
AdvancedMicroeconomics I: Lecture 2

1 Lottery over monetary outcomes

1 The outcomes are amounts of money. It is convenient to treat money as a continuous variable, denoted by x.

2 We can describe a monetary lottery by a cumulative distribution function (cdf)F : R → [0, 1]. For each x, F (x) =
Prob(t ≤ x).

We take the lottery space L to be the set of all distribution functions over nonnegative amounts of money.

3 We assume that the decision maker has a rational preference % over L.

4 The expected utility theorem for general outcomes: There is an assignment of utility values u(x) to nonnegative
amounts of money x such that each monetary lottery F can be evaluated by a utility U of the form

U(F ) =

∫
u(x) dF (x).

5 Question: Is the result above consistent with the expected utility theorem for finite outcomes as discussed in Lecture
1?

6 The utility function U is defined on lotteries and the utility function u is defined on sure amounts of money.

To capture interesting economic attributes of choice behavior, we assume that u is increasing and continuous.

2 St. Petersburg paradox

7 A casino offers a game of chance for a single player in which a fair coin is tossed at each stage. The initial stake starts
at 2 dollars and is doubled every time heads appears. The first time tails appears, the game ends and the player wins
whatever is in the pot. Thus the player wins 2 dollars if tails appears on the first toss, 4 dollars if heads appears on
the first toss and tails on the second, 8 dollars if heads appears on the first two tosses and tails on the third, and so
on. Mathematically, the player wins 2k dollars, where k equals number of tosses (k must be a whole number and
greater than zero). What would be a fair price to pay the casino for entering the game?

8 The paradox is the discrepancy between what people seemwilling to pay to enter the game and the infinite expected
value.

With probability 1
2 , the player wins 2 dollars; with probability 1

4 the player wins 4 dollars; with probability 1
8 the

player wins 8 dollars, and so on. The expected value is thus

1

2
· 2 + 1

4
· 4 + 1

8
· 8 + 1

16
· 16 + · · · = 1 + 1 + 1 + 1 + · · · = ∞.
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Assuming the game can continue as long as the coin toss results in heads and in particular that the casino has
unlimited resources, this sum grows without bound and so the expected win for repeated play is an infinite amount
of money. Considering nothing but the expected value of the net change in one’s monetary wealth, one should
therefore play the game at any price if offered the opportunity.

9 Key point: The value of the game depends on the expectation of the value of the gain, rather than the expected gain.

Letw be the initial wealth and c be the cost charged to enter the game. For each possible event, the change in utility
u(wealth after the event)−u(wealth before the event) will be weighted by the probability of that event occurring.
The expected incremental utility of the lottery is

∆ =

∞∑
k=1

1

2k
[
u(w + 2k − c)− u(w)

]
So the fair price c for entering the game is such that ∆ = 0.

10 We consider the following cases:

(1a) Let u(x) = ln(x) and w = 1000000. Then the fair price for entering the game is 20.88.

(1b) Let u(x) = ln(x) and w = 1000. Then the fair price for entering the game is 10.95.

(1c) Let u(x) = ln(x) and w = 2. Then the fair price for entering the game is 3.35 (the player should borrow
1.35).

(2a) Let u(x) = 2
√
x and w = 1000000. Then the fair price for entering the game is 22.89.

(2b) Let u(x) = 2
√
x and w = 1000. Then the fair price for entering the game is 12.93.

11 Different utilities and different initial wealth lead to the distinct entering prices, which reflect the extent of risk
(aversion).

3 Risk aversion

12 A decision maker is risk averter (or exhibits risk aversion) if for any lottery F , the degenerate lottery that yields the
amount

∫
x dF (x) with certainty1 is at least as good as the lottery F itself.

If the decision maker is always indifferent between these two lotteries, we say that he is risk neutral.

Finally, we say that he is strictly risk averse if indifference holds only when the two lotteries are the same, i.e., when
F is degenerate.

13 The general definitions above do not presume an expected utility formulation.

If preferences admit an expected utility representation with u, it follows directly from the definition of risk aversion
that the decision maker is risk averse iff∫

u(x) dF (x) ≤ u

(∫
x dF (x)

)
for all F.

The inequality is called Jensen’s inequality, and it is the defining property of a concave function. Hence, in the
context of expected utility theory, we see that risk aversion is equivalent to the concavity of u.

