ADVANCED MICROECONOMICS [: LECTURE 3

1 Inlecture 2, we consider the differences between utility functions (risk aversion and the measurement of risk aver-

sions). In this lecture, we would like to compare distributions/lotteries themselves.
2 There are two ways to compare distributions/lotteries:

o according to the level of returns: distribution F' yields unambiguously higher returns than G;

« according to the dispersion of returns: F' is unambiguously less risky than G.

3 For simplicity, we restrict our attention to the distributions F' such that /'(0) = 0 and F'(Z) = 1 for some Z.

First-order stochastic dominance

4 Definition: A lottery F' first-order stochastically dominates G if the decision maker prefers F' to G regardless of

what wu is, as long as it is increasing.

That is, for every increasing function u: R, — R we have
/u(a?) dF (z) > /u(:c) dG(z).

Interpretation: Every individual with increasing utility function prefers F' to G regardless of his risk preferences.

5 Theorem: F first-order stochastically dominates G iff F'(z) < G(x) for all z.

Interpretation: For every amount of money , the probability of getting at least « is higher under F' than under G,

ie,1— F(z) > 1— G(z). F gives more wealth than G realization by realization.
6 Proof. =

(1) Suppose that F first-order stochastically dominates G.

(2) Assume that F'(z*) > G(z*) for some z*. We want to find some contradiction.

1, ifz >z
(3) Letu(x) =
0, ifx<uz*.
(4) [u(z)dF(z) =1-Probp(z > 2*) =1— F(z*) < 1—G(2*) = 1-Probg(z > 2*) = [u(z)dG(z).
Contradiction.

<<

(1) Suppose that F'(z) < G(z) for all x.

(2) For simplicity, we assume that v is differentiable.



(3) Let H(z) = F(z) — G(x) < 0. Clearly, H(0) = 0 and H(Z) = 0 for some sufficiently large number Z.
(4) Then we have

—

(5) Since u is increasing, [u(z)dF(z) — [u(x)dG(z) = [u(z)dH (z) = — [/ (z)H(z)dz > 0.

7 Graphic illustration:

«Y

8 Example: Consider a lottery:

o In the first stage, we have a lottery over x distributed according to G;

« In the second stage, we have a “upward probabilistic shift” of z: the shift z is distributed according to H, with
H,(0)=0.

« The final amount of money is = + z. The resulting distribution is denoted by F'.

For any increasing function u: Ry — R, we have

/ u(z) dF (x) = / { / u(z + 2) de(z)] dG(z) > / { / u(z) de(z)] dG(x) = / w(z) dG (x).
v 1

[dH.(z)=1
So F first-order stochastically dominates G.
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9 Whenever F first-order stochastically dominates G, it is possible to generate F' from G in the above manner.



2 Second-order stochastic dominance
10 First-order stochastic dominance involves the idea of “higher/better” vs. “lower/worse” The following comparison
bases on relative riskiness or dispersion.

11 To avoid confusing the issue with the trade-off between returns and risk, we restrict ourselves to comparing distri-

butions with the same mean.

12 Definition: A lottery F' second-order stochastically dominates G (with the same mean) if the decision maker prefers

F to G as long as he is risk averse and u is weakly increasing.'

That is, for any two distributions F' and G with the same mean, I second-order stochastically dominates G if for

every increasing concave function u: Ry — R, we have
/ w(z) dF (z) > / u(z) dG (x).

13 Theorem: Consider two distributions F' and G with the same mean. Then the following statements are equivalent.
(i) F second-order stochastically dominates G.

(i) [y G(t)dt > [ F(t)dt forall z.

Proof. (1) LetI(x) = [[F(t) — G(t)] dt. Then I(0) = 0 and I(Z) = O for some sufficiently large Z.
(2) We have

(3) F second-order stochastically dominates G iff LHS is nonnegative for all u with v < 0iff I(z) < 0.

14 Example: Consider a lottery:

o In the first stage, we have a lottery over x distributed according to F’;

« In the second stage, we randomize each possible outcome x further so that the final payoff is  + z, where z

has a distribution H, with a mean of zero.

« The final amount of money is « + z. The resulting distribution is denoted by G.

When lottery G can be obtained from lottery F" in this manner for some distributions H,, we say that G is a mean-

preserving spread of .

For any increasing concave function u, we have

/ u(z) dG (z) = / [ / w(z + 2) de(z)} dF(z) < / " [ / (z + 2) de(z)] dF(z) = / w(z) dF (z).

10ne can generalize this definition without assuming the same mean.




Thus, I second-order stochastically dominates G.
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Whenever F' second-order stochastically dominates G, then G is a mean-preserving spread of F.

15 Example: An elementary increase in risk. We say that G constitutes an elementary increase in risk from F' if G is
generated from F by taking all the mass that F assigns to an interval [z’ 2’| and transferring it to the endpoints

«’ and 2" in such a manner that the mean is preserved.

Area (4)
= Area (B)

16 Suppose that F' and G has the same mean and F'(Z) = G(Z) = 1 for some Z. Then we have

That is, the areas below the two distributions are the same over the interval [0, Z].
17 Theorem: Consider two distributions F' and G with the same mean. Then the following statements are equivalent.

(i) F second-order stochastically dominates G.

(ii) G is a mean-preserving spread of F'.

18 Proposition: If F’ second-order stochastically dominates G, then min (z) > min (z). It implies that the

zEsupport F' " xEsupport G
left tail of G must be thicker than the left tail of F'.

19 Proposition: For the general definition of SOSD: FOSD implies SOSD but not necessarily the reverse. In SOSD F

and (G can cross.

3 Homework

« Reading: 6.D



o Homework: 18 (assume that there are finite outcomes and support F' is the subset of outcomes each of which has

positive probability under F'), 19
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