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ADVANCED MICROECONOMICS [: LECTURE 2

Lottery over monetary outcomes

1 The outcomes are amounts of money. It is convenient to treat money as a continuous variable, denoted by .
2 We can describe a monetary lottery by a cumulative distribution function (cdf) F': R — [0, 1]. Foreach z, F(z) =
Prob(t < x).

We take the lottery space L to be the set of all distribution functions over nonnegative amounts of money.
3 We assume that the decision maker has a rational preference - over L.

4 The expected utility theorem for general outcomes: There is an assignment of utility values u(x) to nonnegative

amounts of money x such that each monetary lottery F' can be evaluated by a utility U of the form
U(F) = /u(z) dF (z).

5 Question: Is the result above consistent with the expected utility theorem for finite outcomes as discussed in Lecture
1?

6 The utility function U is defined on lotteries and the utility function u is defined on sure amounts of money.

To capture interesting economic attributes of choice behavior, we assume that « is increasing and continuous.

St. Petersburg paradox

7 A casino offers a game of chance for a single player in which a fair coin is tossed at each stage. The initial stake starts
at 2 dollars and is doubled every time heads appears. The first time tails appears, the game ends and the player wins
whatever is in the pot. Thus the player wins 2 dollars if tails appears on the first toss, 4 dollars if heads appears on
the first toss and tails on the second, 8 dollars if heads appears on the first two tosses and tails on the third, and so
on. Mathematically, the player wins 2k dollars, where £ equals number of tosses (K must be a whole number and

greater than zero). What would be a fair price to pay the casino for entering the game?

8 The paradox is the discrepancy between what people seem willing to pay to enter the game and the infinite expected

value.

With probability %, the player wins 2 dollars; with probability % the player wins 4 dollars; with probability é the

player wins 8 dollars, and so on. The expected value is thus
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Assuming the game can continue as long as the coin toss results in heads and in particular that the casino has
unlimited resources, this sum grows without bound and so the expected win for repeated play is an infinite amount
of money. Considering nothing but the expected value of the net change in one’s monetary wealth, one should

therefore play the game at any price if offered the opportunity.

Key point: The value of the game depends on the expectation of the value of the gain, rather than the expected gain.

Let w be the initial wealth and c be the cost charged to enter the game. For each possible event, the change in utility
u(wealth after the event)—u(wealth before the event) will be weighted by the probability of that event occurring.
The expected incremental utility of the lottery is

A:Z%[u(w—i—Zk—c)—u(w)]

=1

So the fair price c for entering the game is such that A = 0.

10 We consider the following cases:

11

(1la) Letu(x) = In(x) and w = 1000000. Then the fair price for entering the game is 20.88.
(1b) Let u(x) = In(z) and w = 1000. Then the fair price for entering the game is 10.95.

(1c) Let u(z) = In(x) and w = 2. Then the fair price for entering the game is 3.35 (the player should borrow
1.35).

(2a) Letu(z) = 2y/z and w = 1000000. Then the fair price for entering the game is 22.89.
(2b) Letu(x) = 24/z and w = 1000. Then the fair price for entering the game is 12.93.

Different utilities and different initial wealth lead to the distinct entering prices, which reflect the extent of risk

(aversion).

3 Risk aversion
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A decision maker is risk averter (or exhibits risk aversion) if for any lottery F', the degenerate lottery that yields the

amount [  dF(z) with certainty’ is at least as good as the lottery F itself.

If the decision maker is always indifferent between these two lotteries, we say that he is risk neutral.

Finally, we say that he is strictly risk averse if indifference holds only when the two lotteries are the same, i.e., when
F'is degenerate.

The general definitions above do not presume an expected utility formulation.

If preferences admit an expected utility representation with w, it follows directly from the definition of risk aversion

that the decision maker is risk averse iff
/u(x) dF(z) <u (/xdF(x)) for all F'.

The inequality is called Jensen’s inequality, and it is the defining property of a concave function. Hence, in the

context of expected utility theory, we see that risk aversion is equivalent to the concavity of .