14 Graphs
1The degenerate lottery is F̃ such that F̃ (x) = 1 for each x ≥

∫
x dF (x) and F̃ (x) = 0 for each x <

∫
x dF (x).
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(a) Risk averse (b) Risk neutral (c) Risk seeking

Figure 1

15 Given u, we define the following concepts:

• The certainty equivalent of F , denoted CE(F, u) or CE(F ), is the amount of money for which the decision
maker is indifferent between the gamble F and the certain amount CE(F ), that is,

u
(
CE(F )

)
=

∫
u(x) dF (x) = U(F ).

For a risk-averse decision maker, some expected return is traded for certainty. [为了得到“确定性”，付出
了一定的期望收益]

• The risk premium of F isR(F ) =
∫
x dF (x)− CE(F ). It implies that

u

(∫
x dF (x)−R(F )

)
= u

(
CE(F )

)
= U(F ).

• For any fixed amount of money x and positive number ε, the probability premium denoted by π(x, ε, u), is
the excess in winning probability over fair odds that makes the decisionmaker indifferent between the certain
outcome x and a gamble between the two outcomes x+ ε and x− ε. That is,

u(x) =
(
1
2 + π(x, ε, u)

)
u(x+ ε) +

(
1
2 − π(x, ε, u)

)
u(x− ε).

Since u(x) > 1
2u(x + ε) + 1

2u(x − ε), better than fair odds must bee given for the individual to accept the
risk/lottery. [要使得人们愿意承担风险，就必须给予适当的回报]

16 Proposition: CE(F ) exists.

17 The following properties are equivalent:

(a) The decision maker is risk averse.

(b) u is concave.

(c) CE(F ) ≤
∫
x dF (x) for all F .

(d) π(x, ε, u) ≥ 0 for all x and ε.

Proof: (b) is equivalent to (c).

CE(F ) ≤
∫
x dF (x) ⇔ u

(
CE(F )

)
≤ u

(∫
x dF (x)

)
︸ ︷︷ ︸

u is increasing

⇔
∫
u(x) dF (x) ≤ u

(∫
x dF (x)

)
.
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Proof: (b) is equivalent to (d). (1) By the definition of π(x, ε, u),

π(x, ε, u) · [u(x+ ε)− u(x− ε)] = u(x)− 1
2 [u(x+ ε)− u(x− ε)].

(2) Since u is increasing, u(x+ ε)− u(x− ε) ≥ 0.

(3) π(x, ε, u) ≥ 0 iff u(x)− 1
2 [u(x+ ε)− u(x− ε)] ≥ 0.

(4) u(x)− 1
2 [u(x+ ε)− u(x− ε)] ≥ 0 for all x and ε iff u is concave.

18 Example: Insurance. Consider a strictly risk-averse decision maker who has an initial wealth of w but who runs a
risk of a loss ofD dollars. The probability of the loss is π. The decision maker wants to buy insurance: one unit of
insurance costs q dollars and pays 1 dollar if the loss occurs. Thus, if α units of insurance are bought, the wealth
of the individual will be w − αq if there is no loss and w − αq − D + α if the loss occurs. The decision maker’s
problem is

max
α≥0

(1− π) · u(w − αq) + π · u(w − αq −D + α).

The insurance company’s expected income is π · (q− 1)+(1−π) · q. The fair price of one unit of insurance is such
that the expected income is equal to zero, i.e., q = π.

If α∗ is an optimum, it must satisfy the first-order condition:

−q(1− π)u′(w − α∗q) + π(1− q)u′
(
w −D + α∗(1− q)

)
≤ 0,

with equality if α∗ > 0. Since q = π, we have

−u′(w − α∗q) + u′
(
w −D + α∗(1− q)

)
≤ 0,

with equality if α∗ > 0. Since u′ is strictly decreasing, we must have α∗ > 0, and hence

u′(w − α∗q) = u′
(
w −D + α∗(1− q)

)
.

Therefore,
w − α∗q = w −D + α∗(1− q),

and α∗ = D.

Summary: If insurance is fair, the decision maker insures completely. The final wealth is then w − πD, regardless
of the occurrence of the loss.

4 Arrow-Pratt coefficient of absolute risk aversion

19 The higher the curvature of u,2 the higher the risk aversion. However, since expected utility functions are not
uniquely defined (are defined only up to affine transformations), a measure that stays constant with respect to these
transformations is needed.

2A plane curve is given as y = f(x), then the curvature is y′′

(1+(y′)2)
3
2

.
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20 Given a twice-differentiable utility function u, the Arrow-Pratt coefficient of absolute risk aversion at x is defined
as

rA(x, u) = rA(x) = −u
′′(x)

u′(x)
.

21 Example: Consider the utility function u(x) = −e−ax for a > 0. Then rA(u, x) = a for all x. This utility function
is said to exhibit constant absolute risk aversion (CARA).

