
p(x). Then the theorem applied to the case of the strict preferences 7’ gives the desired

result.

O

2.6 Extension: Extending the men’s preferences

2.49 Example: The effect of extending the men’s preferences.
In the marriage problem I' = (M, W, 2Z), there are six men and five women, and their prefer-

ences are given as follows:

mi mp ms mg ms mg | wi wy ws  wy  ws
wp w2 Wy W3 W5 Wy | M2 Mg M3 My M;s

w3 W4 W3 Wy Wq | M1 M1 Mg M3
me M2 M1 M2
ma

The man-optimal and woman-optimal stable matchings are given by:

mi M2 My M3 M; meg mip M2 M3z My M; meg

My w, Wy w3 Wi Ws (mg)] ] = [wl we w3z wy ws (mg)
Consider a new marriage problem IV = (M, W, ==} some of men decide to extend their lists of

acceptable women yielding the new preference profile -’

ma mo ms may ms me ‘ w1 w9 ws w4y Ws
wy w2 Wy W3 W5 Wy | M2 Mg M3 Mg Ms
ws w4y ws Wy w3 Wy miq miq my ms
w2 w1 W2 w2 | Mg M2 M1 M2
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In this case the man-optimal and woman-optimal stable matchings are:

pMz] =

mz2 Mme Mg M3 M5 My

wy  wy wz wg ws  (my) WP_,}_ wy we wz wy ws (M)
’ ~ me Mg M3 Mg My My

Under the original preferences -, no man is worse off, and no woman is better off at ;1% [~]
(resp. "' [22]) than at ™ [>='] (resp. "V [22')).

2.50 Notation: We will write 22/ > 7=,,, if 7/ is an extension of Z,,, by adding people to the end

m

/

of the original list of acceptable people. Similarly, we will write 77/,

write 7' > Zif 70 > 7y, forallm € M.

> 7, and finally we will

Note that for any woman w, her preferences in 72’ and - are same when 22/ > 7.

2.51 Decomposition lemma (Lemma 1 in Gale and Sotomayor (1985)): Let 1 and 1 be, respectively,
stable matchings in (M, W, =) and (M, W, ==/} with 7=’ s 7, and all preferences are strict.
Let M (') be the set of men who prefers i’ to p under 7~ and let W () be the set of women
who prefer p to /. Then ' and p are bijections from M (') to W (p). (That is, both 1" and p

match any man who prefers i’ to a woman who prefers p, and vice versa.)

Proof. (1) Foranym € M (y'), wehave i/ (m) >, p(m) Zm m, where the second equation
holds since 4 is stable and not blocked by any individual.
(2) Then y'(m) # m, and hence p/(m) € W, denoted by w. So we have w = p/(m) >,
p(m).
(3) Since p is a stable matching in (M, W, ), u(w)
(m,w) blocks p.

Zw m = u'(w); otherwise the pair
(4) Furthermore, p(w) =, p'(w) otherwise p/(m) = w = p(m).
(5) Wehave p/(m) = w € W(), and hence p/ (M (1)) C W ().

(6) Forany w € W (u), we have pu(w) > p/(w) 2y w, where the second equation holds

since 4/ is stable and not blocked by any individual.
(7) Then pu(w) € M, denoted by m.

(8) Since p' is a stable matching in (M, W, =), i/ (m) >, pu(m); otherwise the pair (m, w)
blocks 11’

(9) We have p/(m) =/, u(m) = wand u(m) >,, m, then p'(m) >, u(m) =, m, and
hence p/(m) =, p(m) = w.

(10) We have m € M (1) and hence u(W (1)) C M (u').
(11) Since ;1 and p’ are one-to-one and M (1) and W () are finite, the conclusion follows.

O
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2.52 Remark: 1 and p/ are not bijections from M (1) to W (u').
Consider the Example 2.49. Let

I

~

mi1 Mo Mg M3 M5 me

, wy wy ws wy ws (M) wy wy ws wy ws (M
éujw[>}: ], u/éuM[>/]: [
mg Mg My M3 Msp el

Then it is clear that there is no bijection between M (1) and W (), where

M(p) = {m1,ma,mg}and W(u') = {wy,ws}.

2.53 Lattice lemma: Let p and p be, respectively, stable matchings in (M, W, ) and (M, W, =)
with =’ s 7, and all preferences are strict. Then we have
o A= p Vs g/, under 77, is a matching and is stable for (M, W, =Z).
o v =y Ay i/, under 7, is a matching and is stable for (M, W, =').

Proof. We only prove the first statement.

(1) By definition, Vs 1/ agrees with p/ on M (i) and W (), and with p otherwise.
(2) By decomposition lemma, A is therefore a matching.

(3) Form € M(u'), we have ' (m) =, p(m) Zmm m so ' (m) is acceptable to m under 7,
and hence ) is not blocked by any individual in (M, W, 7).

(4) Suppose that some pair (m, w) blocks A.
(5) If m € M(u'), thenw >, A(m) = p/(m) =, p(m).

o Ifw e W(n), thenm =, AM(w) = p/(w ) and hence 1/ is blocked by (m, w).

o Ifwe W\ W(u),thenm >, )\( ) = p(w), and hence p is blocked by (m, w).
(6) Ifm e M\ M(y'), thenw >, A(m) = p(m) Zm 1/ (m).

o Ifw € W(pu), then m >, A(w) = p/(w), and hence 1’ is blocked by (m, w).

o Ifw e W\ W(u),thenm =, A(w) = p(w), and hence p is blocked by (m, w).
(7) Therefore, A is a stable matching.

O

2.54 Theorem (Gale and Sotomayor (1985)): Suppose ==’ s 75, and let p™ [='], p™ =], "V [
and p"[] be the corresponding optimal matchings. Then under the preference >~ the men
are not worse off and the women are not better off in (M, W, =) than in (M, W, -/}, no matter

which of the two optimal matchings are considered. That is,

pM ) mar pM 2, and @V 2w n )
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Proof. (1) Bylatticelemma (Lemma 2.53), u [=]V 5y ™ [7/] under = is stable for (M, W, -
).
(2) Then by optimality we have u™ [Z] Zar (™[] Var p™[2]) 2 ™[]
(3) Also bylattice lemma (Lemma 2.53), u"V [5] Vi 1"V [='] under - is stable for (M, W, ==/).
(4) Then by optimality we have 1% [/) o (1™ 2] Vi ¥ []) 2w 1V [2).

O

2.55 Corollary: p™[='] —w u*[=] by the stability of u [='] and p"' 7] =ar u"V[='] by the
stability of "V [=].

2.7 Extension: Adding another woman

2.56 Example: Effect of adding another woman.

In the marriage problem I' = (M, W, ), where there are three men and three women, and
their preferences are as follows:

myp Mg M3 ‘ wp W2 w3
w1 ws w1
w3 w2 W3

mp M2 Mg
ms3 ma

Table 2.5

There is a single stable matching in this example:

y w1 Wo ws
MMH1=MWHW=[ ].
mi; Mo Mg

Suppose woman w,4 now enters, and the new marriage problem I'' = (M, W', =’} is given by

W' = {w1, ws, w3, w4}, and 2’ given by:

mi my ms | wi wy ws  wy

w4y w3 w1 mq mo ms mo
wyp w2 Wz | M3 mz My

Table 2.6

Again there is a single stable matching under 7';

, wy Wy W3 Wy
,uM(F’) =p" (') =
ms  (wy) mg My
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Under the preferences =/, all the men are better off under p™ [I] than under z [T'].

2.57 Theorem (Gale and Sotomayor (1985)): Suppose W C W’ and i [I'] and "V '] are the man-

2.58

2.59

optimal and woman-optimal matchings, respectively, for ' = (M, W, =). Let p™[I’] and
p" [T'] be the man-optimal and woman-optimal matchings, respectively, for IV = (M, W', =’
), where =/ agrees with = on M and W. Then

p O] Zw w2y p ] M)y pM D, M ) 2 )

Proof. (1) Denote by 7= the set of preferences on M U W' such that 2= agrees with =" on
M UW, and for each w € W’ \ W, w has no acceptable man under =".

(2) Let u™ "] and p"V'[I'”’] be the man-optimal and woman-optimal stable matchings for
I = (MW7)

(3) Since no man is acceptable to any woman in W\ W under =", u™[I"""] agrees with 1 [I']
on M UW,and " [I'”'] agrees with u"V [['] on M U W.

(4) Note that =/ >y =",

(5) So we can apply Theorem 2.54 and obtain that
PV I 2 Y,

so " [T] Zw p (1],
(6) Similarly, u*' [I"] Zh, p* [["] so u™[['] Zhy p'[T).
(7) Similarly, ™ (1] 2, p™ 0] s0 M) 220 ™ [T,
I

O

Remark: Theorem 2.57 states that when new women enter, no man is hurt under the man-

optimal matchings.

Theorem: Suppose a woman wy is added and let 12"V [I"'] be the woman-optimal stable matching
for I' = (M, W' = W U {wo}, '), where >~' agrees with =~ on W. Let 4 [I'] be the man-
optimal stable matching for I' = (M, W, =2). If wy is not single under 1"V [I''], then there exists
a non-empty subset of men, S, such that if a man is in S he is better off, and if a woman is in
pMT)(S) she is worse off under any stable matching for the new marriage problem than under

any stable matching for the original marriage problem, under the new (strict) preferences »-'.

Proof. (1) Let u"V[I')(wo) = mo.

(2) If mg is single under y [I'], then Theorem holds by taking S = {m}.



2.7. Extension: Adding another woman 33

(3) So suppose my is matched to wy € W under p ).

(4) Tt suffices to show that there exists a set of men S such that
eV (m) =, p?M[T) forallm € S, and p™ [T)(w) = p"V [I'] for any w € p™[T](S).

(5) Construct a directed graph whose vertices are M U W. There are two type of arcs.

o« Ifm € M and pM[I'](m) = w € W, there is an arc from m to w.

o Ifw € Wand p"'[I'](w) = m € M, there is an arc from w to m.
(6) Let M U W be all vertices that can be reached by a directed path starting from m.

(7) Case 1: The path starting from mg ends at w1, that is,

P[] P[]
mo _— w1 _— mi _— w2 _— mo
pMr] pM T |
p (] pviry
Wit1 — My W; ~—— Mij—1 +——— Wi-1
| M ] pM ]
v N ]
mip—1 T» Wi B —— mi T» Wr4+1 — Wi41
Gy p (T
Figure 2.3

(i) We claim that S = {mqg, m1,...,m;} has the desired property. p™[[](S) =
{wi,wa, ..., wepr}

(i) mp = pM D) (whs1) =wpys Wi = p' [[](wp+1) implies
wy = V[ (me) =m, wrr1 = pM ) (my).

(iii) Thenmy_1 = p™[T)(wk) =w, mi = "V [T’ (wi).

(iv) By induction, we have

pV T (m) =, 1M (ms), i =0,1,... .k
MM[F](wj) —w; MW[FI](U)j)7 i=12... k+1.

(8) Case 2: The path starting from mg ends at my, that is,

(i) Weclaimthat S = {mg, m1,...,my} hasthedesired property. 1(S) = {wy,wa, ..., wi}.



2.8. Incentive compatibility I 34

pH ] pH ]
mo B — w1 _ may _ Wa _— meo
pM ] pM ] |
) R
Wil +——-— m; -— Ww; -« My ] +— W;j—1
o M p [T
v gy
mg—1 —— W I mg T» my
pM ] p T
Figure 2.4

(i) wr = P[] (mk) =m, #M[](mg) = my, implies
i1 = M) () 5y 7k = 1 ] ().

(iii) Then wy_1 = p"V [V (mr—1) =m,_, wr = pM[T)(mr_1).

(iv) By induction, we have

pV () =, M) (ma), 0= 0,1,k
M [0 (wy) sy 0 (D)), G = 1,2, k.

O

2.60 Remark: There exist some men who are in fact helped in quite a clear way (unless the new

2.8

" 261

women remain unmatched): They are better off at every stable matching in the new market
than they were at any stable matching of the old market. Furthermore (unless these men were
all previously unmatched), there are some women who are similarly harmed by the entry of new

women into the market.

Incentive compatibility I

A (direct) mechanism (#L#1]) ¢ is a systematic procedure that determines a matching for each

marriage problem (M, W, 7).
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input output
a (marriage) problem ——— ® ———— amatching

Figure 2.5: A mechanism

We have already studied two typical mechanisms which select the man-optimal and woman-
optimal stable matchings, denoted by DA™ and DAY, respectively. We call them the man-

optimal stable mechanism and the woman-optimal stable mechanism, respectively.

For the sake of convenience, we shall use “the men-proposing deferred acceptance algorithm”

interchangeably with “the man-optimal stable mechanism”.
2.62 Question: What is the difference between a matching and a mechanism?

BF"  2.63 A mechanism ¢ is stable if it always selects a stable matching.*
A mechanism ¢ is Pareto efficient if it always selects a Pareto efficient matching.

A mechanism ¢ is individually rational if it always selects an individually rational matching.

2.64 Let P; denote the set of all preferences fori € MUW, P = Py, X+ - X Ppy X Py X+ - X Py,
denote the set of all preference profiles, and PP_; denote the set of all preference profiles for all

individuals except i. Let M denote the set of all matchings.

2.65 We have learned properties of stable matching, given information about preferences of par-
ticipants. But in reality, preferences are private information, so the clearinghouse should ask

participants. Do people have incentives to tell the truth?

In a marriage problem (M, W, -), we assume that everything is known except 7~. Therefore,
people are the only strategic agents in the problem and can manipulate the mechanism by mis-

reporting their preferences.

When other components of the problem are clear, we represent the problem just by -, represent

the outcome of the mechanism by ¢[~], and a mechanism becomes a function ¢: P — M.

¥ 2.66 A mechanism ¢ is strategy-proof® (i 5 ¥ 4% ¥) if for each marriage problem (M, W, >-), for
eachi € M U W, and for each 7€ P;, we have

. 117/ -
Pl Zil (1) Zi plZ—is Zil(9)-
“4Table 1 in Roth (2002) shows that unstable matching algorithms tend to die out while stable algorithms survive the test
of time.
5In general, a mechanism is strategy-proof if it is a weakly-dominant strategy for every individual to reveal his/her private
information.
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2.67 Example: Deferred acceptance algorithm is not strategy-proof.

Consider the following marriage problem with two men and two women with preferences 7

given by:

mi mg | w1 w
w1 Wz | M2 MMy
w2 wi | M1 M2

Table 2.7

The outcome of men-proposing deferred acceptance algorithm is

mip M2
wy w2

However, w; can be better off if she misreports her preference -/, : m. The new outcome is

my Mg
w2 W1

2.68 Example: A strategy-proof (and Pareto efficient) mechanism.

For any marriage problem (M, W, 77), let the men be placed in some order, {mq, mg, ..., mp}.
Consider the mechanism that for any stated preference profile 7’ yields the matching u =
©['] that matches m to his stated first choice, my to his stated first choice of possible mates
remaining after p(m;) has been removed from the market, and any my, to his stated first choice

after ;1(mq) through p(my_1).

o Itis clearly a dominant strategy for each man to state his true preferences, since each man
is married to whomever he indicates is his first choice among those remaining when his
turn comes. It is also (degenerately) a dominant strategy for each woman to state her true

preferences, since the preferences stated by the women have no influence.