Graphs

I'The degenerate lottery is F such that F'(x) = 1 for eachz > [z dF () and F(z) = O foreach = < [z dF(x).
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15 Given u, we define the following concepts:

o The certainty equivalent of F, denoted CE(F, ) or CE(F), is the amount of money for which the decision
maker is indifferent between the gamble F' and the certain amount CE(F"), that is,

u(CE(F)) = /u(m) dF(z) =U(F).

For a risk-averse decision maker, some expected return is traded for certainty. [ 7 72| “# € ", W
T— 2]
o The risk premium of F'is R(F') = [z dF (x) — CE(F). It implies that

u </;z:dF(a:) - R(F)) = u(CE(F)) = U(F).

« For any fixed amount of money x and positive number ¢, the probability premium denoted by 7 (x, ¢, u), is
the excess in winning probability over fair odds that makes the decision maker indifferent between the certain

outcome z and a gamble between the two outcomes = + ¢ and x — ¢. That is,
u(z) = (3 +7(z,e,u))u(z +e) + (3 — 7(z,e,u))u(z —e).

Since u(z) > Ju(z 4 €) + ju(x — ), better than fair odds must bee given for the individual to accept the
risk/lottery. [ZfE & AMTE BEAERE, LM% TE Y H ER]
16 Proposition: CE(F") exists.

17 The following properties are equivalent:

(a) The decision maker is risk averse.

(b) w is concave.
(c) CE(F) < [xdF(x) forall F.

(d) 7(z,e,u) > 0forall z ande.
Proof: (b) is equivalent to (c).

CE(F) < / +dF(z) & u(CE(F)) <u ( / xdF(m)) o / w(z)dF(z) < u ( / xdF(m)) .

u is increasing




O
Proof: (b) is equivalent to (d). (1) By the definition of 7(z, &, u),
m(z,e,u) - [u(z+¢) —u(z — )] = u(z) — tu(z +¢) —u(z —¢)].
(2) Since u is increasing, u(x +¢) —u(x —¢e) > 0.
3) m(x,e,u) > 0iff u(x) — [u(z +¢) —u(z — )] > 0.
(4) u(z) — 3[u(z + ) — u(z — £)] > 0 for all 2 and ¢ iff u is concave.
O

18 Example: Insurance. Consider a strictly risk-averse decision maker who has an initial wealth of w but who runs a
risk of a loss of D dollars. The probability of the loss is 7. The decision maker wants to buy insurance: one unit of
insurance costs g dollars and pays 1 dollar if the loss occurs. Thus, if cv units of insurance are bought, the wealth
of the individual will be w — «q if there is no loss and w — ag — D + « if the loss occurs. The decision maker’s
problem is

m>aé((177r)~u(wfaq)+7r~u(wfaqu+a).

The insurance company’s expected income is 7 - (¢ — 1) 4 (1 — ) - ¢. The fair price of one unit of insurance is such

that the expected income is equal to zero, i.e., ¢ = 7.

If o* is an optimum, it must satisfy the first-order condition:
—q(1 =)' (w —a*q) + (1 — g)u' (w — D +a*(1 - q)) <0,
with equality if «* > 0. Since ¢ = 7, we have
—u/(w—a*q)+u(w—D+a*(l-q)) <0,
with equality if o* > 0. Since v/ is strictly decreasing, we must have a* > 0, and hence
u'(w—a*q)=u'(w—D+a*(l-q).

Therefore,
w—a*q=w—-—D+a*(1-ygq),
and o* = D.

Summary: If insurance is fair, the decision maker insures completely. The final wealth is then w — 7D, regardless

of the occurrence of the loss.

4  Arrow-Pratt coefficient of absolute risk aversion

19 The higher the curvature of u,” the higher the risk aversion. However, since expected utility functions are not
uniquely defined (are defined only up to affine transformations), a measure that stays constant with respect to these

transformations is needed.
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Given a twice-differentiable utility function w, the Arrow-Pratt coefficient of absolute risk aversion at z is defined

as ")
u(x
ralz,u) =ra(x) =— (D)
Example: Consider the utility function u(x) = —e~* fora > 0. Then r 4 (u, z) = a for all z.. This utility function

is said to exhibit constant absolute risk aversion (CARA).

