
AdvancedMicroeconomics I: Lecture Notes 6

1 We consider a simple case that the cost function g(e, θ) = θe.

• θH : high cost (low ability);

• θL: low cost (high ability), with probability λ;

• θH > θL.

• Single crossing property still holds.

We assume ū = 0 for simplicity.

2 Principal’s income function is still π(·), with π(0) = 0, π′(e) > 0, and π′′(e) < 0 for all e ∈ [0,∞).

3 The first-best contracts {(e∗L, w∗
L), (e

∗
H , w∗

H)} are

• π′(e∗L) = θL;

• π′(e∗H) = θH .

⇒ e∗L > e∗H since π′′ < 0.

• w∗
L = θLe

∗
L.

• w∗
H = θHe∗H .

1 Shutdown

4 Proposition: Under asymmetric information, the optimal menu of contracts entails:

• No output distortion for the high-ability agent with respect to the first-best, eSBL = e∗L. A downward output
distortion for the low-ability agent, eSBH < e∗H with

π′(eSBH ) = θH +
λ

1− λ
(θH − θL).

• The second-best wages are respectively given by

wSB
L = θLe

SB
L + eSBH (θH − θL)︸ ︷︷ ︸

rH

> θLe
SB
L = w∗

L,

wSB
H = θHeSBH < θHe∗H = w∗

H .

Moreover, wSB
L = θLe

SB
L + eSBH (θH − θL) = eSBH θH + θL(e

SB
L − eSBH ) > wSB

H .

• Only the high-ability agent gets a positive information rent given by

rSBL = eSBH (θH − θL).
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5 Graphical illustration:

Starting from the complete information optimal contract (A∗, B∗) that is not incentive compatible, we can con-
struct an incentive compatible contract (B∗, C) with the same effort levels by giving a higher wage to the agent
producing q∗L (Figure 1).
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Figure 1: Rent needed to implement the first-best outputs

The contract C is on the θL-agent’s indifference curve passing throughB∗. Hence, the θL-agent is now indifferent
between B∗ and C . (B∗, C) becomes an incentive-compatible menu of contracts. The rent that is given up to the
θL-agent is now∆θe∗H .

Rather than insisting on the first-best production level e∗H for an inefficient type, the principal prefers to slightly
decrease eH by an amount de.

• By doing so, expected efficiency is just diminished by a second-order term 1
2 |π

′′(e∗H)|(de)2 since e∗H is the
first-best output that maximizes efficiency when the agent is inefficient.

• Instead, the information rent left to the efficient type diminishes to the first-order∆θ de.

Of course, the principal stops reducing the inefficient type’s output when a further decrease would have a greater
efficiency cost than the gain in reducing the information rent it would bring about. The optimal trade-off finally
occurs at (ASB, BSB) as shown in Figure 2.
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Figure 2: Second-best contracts

6 信息租金取决于 eSBH 和 θH − θL.

• 之所以降低 θH 的努力程度，是为了尽可能减少支付给 θL的信息租金，从而有一个更好的利润。

• Principal扭曲的 θH 的努力程度，依赖于两种 agent之间的差异。

– 当 θH − θL → 0时，θL的信息租金趋于零，此时 θH 会趋于有效的努力程度。

– 而当 θH − θL → ∞时，θL的信息租金趋于无穷大，此时 principal会采取将 θH 停工的排斥性合
约，以避免支付高额的信息租金。

7 The above proposition holds when π′(eSBH ) = θH + λ
1−λ (θH − θL) has a positive solution.

If π′(eSBH ) = θH + λ
1−λ (θH − θL) has no positive solution (for example, when λ is close to 1, or when θH − θL

is sufficiently large), eSBH should be set at zero, and wSB
H will thus be set at zero as well—it is the special case of a

contract with shutdown.

8 When the shutdown of θH agents occurs, the contract offered to θL agents is

eSBL = e∗L and wSB
L = w∗

L.

The information rent for θL agents is zero.

9 直觉：

• 如果 θL的比例很大（λ接近于 1），导致方程没有正数解：若给 θH 提供非零合约，或者说提高 θH

的配置效率，则甄别中需要支付给 θL过多的信息租金，对于 principal并不划算。

• 如果两种 agent的差异较大（θH − θL很大），导致方程没有正数解：若给 θH 提供非零合约，则甄别
中需要支付给 θL过多的信息租金，principal也会选择不给 θH 提供合约。

10 With such a policy, a significant inefficiency emerges because the inefficient type θH does not make effort. The
benefit of such a policy is that no rent is given up to the efficient type θL.