« The mechanism ¢ is Pareto efficient, since at any other matching some man would do no
better.

o However, ¢ is not a stable matching mechanism, since it might happen, for example, that
woman w = @[7](m1), who is the (draft) choice of man m; would prefer to be matched
with someone else, who would also prefer to be matched to her. That is, ¢ is not a stable
matching mechanism because there are some sets of preferences for which it will produce

unstable outcomes.

¥ 2.69 Impossibility theorem (Theorem 3 in Roth (1982b)): There exists no mechanism that is both
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stable and strategy-proof. In other words, for any stable mechanism ¢, there exist a marriage
problem (M, W, ), apersoni € M U W, and a preference -} such that

ol =il () =i el Zi, 2l (3).

Proof. (1) Consider the following marriage problem with two men and two women with pref-

erences 2 given by:

miq mo ‘ w1 Wao

wi w2 | T2 MMy
w2 w1 | M1 M2
Table 2.8

(2) In this problem there are only two stable matchings:

mp; m mip m
ﬂM:[ 1 2] anduW:[ 1 2].
w1 W2 w2 W1

(3) Let  be any stable mechanism. Then ¢[Z] = u™ or p[=] = u".

(4) If[z] = p™ then woman w can reporta fake preference -/, where only her top choice
ma is acceptable and force her favorite stable matching 1"V to be selected by ¢ since it is
the only stable matching for the marriage problem (- =)

~TWL ~Avwy

/

(5) If, on the other hand, ¢[*=] = p"V, then man m; can report a fake preference =/,

, Where
only his top choice w; is acceptable and force his favorite stable matching u™ to be selected

by ¢ since it is the only stable matching for the marriage problem (2., , 2., )-

O

2.70 Remark: No perfect mechanism exists.

2.71 Corollary: No stable mechanism exists for which stating the true preferences is always a best

response for every individual when all other individuals state their true preferences.

2.72 Theorem: When any stable mechanism is applied to a marriage problem in which preferences
are strict and there is more than one stable matching, then at least one individual can profitably

misreport his or her preference, assuming that the others tell the truth.

Proof. (1) By hypothesis we have that u* # "V

(2) Without loss of generality, suppose that when all individuals state their true preferences,

the mechanism selects a stable matching u # u'V.
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(3) Let w be any woman such that u"' (w) =, p(w). Note that w is not single at p"V.

(4) Let w misreport her preference by removing from her stated preference list of acceptable

men all men who rank below "V (w).

e ptw) pw) z]L 77777 ]
) ! (w)
R I R « .

(5) Clearly the matching 1"V will still be stable under this preference profile.

« It is obvious that " is individually rational under the new preference profile, since
W (w) !, wand p" (i) =, i for each i # w.

o Itis trivial that 2"V is not blocked by a pair which does not contain w under the new
preference profile; otherwise 11"V is blocked by this pair under the original preference
profile.

o If 1" is blocked by a pair (m,w) under the new preference profile, then m =/,
p (w) and w =, "V (m). Thus, m =, p" (w) and w =, p" (m), which means
that 4"V is blocked by the pair (1, w) under the original preference profile.

(6) Let 1’ be the stable matching selected by the mechanism for the new preference profile.

(7) It follows from rural hospital theorem (Theorem 2.31) that w is not single under p’ (u

and p are two stable matchings under the new preference profile).

(8) Hence, she is matched with someone she likes at least as well as MW(w), since all other

men have been removed from her list of acceptable men. That is, p/ (w) 7, "V (w).
(9) Ttis clear that 44 is also stable for the original preference profile.
« Itis obvious that i’ is individually rational under the original preference profile, since
W (w) 7 pV(w) = wand g/ (i) ;i for each i # w.
o Itis trivial that ;1" is not blocked by a pair which does not contain w under the origi-

nal preference profile; otherwise p’ is blocked by this pair under the new preference

profile.
o If 1/ is blocked by a pair (m,w) under the original preference profile, then m >,
' (w) and w =, p'(m). Thus, m =, u'(w)and w =, u'(m), which means that
' is blocked by the pair (m, w) under the new preference profile.
(10) Then p"V (w) =, p'(w) due to the woman-optimality of 2"V (under the original prefer-

ence profile).

(11) It follows that "V (w) = ' (w), and hence ' (w) =, p(w).
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(12) Therefore, w prefers matching ' to p.

(13) If the mechanism originally selects the matching ", then the symmetric argument can
ginally g K Y g

be made for any man m who strictly prefers ;.

O

2.73 Question: What is the difference between Theorems 2.69 and 2.722

2.74 Proposition: If ¢ is a stable mechanism, and y is a stable matching in (M, W, >), then for each
i € M UW, there exists > such that @[>, = _;](i) = u(i).

Proof. (1) Let>%: p(3),1.
(2) Note that p is also stable at (>, =_;).
(3) Ifiis matched at >, then 7 is also matched at (>}, > _;).
(4) Since only p(7) is acceptable to ¢ at =/ and ¢ is stable, @[5, =_;](¢) = u(i).
O

The proposition implies that a man/woman can misreport to obtain any stable assignment under
a stable mechanism.

2.75 Theorem (Proposition 1 in Alcalde and Barbera (1994)): There exists no mechanism that is

Pareto efficient, individually rational, and strategy-proof.

Proof. (1) Consider the following marriage problem with two men and two women with pref-
erences ! given by:

miq mo ‘ w1 Wo

wp w2 | M2 My
wao w1 mq mo
Table 2.9

(2) In this problem there are only two individually rational, Pareto efficient matchings:

1 my Mo d 1 my Mo
M1 = and fiy = .
w1 wa w2 w1

(3) Let ¢ be any individually rational, and Pareto efficient mechanism. Then o[=!'] = ui or
ezt = ps.
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Table 2.10

(4) If p[='] = pi. Then consider the marriage problem with two men and two women with
preferences 52 given by:

In this problem there are only two individually rational, Pareto efficient matchings:

9 my  mg  (wy) 9 my Mg
ui = and p; = .
(m1) wa wq Wy Wi
o If w[EQ] _ H%» w; can manipulate ¢ at =1 via bful; wy will get m if reporting true
preference i;}ul , and get my if misreporting bful

o If p[>=?] = p3, then consider the marriage problem with two men and two women
with preferences -2 given by:

Table 2.11

In this problem there is only one individually rational, Pareto efficient matching:

3 |Mm1 M2
n = .
w2 W1

wy can manipulate at 772 via 773 : wo will get my if reporting the true preference
2

e 2, and get w, if misreporting =3

~wa

(5) If ¢[>z] = ud. Then consider the marriage problem with two men and two women with
preferences 7-* given by:

mi mg | w1 w
w1 wa | M2 MMy

wi | M1 M2

Table 2.12
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In this problem there are only two individually rational, Pareto efficient matchings:

/ff _ [ml mz] andu% _ [(m1 ma (wz)] .

Wi W my) wi W

o If o[=*] = uf, my can manipulate  at >=! via zfm: mq will get wo if reporting true
preference 77, , and get wy if misreporting . .

o If o[2=*] = u3, then consider the marriage problem with two men and two women

with preferences -° given by:

mq mao ‘ w1 w2

wq w2 ma My
mi1 M2
Table 2.13

In this problem there is only one individually rational, Pareto efficient matching:

5 my Mg
p = :
w; w2
mg can manipulate at 73* via 275 : mo will get wy if reporting the true preference
, and get w, if misreporting 73, .

5
~MY

O

2.9 Incentive compatibility II

¥ 2.76 Theorem (Theorem 9 in Dubins and Freedman (1981), Theorem 5 in Roth (1982b)): Truth-
telling is a weakly dominant strategy for any man under the man-optimal stable mechanism.
Similarly, truth-telling is a weakly dominant strategy for any woman under the woman-optimal

stable mechanism.

Intuition: Men are not punished when applying to preferred women. This is in a contrast with

the Boston mechanism.

Proof. 1t is a corollary of theorem of limits on successful manipulation (Theorem 2.86).
We provide an alternative proof as follows:
(1) In the marriage problem (M, W, =), suppose that man m misreports >/, . Let DAM [/

y>=—m] = p. It is sufficient to show that by truthfully reporting >, m will be weakly
better off.
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(2) Case 1: If u(m) = m or m >, p(m), nothing needs to be proved.
(3) Case 2: Suppose that y(m) = w.

(4) Suppose m reports =1/ : w,m, i.e., only w is acceptable to him.

(i) At (10, >=_m), p is still stable due to less desires.

(ii) Sincem is matched to w under p, rural hospital theorem (Theorem 2.31) implies that

m being unmatched will be unstable at (>, >~_,,).

(5) Consider > ... w, m, which is obtained by truncating the true preference from w.
S e e ————-

S e .

m

(i) m being unmatched will also be unstable at (>, >_,,): If a matching making m

single is stable under (>,

> _m), then it is also stable under (>, >_,,).

(i) Therefore, under DAY [~/ - ], m is matched to some woman weakly better than

w.

(iii) As the DA procedure is the same under (= >_,,) and (>, >_,), m will be
weakly better off by truthfully reporting >,,.

O

¥ 2.77 Remark: Deferred acceptance algorithm is the unique stable and one-sided strategy-proof mech-

anism; see Theorem 8.34.
2.78 Remark: The men-proposing deferred acceptance algorithm is group strategy-proof for men.

2.79 Simple misreport manipulation lemma (Lemma 1 in Roth (1982b)): Let m be in M. Let ™ [>]
and p*[=""] be the corresponding man-optimal stable matchings for (M, W, >=') and (M, W, ="
), where > =>""' for all agents 7 other than m, and p™ [>='](m) is the first choice for m in ==/ .
Then 1M [")(m) = ™ [/} (m).

Proof. (1) Clearly the matching 1 [='] is stable under the preference profile =-".
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(2) Since ™[] is man-optimal in (M, W, ="'} and M [>=/](m) is the first choice of 2=/ ,
we have M [='](m) = pM[Z"](m).

O

2.80 Remark: There are of course many ways in which a man m might report a preference order-

2.81

ing 7! different from Z,,, but this lemma shows that, in considering man m’s incentives to

misreport his preferences, we can confine our attention to certain kinds of simple misreport.

Suppose by reporting some preference ==/, man m can change his mate from p* [](m) to

pM[='](m). Then he can get the same result—that is, he can be matched to *[='](m)—by
reporting a preference >~/ in which p [=/](m) is his first choice. So, if there is any way for m
to be matched to 11 [>](m) by reporting some appropriate preference, then there is a simple

way—he can just list her as his first choice.

Lemma (Lemma 2 in Roth (1982b)): Let m be in M. Let 4™ [Z'] be the man-optimal stable
matching for (M, W, =='). If - =", for all i other than m and ;% [='](m) is the first choice for
min 77, and pM [Z'](m) Zm @™ [Z](m), then for each m; in M we have p™ [=/](m;) Zm,
pM 2] (my).

Proof. (1) Let M* = {m; | p™[Z](m;) =m, ™ [Z/](m;)}. Suppose M* # 0.
(2) Itis clear thatall m; in M* are matched under p [].

(3) Since every individual other than m reports the same preferences under - and =" and
m ¢ M?*, it must be that all m; in M* are rejected by their mates under =* [7] at some

step of the deferred acceptance algorithm in (M, W, =).
(4) Let s be the first step of the algorithm in (M, W, Z’) at which some m; in M* is rejected
by w £ M 2] (my).

(5) Since m; and w are mutually acceptable, this implies that w must receive a proposal at
Step s of the algorithm for (M, W, 2=’) from some m;, who did not propose to her under

2 and whom she likes more than m;;.
(6) The fact that m;, did not propose to w under - means that u™ [>=](my) =m, w.

(7) Then my, € M™*; otherwise we have the contradiction

w Zmy 1M L2 10M) T 1M [Z)(000) =i, w0,



2.9. Incentive compatibility IT 44

2.82

2.83

2.84

2.85

2.86

where the first relation holds because in deferred acceptance algorithm for (M, W, =),

my, is on the waiting list of w at Step s.

(8) Somy # mand iz, ==/ andm; musthavebeen rejected by M [=](my,) in (M, W, =/

~Mp

) prior to Step s, which contradicts the choice of s as the first such period.

(9) Consequently, M* = (and p™[='](m;) Zm, pM[=](m;) for all m; in M.

~m;

O

Remark: Lemma shows that if a simple misreport by m leaves m at least as well off as at ™ [~
], then no man will suffer; that is, every man likes the matching p*[='] resulting from the
misreport at least as well as the matching p* [>-]. This illustrates another way in which the men

have common rather than conflicting interests.

Theorem (Theorem 17 in Dubins and Freedman (1981)): Let - be the true preferences of the
agents, and let ==/ differ from 2~ in that some coalition M of the men misreport their preferences.

Then there is no matching s, stable for ==/, which is preferred to ;*/[>-] by all members of M.
Proof. It is a corollary of theorem of limits on successful manipulation (Theorem 2.86). O

Remark: Theorem 2.83 implies that if the man-optimal stable mechanism is used, then no man

or coalition of men can improve the outcome for all its members by misreporting preferences.

For an agent 4 with true preference /=;, the strict preference ;" corresponds to 77; if the true
preference can be obtained from /-;” without changing the order of any alternatives, simply by

indicating which alternatives are tied.

Theorem of limits on successful manipulation (Theorem in Demange, Gale and Sotomayor
(1987)): Let 7 be the true preferences (not necessarily strict) of the agents, and let 7’ differ
from 27 in that some coalition C' of men and women misreport their preferences. Then there is
no matching y, stable for 2-’, which is preferred to every stable matching under the true prefer-

ence profile /7 by all members of C.

Proof. (1) Suppose that some non-empty subset M U W of men and women misreport their
preferences and are strictly better off under some y, stable under =/, than under any stable

matching under 7.

(2) If p is not individually rational under -, then someone, say a man, is matched under
with a woman not on his true list of acceptable women, so he is surely a liar and is in M,

which is a contradiction.

(3) Assume p is individually rational under 7-.
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(4) Clearly p is not stable under 77, since every member in the coalition prefers y to any stable

matching.

(5) Construct a corresponding preference profile /=T, with strict preferences, so that, if any
agent 7 is indifferent under = between (i) and some other alternative, then under =% ¢
prefers p(7).

(6) Then (m,w) blocks 1 under =" only if (m, w) blocks ;1 under =.

(7) Since every stable matching under =™ is also stable under =,
p(m) = M=) (m) for every m in M, and p(w) >, p"V [=F](w) for every w in W.