Interpretation: Look at the preferences on the restricted domain of lotteries of the type (1, 2) (5 for the outcome
x1 and % for the outcome z2). Let u be a continuously differentiable vNM utility function that represents a risk-

averse preference.

Let zo = 1(x1) be the function describing the indifference curve through (¢,¢) (the certain outcome ¢). Thus,
P(t) =t.

It follows from risk aversion that all lotteries with expectation ¢ (i.e., {(z1,22) | 321 + 22 = t}) are below the
indifference curve . Thus, ¢'(t) = —1.

Then we have u(t) = U(t,t) = U(21,¢(21)) = Su(z1) + 3u(¢(x1)). Differentiate twice with respect to z;, we

expected utility
obtain

0 = $u"(1) + S ()W (@) + 3 (6 (200" ().

At 21 = t we have
L0 (t) 4+ 2 (t) + 2/ (t)y" (t) = 0.

Therefore,

ul/ (t)

u'(t)

Note that on this restricted space of lotteries, 72 is more risk averse than - iff the indifference curve of 7~ through
(t,t) (denoted by /1) is below the indifference curve of -5 through (¢, t) (denoted by 1)3). Combined with ¢ (¢) =
4 (t), we obtain that ¢ (t) < ¢4 (¢) and thus r 4 (¢, ua) > ra(t, u1).

P (t) = -2 =27 a(t,u).

Proposition: Given two utility function v, and us, the following statements are equivalent:

(i) ra(z,u2) > ra(z,uy) for every x.

(ii) uq is more concave than u; (or a concave transformation of u;): there exists an increasing concave function
1) such that us = ¥ o u;.

(iii) CE(F,ug) < CE(F,uq) forany F.
(iv) m(z,e,u2) > w(x,e,uq) for any x and .

(v) Any risk that uy would accept starting from a position of certainty would also be accepted by u;: Whenever
uy finds a lottery F at least as good as a riskless outcome 7, then u; also finds I’ at least as good as Z; that is,
Jus(z)dF(z) > us(z) implies [ uq(x) dF () > uy(Z) for any F and Z.

If they are satisfied, we say that uy is more risk averse than u.

Proof: (i) iff (ii). We always have us = 1pou; for some increasing function ¢). Assume that ¢ is twice-differentiable.
We have

uy(x) = ¢/ (ur(2)) - ) (2) and uy () = ¥ (u(2)) - @ (@) + 0" (u (@) - (ui (2))*



Then we have

ra(z,uz) = ra(z,ug) — mﬂi(m)-

Thus, ra(z,us) > ra(z,uy) forall z iff " < 0. -

Proof: (ii) iff (iii). Assume that uy = 1) o u;. We have

(1 (CE(F. 1)) = ua(CE(F,ua)) = [ uale)aF () = [ w<u1<x)>dF<x>sw( / ul<x>dF<x>>.

Since ¢ in increasing, u1 (CE(F, uz)) < [wui(z)dF(z) = ui(CE(F,u1). Since u; is increasing, CE(F, up) <
CE(F, ’U,l).

Let F' be the lottery that assigns A and 1 — A on z and y, respectively. Then we have

)\’U,1($C) + (1 - )\)Ul(y) = UI(CE(F>U1))7

and hence
b (aur () + (1 — N (9)) = un (CE(F, u)).
On the other hand,
A (ur () 4 (1 = A)tp(ua (y)) = ua(CE(F, up)).
Thus,

¥ (A (@) + (1 = Nui(y)) > Mp(ur(x)) + (1 = Np(ui(y))-

O
Proof: (iii) iff (v). Assume that CE(F, us) < CE(F,uy). Foranyz,if [ us(z) dF (z) > us(Z), then ug (CE(F, uz)) >
u2(Z). Thus, CE(F, u;) > CE(F,u2) > &, and hence [ u;(z) dF(z) = uq (CE(F, ul)) > uy ().
Let & = CE(F,uz). Clearly, [us(x)dF(x) > us(Z). Then ui (CE(F,u1)) = [ui(z)dF(z) > uy(Z). Thus,
CE(F,u1) > & = CE(F, ug). O