11 To guarantee the contracts without shutdown, we assume that

• π′(0) = ∞ (Inada condition).
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• lim
e→∞

π′(e)e = 0.

• Since π′(0) = ∞, π′(eSBH ) = θH + λ
1−λ (θH − θL) has a positive solution.

• Besides, principal is not optimal to offer contracts with shutdown:

(1) The profit of principal for optimal contracts without shutdown is

λ(π(eSBL )− θLe
SB
L −∆θeSBH ) + (1− λ)(π(eSBH )− θHeSBH ).

(2) The profit of principal for optimal contracts with shutdown is

λ(π(e∗L)− θLe
∗
L).

(3) Since e∗L = eSBL , the difference is

(1− λ)(π(eSBH )− θHeSBH )− λ∆θeSBH = (1− λ)
[
π(eSBH )−

(
θH +

λ

1− λ
∆θ︸ ︷︷ ︸

π′(eSBH)

)
eSBH

]
.

(4) We can rewrite π(eSBH )−
(
θH + λ

1−λ∆θ
)
eSBH as

π(eSBH )− π′(eSBH )eSBH ,

which is strictly positive since π(e)− π′(e)e is strictly increasing with e and is equal to zero for e = 0.

(5) Hence, π(eSBH )− π′(eSBH )eSBH > 0, and shutdown of θH does not occur.

2 Nonresponsiveness

12 We assume that the principal’s return π depends also on θ: π(e, θ).

13 Assumptions:

• πe(e, θ) > 0,

• πee(e, θ) < 0,

• πeθ(e, θ) > 1: the marginal value of the principal increases faster than the type of agent.

14 The first-best efforts θ∗L and θ∗H are now given by

πe(e
∗
L, θL) = θL and πe(e

∗
H , θH) = θH .

15 Consider the first order condition πe(e
∗(θ), θ) = θ. We have

πee(e
∗(θ), θ)

de∗(θ)
dθ

+ πeθ(e
∗(θ), θ) = 1.

It leads to
de∗(θ)
dθ

=
1− πeθ(e

∗(θ), θ)

πee(e∗(θ), θ)
=

−
−

> 0.

Thus, e∗H > e∗L—it does not satisfy the monotonicity condition for IC contracts.
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16 Conflict:

• For efficiency, principal want θH agents to produce more;

• For incentive compatibility, θL agents has to produce (weakly) more (monotonicity constraint).

It is called a phenomenon of nonresponsiveness.

17 This phenomenon makes screening of types quite difficult.

Let eSBL = e∗L and eSBH be defined by

πe(e
SB
H , θH) = θH +

λ

1− λ
(θH − θL).

By incentive compatibility, screening only possible when eSBL > eSBH .

18 If λ is very small, eSBH is very close to e∗H . We thus have eSBH ∼ e∗H > e∗L = eSBL .

It means that the screening is impossible. It forces the principal to use a pooling contract.

19 The principal’s problem is to solve

maximize
(ep,wp)

λ
(
π(ep, θL)− wp

)
+ (1− λ)

(
π(ep, θH)− wp

)
subject to wp − θLe

p ≥ 0 and wp − θHep ≥ 0.

20 Clearly, if wp − θHep ≥ 0, then wp − θLe
p ≥ 0.

Moreover, wp − θHep ≥ 0 should be binding at the optimum.

21 The reduced problem is
max
ep

λπ(ep, θL) + (1− λ)π(ep, θH)− θHep.

Then ep is characterized by
λπe(e

p, θL) + (1− λ)πe(e
p, θH) = θH .

22 Since πeθ > 0, we have that

λπe(e
p, θL) + (1− λ)πe(e

p, θH) = θH = πe(e
∗
H , θH)

> λπe(e
∗
H , θL) + (1− λ)πe(e

∗
H , θH).

Since πee < 0, we have that ep < e∗H .

23 In summary, when nonresponsiveness occurs, the sharp conflict between the principal’s preferences and the incen-
tive constraints (which reflect the agent’s preferences) makes it impossible to use any information transmitted by
the agent about his type.