(8) If M is not empty, we can apply the blocking lemma (Lemma 2.46) to the marriage prob-
lem (M, W, ") there is a pair (m,w) that blocks ; under =" and so under -, such
that

pM 2N m) Zm p(m) and @ 2] (w) Zo pl(w).

(9) Clearly m and w are not in M U W and therefore are not misreporting their preferences,

so they will also block 1 under 7, contradicting that p is stable under .
(10) If M is empty, W is not empty and the symmetrical argument applies.

O

2.87 Remark: Theorem 2.86 implies that no matter which stable matching under -’ is chosen, at

least one of the liars is not better off than he would be at the man-optimal matching under -.

2.10 Non-bossiness

1" 2.88 Definition: A mechanism ¢ is said to be non-bossy (% 1)° if, for each marriage problem
(M, W, =), foreachi € M U W, and for each > P,

@[5, =—il(i) = @[~](2) implies [}, =] = p[~].

2.89 Example: Deferred acceptance algorithm is not non-bossy.

Let M = {my,ma, m3} and W = {w1, ws}, and preferences given by

6The concept of non-bossiness is due to Satterthwaite and Sonnenschein (1981). A mechanism is “non-bossy” if whenever
a change in an individual’s preference does not bring about a change in his assignment, then it does not bring about a change
in anybody’s assignment. See Thomson (2014).



2.10. Non-bossiness 46

w2 w1 ma M3
miy
Table 2.14

The men-proposing DA outcome is
mi mo ms
w2 (mg) w1
"ny - Mo. Then the men-proposing DA outcome under this

my ma M3
w1 (mg) w2

So we have just shown that the men-proposing DA is not non-bossy.

Consider a preference for mg, >

modified preference is

¥ 290 Theorem (Theorem 1 in Kojima (2010)): There exists no stable mechanism that is non-bossy

for marriage problems.

Proof. (1) Consider a problem where W = {wy,ws, w3} and M = {m;,ms, m3}, and

preferences are given by

mi my ms | wi wy  ws

w3 ws w1 my ms

w2 W2 W2 | M2 ma

w; wp w3z | M3 mq
Table 2.15

(2) There exists a unique stable matching

(3) Consider -, given by
mao :
(4) Now there are two stable matchings, ;2 and p/, given by

lwl wy W3 @] , [wl we W3 @]
p= , W= :

mg 0 mip mo mp 0 ms me
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(5) Case 1: @[, = —m,]| = p. Then @[>, = —m, | (m2) = @[~](m2) and o[-, = —m,

] # ¢[>]. Thus, ¢ is not non-bossy.

(6) Case2: p[=7,,, = —m,] = it'.
(i) Consider >, given by

I
wsy - 1, M2, M3.

(ii) Then @[=7,., =1, ™= —ws—m,] is given by

, ’ w; Wy Ws (Z)
30[>'w2ﬂ >'m27 >‘7w27m2] = .
mz 0 mp my

(iii) Therefore, we have that

90[>’;uza >_;7127 >’—w2—M2](w2) = ‘P[*:nga >_m2](w2), and ‘P[*szv >_;n2’ >’—wz—mz] G 50[>_;n2? |

$0 ¢ is not non-bossy.

O

2.91 A rough idea is to note that the men-proposing DA is not non-bossy, but then when preference
of a man (say ms) changes, there are two stable matchings and one of them, which is the woman-
optimal stable matching, does not contradict non-bossiness (yet). But then, we can add one
more agent, wa, to make the situation much like the original situation, but the roles of men and

women are switched.

2.92 Exercise: Find a non-bossy mechanism for marriage problems.
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3.1 The formal model

3.1 Inacollege admissions model, there exist two sides of agents referred to as colleges and students.
Each student would like to attend a college and has preferences over colleges and the option
of remaining unmatched. Each college would like to recruit a maximum number of students
determined by their exogenously given capacity. They have preferences over individual students,

which translate into preferences over groups of students under a responsiveness assumption.

K¥" 3.2 Definition: A college admissions problem I' = (S, C, ¢, =) consists of:

49
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3.6

« a finite set of students S,
« afinite set of colleges C,
« aquota vector ¢ = (q.)cec such that g. € Z is the quota of college ¢,

o a preference profile for students >g= (>5)scs such that > is a strict preference over

colleges and remaining unmatched, denoting the strict preference of student s,
o a preference profile for colleges -c= (>.)ccc such that . is a strict preference over
students and remaining unmatched, denoting the strict preference of college c.

In this chapter, we will use () to denote “unmatched”.

Definition: In a college admissions problem, a matching is the outcome, and is defined by a
function pi: C' U S — 25 U 2¢ such that

« for each student s € S, u(s) € 2¢ with |u(s)| < 1,
« for each college ¢ € C, u(c) € 2° with |u(c)| < qe,
o 1(s) =cifandonlyifs € u(c).

Alternatively, a matching is a function i: S — C'U {0} such that for each college ¢, |1~ (c)| <

qc-

Even though we have described colleges’ preferences over students, each college with a quota
greater than one must be able to compare groups of students in order to compare alternative

matchings, and we have yet to describe the preferences of colleges over groups of students.
Example: Suppose that there are three students {1, 2, 3} and a college ¢ has three quotas. Then
the college ¢ should have a ranking over the groups of students: {1, 2,3}, {1, 2}, {1,3}, {2, 3},
{1}, {2} {3}, 0.

Let ¥ denote the preference of college ¢ over all assignments (c) it could receive at some

matching p of the college admissions problem.

Definition: The preference =7 over sets of students is responsive (to the preferences over indi-

vidual students) if,!

o whenever s;,s; € Sand S’ C S\ {s;,s;},s:US" = s; US ifand onlyif s; =, s;;
o whenever s € Sand S’ C S\ s,sUS" =% S’ ifand only if s >, (0, which denotes the

remaining unmatched option for a college (and for a student).

Remark: A college c’s preferences >, will be called responsive to its preferences over individual
students if, for any two assignments that differ in only one student, it prefers the assignment
containing the more preferred student (and is indifferent between them if it is indifferent be-

tween the students).

!By an abuse of notation, we will denote a singleton without {}.
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3.7

3.2

3.8

39

5" 3,10

3.11

Example: Suppose that there are two students {1, 2} and a college ¢ has two quotas. The fol-

lowing preference > is not responsive:

{1?2}
{1}
0

Table 3.1

Stability

Definition: A matching . is blocked by a college ¢ € C if there exists s € pu(c) such that () = s.
A matching y is blocked by a student s € S if § > u(s).

A matching is individually rational if it is not blocked by any college or student.
Definition: A matching (4 is blocked by a pair (¢, s) € C x S'if

o c>5 p(s),and
o - either there exists s’ € u(c) such that s . s’ (justifiable envy), or
- |u(e)| < gcand s = 0 (wasteful).

Definition: A matching is stable if it is not blocked by any agent or pair.

Example: If colleges do not have responsive preferences, the set of stable matchings might be
empty.
Consider two colleges and three students with the following preferences, and each college can

admit as many as students as it wishes.

C1 C2 S1 S92 S3
{817 83} {81, 53} C2 C2 (1
{s1,82} {s2,83} | a1 a1 ¢

{82753} {81752}

S1 S3
S92 S1
52

Table 3.2

It is clear that ¢;’s preference is not responsive.
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The only individually rational matchings without unemployment are

p=| " |, which s blocked by (cs, 51)
51,83 Sz
e

Ha = , which is blocked by (c2, {s1, $3})
51,82 s3]
[ C1 02_ L.

3 = , which is blocked by (c2, {51, $2})
52,83 s1]
—Cl C2 ] L.

g = , which is blocked by (¢1, {s2, s3})
152 51,53
-01 C2 ] S 1.

s = , which is blocked by (¢1, {1, s3})

51 52,53

Now observe that any matching that leaves s; unmatched is blocked either by (¢, s1) or by
(ca, $1); any matching that leaves s unmatched is blocked either by (¢1, $2), (ca, $2) or (ca, {82, 53}).
Finally, any matching that leaves s unmatched is blocked by (ca, {s1, s3}).

3.12 We will henceforth assume that colleges have preferences over groups of students that are re-

sponsive to their preferences over individual students.

3.13 Definition: A matching p is group unstable, or it is blocked by a coalition, if there exists another
matching ¢ and a coalition A, which might consist of multiple students and/or colleges, such
that for all students s in A, and for all colleges c in A,
(1) @/(s) € A, i.e., every student in A who is matched by 1" is matched to a college in A;
(2) 1/ (8) =5 u(s), i.e., every student in A prefers his/her new match to his/her old one;

(3) s’ € p/(c) implies s € AU p(c), i.e., every college in A is matched at 11" to new students

only from A, although it may continue to be matched with some of its old students from
p(e);

4) 1/ (c) > p(c), i.e., every college in A prefers its new set of students to its old one.
A matching is group stable if it is not blocked by any coalition.

3.14 Proposition: In college admissions model, a matching is group stable if and only if stable.

Proof. (1) If p is blocked via coalition A and matching 11/, let ¢ € A.

(2) Then the fact that 1/ (¢) >, p(c) implies that there exists a student s in ¢/ (¢) \ p(c) and a
s' € u(e) \ p'(c) such that s = s

(3) Sos € A,and hence 1/(s) =5 u(s).
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(4) So s prefers ¢ = p/(s) to pu(s), so p is blocked by the pair (s, ¢).

3.3 Theconnection between the college admissions model and the mar-

riage model

3.15 The importance of Proposition 3.14 for the college admissions model goes beyond the fact that
it allows us to concentrate on small coalitions. It says that stable and group stable matchings
can be identified using only the preferences > over individuals—that is, without knowing the

preferences =7 that each college has over groups of students.

3.16 Consider a particular college admissions problem. We can consider a related marriage problem,
in which each college ¢ with quota ¢, is broken into g, “pieces” of itself, so that in the related

problem, the agents will be students and college positions, each having a quota of one.

3.17 Given a college admissions problem (S, C, g, ), the related marriage problem is constructed

as follows:

CTNeo e . . dec .
« “Divide” each college ¢, into ., separate pieces c;,c7,...,c,”, where each piece has a
capacity of one; and let each piece have the same preferences over S as college c has. (Since

college preferences are responsive, > is consistent with a unique ranking of students.)

C*: The resulting set of college “pieces” (or seats).

o For any student s, extend her preference to C* by replacing each college ¢, in her original

preference =5 with the block ¢}, ¢7, ..., CZC‘ in that order.

3.18 Example: Consider the problem consisting of two colleges {c1, c2} with ¢., = 2, ¢., = 1 and

two students {1, s2}. The preferences are given by

51 82 ‘ 1 C2
C1 C2 | 82 $1
C2 C1 | S1 S2

Table 3.3

The related marriage problem is as follows: Three seats C* = {cl,¢?, c,} and three students

{s1, 82, s3}. The preferences are given by
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3.19

3.20

3.4

® 321

1 2
S1 S92 S3 ‘ (&1 (&) [65)

C% C2 C% S92 S92 S1
C% C% C% S1 S1 S9
Co C%

Table 3.4

Given a matching for a college admissions problem, it is straightforward to define a correspond-
ing matching for its related marriage problem: Given any college c, assign the students who were

assigned to c in the original problem one at a time to pieces of ¢ starting with lower index pieces.

In the college admissions problem above, consider a matching

C1 C2
51,83 S2

Then we have a corresponding matching for the related marriage problem

Lemma (Lemma 1 in Roth and Sotomayor (1989)): A matching of a college admissions problem

is stable if and only if the corresponding matching of its related marriage problem is stable.

Proof. Exercise. O

Deferred acceptance algorithm and properties of stable matchings

College-proposing deferred acceptance algorithm.

Step 1: (a) Each college ¢ proposes to its top choice g. students (if it has fewer individually
rational choices than ¢, then it proposes to all its individually rational students).

(b) Each student rejects any individually irrational proposal and, if more than one indi-

vidually rational proposal is received, “holds” the most preferred. Any college c that

is rejected will remove the students who have rejected it.

Step k: (a) Any college ¢ that was rejected at the previous step by £ students makes a new
proposal to its most preferred ¢ students who haven’t yet rejected it (if there are fewer

than ¢ individually rational students, it proposes to all of them).

(b) Each student “holds” her most preferred individually rational offer to date and rejects

the rest. Any college c that is rejected will remove the students who have rejected it.



3.4. Deferred acceptance algorithm and properties of stable matchings 55

® 322

¥ 323

3.24

¥ 325

End: The algorithm terminates after a step where no rejections are made by matching each

student to the college (if any) whose proposal she is “holding”
Student-proposing deferred acceptance algorithm.

Step 1: (a) Each student proposes to her top-choice individually rational college (if she has
one).

(b) Each college c rejects any individually irrational proposal and, if more than g, indi-

vidually rational proposals are received, “holds” the most preferred ¢. of them and

rejects the rest.

Step k: (a) Any student who was rejected at the previous step makes a new proposal to her
most preferred individually rational college that hasn’t yet rejected her (if there is
one).

(b) Each college ¢ “holds” at most ¢, best student proposals to date, and rejects the rest.

End: The algorithm terminates after a step where no rejections are made by matching each

college to the students (if any) whose proposals it is “holding”

Theorem on stability (Theorem 1 in Gale and Shapley (1962)): The student- and college-proposing
deferred acceptance algorithms give stable matchings for each college admissions model.

Proof. It is a consequence of theorem on stability in marriage problem (Theorem 2.45) and
Lemma 3.20. O

In a college admissions model, college ¢ and student s are “achievable” for one another if there

is some stable matching at which they are matched.

For each ¢, with quota gy, let ay be the number of achievable students, and define k, = min{qy, a¢}.

Theorem: The college-proposing deferred acceptance algorithm produces a matching that gives

each college ¢, its k, highest ranked achievable students.

Proof. We can prove it by induction.

(1) Suppose that, up to Step r of the algorithm, no student has been removed from the list of a
college for whom he or she is achievable, and that at Step (r + 1) student s; holds college

¢;, and has been removed from the list of ¢,

(2) Then any matching that matches s; with c;, and matches achievable students to c;, is
unstable since s; ranks c; higher than ¢, and c; ranks s; higher than one of its assignees.
(This follows since s is top-ranked by c; at the end of Step r, when no achievable students

had yet been removed from ¢;’s list.)
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(3) So s; is not achievable for cj.
O
3.26 Corollary: There exists a college-optimal stable matching that every college likes as well as any

other stable matching, and a student-optimal stable matching that every student likes as well as

any other stable matching.

8 3.27 Theorem: The student-optimal stable matching is weakly Pareto efficient for the students.
Proof. It follows from Theorem 2.39 and Lemma 3.20. O

3.28 Example: The college-optimal stable matching need not be even weakly Pareto optimal for the

colleges.