22 Interpretation: Look at the preferences on the restricted domain of lotteries of the type (x1, x2) ( 12 for the outcome
x1 and 1

2 for the outcome x2). Let u be a continuously differentiable vNM utility function that represents a risk-
averse preference.

Let x2 = ψ(x1) be the function describing the indifference curve through (t, t) (the certain outcome t). Thus,
ψ(t) = t.

It follows from risk aversion that all lotteries with expectation t (i.e., {(x1, x2) | 1
2x1 +

1
2x2 = t}) are below the

indifference curve ψ. Thus, ψ′(t) = −1.

Then we have u(t) = U(t, t) = U
(
x1, ψ(x1)

)
= 1

2u(x1) +
1
2u(ψ(x1))︸ ︷︷ ︸

expected utility

. Differentiate twice with respect to x1, we

obtain
0 = 1

2u
′′(x1) +

1
2u

′′(ψ(x1))[ψ
′(x1)]

2 + 1
2u

′(ψ(x1))ψ
′′(x1).

At x1 = t we have
1
2u

′′(t) + 1
2u

′′(t) + 1
2u

′(t)ψ′′(t) = 0.

Therefore,
ψ′′(t) = −2

u′′(t)

u′(t)
= 2rA(t, u).

Note that on this restricted space of lotteries,%2 is more risk averse than%1 iff the indifference curve of%1 through
(t, t) (denoted byψ1) is below the indifference curve of%2 through (t, t) (denoted byψ2). Combined withψ′

1(t) =

ψ′
2(t), we obtain that ψ′′

1 (t) ≤ ψ′′
2 (t) and thus rA(t, u2) ≥ rA(t, u1).

23 Proposition: Given two utility function u1 and u2, the following statements are equivalent:

(i) rA(x, u2) ≥ rA(x, u1) for every x.

(ii) u2 is more concave than u1 (or a concave transformation of u1): there exists an increasing concave function
ψ such that u2 = ψ ◦ u1.

(iii) CE(F, u2) ≤ CE(F, u1) for any F .

(iv) π(x, ε, u2) ≥ π(x, ε, u1) for any x and ε.

(v) Any risk that u2 would accept starting from a position of certainty would also be accepted by u1: Whenever
u2 finds a lottery F at least as good as a riskless outcome x̄, then u1 also finds F at least as good as x̄; that is,∫
u2(x) dF (x) ≥ u2(x̄) implies

∫
u1(x) dF (x) ≥ u1(x̄) for any F and x̄.

If they are satisfied, we say that u2 is more risk averse than u1.

Proof: (i) iff (ii). We always have u2 = ψ◦u1 for some increasing functionψ. Assume thatψ is twice-differentiable.
We have

u′2(x) = ψ′(u1(x)) · u′1(x) and u′′2(x) = ψ′(u1(x)) · u′′1(x) + ψ′′(u1(x)) · (u′1(x))2.
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Then we have
rA(x, u2) = rA(x, u1)−

ψ′′(u1(x))

ψ′(u1(x))
u′1(x).

Thus, rA(x, u2) ≥ rA(x, u1) for all x iff ψ′′ ≤ 0.

Proof: (ii) iff (iii). Assume that u2 = ψ ◦ u1. We have

ψ(u1(CE(F, u2))) = u2(CE(F, u2)) =
∫
u2(x) dF (x) =

∫
ψ(u1(x)) dF (x) ≤ ψ

(∫
u1(x) dF (x)

)
.

Since ψ in increasing, u1(CE(F, u2)) ≤
∫
u1(x) dF (x) = u1(CE(F, u1). Since u1 is increasing, CE(F, u2) ≤

CE(F, u1).

Let F be the lottery that assigns λ and 1− λ on x and y, respectively. Then we have

λu1(x) + (1− λ)u1(y) = u1(CE(F, u1)),

and hence
ψ
(
λu1(x) + (1− λ)u1(y)

)
= u2(CE(F, u1)).

On the other hand,
λψ(u1(x)) + (1− λ)ψ(u1(y)) = u2(CE(F, u2)).

Thus,
ψ
(
λu1(x) + (1− λ)u1(y)

)
≥ λψ(u1(x)) + (1− λ)ψ(u1(y)).

Proof: (iii) iff (v). Assume thatCE(F, u2) ≤ CE(F, u1). For any x̄, if
∫
u2(x) dF (x) ≥ u2(x̄), thenu2(CE(F, u2)) ≥

u2(x̄). Thus, CE(F, u1) ≥ CE(F, u2) ≥ x̄, and hence
∫
u1(x) dF (x) = u1(CE(F, u1)) ≥ u1(x̄).