3 Three-type model

24 There are three types {θL, θM , θH} with θH − θM = θM − θL = ∆θ.

The respective probabilities are λL, λM , and λH with λL + λM + λH = 1.
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25 As a benchmark, the first-best effort levels are respectively given by

π′(e∗L) = θL, π
′(e∗M ) = θM , π′(e∗H) = θH .

26 Principal would like to offer amenu of contracts {(eL, wL), (eM , wM ), (eH , wH)} hoping that θL agents will select
(eL, wL), θM agents will select (eM , wM ), and θH agents will select (eH , wH).

27 IC constraints for {(eL, wL), (eM , wM ), (eH , wH)}:

wL − θLeL ≥ wM − θLeM , (ICLM )

wL − θLeL ≥ wH − θLeH , (ICLH)

wM − θMeM ≥ wH − θMeH , (ICMH)

wM − θMeM ≥ wL − θMeL, (ICML)

wH − θHeH ≥ wM − θHeM , (ICHM )

wH − θHeH ≥ wL − θHeL. (ICHL)

• 4 local incentive constraints: involving adjacent types.

• 2 global incentive constraints: involving nonadjacent types.

28 Monotonicity condition (or implementability condition): Constraints (ICLM ) and (ICML) imply that eL ≥ eM .
Constraints (ICMH) and (ICHM ) imply that eM ≥ eH .

eL ≥ eM ≥ eH . (Monotonicity condition)

29 Two local incentive constraints (ICLM ) and (ICMH) lead to the global one (ICLH) under eM ≥ eH .

Similarly, two local incentive constraints (ICML) and (ICHM ) lead to the global one (ICHL) under eL ≥ eM .

30 Intuitively, more efficient types tend to claim to be less efficient. Momentarily, we ignore the incentive constraints
(ICML), (ICHL) and (ICHM ).

31 So we consider only (ICLM ), (ICMH) and (Monotonicity condition).

32 IR constraints for {(eL, wL), (eM , wM ), (eH , wH)}:

wL − θLeL ≥ 0, (IRL)

wM − θMeM ≥ 0, (IRM )

wH − θHeH ≥ 0. (IRH)

33 Clearly, (IRH) and (ICMH) imply (IRM ). Similarly, (IRH) and (ICLH) imply (IRL).

That is, given that IC constraints hold, IR constraints of all 3 types are satisfied as long as (IRH) holds.

34 The principal’s problem is to solve

maximize
(eL,wL),(eM ,wM ),(eH ,wH)

λL

(
π(eL)− wL

)
+ λM

(
π(eM )− wM

)
+ λH

(
π(eH)− wH

)
subject to Constraints (ICLM ), (ICMH), (Monotonicity condition) and (IRH).
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35 As usual, constraints (ICLM ), (ICMH) and (IRH) should be binding at the optimum:

wL − θLeL = wM − θLeM , wM − θMeM = wH − θMeH , wH − θHeH = 0.

That is,

wH = θHeH ,

wM = wH + θMeM − θMeH = θHeH + θMeM − θMeH ,

wL = wM + θLeL − θLeM = θHeH + θMeM − θMeH + θLeL − θLeM .

Hence, the information rents are

rH = wH − θHeH = 0,

rM = wM − θMeM = θHeH − θMeH = ∆θeH ,

rL = wL − θLeL = ∆θeH +∆θeM .

36 The principal’s problem is rewritten as:

maximize
eL,eM ,eH

λL

(
π(eL)− θHeH − θMeM + θMeH − θLeL + θLeM

)
+ λM

(
π(eM )− θHeH − θMeM + θMeH

)
+ λH

(
π(eH)− θHeH

)
subject to Constraint (Monotonicity condition).

37 Ignore constraint (Monotonicity condition) first.

First order condition for eL:
π′(eSBL ) = θL.

First order condition for eM :

π′(eSBM ) = θM +
λL

λM
(θM − θL) = θM +

λL

λM
∆θ.

First order condition for eH :

π′(eSBH ) = θH +
λM

λH
(θH − θM ) +

λL

λH
(θH − θM ) = θH +

λM + λL

λH
∆θ.

38 Then check constraint (Monotonicity condition):

• Clearly, eSBL > eSBM automatically.