Proof. (1) Consider the problem consisting of two colleges {c1, c2} with ¢., = 2, ¢, = 1,

and two students {s1, s2}. The preferences are given by

51 82 ‘ C1 C2
C1 C2 {51, 82} S1
C2 C 52 52
S1
Table 3.5

(2) Itis straightforward to see that the college-optimal stable matching is

c__ |G C2
el
51 82

(3) Consider the matching

(4) Both colleges strictly prefer 11’ to u .
O

3.29 Remark: in the marriage problem related to a college admissions problem, it is the college
seats that play the role of the agents on the college side of the market. So Theorem 2.39 and
Lemma 3.20 tell us that there exists no matching that gives every college a more preferred stu-
dent in every seat than it gets at the college-optimal stable matching. But of course, as we have

just seen, this does not imply that the colleges do not all prefer some other matching.
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¥ 330

3.31

3.32

3.33

This result is also consistent with the fact that DA is not strongly Pareto optimal; see Exam-
ple 2.41.

Theorem: The set of students admitted and seats filled is the same at every stable matching.
Proof. The proof is immediate via Theorem 2.31 and Lemma 3.20. O

Lemma (Lemma 3 in Roth and Sotomayor (1989)): Suppose that colleges and students have
strict individual preferences, and let y and 1/ be stable matchings for (S, C, ¢, =), such that
p(c) # 1/ (c) for some c. Let i and [’ be the stable matchings corresponding to p and p/ in the
related marriage problem. If ji(c?) =, i’ (c') for some seat ¢’ of ¢, then fi(c?) = ji'(c?) for all

seats ¢’ of c.

Proof. (1) 1t suffices to show that ji(c’) =. ji’(c’) for all j > i. To see this, if there exists
j < i, such that i’(¢?) =, fi(c¢?), then by this claim we have i’ (c¢') =, fi(c'), which
contradicts the fact i(c’) =, ji’(c?).

(2) Suppose that this claim is false. Then there exists an index j such that
i(c?) ¢ ' (¢7) and i (7T e p( ).

(3) Itis clear that ji(¢’) € S. Then by Theorem 3.30, we know i’ (¢7) is also in S, so denote it
by s’

(4) By decomposition lemma, ¢/ = ji/(s') = ji(s').

(5) Since ji'(c¢?) =, i@'(¢?T1), we have s’ = i'(¢?) =. i@/ (¢/T1) =. ji(c?*1), and hence
s # (),

(6) Since fi(c?) = s, i(c?T1) # &', and ¢/ ! comes right after ¢/ in the preference of s’ in
the related marriage problem, we have ji(¢/T1) =, s'.

(7) So ji is blocked by the pair (s, ¢/*1), contradicting the stability of .

O

Remark: The proof of Lemma 3.31 actually shows that if ji(c¢?) =, ji’(c') for some position ¢
of cthen ji(c?) =, ii’(¢/) forall j > i.

Remark: Consider a college ¢ with g. = 2 and preferences s; >, S3 >, s3 >, s4. Consider
two matchings p and v such that p(c) = {s1, 54} and v(c) = {s2, s3}. Then without knowing
anything about the preferences of students and other colleges, we can conclude that ;¢ and v can
not both be stable by Lemma 3.31.
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3.35

3.36

3.37

Theorem (Theorem 1 in Roth (1986)): Any college that does not fill its quota at some stable
matching is assigned precisely the same set of students at every stable matching.

Proof. (1) Recall that if a college ¢ has any unfilled positions, these will be the highest num-

bered ¢’ at any stable matching of the corresponding marriage problem.

(2) By Theorem 3.30 these positions will be unfilled at any stable matching, that is, ji(¢/) =
i’ (¢7) for all such j.

(3) fi(c?) = ji/(¢?) for all 4, since the proof of Lemma 3.31 shows that if fi(c?) =, i’ (c?) for
some position ¢’ of ¢, then ji(¢/) =, i/ (¢/) for all j > i.

O

Exercise: Find a non-trivial example to illustrate the above result does not necessarily hold for

colleges which fill quotas at some stable matching.

Hint: Consider the example in the proof of Theorem 2.69.

Theorem (Theorem 3 in Roth and Sotomayor (1989)): If colleges and students have strict pref-
erences over individuals, then colleges have strict preferences over those groups of students that
they may be assigned at stable matchings. That s, if ;s and 1/ are stable matchings, then a college
c is indifferent between pi(c) and p/'(c) only if u(c) = ' (c).

Proof. (1) If u(c) # 1/ (c), then without loss of generality ji(c*) . ji’(c?) for some position
¢ of ¢, where ji and i’ are the matchings in the related marriage problem corresponding
to pand g,
(2) By Lemma 3.31, i(¢/) . ii’(¢) for all positions ¢/ of c.
(3) So u(c) =, w'(c), by repeated application of the fact that c’s preferences are responsive

and transitive:

p(e) = {ale'), i(c®), . i)} e {3/ (1), B(e?), - - (™)}
me AR (), 1 (), (™)} e e {R (), B (), 1 (7)) = 1 (o).

O

Theorem (Theorem 4 in Roth and Sotomayor (1989)): Let preferences over individuals be strict,
and let p and p' be stable matchings for (S, C, =, ¢). If u(c) =, p/(c) for some college ¢, then
s>, s forall s € p(c)and s’ € p/(c) \ p(c). That is, ¢ prefers every student in its entering

class at i1 to every student who is in its entering class at 1 but not at .
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3.38

3.39

3.40
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Proof. (1) Consider the related marriage problem (S, C’, >) and the stable matchings i and
i’ corresponding to v and /.
(2) Observe that c fills its quota under p and p/, since if not, Theorem 3.34 would imply that
p(e) = p'(c).
(3) So p'(c) \ p(c) is a non-empty subset of S.
(4) Lets’ € p/(c) \ pu(c), then s’ = ji’(c?) for some position ¢/ and s’ & y(c), and hence
i(c?) # i ().
(5) By Lemma 3.31 ji(¢/) =. ji’(¢/) = s'; otherwise 1/ (¢) =, p(c), which contradicts the
fact pu(c) = ' (c).
(6) The decomposition lemma (Lemma 2.51) implies ¢/ = fi’(s") =4 ji(s’).
(7) So the construction of the related marriage problem implies ¢ >4 (s'), since u(s’) # c.
(8) Thus s . s’ forall s € u(c) by the stability of p.
O

Corollary: Let p and 11/ be two stable matchings. For any college ¢,
o eitheri > jforalli € p(c) \ p'(c) and j € p'(c) \ pn(c),
e orj>ciforalli € pu(c)\ p'(c)and j € p'(c) \ pu(c).
Remark: Consider again a college ¢ with ¢. = 2 and preferences s; >, s2 >, S3 > Sa.

Consider two matchings £ and v such that p(c) = {s1,s3} and v(c) = {s2,s4}. Then the

theorem says that if y is stable, v is not, and vice versa. (Since c’s preference is responsive,
p(c) e p'(c).)

Corollary (Corollary 1 in Roth and Sotomayor (1989)): Consider a college ¢ with preferences
. over individual students, and let =% and > be preferences over groups of students that are
responsive to >, (but are otherwise arbitrary). Then for every pair of stable matchings ;. and
w', u(c) is preferred to 11/(c) under the preferences =7 if and only if 1i(c) is preferred to p/(c)

under >-}.

Proof. It follows immediately from the theorem and the definition of responsive preferences.
O

Example: Let the preferences over individuals be given by

and let the quotas be q., = 3, ¢.; = 1forj = 2,...,5. Then the set of stable outcomes is
{1, pa, 3, pra}, where

C1 Cy C3 C4 Cj

H1
51,83,84 S5 Se¢ St S2
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S1 S92 S3 S4 S5 S6 S7 C1 C2 C3 Cy4 Cs
Cs C2 €3 € €1 €1 C | S1 S5 Sg St S2
¢ ¢ € € C2 €3 C3 | S22 S St S4 851

C1 C4 S3 S3
S4
S5
S6
S7
Table 3.6
C1 Cag C3 C4 Cs
M2 =
[53,54,55 52 S6 St S1
C1 Cag C3 C4 Cs
M3 =
153,585,586 S2 St S4 S1
C1 Cy C3 Cq4 Cj
Ha =
S5,86,87 S2 S3 Sa S

Note that these are the only stable matchings, and

pi(er) =, paer) =o, ps(cr) =5 paler),

for any responsive preferences > .

3.5 Further results for the college admissions model

¥ 3.42 Theorem: If yr and j’ are stable matchings for (S, C, =, q) then p ¢ ' ifand only if i’ =g p.

Here y1 ¢ 1/ means u(c) 7. p'(c) forall ¢ € C and p(c) =, p/(c) for some c € C.

Proof. (1) Suppose that pi(c) 7. p/(c) forall ¢ € C and p(c) >, p/(c) for some ¢ € C.

(2) Using Lemma 3.31 in one direction and the responsiveness of the colleges’ preferences in

the other direction, we can see that this is equivalent to fi(¢) 2.,

o' (') forall¢’ € C'and

a(c") »1, i for some ¢ € C’, where [i and i’ are the stable matchings corresponding to

pand p for the related marriage problem (S, C’, >')

(3) This in turn is satisfied if and only if & ¢/ ' and hence, if and only if i’ =g [ by

Theorem 2.29, which implies ¢/ >g p.

O
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3.43 Corollary: The optimal stable matching on one side of the problem (S, C, >, q) is the worst
stable matching for the other side.

3.44 In (S, C, =, q), for any two matchings p and p/, define the following function on S U C:

pVe i (c) = pu(e), if ple) =c p'(c) Ve () = w(s), ifp'(s) =5 p(s) .

i (c), otherwise 1 (s), otherwise

Similarly, we can define the function pu A¢ 1.

3.45 Theorem: Let 41 and p1 be stable matchings for (S, C, =, ¢). Then uV¢ p' and pA¢ p are stable

matchings.

Proof. (1) Consider the marriage problem (S, C’, ') related to (S, C, >, q) and the stable
matchings 7z and i’ corresponding to p and p/'.

(2) We know that A = [i Vv [i’ is a stable matching for (S, C’, =').

(3) Ifu Ve 1/ (c) = p(e), then u(c) . 14/ (c), and hence fi(c?) =i ji’(c?) for all positions c?
of ¢ by Lemma 3.31.

(4) Then ji Vo i’ (') = ji(c?) for all positions ¢ of c.

(5) If s isin p(c), there is some position ¢’ of ¢ such that s = \(c).

(6) (i) To see that ;1 V¢ p' is a matching, suppose by the way of contradiction that there

are some s in S and ¢ and ¢’ in C with ¢ # ¢’ and such that s is contained in both
pVe p'(c)and p Ve p(c).

(ii) Then there exists some position ¢’ of ¢, and some position ¢/ of ¢, such that \(c?) =
s = A(c?), which contradicts the fact that ) is a matching.

(7) The matching p1 Vo i/ is stable: if s =. s’ € u Ve p/(c), so there is some position ¢ of
c such that s = \(c') and s >, A(c?). Then by stability of A\, A(s) = ¢, which implies
that 4 Vo p/(s) =5 cand (c, s) does not block 11 Ve 1.

O

3.46 Corollary: The set of stable matchings forms a lattice under the partial orders >¢ or >g with the
lattice under the first partial order being the dual to the lattice under the second partial order.

3.47 Theorem: If ;1 and p' are two stable matchings for (S, C, >, ¢q) and ¢ = pu(s) or ¢ = p/(s),
withc € C'and s € S, thenif u(c) =, p'(c) then p/(s) s u(s); and if ' (s) =5 p(s) then
p(e) Ze w'(c).

Proof. (1) Consider the related marriage problem (S, C’, ') and the corresponding stable
matchings 7z and f'.
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(2) Define
S() = {s € S| i(s) =s ils)}, and C' (i) = {c* € €' | i(c) et ()},

Similarly define S(ji) and C’(ii’).

(3) By decomposition lemma (Lemma 2.51) & and &’ map S(f’) onto C’(f) and S(jz) onto
(i)

(4) If u(c) =¢ p'(c), Lemma 3.31 implies that ji(c?) = ji’(c*) for all position ¢ of c.

(5) Then ¢* ¢ C’(j’) for all positions ¢’ of c.

(6) Then ji(c?) and ji’(c?) are in S(i') or fi(c?) = i’ (c?), for all positions ¢’ of c.

(7) Since s is matched to some position of ¢ under fi or ii’, we have p/(s) =5 pu(s).

O

3.48 Theorem: Suppose that =’ >¢ > andlet u[~'], u[~], u*[~’], and 1+°[~] be the correspond-
ing optimal stable matchings. Then

pCl=] ze nC=1, pC1-1 zs nC-1 w0 zs pl-] and p -] Do pi-].

Symmetrical results are obtained if -’ >g .

Proof. (1) Suppose that >’ >¢ >.

(2) Consider the marriage problems (S, C, =) and (S, C, =) related to (S, C, =, ¢) and (S, C, >
, q) respectively, where =(s) = ='(s) forall s in S.

(3) Then =' >4 =.

(4) Now apply Theorem 2.54.

O

3.49 Theorem: Suppose that C is contained in C’ and y°[I'] is the student-optimal matching for
I = (S,C,~,q) and p°[I'] is the student-optimal matching for I" = (S, C’, ', ¢'), where
' agrees with > on C. Then
po 1) s p¥[M] and p°[1] Zo p[17].

~

Symmetrical results are obtained if S is contained in S’

Proof. (1) Suppose that C is contained in C".
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(2) Consider the marriage problem (S, C, =) and (S, C’, =') related to (S, C, >, ¢) and (S, C", =’
,q') respectively, where = agrees with = on C.
(3) Now apply Theorem 2.57.
O

3.50 Definition: A matching ;/ weakly dominates y via a coalition A contained in C' U S if for all

students s and colleges c in A,
W (s) € A, 1'(0) € A, 1(s) 5y pi(s), and 1/ (0) X pi(c),

and

W' (s) =5 u(s) for some sin A, or p'(¢) = u(c) for some cin A.

The core, C(3-), is the set of matchings that are not weakly dominated by any other matching.

3.51 Proposition (Theorem A2.2 in Roth (1985b)): When preferences over individuals are strict, the
set of stable matchings is C(>).

Proof. Part 1: Every core matching is stable.

(1) If uis not stable, then i is unstable via some student s and college ¢ with s > s’ for some
s"in p(e).

(2) Then p is weakly dominated via the coalition ¢ U p(c) U s \ s’ by any matching p’ with
W (s)=cand p/(c) = p(c) Us\ s

Part 2: Every stable matching is in the core.

(3) If pisnotin C(>), then y is weakly dominated by some matching ' via a coalition A, so

some student or college in A prefers y1 to p.

(4) Suppose that some ¢ prefers ' to . Then there must be some student s in i/ (¢) \ pt(¢) and
some s’ in u(c) \ p'(c) such that s >, s'. If not, then s’ >~ sforall sin u'(c) \ u(c) and
s"in pu(c) \ 1/ (¢), which would imply u(c) 7. 1/(c), since ¢ has responsive preferences.
So p is unstable, since it is blocked by the pair (s, ¢).

