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Transportation network

Traveling through a transportation network, or sending packets
through the Internet, involves fundamentally game-theoretic
reasoning:

rather than simply choosing a route in isolation, individuals need
to evaluate routes in the presence of the congestion resulting from
the decisions made by themselves and everyone else.

Xiang Sun Social and Economic Networks 2019 Fall 4 / 57



Pigou’s example and price of anarchy

1 Pigou’s example and price of anarchy
Pigou’s example
Network
Equilibrium
Price of anarchy

2 Braess’s paradox

3 Congestion game
Potential game
Congestion game

Xiang Sun Social and Economic Networks 2019 Fall 5 / 57



Pigou’s example and price of anarchy Pigou’s example

1 Pigou’s example and price of anarchy
Pigou’s example
Network
Equilibrium
Price of anarchy

2 Braess’s paradox

3 Congestion game
Potential game
Congestion game

Xiang Sun Social and Economic Networks 2019 Fall 6 / 57



Pigou’s example and price of anarchy Pigou’s example

Pigou’s example

Consider the simple network.

s t

c(x) = 1

c(x) = x

The disjoint edges connect a source node s to a sink node t.
Each edge is labeled with a cost function c(·), which describes the
cost (i.e., travel time) incurred by users of the edge.

* It is a function of the amount of traffic routed on the edge.
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Pigou’s example and price of anarchy Pigou’s example

Pigou’s example (Cont.)

s t

c(x) = 1

c(x) = x

The upper edge has the constant cost function c(x) = 1.
* It represents a route that is relatively long but immune to

congestion.
The cost of the lower edge is governed by the function c(x) = x.

* It increases as the edge gets more congested.
The lower edge is cheaper than the upper edge iff less than one
unit of traffic uses it.
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Pigou’s example and price of anarchy Pigou’s example

Pigou’s example (Cont.)

s t

c(x) = 1

c(x) = x

Suppose that there is one unit of traffic, representing a large
population of network users.
Each user chooses independently between the two routes from s
to t.
Each user aims to minimize its cost.
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Pigou’s example and price of anarchy Pigou’s example

Pigou’s example: Equilibrium

s t

c(x) = 1

c(x) = x

Selfish routing outcome: All traffic will use the lower edge.
The lower route is never worse than the upper one, even when it is
fully congested, and it is superior whenever some of the other
users are foolish enough to take the upper route. (weakly
dominant strategy)
In this selfish routing outcome, all users incur one unit of cost.
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Pigou’s example and price of anarchy Pigou’s example

Pigou’s example: Social optimum

Suppose we can control how the traffic is routed.
Can we leverage this power to improve over the selfish routing
outcome?
We assign half of the traffic to each of the two routes.

The users forced onto the upper edge experience one unit of cost.
They are not worse off.
The users forced onto the lower edge now enjoy lighter traffic
conditions, and incur 1

2 unit of cost.
Therefore, we have lowered the cost of half of the users while
making no one worse off.
The average cost incurred by traffic has decreased from 1 to 3

4
.
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Pigou’s example and price of anarchy Pigou’s example

Pigou’s example: Price of anarchy

The price of anarchy (无政府的代价):

average cost of traffic in a outcome
minimum-possible average cost

.

In Pigou’s example, the price of anarchy is 4
3
.

If the price of anarchy of a network is close to 1, then we conclude
that the negative impact of selfish routing is relatively small.
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Pigou’s example and price of anarchy Network

Network

We have a directed network N = (V,E), with node set V, edge set
E, and a single origin-destination pair.
P denotes the set of paths between origin and destination.
Each link e ∈ E has a latency function Le(·).

* The latency function captures congestion effects.
Let us assume for simplicity that Le(·) is nonnegative,
differentiable, and nondecreasing.
We normalize total traffic to 1 and in the context of the game
theoretic formulation here, I = [0, 1].
We also assume that all traffic is homogeneous. Each user wishes
to minimize delay.
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Pigou’s example and price of anarchy Network

Network (Cont.)

A flow or traffic pattern (distribution of strategy profile) a
nonnegative vector

x = (xp)p∈P ,

such that
∑

p∈P xp = 1.
xp denotes the flow on path p ∈ P .

* the proportion of users who choose the path p.
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Pigou’s example and price of anarchy Network

Network
Suppose the flow is x = (xp)p∈P .
The flow of each link e ∈ E is

xe =
∑
p∋e

xp.