• eSBM > eSBH iff π′(eSBM ) < π′(eSBH ) iff

θM +
λL

λM
∆θ < θH +

λM + λL

λH
∆θ,

which is equivalent to
λM > λLλH .
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In this case, the information rents are

rH = wH − θHeH = 0,

rM = wM − θMeM = θHeH − θMeH = ∆θeH ,

rL = wL − θLeL = ∆θeH +∆θeM .

39 On the other hand (if λM ≤ λLλH), bunching (集束) result occurs:

For a given λH , if λL is rather big and λM is small, then the information rent of θM agents is not too costly but
that of θL is much more. Therefore, reducing rents calls for strongly reducing eM , but a reduction in eH is less
necessary. However, due to the implementability condition, eM cannot be reduced to be lower than eH . We thus
have eM = eH at the optimum.

In this case, principal’s problem is rewritten as:

max
eL,ep

λL

(
π(eL)− θHep − θLeL + θLe

p
)
+ λM

(
π(ep)− θHep

)
+ λH

(
π(ep)− θHep

)
.

First order condition for ep:

(λM + λH)π′(ep) = λMθH + λHθH + λL(θH − θL).

That is,
π′(ep) = θH +

λL

λM + λH
2∆θ.

40 Theorem:

• Constraints (ICLM ), (ICMH) and (IRH) are all binding.

• When λM > λHλL, Constraint (Monotonicity condition) is strictly satisfied. Optimal outputs are given by
eSBL = e∗L, eSBM < e∗M and eSBL < e∗L with

π′(eSBM ) = θM +
λL

λM
∆θ,

π′(eSBH ) = θH +
λM + λL

λH
∆θ.

• When λM ≤ λHλL, some bunching emerges. We still have eSBL = e∗L, but now eSBM = eSBH = ep < eSBL , with

π′(ep) = θH +
λL

λM + λH
2∆θ.

41 To avoid bunching, modelers often chose to impose a sufficient condition on the distribution of types, the mono-
tonicity of the hazard rate.

Definition: A distribution of types satisfies the monotone hazard rate property if and only if

Prob(θ < θM )

Prob(θ = θM )
=

λL

λM
<

Prob(θ < θH)

Prob(θ = θH)
=

λL + θM
λH

.

Indeed, the hazard rate is defined as f(θ)
1−F (θ) , where F (θ) = Prob(θ̂ ≤ θ) is a cumulative distribution function of

random variable θ̂ and f(θ) is F ’s density. That is, the hazard rate is the probability of observing a type within a
neighborhood of θ (for example, [θ, θ + dθ]), conditional on the type being no less than θ.
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42 The virtual costs of the different types, namely θL, θM + λL

λM
∆θ and θH + λM+λL

λH
∆θ, are ranked exactly as the

true physical costs.

The virtual surplus is maximized by a decreasing schedule of outputs (eSBL > eSBM > eSBH ). Asymmetric information
does not perturb the ranking of types.

4 Summary

43 When it comes to solving the screening problem, it is useful to start from the benchmark problem without adverse
selection, which involves maximizing the payoff of the principal subject to IR constraints. At the optimum, alloca-
tive efficiency is then achieved, because the principal can treat each type of agent separately and offer a type-specific
package.

44 In the presence of adverse selection, however, the principal has to offer all types of agents the samemenu of options.
He has to anticipate that each type of agent will choose her favorite opinion. Without loss of generality, he can
restrict the menu to the set of opinions actually chosen by at least one type of agent. It reduces the program of the
principal to the maximization of his expected payoff subject to IC and IR constraints.

45 One can disregard the IC for low-ability agent and IR for high-ability agent. Contract then trades off optimally the
allocative inefficiency of the low-ability agent with the information rent conceded to the high-ability agent.

In contrast, there is no allocative inefficiency for the high-ability agent and no rent for the low-ability agent.

46 For generalizations to more than two types, IC constraints can often be replaced by fewer local IC constraints and
monotonicity condition. We have full separation under natural restrictions (monotone hazard rate).

47 In some cases, the distribution of types does not lead to full separation—for example, when there are intermediate
types that the principal considers to be of low probability. There would then be an incentive for the principal to
have severe allocative inefficiency for these types, in order to reduce the rents of adjacent types. But this incentive
conflicts with the monotonicity condition. In this case, a procedure of “bunching and ironing” has been outlined
to solved for the optimal contract. The monotonicity condition then binds for some types where bunching occurs.
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