(5) Suppose that some student s in A with p/(s) = ¢ prefers p’ to p. Then the fact that
() e p(c) similarly implies that there is a student s’ (possibly different from s) in
' (e) \ u(c)and a s” in p(c) \ p'(c) such that s’ . s”. Then p is blocked by the pair
(s',¢).
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3.52 Remark: There is another version of core.

A matching ¢/ dominates another matching 1 via a coalition A contained in C U S if for all

students s and colleges c in A,
W () € A, (c) C A, W/ (s) =y u(s), and ' (c) =e p(0).

The core defined via strict domination is the set of matchings that are not dominated by any

other matching.

Exercise: Find a college admission problem such that the core and the core defined via strict

domination are not the same.

3.6 Incentive compatibility

3.53 'Throughout this section we fix S = {s1, s2,...,sp},and C' = {c1, ¢2, ..., ¢, }, so each pair of

preference profile and quota profile defines a college admissions problem.

3.54 Let P, and P, denote the set of all preferences for student s and college ¢, P = (Ps)? x (P.)"
denote the set of all preference profiles, and PP_; denote the set of all preference profiles for all

agents except <.

Let Q. denote the set of all quotas for college ¢, @ = Q., X Q,, X --- x Q. denote the set of

all quota profiles, and Q_ . denote the set of all quota profiles for all schools except c.
Let & = P x Q, and let M denote the set of all matchings.
BF"  3.55 A (direct) mechanism is a systematic procedure that determines a matching for each college
admissions problem. Formally, it is a function ¢: & — M.
I¥" 356 A mechanism ¢ is stable if p[7Z, ¢| is stable for any (7, ¢) € &.
A mechanism ¢ is Pareto efficient if it is always selects a Pareto efficient matching.
A mechanism ¢ is individually rational if it is always selects an individually rational matching.

3.57 Let ¢° (or SOSM) and o be the student-optimal and college-optimal stable mechanisms that

selects the student-optimal and college-optimal stable matchings for each problem respectively.

3.6.1 Preference manipulation

=i, e P, foreach=_; €

~ K3

I¥"  3.58 A mechanism g is strategy-proof if for each i € S U C, for each
P_is
plz-i Zi a)()) Zi plZ-i 20 4] (0)-
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¥ 359
3.60
¥ 361
3.62
¥ 363

Theorem (Theorem 3 in Roth (1982b)): There exists no mechanism that is stable and strategy-
proof.

Proof. 1t follows immediately from Theorem 2.69. O

Theorem (Proposition 1 in Alcalde and Barbera (1994)): There exists no mechanism that is

Pareto efficient, individually rational, and strategy-proof.
Proof. 1t follows immediately from Theorem 2.75. O

Theorem (Theorem 5 in Roth (1982b)): Truth-telling is a weakly dominant strategy for all stu-

dents under the student-optimal stable mechanism.
Proof. It follows immediately from Theorem 2.76. O

Remark: Deferred acceptance algorithm is the unique stable and one-sided strategy-proof mech-

anism; see Theorem 8.34.

Theorem (Proposition 2 in Roth (1985a)): There exists no stable mechanism where truth-telling

is a weakly dominant strategy for all colleges.

Proof. (1) Consider the problem consisting of two colleges {c1, c2} with ¢., = 2, ¢, = 1,

and two students {s1, s2}. The preferences are given by

51 82 ‘ C1 C2
c1 ¢ | {s1,52} 81
C2 C1 S92 S92
S1
Table 3.7

(2) Itis straightforward to see that the college-optimal stable matching is

C1 Co
NC[>617>62] = [ 1 .
S1  S2

(3) Now suppose that college c; reports the manipulated preferences -/, where only s, is

acceptable. For this new college admissions problem, the only stable matching is

Cr !/ C1 C2
K [>_cl7>52] = [ ‘| :
S92 81
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3.64

3.65

3.66

(4) Hence college c¢; benefits by manipulating its preferences under any stable mechanism

(including the college-optimal stable mechanism).

O

Remark: A college is like a coalition of players in terms of strategies.

Corollary: In the college admissions model, a coalition of agents (in fact, even a single agent)

may be able to misreport its preferences so that it does better than at any stable matching.

Roth (1984) showed that the algorithm independently discovered by the National Residency
Matching Program (NRMP) in the United States was equivalent to the college-optimal stable
mechanism. Roth (1991) observed that several matching mechanisms that have been used in
Britain for hospital-intern matching were unstable and as a result were abandoned, while stable
mechanisms survived. This key observation helped to pin down stability as a key property of
matching mechanisms in the college admissions framework. Roth and Peranson (1999) intro-
duced a new design for the NRMP matching mechanism based on the student-optimal stable
mechanism. Interestingly, the replacement of the older stable mechanism with the newer mech-
anism was partially attributed to the positive and negative results in Theorems 3.61 and 3.63,

respectively.

3.6.2 Capacity manipulation

3.67

3.68

In a college admission problem (S, C, g, >-), a college ¢ manipulates a mechanism ¢ via capac-
ities if
o[, q-c,q.](c) =c o[-, q](c) for some g, < ge.

A mechanism is immune to capacity manipulation if it can never be manipulated via capacities.

Example: The college-optimal stable mechanism is not immune to capacity manipulation:

Proof. (1) Consider the problem consisting of two colleges {c;, c2} with ¢., = 2, ¢, = 1,

and two students {s1, s2}. The preferences are as follows:

S1 82 ‘ C1 2

1 C2 {81, 82} S1

C2 (€1 52 52
S1

Table 3.8
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(2) Itis straightforward to see that the college-optimal stable matching is

,UC[>'7Q} _ [Cl C2‘| )

s1 S2

(3) Let ., = 1 be a potential capacity manipulation by college c;. For this new college ad-

missions problem, the only stable matching is

Cc1 C2
POl Ges] = L ] :

(4) Hence college c; benefits by reducing the number of its positions under the college-optimal

stable mechanism.

O

¥ 3.69 Theorem (Theorem 1 in Sénmez (1997)): Suppose that there are at least two colleges and three

students. Then there exists no stable mechanism that is immune to capacity manipulation.

Proof. (1) We first prove the theorem for two colleges and three students.
(2) Let ¢ be a stable mechanism, C' = {¢1,c2} and S = {s1, $2, 83},

S1 S22 83 C1 C2
c2 c1 ¢ | {s1,82,83} {s1,82,53}
c1 ¢ cz | {s1,s2} {s2,83}
{81,33} {31783}
S1 S3
{s2,83} {51, 82}
52 59
53 51
Table 3.9

qc‘1 N q02 = 2 and qél = q(//z = 1'
(3) The only stable matching for (>, ¢, , qc,) is

1 C2
M1 = .
2,83 S1

(4) The only two stable matchings for (>, q., , q.,) are y; and

1 C2
M2 = .
1,82 83
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3.70

3.71

3.72

3.73

(5)

(6)
™)

(8)

€)

(10)

The only stable matching for (-, q.. , q.,) is

C1 C2
w3 = .
S1 83

Therefore @[>, qe, , 4c,| = p1> Pl Gr,» 4e,] = 3> and A=, qe, 5 q1, ] € {p1, p2}-

If §[>, qe,, 4., = pa, then @[~ q. , q.,](c1) = ps(c1) = {s1} and @[, qc,, q.,](c1) =
u1(c1) = {s2, 83} and hence

¢[>‘7 qzl s QZ;Q](CI) ey ¢[>7 9ey s qéz](cl)v

which implies college ¢; can manipulate ¢ via capacities when its capacity is g., = 2 and

college cy’s capacity is ¢, = 1 by underreporting its capacity as g, = 1.

Otherwise @[, qc, . .,] = 112 and therefore 3[- q, 4., ] (c2) = pra(c2) = {ss}, [~
7QC17q02](02) = ,u1(62) = {81}. Hence

¢[>_7 9eqs qéz](CQ) >_cz ¢[>_a 9es 5 QCz](CQ)

which implies college ¢, can manipulate ¢ via capacities when its capacity is g, = 2 and
college c¢1’s capacity is ., = 2 by underreporting its capacity as ¢, = 1.
Hence, ¢ is manipulable via capacities completing the proof for the case of two colleges

and three students.

Finally we can include colleges whose top choice is keeping all its positions vacant and
students whose top choice is staying unmatched to generalize this proof to situations with

more than three students and two colleges.

O

Exercise: Is there a stable mechanism that is immune to capacity manipulation for college ad-

missions problems with two colleges and two students?

Remark: In one-to-one matching, DA cannot be manipulated by an agent if and only if there is

a unique stable partner. The statement is false in many-to-one matching.

Definition: College preferences are strongly monotonic if for every ¢ € C, forevery T, T" C S,

T <|T|<q.=>T.T.

Theorem (Theorem 5 in Konishi and Unver (2006)): Suppose that college preferences are strongly

monotonic. Then the student-optimal stable mechanism is immune to capacity manipulation.



3.7. Comparison of marriage problems and college admissions 69

Proof. Omitted. O

3.74 Remark: Example 3.68 shows that the college-optimal stable mechanism is capacity manipulable

even under strongly monotonic preferences.
3.75 Definition: For each s € S, let ¢ denote the minimum capacity imposed on school s.

3.76 Theorem (Theorem 1 in Kesten (2012)): DA is immune to capacity manipulation for all school
preferences if and only if the priority structure (-, ¢) is acyclic. See Chapter 9 for the definition
of acyclicity.

Proof. Omitted. O

3.7 Comparison of marriage problems and college admissions

3.77 Comparison of marriage problems and college admissions problems:

Marriage problems | College admissions (with responsive preferences)
Existence of stable matchings v Vv
One-sided individual optimality v vV
One-sided weakly Pareto optimality V v/ (s) and x (c)
Rural hospital theorem vV v
Two-sided strategy-proofness X X
One-sided strategy-proofness vV / (s) and x (c)

3.8 National resident/intern matching program

3.78 Students who graduate from medical schools in US are typically employed as residents (interns)

at hospitals, where they comprise a significant part of the labor force.

In the early twentieth century, the market for new doctors was largely decentralized. During
the 1940s, competition for medical students forced hospitals to offer residencies/internships
increasingly early, sometimes several years before a student would graduate. This so-called un-
raveling had many negative consequences. Matches were made before students could produce
evidence of how qualified they might become, and even before they knew what kind of medicine

they would like to practice.

The market also suffered from congestion: when an offer was rejected, it was often too late to

make other offers.



3.8. National resident/intern matching program 70

3.79 In response to the failure of the US market for new doctors, a centralized clearinghouse was
introduced in the early 1950s. This institution is now called the National Resident Matching
Program (NRMP) or National Intern Matching Program (NIMP).

€ 3.80 NRMP algorithm.

Initial editing of ranking lists: Each hospital ranks the students who have applied to it and
each student ranks the hospital to which he has applied.

These ranking lists are mailed to the central clearinghouse, where they are edited by re-
moving from each hospital’s ranking list any student who has marked that hospital as
unacceptable, and by removing from each student’s ranking list any hospital which has

indicated he is unacceptable.

The edited lists are thus ranking lists of acceptable alternatives.

Matching phase: 1 : 1 step: Check to see if there are any students and hospitals which are top-
ranked in one another’s ranking. (If a hospital has a quota of ¢ then the ¢ highest
students in its ranking are top-ranked.) If no such matches are found, the matching
phase proceeds to the 2 : 1 step; otherwise the algorithm proceeds to the tentative

assignment and update phase.

k : 1step: Seek to find student-hospital pairs such that the student is top-ranked on the
hospital’s ranking and the hospital is k-th ranked by the student. If no such matches
are found, the matching phase proceeds to the (k + 1) : 1 step; otherwise the algo-
rithm proceeds to the tentative assignment and update phase.

Tentative assignment and update phase: ~ « When the algorithm enters the tentative assign-
ment and update phase from the k : 1 step of the matching phase, the k : 1 matches
are tentatively made; i.e., each student who is a top-ranked choice of his k-th choice
hospital.

o The rankings of students and hospitals are then updated in the following way:

- Any hospital which a student s; ranks lower than his tentative assignment is
deleted from his ranking. (So the updated ranking of a student s; tentatively
assigned to his k-th choice now lists only his first k£ choices.)

- Any student s; is deleted from the ranking of any hospital which was deleted
from s;’s ranking. (So the updated ranking of each hospital now include only
those applicants who have not yet been tentatively assigned to a hospital they
prefer.)

o When the rankings have been updated in this way, the algorithm returns to the start of
the matching phase. Any new tentative matches found in the matching phase replace

prior tentative matches involving the same student.
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End: The algorithm terminates when no new tentative matches are found, at which point ten-

tative matches become final.

3.81 Example: Consider the problem consisting of two hospitals {h1, h2 }, each with a quota of one,

and three students {s1, s2, s3}. The preferences are given by

hi hy | s1 sy ss
s1 st | hi hi Iy

S92 S9 h2 h2
S3 S3
Table 3.10

The edited lists are:

h1 hQ‘Sl S92 S3
s1 81 | hh hi M

s3  sg | ho ha
S3 S3
Table 3.11

In 1 : 1 step, one tentative match (hy, s1) is found. Then the algorithm proceeds to tentative

assignment and update phase. The updated lists are

hl h2 ‘ S1 S92 S3
st 3 | ht hi Ry
So S 7‘& ha

S3 83

Table 3.12

The algorithm returns to the matching phase. In 1 : 1 step, no new tentative match. In 2 : 1
step, one tentative match (hg, s3) is found. Then the algorithm proceeds to tentative assignment

and update phase, but there is no new update for rankings.

hy ho
51 83 52 .
3.82 Roth (1984) showed that the NRMP algorithm is equivalent to a (hospital-proposing) DA al-

gorithm, so NRMP produces a stable matching. Roth (1984) argued that the success of NRMP
was due to the fact that it produced stable matchings.

The outcome is

3.83 Several issues led to the redesign NRMP algorithm:
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3.84

3.85

3.86

3.9

3.87

3.88

3.89

o The NRMP algorithm favors hospitals at the expense of students.
o Both students and hospitals may have incentives to manipulate the NRMP algorithm.
o NRMP has special features, called “match variations”. An example is couples.

Theorem (Theorem 10 in Roth (1984)): In a market in which some agents are couples, the set

of stable outcomes may be empty.

Proof. Consider the problem consisting of two hospitals { k1, hs }, each with a quota of one, one

single student s and one couple (m, w). The preferences are given by

hi  ho ‘ S (m,w)
m S hl (hl, h2)
s  w | ho

Table 3.13

In this market, no stable matching exists. O

Remark: The rural hospital theorem also fails in the market above.

In 1995, Roth was hired by the board of directors of NRMP to direct the design of a new algo-
rithm. The new algorithm (which is called Roth-Peranson algorithm), designed by Roth and
Peranson (1999), is a student-proposing algorithm modified to accommodate couples: potential
instabilities caused by the presence of couples are resolved sequentially, following the instability-
chaining algorithm of Roth and Vate (1990).