Here the notation p ∋ e denotes the paths p that traverse link
e ∈ E.
The total delay (latency) cost of a routing pattern x is:

L(x) =
∑
e∈E

xeLe(xe),

that is, it is the sum of latencies Le(xe) for each link e ∈ E
multiplied by the flow over this link, xe, summed over all links E.
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Pigou’s example and price of anarchy Network

Socially optimal routing

Socially optimal routing, defined as the flow minimizing aggregate
delay, is given by xS that is a solution to the following problem

minimize
x=(xp)p∈P

L(x) =
∑
e∈E

xeLe(xe)

subject to
∑
p∋e

xp = xe for each e ∈ E,∑
p∈P

xp = 1, xp ≥ 0 for each p ∈ P .
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Pigou’s example and price of anarchy Equilibrium

Equilibrium
A flow xE = (xEp)p∈P is an equilibrium (Nash equilibrium, or
wardrop equilibrium) if for each path p with xEp > 0, there does
not exist a path p′ ̸= p such that∑

e∈p
Le(xEe ) <

∑
e∈p′

Le(xEe ).

* That is, for each user, their routing choice is optimal.
Let xE be an equilibrium, then it must be such that

1 for all p and p′ in P with xp, xp′ > 0,∑
e∈p

Le(xEe ) =
∑
e∈p′

Le(xEe ).

2 for any p and p′ in P with xp > 0 and xp′ = 0,∑
e∈p

Le(xEe ) ≤
∑
e∈p′

Le(xEe ).
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Pigou’s example and price of anarchy Equilibrium

Equilibrium: Characterization

Theorem
A flow xE is an equilibrium iff it is a solution to

minimize
x=(xp)p∈P

∑
e∈E

∫ xe

0

Le(z) dz

subject to
∑
p∋e

xp = xe for each e ∈ E,∑
p∈P

xp = 1, xp ≥ 0 for each p ∈ P .

If each Li is strictly increasing, then xE is unique.
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Pigou’s example and price of anarchy Equilibrium

Proof
Rewrite the minimization problem as

minimize
x=(xp)p∈P

∑
e∈E

∫ ∑
p∋e xp

0

Le(z) dz

subject to
∑
p∈P

xp = 1, xp ≥ 0 for each p ∈ P .

Since each Le is nondecreasing, this is a convex program.
Therefore, first-order conditions are necessary and sufficient.
Lagrangian:

∑
e∈E

∫ ∑
p∋e xp

0

Le(z) dz− λ
(∑
p∈P

xp − 1
)
−

∑
p∈P

µpxp.
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Pigou’s example and price of anarchy Equilibrium

Proof (Cont.)
First-order condition on xp is∑

e∈p
Le(xEe ) =

∑
e∈p

Le
(∑

p∋e
xEp
)
= λ+ µp.

Complementary slackness: µp ≥ 0 with equality whenever xEp > 0.
If xEp > 0, FOC implies∑

e∈p
Le(xEe ) =

∑
e∈p

Le
(∑

p∋e
xEp
)
= λ.

That is, the multiplier λ will be equal to the lowest cost path,
which then implies the result that for all p, p′ ∈ P with xEp , xEp′ > 0,∑

e∈p
Le(xEe ) = λ =

∑
e∈p′

Le(xEe ).
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Pigou’s example and price of anarchy Equilibrium

Proof (Cont.)

If xEp = 0, FOC implies∑
e∈p

Le(xEe ) =
∑
e∈p

Le
(∑

p∋e
xEp
)
= λ+ µp ≥ λ.

That is, for paths with xEp = 0, the cost can be higher.
Finally, if each Le is strictly increasing, then the set of equalities∑

e∈p′ Le(xEe ) =
∑

e∈p Le(xEe ) admits a unique solution.
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Pigou’s example and price of anarchy Equilibrium

Proof: Intuition

Suppose there is a traffic graph with xe people driving along edge e.
Let the energy of the edge e be

E(e) =
∫ xe

0

Le(z) dz.

If xe = 0, let E(e) = 0.
Let the total energy of the traffic network be the sum of the
energies of every edge.
Take a choice of routes that minimizes the total energy. Such a
choice must exist because there are finitely many choices of routes.
That will be an equilibrium.
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Pigou’s example and price of anarchy Equilibrium

Proof: Intuition (Cont.)