Proof: (iii) = (iv). (1) Foranyzande > 0, let F' be the distribution that puts 3 — 7 (us) on 2 — e and § + 7 (us)

onzx+ €.
(2) Then us(CE(F,us)) = us(z +¢) - (3 + m(us)) + uo(z — ) - (3 — m(uz)) = uo(x). Thus, CE(F, uz) = .
(3) Since CE(F,ug) < CE(F,u1), we have uq(z) < u1(CE(F, uq)).
(4) By the definition of 7(u1), u1 () = (3 + m(u1))ur(z + &) + (5 — 7(w))ur(z — €).
(5) By the definition of CE(F, uy), u1 (CE(F,u1)) = (5 + m(u2))ui(z + &) + (5 — 7(u2))ur (z — ).
(6) Then 7(ug) > m(uy).

Proof: (iv) = (i). (1) Assume that w(x,e,us) > 7(x, e, uq) for any x and .

(2) By the definition of w(x, €, u), we have w(x,0,u1) = 7(x,0,us) = 0.

am(z,0, om(z,0,
(3) Then 2rz:02) > Om0.u1)

(4) Differentiate u(z) = (3 + m(z,e,u))u(z + ¢) + (3 — m(x,&,u))u(z — £) twice with respect to £, we have

47 (2,0,¢) - v/ (z) + v (z) = 0.



u!! (I)

(5) TA(Z',U) = "W T 4’/T/(£L',0,€).
(6) ra(z,uz) >ra(x,uy).

O

24 The utility function u for money exhibits decreasing absolute risk aversion if 7 4 (x, u) is a decreasing function of z.
Individuals whose preference satisfies the decreasing absolute risk aversion property take more risk as they become
wealthier.

25 The following properties are equivalent.

(i) w exhibits decreasing absolute risk aversion.
(ii) Whenever x5 < x1, u2(2) = u(x2 + 2) is a concave transformation of uy (z) = u(z1 + 2).

(iii) For any risk F, the certainty equivalent of the lottery formed by adding risk z to wealth level z, given by the
amount ¢, at which u(¢,;) = [u(x + z) dF(z), is such that © — ¢, is decreasing in x. That is, the higher =

is, the less is the individual willing to pay to get rid of the risk.
(iv) 7(z, e, u) is decreasing in .

(v) Forany F,if [ u(zs 4+ 2) dF(z) > u(z2) and zo < z1, then [u(z1 + 2) dF(2) > u(z1).

Proof. Consider u1(z) = w(z; + z) and uz(2) = u(ws + 2). We have 74 (z,u1) = —Zl}/ég = —‘;/,/((;fij)) =
1
ra(zy + z,u) and ra(z,uz) = —ZZ((g)) = —Z,((jjij)) =ra(zy + z,u). O

5 Relative risk aversion

26 The concept of absolute risk aversion is suited to the comparison of attitudes toward risky projects whose out-
comes are absolute gains or losses from the current wealth. But it is also of interest to evaluate risky projects whose

outcomes are percentage gains or losses of current wealth.

27 Given a utility function u, the coefficient of relative risk aversion at x is rr(z,u) = —x ((;f)) .

2 " Ttis clear that r(, u) = p for all . This function is said

28 Example: Consider the utility function u(x) = — s

to exhibit constant relative risk aversion (CRRA).
29 Proposition: The following statements are equivalent:

(i) rr(x,u) is decreasing in .
(ii) Whenever x5 < 1, U2(t) = u(tz2) is a concave transformation of @ (t) = u(tz1).

(iii) Given any F), the certainty equivalent ¢, defined by u(¢,) = [u(tz) dF(t) is such that 2 is decreasing in .

6 Homework

« Reading: Section 6.C
« Homework: 6.C.1, 6.C.11, 6.C.12
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