For details of the new NRMP algorithm, see Roth and Peranson (1999).

New York City high school match

Main reference: Abdulkadiroglu et al. (2005a) and Abdulkadiroglu et al. (2009).

Background: Over 90,000 students enter high schools each year.

The old NYC system was decentralized:

o Each student can submit a list of at most 5 schools.
o Each school obtains the list of students who listed it, and independently make offers.

o There were waiting lists (run by mail), and 3 rounds of move waiting lists.

Problems with the old system:
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o The system left 30,000 children unassigned to any of their choices and they are adminis-

tratively assigned.

« Strategic behavior by schools: school principals were concealing capacities.

3.90 In New York City, schools behave strategically.
Deputy Chancellor of Schools (NYT 19 November 2004):
Before you might have had a situation where a school was going to take 100 new

children for 9th grade, they might have declared only 40 seats and then placed the
other 60 children outside the process.

Unlike Boston, the market seems to be really two-sided, i.e., we should treat both students and

schools are strategic players.
3.91 Since NYC is a two-sided matching market, the student-proposing DA is the big winner:

« DA implements a stable matching (probably more important for NYC than for Boston.)

o DA is strategy-proof for students: it is a dominant strategy for every student to report true

preferences.
« There is no stable mechanism that is strategy-proof for schools.

o When the market is large, it is almost strategy-proof for schools to report true prefer-
ences; Kojima and Pathak (2009): Recall there are 90000 students and over 500 public
high schools in New York City.

3.92 Abdulkadiroglu et al. (2009) and NYC Department of Education changed the mechanism to the
student-proposing DA, except for some details:
o Students can rank only 12 schools.

« Seats in a few schools, called specialized high schools (such as Stuyvesant and Bronx High

School of Science), is assigned in an earlier round, separately from the rest.

« Some top students are granted to get into a school when they rank the school as their first

choices.
o All unmatched students in the main round will be assigned in the supplementary round,
where the random serial dictatorship is used.
These features come from historical constraints and could not be changed.
This make it technically incorrect to use standard results in two-sided matching, but they seem

to be small enough a problem (it may be interesting to study if this is true and why or why not.)

3.93 Effect of changes in the mechanism:
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o Over 70,000 students were matched to one of their choice schools: an increase of more

than 20,000 students compared to the previous year match.
o An additional 7,600 students matched to a school of their choice in the third round.

* 3,000 students did not receive any school they chose, a decrease from 30,000 who did not

receive a choice school in the previous year.
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Chapter

Housing market

Contents
4.1 Theformermodel . . . . . . ... ... . . ... 77
4.2 Top trading cyclesalgorithm . . . .. ... ....... ... ... . ... .. 81
4.3 Incentive compatibility . . . . ... ... ... oo oo oo 90
4.4 Axiomatic characterization of top trading cycles algorithm . . . . . .. ... .. 95

4.1 The former model

4.1 Housing market model was introduced by Shapley and Scarf (1974). Each agent owns a house,
and a housing market is an exchange (with indivisible objects) where agents have the opinion

to trade their houses in order to get a better one.
I¥" 4.2 Definition: Formally, a housing market is a quadruple (A4, H, >, e) such that

o A={a1,as,...,a,} isaset of agents,
o H isaset of houses such that |A| = |H]|,

o == (>4)aca is a strict preference profile such that for each agent a € A, >, is a strict
preference over houses. Let P, be the set of preferences of agent a. The induced weak
preference of agent a is denoted by -, and forany h,g € H,h 77, gifand onlyifh >, ¢
orh =g.

« e: A — H is an initial endowment matching, that is, h; = h,, = e(a;) is the initial

endowment of agent i.

77
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4.3

4.4

4.5

4.6

Like a pure exchange economy, in a housing market, agents can trade the houses among them-

selves according to certain rules and attempt to make themselves better off.

Example: Let A = {a1, as, as, as} and let h; be the occupied house of agent 7. Let the prefer-
ence profile > be given as:

ai a2 a3z a4
hy hz hy h3
hs hy hy ha
ha  hy hi M
hi hi hs hy

Table 4.1

These four agents can trade the houses and get the following (Pareto) improved reallocation

_|a1 a2 a3z a4
M= by by el

They also have the following (Pareto) improved reallocation

e ez az a
B2 by hy Byl

What are desirable outcome of such a reallocation process? What allocative mechanisms are
appropriate for achieving desirable outcomes?

Definition: In a housing market (A, H, >, e), a matching (allocation) is a bijection yu: A — H.
Here 1(a) is the assigned house of agent a under matching p. Let M be the set of matchings.

Definition: A (deterministic direct) mechanism is a procedure that assigns a matching for each
housing market (A4, H, >, ).

For the fixed sets of agents A and houses /1, a mechanism becomes a function

@ XgeA Pa _>M

Definition: A matching y is individually rational if for each agent a € A,

that is, each agent is assigned a house at least as good as her own occupied house.
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" 47

4.8

4.9

=" 4,10

A mechanism is individually rational if it always selects an individually rational matching for

each housing market.

In Example 4.3, the matchings y; and po are individually rational.
Definition: A matching /s is Pareto efficient if there is no other matching v such that

o v(a) 74 p(a) foralla € A, and

o v(ag) >4, p(ao) for some ag € A.
A mechanism is Pareto efficient if it always selects a Pareto efficient matching for each housing
market.
In Example 4.3, the matchings p1 and po are Pareto efficient.
In Example 4.3, if houses are assigned according to i3, then agents 2 and 3 will not attend this
reallocation process. Instead, they will trade with each other; that is, agent 2 gets house 3 and

agent 3 gets house 2. Clearly, this trade benefits agent 3 and does not hurt agent 2, compared
with p;.

In other words, matching 7 is blocked by the coalition {2, 3} and the trade between them.
Such a matching is not good enough, and a core matching, defined in the following paragraphs,

is required to exclude such blocks.

Definition: Given a market (A, H, -, e) and a coalition B C A, a matching y is a B-matching
ifforalla € B, p(a) = hy for some b € B. Thatis, {¢(a) | a € B} = {hy | b € B}.

Definition: A matching g is in the core! if there exists no coalition of agents B C A such that
some B-matching v € M weakly dominates y, that is,

e v(a) 74 p(a) foralla € B, and

o v(ag) >4, p(ao) for some ag € B.
That is, the core is the collection of matchings such that no coalition could improve their as-
signed houses even if they traded their initially occupied houses only among each other.
We shall use C(>-) or C to denote the core.
A matching in the core is called a core matching.

A mechanism is called a core mechanism if it always selects a core matching for each housing

core

market, denoted by ¢

U1t was also called strong core in the literature. In game theory, the core is the set of feasible allocations that cannot be
improved upon by a subset (a coalition) of the economy’s consumers. A coalition is said to improve upon or block a feasible
allocation if the members of that coalition are better off under another feasible allocation that is identical to the first except
that every member of the coalition has a different consumption bundle that is part of an aggregate consumption bundle that
can be constructed from publicly available technology and the initial endowments of each consumer in the coalition.



4.1. The former model 80

4.11

" 412

4.13

4.14

Remark: Itis clear that a core matching is Pareto efficient (take B = A) and individually rational
(take B = {a} for some a € A).

Definition: Define a vector price as a positive real vector assigning a price for each house, i.e.,

P = (Pn)hen € RZ_J,_

such that py, is the price of house h.
A matching-price vector pair (1, p) € M x R} | is a competitive equilibrium (or a Walrasian
equilibrium) if for each agent a € A,

* Pu(a) < Ph, (budget constraint), and

o p(a) z, hforall h € H such that p;, < pj, (utility maximization).
A matching is called a competitive equilibrium matching if there exists a price vector which
supports the matching to be a competitive equilibrium.
A mechanism is called a competitive equilibrium mechanism if it always selects a competitive

equilibrium matching for each housing market, denoted by (4.

Remark: The market clear condition trivially holds since each matching is required to be a bi-
jection. Furthermore, in a competitive equilibrium (u, p), for each agent a, the price of her final

house p,,(4) equals the price of her initial house py, . (Exercise)

Proposition: If each agent’s preference is strict, then any competitive equilibrium allocation is

in the core.

Proof. (1) Let (i, p) be a competitive equilibrium. Suppose that (4 is not in the core.

(2) Then thereisa coalition B C A anda B-matching v such thatv(a) 77, p(a) foralla € B
and v(ag) >=q, i(ag) for some ag € B.
(3) Since p is a competitive equilibrium matching, p,(4) > Ph, = Ppu(a) foralla € B and

Pu(ao) > Phay = Pu(ay) (Here we need to assume each agent’s preference to be strict).

(4) Since v isa B-matching, Y c 5 Pu(a) = D g Pha-

(5) Thus,
Zp,u(a) < Zpy(a) = tha = Zpy(a):

aeB a€eB a€eB a€EB
which leads to a contradiction.

O

It is well known that any competitive equilibrium allocation is in the core for exchange economies

with divisibilities.
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Definition: A matching y is in the core defined via strong domination if there exists no coalition

of agents B C A such that some B-matching v € M strongly dominates y, that is,
e v(a) >4 p(a)foralla € B.

It is clear that the core is a subset of the core defined via strong domination.

Top trading cycles algorithm

Theorem (Theorem in Shapley and Scarf (1974)): The core of a housing market is non-empty

and there exists a core matching that can be sustained as part of a competitive equilibrium.

Actually, this theorem is originally stated as follows: The core defined via strong domination is
always non-empty, where agents’ preferences are allowed to be not strict. Its initial proof makes

use of Bondareva-Shapley Theorem.

As an alternative proof, Shapley and Scarf (1974) introduced an iterative algorithm that is a core

and competitive equilibrium matching. They attributed this algorithm to David Gale.

Top trading cycles algorithm.

Step 1: Each agent points to the owner of his favorite house.

Due to the finiteness of agents, there exists at least one cycle (including self-cycles). More-

over, cycles do not intersect.

Each agent in a cycle is assigned the house of the agent he points to and removed from the

market.
If there is at least one remaining agent, proceed with the next step.

Step k: Each remaining agent points to the owner of his favorite house among the remaining
houses.

Each agent in a cycle is assigned the house of the agent he points to and removed from the

market.

If there is at least one remaining agent, proceed with the next step.

End: No agents remain. It is clear that the algorithm will terminate within finite steps. Let Step

t denote the last step.

The mechanism determined by top trading cycles algorithm is denoted by TTC.

Notation: In the top trading cycles algorithm, given > and e:


https://en.wikipedia.org/wiki/Bondareva%E2%80%93Shapley_theorem
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o AF or A*[~] or A¥[e] or AF[~, e]: the agents removed at Step k in (A, H, =, e). If Step
is the last step, then
A=A"UA*U---UA
We refer to A = {A', A2, ..., A'} as the cycle structure.

« B¥or B¥[~] or B¥[e] or B¥[~, e]: the remaining agents after Step (k—1) in (A, H, =, e).
So
BF = A\ (A'uA?u...uAF)y = APy APty U AL

« H* or H*[~] or H*[e] or H¥[~, €]: the set of houses that are owned by agents in A*:

H* = {h € H|h = e(a) forsomea € A*}.

Let HO = ().
If Step ¢ is the last step, then

H=H°UH'UH?*U---UH".

« G' = (B, >): the directed sub-graph determined by agents B C A and preference profile
-

« G* or G*[] or G¥[e] or G*[, e]: the directed sub-graph after Step (k — 1) in (A, H, >~
,€).
o Br,(H') where a € Aand H' C H: agent a’s favorite house among H'. Then for each

a € AF, we have
Br, (H \ UiZIH') = TTC(a).

e a5 bwhere ' = (B,>) and B C A: the house of agent b is agent a’s favorite house
in {h, | @ € B} under the preference > .

o C = (any,0ny,---,0n,, )isachainin the directed sub-graph G’ = (B, ) where B C A:
an; € Bforj=1,2,...,m,and

[ed G’ G’ G’
Any — Qnq — Anpy g — Ay, -

Note that a cycle is a special chain.

4.19 Proof of “core is non-empty”.

(1) Let B be any coalition. Consider the first j such that B N A7 # ().
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(2) Then we have
BCA UATIU...UA" = A\ (A'uA?u...uATY).

(3) Leta € BN AJ. Then a is already getting the favorite possible house available to her in
B.

(4) No improvement is possible for her, unless she deals outside of B.

(5) By induction, no agent in B can not strictly improve, and it follows that the outcome

produced by top trading cycles algorithm is in the core.

4.20 Proof of “being a competitive equilibrium matching”.

(1) Price vector p is defined as follows:
o forany a and b in A* for some k, set p,, = p,;
o ifa € A¥and b € A with k < ¢, then set pj,, > pp, .
(2) Thatis,
o the prices of the occupied houses whose owners are removed at the same step are set
equal to each other;

o the prices of those whose owners are removed at different steps are set such that the

price of a house that leaves earlier is higher than the price of a house that leaves later.

(3) Itis easy to check that this price vector p supports the outcome produced by top trading

cycles algorithm as a competitive equilibrium.

4.21 Example of the top trading cycles algorithm:
Let A ={ay,as,...,a16}. Here h; is the occupied house of agent a;. Let the preference profile

> be given as:

ai a2 az a4 Aas Qg Ay asg ag ai1jp aix @12 a3 G4 QA15 Q16
his hs hi ha hg he hy he hit hr ha hy he hs hi  hs

hs hs hi2 h3 hs  hia  his
hi2  his
hio
Table 4.2

Step 1:



4.2. Top trading cycles algorithm

&)
)
&)

646
<\
0303000

a14

Figure 4.1: Step 1

Al = {ahaG»a%als}-

Step 2: The reduced preferences are as follows:

a2 a3 a4 0ap as ag a0 ail1  a12 a3 a4 Gi1e

hs hs ha hg hizo hit hy hy hs hiz hs bhs
ha hiz  hs hig
hio  hie

Table 4.3
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Figure 4.2: Step 2

A2 = {a3, alg}.

Step 3: The reduced preferences are as follows:

az a4 Qs as ag aijp aix G122 Q14

ai16

h4 h2 h9 h12 hll h12 h2 h4 hS
th h4 h14
h16

Table 4.4

hs
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Figure 4.3: Step 3

A3 = {ag, a4}.

Step 4: The reduced preferences are as follows:

as as ag 1o aix G122 Q14

aie

hg hiza hit hi2 hig hig  hs
hio

Table 4.5

hs
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ap a2 as a4

ONOIORO

Figure 4.4: Step 4

4 _
A* = {as,as, a9, 012,014, a16}

Step 5: The reduced preferences are as follows:

aig
hio

Table 4.6
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a az as Gy as
aie Qe
ais ar
a14 as

a13 a12 ai1 @ ag

Figure 4.5: Step 5

A5 = {alo}.

The outcome is

= a a2 a3 a4 as as ar ag a9 aip a1 A2 A3 A4 a4z Aie
his hy hs ha hg he hy hiz hiyx hio hig hia hiz hs hi ks
4.22 Lemma (Lemma I in Roth and Postlewaite (1977)): If the preference of each agent is strict, then

a competitive equilibrium matching (or core matching) weakly dominates any other matching.