Let x̄ = CE(F, u2). Clearly,
∫
u2(x) dF (x) ≥ u2(x̄). Then u1(CE(F, u1)) =

∫
u1(x) dF (x) ≥ u1(x̄). Thus,

CE(F, u1) ≥ x̄ = CE(F, u2).

Proof: (iii)⇒ (iv). (1) For any x and ε > 0, let F be the distribution that puts 1
2 −π(u2) on x− ε and 1

2 +π(u2)

on x+ ε.

(2) Then u2(CE(F, u2)) = u2(x+ ε) · ( 12 + π(u2)) + u2(x− ε) · ( 12 − π(u2)) = u2(x). Thus, CE(F, u2) = x.

(3) Since CE(F, u2) ≤ CE(F, u1), we have u1(x) ≤ u1(CE(F, u1)).

(4) By the definition of π(u1), u1(x) = ( 12 + π(u1))u1(x+ ε) + ( 12 − π(u1))u1(x− ε).

(5) By the definition of CE(F, u1), u1(CE(F, u1)) = ( 12 + π(u2))u1(x+ ε) + ( 12 − π(u2))u1(x− ε).

(6) Then π(u2) ≥ π(u1).

Proof: (iv)⇒ (i). (1) Assume that π(x, ε, u2) ≥ π(x, ε, u1) for any x and ε.

(2) By the definition of π(x, ε, u), we have π(x, 0, u1) = π(x, 0, u2) = 0.

(3) Then ∂π(x,0,u2)
∂ε ≥ ∂π(x,0,u1)

∂ε .

(4) Differentiate u(x) = ( 12 + π(x, ε, u))u(x+ ε) + ( 12 − π(x, ε, u))u(x− ε) twice with respect to ε, we have

4π′(x, 0, ε) · u′(x) + u′′(x) = 0.
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(5) rA(x, u) = −u′′(x)
u′(x) = 4π′(x, 0, ε).

(6) rA(x, u2) ≥ rA(x, u1).

24 The utility function u for money exhibits decreasing absolute risk aversion if rA(x, u) is a decreasing function of x.

Individuals whose preference satisfies the decreasing absolute risk aversion property take more risk as they become
wealthier.

25 The following properties are equivalent.

(i) u exhibits decreasing absolute risk aversion.

(ii) Whenever x2 < x1, u2(z) = u(x2 + z) is a concave transformation of u1(z) = u(x1 + z).

(iii) For any risk F , the certainty equivalent of the lottery formed by adding risk z to wealth level x, given by the
amount cx at which u(cx) =

∫
u(x + z) dF (z), is such that x − cx is decreasing in x. That is, the higher x

is, the less is the individual willing to pay to get rid of the risk.

(iv) π(x, ε, u) is decreasing in x.

(v) For any F , if
∫
u(x2 + z) dF (z) ≥ u(x2) and x2 < x1, then

∫
u(x1 + z) dF (z) ≥ u(x1).

Proof. Consider u1(z) = u(x1 + z) and u2(z) = u(x2 + z). We have rA(z, u1) = −u′′
1 (z)

u′
1(z)

= −u′′(x1+z)
u′(x1+z) =

rA(x1 + z, u) and rA(z, u2) = −u′′
2 (z)

u′
2(z)

= −u′′(x2+z)
u′(x2+z) = rA(x2 + z, u).

5 Relative risk aversion

26 The concept of absolute risk aversion is suited to the comparison of attitudes toward risky projects whose out-
comes are absolute gains or losses from the current wealth. But it is also of interest to evaluate risky projects whose
outcomes are percentage gains or losses of current wealth.

27 Given a utility function u, the coefficient of relative risk aversion at x is rR(x, u) = −xu′′(x)
u′(x) .

28 Example: Consider the utility function u(x) = −x1−ρ

1−ρ . It is clear that rR(x, u) = ρ for all x. This function is said
to exhibit constant relative risk aversion (CRRA).

29 Proposition: The following statements are equivalent:

(i) rR(x, u) is decreasing in x.

(ii) Whenever x2 < x1, ũ2(t) = u(tx2) is a concave transformation of ũ1(t) = u(tx1).

(iii) Given any F , the certainty equivalent c̄x defined by u(c̄x) =
∫
u(tx) dF (t) is such that x

c̄x
is decreasing in x.

6 Homework

• Reading: Section 6.C

• Homework: 6.C.1, 6.C.11, 6.C.12

Upload to Google Classroom
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