Proof. (1) If y4 is any competitive equilibrium matching, we can think of 1 as being arrived at

via trading among top trading cycles A!, A%, ... A’

(2) Let v be any matching.

(3) If u(a) # v(a) for some a € A%, ;i weakly dominates v via the coalition A since j gives
each agent of A! her most preferred house.

(4) If p(a) = v(a) foralla € A and p(a) # v(a) for some a € A%, u weakly dominates
v via the coalition A U A? since y gives each agent of A' her most preferred house, and
each agent of A2 her most preferred of what was left.

(5) Proceeding in this manner we see that ;1 weakly dominates all other matchings.

O

8 4.23 Theorem (Theorem 2 in Roth and Postlewaite (1977)): If the preference of each agent is strict,
the core of a housing market has exactly one matching which is also the unique matching that

can be sustained at a competitive equilibrium.
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Proof. Theorem 4.16 implies that no matching weakly dominates a competitive equilibrium

matching (or core matching). Then apply Lemma 4.22. O

4.24 Remark: In a housing market (A, H, >, e) (with strict preference profile), we have

TTC — wcore — SDeq .

4.25 Remark: Chain structure of top trading cycles algorithm.

(1)

2)

©)

(4)

(5)

(6)

Consider any agent in A* at Step (k — 1). This agent will take part in a cycle only in the
next step. Therefore her favorite house among those left at Step (k — 1) is either in H*~1
orin H*.

Note that these should be at least one agent in A* whose favorite house among those left
at Step (k — 1) is in H*~1; otherwise agents in A* would form one or several cycles and
trade at Step (k — 1). Therefore we have

Br,(H) € H' foralla € A', and Br,(H \U;_2H*) € H* ' U H" foralla € A\ A'.

Based on this observation, for all £ > 2, we partition the set A* into the sets of satisfied

agents S* and unsatisfied agents U* where

S* = SF[> ] = {a € A% | Br,(H \ UEZ2H") € Hk} :

UF =UF[>,e] = {a € A% | Br,(H \U/—2H") € kal}.

Note that U* # (), k > 2.

At Step (k — 1), agents in S* point to an agent in A* whereas agents in U* point to an
agent in A*~1. The agents in the latter group only in the next step point to an agent in A"

and this follows that agents in A form one or several cycles.

At Step (k — 1), agents in A* form one or several chains each of which is headed by an

agent in U* who possibly follows agents in S*. Formally the chain structure of A* is a

partition {C},C5, ..., CF } where each chain CF = (al},a%,, ..., ak, ) is such that
K Gk G G* ok G* k—2 70 k—1
ay az, Ai(n;—1) — Qin, and Brge (H\U,Z{H") € H*"".
~— i
Sk Uk

We refer to agent a¥| as the tail and agent afm as the head of the chain CF. Let T*[u] =
{ab|i=1,2,...,m}.
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(7) AtStep k (agents in A*~! with the set of houses //*~! have already been removed), each
agent in U points to one of these tails (and each of them points to a different one), which

in turn converts these chains into one or several cycles.

Incentive compatibility

Definition: A mechanism ¢ is strategy-proof if for each housing market (A, H, >, e), for each
a € A, and for each >/, we have

[-1(a) Za el —a, -0l (a).

Theorem (Theorem in Roth (1982a)): The core mechanism TTC is strategy-proof.

Intuition: Once being pointed by others, an agent never loses the chain pointing to her, so she

can get the house any later time if she wants.

For the proof, we need the following three lemmas.

Lemma (Lemma 1 in Roth (1982a)): In the top trading cycles algorithm, given >, if
C = (ny)Anys -y 0n,,)

isa chain in G¥[~] and r > k, then C'is a chain in G"[~] ifand only if a,,,, € B"[~] (e.g., an,,
has not been removed before Step r).
k "
Proof. (1) Ifa,,, SiiaN ap,, ,thena,, g, ap, ifandonlyifa,, € B"[-], dueto
the top trading cycles algorithm.

G’V‘
(2) Byinduction, a,,_, o, ap,,_, ifand only ifa,, _, € B"[>], and so on.

O

Lemma (Lemma 2 in Roth (1982a)): Let > be a strict preference profile, and =’ be another strict
preference profile which differs from > only in the preference of agent a;. Let k and &’ be the
steps at which agent a; is removed from the housing market in (4, H, -, e) and (A4, H, >/, e},
respectively. Then B[] and B‘[~'] are same for 1 < ¢ < min{k, &'}, and have the same
cycles for 1 < ¢ < min{k, K’} — 1.

Proof. Since the graphs in B![~] and B*[~’] differs only in the edge emanating from agent a;,
they have the same cycles if min{k, ¥’} > 1, and hence the agents removed at Step 1 from >

and >’ are same. This lemma follows by induction. O
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4.30 Simple misreport manipulation lemma (Lemma 3 in Roth (1982a)): Let " be a preference pro-
file which differs from >’ only in the preference of agent a;, where TTC[>~'](a;) is a;’s favorite

house under >/. Then we have

TTC[-"](a;) = TTC[>'](a,).

Proof. (1) Letk’ be the step at which agent a; with house h; = TTC[~'](a;) is removed from
the market (A, H, ', ¢). That is, a;, a; € B¥ [~'].

(2) Let TTC[>'](a;) be the initial house of agent a.

(3) Let k" be the step at which agent a; with house TTC[>-""](a;) is removed from the market
(A, H,>" e).

(4) Casel: k" > K.

>_/ L Iil t
‘ 0 > time
BDai—a;j—-—a
I
|
l
(ii)-(iii) a; — ‘aj T
N ° ! > time

k';/ kjﬁ

(i) Thatis, agent a; is still in the market (A, H, ', e) at Step k'
(ii) Then Lemma 4.29 implies that B¥ [-'] = B*[-"]. Hence, a;,a; € B¥ [~'] =
B¥ [>//]_

k! 1"
. . -
(iii) Since h; is top-ranked for agent a; under >gi, we have a; —}> a; and hence

GF' [ =GN [-").

(iv) By the top trading cycles algorithm, a, with h; is also removed at Step &’ in the market
(A, H,>" e), thatis TTC[>"](a;) = hj = TTC[>](a;) and k" = K’

(5) Case2: k" < K.
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k// k/
ey : f > time
| k// ]{’/
a;,a; € B aj,a; € B
I
I
|
|
.o . |
(ii)-(iv) a; — a; '
Py * > time

9
k/l

(i) That is, agent a; is removed at Step &k in the market (A, H, " e).
(ii) Lemma 4.29 implies that at Step k" = min{k’, k"' }, B+’ [~'] = B*’ [~"].

(iii) Since a; € B*"[-'], we have a; € B*'[-".
k// >//

a
(iv) Therefore, a; ——— aj, since h; is top-ranked for agent a; in (4, H, >" e).
(v) Hence h; is exactly the house which is removed with agent a; at Step &’ in the market

(A, H, =" e), thatis, TTC[="](a;) = h; = TTC[=")(ay).
O

4.31 Proof of Theorem 4.27. Let k and k' be the steps of (A, H, >, e) and (A, H, =/, e), respectively,
at which agent a; is removed from the market. Let h; = TTC[>](a;) and hj» = TTC[>](a;).
We will see that hjs -, h; is impossible.

Lemma 4.30 implies that it is sufficient to consider a preference >, that ranks A first.

Case 1: k' > k.
k .
— } L > time
(iii) ajr € B*[~]
(iii) ay € B¥[~'] (i) ay € B¥ -]
gy P’ ! time
k K

(1) Lemma 4.29 implies that B‘[~] = B[] for 1 < ¢ < k.
(2) Ttis clear a;, € B¥ [-], since agent a; with house h;. is removed at Step &'.
(3) Soa; € B*[-'] = B¥[~].

G*[~] G* -] .
(4) If hj» =4, hj, then at Step k, we have a; —— aj not a; —— a; in the market

(A, H, >, e), which contradicts the fact that a; is removed with h;.

Case 2: k' < k.



4.3. Incentive compatibility 93

K k )
= o t > time
(111)(11/4)‘*)(1, (iV)(lj/%’"%(I,,;
/ - o >+
P /;’ time
(1) Lemma 4.29 implies that B*[~] = B[~']for 1 < ¢ < k'.
(2) Letthe chain C' = (ajs £ an,,any, - -, an, = a;) be the cycle that forms at Step &’ in
the market (A, H, >, e).
(3) Since > and >’ differ only in the a;’s preference, we have
GM -] GM[-] GM -]
aj = an, A, e ap, = a;,

and hence C forms a chain in G*'[~].
(4) Since a,,, = a; is not removed st Step k in the market (A, H, >, €), Lemma 4.28 implies
that C'is a chain in G¥[~].
GF[~] G*[>] .
(5) If hjr =4, hj, then at Step k, we have a; —— a;j not a; —— a; in the market
(A, H, >, e), which contradicts the fact that a; is removed with h;.

O

4.32 Definition: A mechanism ¢ is group strategy-proof, if for each housing market (A4, H, >, e),
there is no group of agents B C A and preferences 5 such that
o [>5,=—gl(a) Z4 o[B8, ~—B](a) foralla € B and
o o[>, =_Bl(ao) =a, ©[>B,>-B|(ao) for some ay € B.

In words, a mechanism is group strategy-proof if no group of agents can jointly misreport pref-

erences in such a way to make some member strictly better oft while no one in the group is

made worse off.

4.33 Lemma (Lemma 1 in Bird (1984)): Consider two preference profiles > and >'. If there is an
agent a; € A*[=] such that TTC['](a;) =4, TTC[~](a;), then there exist agents a; € A![~
JUA?[~]U---UA*1[~] and agent a; € AF[~] U A*+1[=]U- .- U A*[~] such that

he =y, TTC[=](ay).
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Proof. (1) Assume the contrary. Then
!
TTC[-](aj) Za, he,

foralla; € A'[-]UA?[-]U---UA*1[~]and a; € A*[-] U AFFI[-] U U A'[-].
(2) Itis clear that the equalities above can not hold; otherwise TTC[>](a;) = h¢ due to the

strictness of preferences.

(3) Since each TTC[~](a;) = hy, for some a,, € A [=]U A%[~]U---U A*~1[], it follows
from the top trading cycle algorithm that

AU AU UAR T ] = AU AP U - U AT

for some k’.

(4) Since TTC[>'](a;) >4, TTC[>](a;), TTC[>'](a;) must have been taken in an earlier
trading cycle under >.

(5) Thus, TTC[-'](a;) = h; for some a; € A'[~] U A2[=]U--- U AF~1[=].

(6) For preference profile =, a; and a; are in the same cycle , thus a; is in A'[-'] U A%[>-'
JU---UAF =11,

(7) But A'[=] U A2[-]U---U A1 [~] = A -] U A%[~']U---U A ~1[~"] and a; is not
in AL[~] U A?[~]U---U A*~1[>~]. A contradiction.

O

4.34 Remark: This lemma shows that if any agent wants to get a more preferred house, she needs to
get an agent in an earlier cycle to change her preference to a house that went in a later trading

cycle.

4.35 Theorem (Theorem in Bird (1984)): TTC is group strategy-proof.

Proof. (1) Assume that each agent a in a subset B C A reports a preference >/, instead of her

true preference >.

(2) Let a; be the first agent in B to enter a trading cycle under >. We will show that a; can

not improve.
(3) Leta; bein A*[~].

(4) X TTC[>'](a;) =4, TTC[~](a;), from the lemma there is an agent a; € A'[~] U --- U
Ak=1[] reporting a preference for a house that was assigned in a cycle ¢ > k under .

(5) Thus, a;’s reported preference >’ is not same as her true preference >.

(6) Thus, a; € B and a; can not be the first agent in B.
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(7) By induction, every agent in B can not improve her assignment.

O

4.36 Remark: We have shown a stronger result: for each housing market (A, H, >, e), for each non-

empty coalition B C A, for each (>-]),c 5, we have for each a € B,

¢l-—p,~Bl(a) Za p[-—B5,~5](a).

4.4 Axiomatic characterization of top trading cycles algorithm

¥ 4.37 Theorem (Theorem 1 in Ma (1994)): The core mechanism TTC is the only mechanism that is

individually rational, Pareto efficient, and strategy-proof.

4.38 Proof of Theorem 4.37. (1) Suppose that there is another mechanism ¢ satistying the three

conditions.

(2) Fix ahousing market (A4, H, >, ¢).

(3) Let A! be the set of agents matched in Step 1 of TTC for (A, H, -, ). We first show that
for any agent a € A, p[~](a) = TTC[~](a).

(4) Suppose not, then ¢[>](a) is worse. That is, TTC[>~](a) >, ¢[>](a).

(5) Since TTC is individually rational, TTC[>](a) Z¢4 ha-

(6) If TTC[~](a) = hg, we have a contradiction with individual rationality of ¢; that is,
ha =a @[] (a).

(7) Thus, a trades with others under TTC at >. Assume that the trading cycleisa — k —
=1 —=a.

(8) Consider a new preference >/, : hy, hq.

TTC[>](a)
>a .
- .
]lk. ha

(9) Then TTC[>~] = TTC[>-,, > _o] and TTC[>, >~ _,](a) = TTC[-](a) = hg.
(10) Since g is individual rational, @ must be assigned hy, or h, under @[>~/ =_,].

(11) Ifsheisassigned hy, then under ¢, when her preference is >, she will profitably misreport
>/, violating the strategy-proofness of ¢:

l-a, = —al(a) = hi = TIC[~](a) o ©[-](a).
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(12) Thus, p[>!,>=_g4](a) = hg, which is not by, = TTC[>], =_,](a).

(13) Summary:

TTC[~,, = _o] = TTC[~],
S"[*:w >,a](a) = hq.

(14) Since @[, = _4](a) = hq, we have p[~,=_4](1) # hq = TTC[,=_,](1). Thus,
TTC[~, = —a|(1) = ha =1 @[5, =—a](1).

(15) Consider a new preference > : hq, hi.

(16) Similarly, at [-/, =1, >_,_1], agent 1 is assigned h, under TTC(a - k — --- -1 —a
is still a cycle), but is assigned hy under ¢ (@[>, =1, =—a—1](1) = hqy = TTC[>,, > _4
J(1) =1 pl=6, = —a] (1)).

(17) Summary:

TTC[-", >, = —a_1] = TIC[, = _4] = TTC[>],

‘P[>';v >'/15 >‘—a—1](a) = hy.

(18) By induction, at >'= [/, >,...,>,], TTC[>'] = TTC[>], but ¢[>~'](i) = h; for each
i €{a,1,...,k}, violating the Pareto efficiency of .

(19) By induction on the steps of cycles, we complete the proof.

4.39 Theorem 4.37 is “robust” via the following three examples.

4.40 Example 1: A mechanism is individually rational and Pareto efficient, but not strategy-proof.
A = {ay, as, a3}, the preference profile > is as follows:
Then both

TTC[>] _ |fl1 as ayp a2 a3‘|

as
and p =
hy I hj [hz hy

are individually rational, and Pareto efficient under .
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ap az as

ha hy hy
hs hs hs
hi  ho
Table 4.7
Define a mechanism for this market
, i, if ='=>;

pl-]=
TTC[>'], otherwise.

Now ¢ is not strategy-proof.

4.41 Example 2: The mechanism in which each agent is assigned her initial house. Clearly this mech-
anism is individually rational and strategy-proof, but not Pareto efficient.
4.42 Example 3: A mechanism is Pareto efficient and strategy-proof, but not individually rational.

A = {aj, a3}, the mechanism ¢ in which agent 1 is always assigned the house she likes most.

This mechanism is Pareto efficient and strategy-proof.

But under the following preference profile >

a1 ag
ha  ho
hi

Table 4.8

¢[>1=[‘“ ‘”]#[Zi ijmw,

and is not individually rational.
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House allocation

Contents
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5.1 The former model

5.1 The house allocation problem was introduced by Hylland and Zeckhauser (1979). In this prob-
lem, there is a group of agents and houses. Each agent shall be allocated a house by a central

planner using preferences over the houses.
5.2 Definition: A house allocation problem is a triple (A, H, =) such that
o« A={a1,a9,...,a,} isasetof agents,

o H={hy,ho,..., hy,}isasetof houses,

o == (>4)aca is a strict preference profile such that for each agent a € A, >, is a strict
preference over houses. Let P, be the set of preferences of agent a. The induced weak
preference of agent a is denoted by /-, and forany h,g € H,h 77, gifand onlyifh >, ¢
orh =g.

99
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5.2

5.6

5.7

Definition: In a house allocation problem (A, H,>), a matching (allocation) is a bijection
pu: A — H. Here p(a) is the assigned house of agent a under matching p. Let M be the

set of matchings.
Definition: A (deterministic direct) mechanism is a procedure that assigns a matching for each
house allocation problem (A, H, >).

For the fixed sets of agents A and houses H, a mechanism becomes a function

@ Xaea Po = M.

Definition: A matching 1 is Pareto efficient if there is no other matching v such that

o v(a) Z4 p(a) foralla € A, and

~a
o v(ag) =q, 1(ag) for some ag € A.
Let & denote the set of all Pareto efficient matchings.

A mechanism is Pareto efficient if it always selects a Pareto efficient matching for each house

allocation.

Simple serial dictatorship and core from assigned endowments

An ordering f: {1,2,...,n} — Aisa one-to-one and onto function. Each ordering induces
the following simple mechanism, which is especially plausible if there is a natural hierarchy of

agents. Let F be the set of all orderings.

Simple serial dictatorship induced by an ordering f, denoted by SD”.

Step 1: The highest priority agent f(1) is assigned her top choice house under > (1.
Step k: The k-th highest priority agent f(k) is assigned her top choice house under > ()

among the remaining houses.

Proposition: Simple serial dictatorship induced by an ordering f, SD/, is Pareto efficient.

Proof. (1) Suppose that there is a matching v that Pareto dominates SD/ [~].
pp 8

(2) Consider the agent a = f(i) with the highest priority who obtains a strictly better house
in v than in SDY[-].

(3) Then v(a) = SD’[~](b) for some agent b = f(j) with j < i.

(4) By assumption, a is the agent with highest priority such that v(a) >, SDY[~](a), so
v(b) =y SDY [~](b) is impossible.
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(5) Since v Pareto dominates SDY [~], v/(b) =), SDY[-](b).
(6) Therefore, v(b) = SD’[~](b), which leads to a contradiction.
O

€@ 5.8 Corefrom assigned endowments 11, denoted by TTCH: For any house allocation problem (A, H, >
)> select the unique element of the core of the housing market (A, H, -, ;1) where each agent

@’s initial house is p(a). That is,

TTCH[~] = TTC[, ).

¥ 5.9 Theorem (Lemma 1 in Abdulkadiroglu and Sénmez (1998)): For any house allocation problem
(A, H, >), for any ordering f, and for any matching y, the simple serial dictatorship induced by
f and the core from assigned endowments  both yield Pareto efficient matchings. Moreover,
for any Pareto efficient matching v, there is a simple serial dictatorship and a core from assigned

endowments that yield it.

Given a house allocation problem (A, H, ), let SD” = {v € M | SD/[~] = v for some f €
F},and TTCM = {v € M | TTC*[>] = v for some ;1 € M}. Then it suffices to show

TTCM = SD” = &.

5.10 Proof of Theorem 5.9, Step 1: “TTCM C SD””.

(1) Let v € TTCM. Then there exists . € M with v = TTC*[~].
(2) Let Step t be the last step of top trading cycles algorithm and let { A1, A%, ... A’} be the

cycle structure.

(3) Foreachk =1,2,...,tand each a € A¥, we have
Br,(H \ Uj—d HY) = TTC"[~](a) = v(a).

(4) Let f: {1,2,...,n} — A be the ordering such that for each k, k¥’ € {1,2,...,t}, for

each a € A*, for each a’ € A, we have
k<k = fa) < f ).

That is, f orders agents in A! before agents in A?; agents in A? before agents in A% and
$O on.

(5) We will show by induction on i that for all i € {1,2,...,n} we have SD'[~](f(i)) =
v(f(@))-
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(6) By top trading cycles algorithm and the construction of f, we have
SDY[-](f(1)) = Brsu)(H) = TTC"[~](f(1)) = v(f(1)).

(7) Suppose that SDY [~](f(5)) = v(f(j)) forall j = 1,2,...,i — 1 where2 < i < n.
(8) Let f(i) € A*. We have the following:

« By top trading cycles algorithm, we have

Bry(p) (H \ UjZg H') = TTCH[-](f (i) = v(f (i)

« By the construction of f, we have

Uimo H' C UZiv(£(),

and hence
H\UZ\w(f(j) S H\ Uy H".

« v(f(i)) € H\UZv(f(4)).
(9) Therefore,

V(F(0)) = By (H \ U0 H') 500 Bryy (H \UIZ(F())) Ko (T (),

and hence

v(£(@) = Bryey (H\UZin(£(7)))

(10) It follows that
v(£(0)) = Brg (H\UZw(£(7))) = Brgy (B \ UZE DY [-1(7(5)) = SDTB-1((0)).

O
5.11 Proof of Theorem 5.9, Step 2: “p” C &”. See Proposition 5.7. O
5.12 Proof of Theorem 5.9, Step 3: “6€ C TTCM”,

(1) Let u € &. Consider the mechanism TTCH.

(2) Since TTCH[>] = TTC[>, p}, TTC" is individually rational. That is, for all a € A,
TTCH[-](a) Za p(a).

(3) Since p is Pareto efficient and the preference profile is strict, we have TTC*[-] = u, which
in turn implies 1 € TTCM, completing the proof of “6” C TTCM?
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O

¥ 5.13 Theorem (Theorem 1in Abdulkadiroglu and Sénmez (1998)): For any house allocation problem

(A, H, ), the number of simple serial dictatorships selecting a Pareto efficient matching p is

the same as the number of cores from assigned endowments selecting 4. That is, forall v € &,

we have |[M?| = | F¥|, where M? = {y € M | TTCH[~] = v} and F* = {f € F | SD/[~

| =v}.

5.14 Proof of Theorem 5.13, Step 1: Define “f on M"”.

Letv € &. For any i € M, define f (1) as follows:

(1) Applytop trading cycles algorithm to find the cycle structure A[u] = { A [u], A2[u], ..., A [u]}
for the housing market (A, H, >, u1).

(2) Forallk = 2,3,...,t,, partition A*[y] into its chains as in Remark 4.25.

(3) Order the agents in A'[1] based on the index of their endowments, starting with the agent

whose house has the smallest index. (Recall that the endowment of agent a is p1(a).)
(4) Order the agentsin A*[u], k = 2,3,...,t, as follows:

(i) Order the agents in the same chain subsequently, based on their order in the chain,
starting with the head.

(ii) Order the chains based on the index of the endowments of the tails of the chains

(starting the chain whose tail has the house with the smallest index).

(5) Order the agents in A*[] before the agentsin A¥*1[u], k =1,2,...,¢, — 1.

5.15 Proof of Theorem 5.13, Step 2: “f’s range is F*”.

(1) Let € MY. We have TTCH[~]| = v.

(2) By top trading cycles algorithm, for each k = 1,2,...,¢,, for each a € A'[u], we have
Br, (H \ u;f;ng) = TTC"[~](a) = v(a).

(3) By construction, f(u) orders agents in A*[u] before the agents in A?[y], agents in A%[p]
before the agents in 4[], and so on.

(4) By the similar method applied in the proof of 5.11, we have the simple serial dictatorship
induced by f (1), namely SDf("), assigns each agent a € A the house v/(a).
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5.16 Proof of Theorem 5.13, Step 3: “f is one-to-one”.

Claim 1: For any y, i € MY,

(1) Withoutloss of generality assume that f = f(u) = f(u’) orderstheagentsasay, ag, . .., ap.

(2) Let

A = {{ar, - am}, @it {am 1@ fame s and |

Aty A2 Ak [p] Atlp]
A[M/] = { {alv s aamll}a {a’m'1+17 s 7am'2}7 ) {am;c71+17 s 7am;€}, b o 2] {am;,fl, cee ;an} }
Al[p] A2 ] Ak[p/] At ]

We want to show that t = ¢ and A*[u] = A*[y/] forall k = 1,2,...,t. We proceed by

induction.

(3) Suppose that A'[u] # A'[n']. Without loss of generality suppose that m/ < m.
(4) We have agent a,,, 1 € A'[u],and p1 € MY, s0

H) = TTCH ] (g 41) = amy41)-

Bram,’l +1 (

(5) Since a4 is ordered first in A2[1/], she is also ordered first among the agents in her
chain.

(6) Then agent a,,; ;1 is the head of her chain, and hence a,,,; 11 € U?[i).

(7) Therefore
Bra,,, | (H) # Bro,,  (H\ H'[i]) = TIC* [-] (@ 1) = WA 42).

which leads to a contradiction.
(8) Therefore A'[u] = A'[u'].
(9) Suppose that A“[u] = A’[y/] forall ¢ = 1,2,... k — 1 where 2 < k < min{t,#'}.
(10) Then we have m)_, = mj_1. We want to show A*[u] = A*[p/].
(11) Suppose, without loss of generality, m), < my.
(12) Then we have a,,,; 41 € A*[u].

(13) Since p € MY, we have

Bram;c+1 (H\ Uﬁ;olHZ[.UJ]) = TTCIL[>'Kam§€+1) = V(am;c-l-l)'
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(14) Since a; 11 is ordered first in AFF1[)'], she is also ordered first among those agents in

her chain.
(15) Then a,y,; 41 is the head of her chain, and hence a,,,; 11 € UkHL[/].

(16) Therefore,

Br, ,

my +1

(H\ U3 H (1) = Bra,,, | (H\ U H[) € H¥ ().
(17) Since a1 € AR+ and i/ = MY, we have
(g 41) = TICY [ ] (am 41) € H )

and hence Bra%“ (H\ U?;& H[p)) # V(@ 11), which leads to a contradiction.
(18) Therefore A*[;] = A¥[y/]. This also proves that t = ¢’ and hence A[u] = A[y'] by

induction.

Claim 2: Suppose p1, i’ € MY are such that A[u] = A[y/]. Then

f)=fW)=pn=4y.

(19) Let 1, i’ € M be such that A[u] = A[u'] = {A', A2,..., At}

(20) Then we have H*[u] = H*[y/'] forallk = 1,2,...,t.

(21) Suppose f(u) = f(u') = f. Foreach k = 1,2,...,t, for each a € A¥, we will show
(@) = i (a).

(22) Consider agents in A'. We have H'[u] = H'[1/].

(23) By construction, f orders agents in A' based on the index of their endowments. Therefore
f(u) = f(u') implies that 41/ (a) = u(a) foralla € AL

(24) Consider agents in A* where k = 2,3, ... ,t.

(25) Since H*[u] = H*[p/] forallk = 1,2,...,t, we have

UM = {a € AF | Bro(H\UZ2H W) € BY (]}
= {ae A% | Bry(H\ U3 B [u]) € H* V] b = UF ],
S = AR\ UMW) = A\ U] = S'[ul.
(26) These relations together with f (1) = f(u') and the construction of f imply that we have

the same chain structure for ¢ and /. (Recall that f orders agents in a chain subsequently
based on their order in the chain, starting with the head of the chain who is the only
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member of chain that is an element of U*. Therefore for a given ordering f, the set of

agents in U® uniquely determines the chain structure for A*.)
(27) Let this common chain structurebe {C}, C5, ..., CF }, whereforalli = 1,2,... s, we
have Cf = (afy,afy, ..., ay, ) withaf, € UFandaf; € S* forallj =1,2,...,n; — 1.

» Ying

(28) By the definition of a chain, forallé € 1,2,...,ryandall j = 1,2,...,n, — 1, we have
/’L(af(j-i-l)) = Bra?j (H \ UIZ:_OQHZ[M]) = Brafj (H \ U;:()QHZ[//]) = .U/(ai‘c(j-i-l))-

(29) Since the chain structure is the same for endowments p and p//, the set of tails is also the
same for both endowments. That is, T[] = T[] £ T.

(30) Therefore we have pu(a) = '(a) foralla € A* \ T*.
(31) We also have

{he H|p'(a)=hforsomeac T*} = H*\ {h € H | i/(a) = h for some a € A*\ T*}
= H"\ {h € H| pu(a) = hfor some a € A"\ T*}
= {h € H| p(a) = hforsomea € T*}.

That is, the set of agents T* collectively own the same set of houses under endowments 1
and 1.

(32) By the construction of f, tails of chains are ordered based on their endowments, f(u) =
f () implies p1(a) = i/ (a) for all @ € T*, and hence pu(a) = i/ (a) foralla € A*.

5.17 Proof of Theorem 5.13, Step 4: “f is onto”.

(1) By Step 2 and Step 3 we have

|F“| > M| forallv € &.

(2) Therefore

dDIF= Y MY

veS veS

(3) By Theorem 5.9,

SFE = > ImYlL

veSDF veTTCM

(4) Both the left-hand side and the right-hand side of the inequality are equal to the number

of orderings, n!.
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5.3

¥~ 518
¥ 519
5.20

5.21

(5) Hence, |[MY| = |F¥|forallv € &.

Incentive compatibility

Definition: A mechanism ¢ is strategy-proof if for each house allocation problem (A, H, >-),

for each a € A, and for each >/, we have
¢[-1(a) Za el —a, =0l (a).
Theorem: The simple serial dictatorship induced by an ordering f is strategy-proof.

Proof. (1) Let f be an ordering.

(2) The first agent f(1) of the ordering obtains the fa