Assume, for contradiction, this is not the case.
Then, there is at least some drivers who can switch the route and
improve the travel time.
Suppose the original route is p = (e0, e1, . . . , en) while the new
route is p′ = (e′0, e′1, . . . , e′m).
Then

∑n
i=0 Lei(xei) >

∑m
i=0 Le′i (xe′i ).

Let E be total energy of the traffic graph, and consider what
happens when the route p is removed.

The energy of each edge ei will be reduced by
∫ xe
xe−ϵ Le(z) dz.

So E will be reduced by
∑n

i=0

∫ xei
xei−ϵ Lei(z) dz.
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Pigou’s example and price of anarchy Equilibrium

Proof: Intuition (Cont.)

If the new route p′ = (e′0, e′1, . . . , e′m) is then added, the total
energy E will be increased by

∑m
i=0

∫ xe′i
+ϵ

xe′i
Le′i (z) dz.

Because the new route is less costly than the original route, E must
decrease relative to the original configuration, contradicting the
assumption that the original set of routes minimized the total
energy.
Therefore, the choice of routes minimizing total energy is an
equilibrium.
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Pigou’s example and price of anarchy Equilibrium

Equilibrium: Algorithm

Best response dynamics:
Let x be some flow.
If x is not at equilibrium:

compute the energy E(x).
for each driver in x:

for each alternate path p′:
compute the energy e′ of the flow when driver takes path p′.
if e′ < E(x):
modify x so that driver takes path p′.

continue until no further improvement.
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Pigou’s example and price of anarchy Price of anarchy

Price of anarchy

Price of anarchy =
average cost of traffic in a outcome
minimum-possible average cost

.

Price of anarchy could be close to ∞, i.e., very inefficient.
Price of anarchy could be close to 1.
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Pigou’s example and price of anarchy Price of anarchy

Equilibrium: Inefficiency

In Pigou’s example, the equilibrium fails to minimize total
delay—hence it is inefficient.
In fact, it can be arbitrarily inefficient.

s t

c(x) = 1

c(x) = xk
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Pigou’s example and price of anarchy Price of anarchy

Equilibrium: Inefficiency (Cont.)

s t

c(x) = 1

c(x) = xk

In this example, socially optimal routing involves

min
x1

x1L1(x1) + (1− x1)L2(1− x1) = x1 + (1− x1)k+1.

xS1 = 1− (k+ 1)−
1
k and xS2 = (k+ 1)−

1
k .

Thus, L(xS) = xS1L1(xS1)+ xS2L2(xS2) = (k+1)−
k+1
k +1− (k+1)−

1
k .
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Pigou’s example and price of anarchy Price of anarchy

Equilibrium: Inefficiency (Cont.)

s t

c(x) = 1

c(x) = xk

The equilibrium again has xE1 = 0 and xE2 = 1.
Thus, L(xE) = 1.
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Pigou’s example and price of anarchy Price of anarchy

Price of anarchy

Therefore, price of anarchy is

L(xE)
L(xS) =

1

(k+ 1)−
k+1
k + 1− (k+ 1)−

1
k
.

When k → ∞, price of anarchy approaches ∞.
Thus, the equilibrium can be arbitrarily inefficient relative to the
social optimum.
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Pigou’s example and price of anarchy Price of anarchy

Bound of price of anarchy

Given xe,
E(e) =

∫ xe
0 Le(z) dz is the energy of e.

let L(e) = xe · Le(xe).
Since Le is increasing, L(e) ≥ E(e).
Suppose each Le(xe) = aexe + be is a linear function.
Then

L(e) = aex2e + bexe ≤ 2(ae
2
x2e + bexe)

= 2

∫ xe

0

(aez+ be) dz = 2E(e).
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Pigou’s example and price of anarchy Price of anarchy

Bound of price of anarchy (Cont.)

Suppose x is a flow,
let E(x) denote the total energy,
let L(x) denote the total cost.

Then we have
1
2
L(x) ≤ E(x) ≤ L(x).

Suppose we start with a socially optimal flow xS.
The best response dynamics leads to an equilibrium flow xE.
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Pigou’s example and price of anarchy Price of anarchy

Bound of price of anarchy (Cont.)

In the process of best response dynamics, the cost could increase
while the energy is decreasing.
That is,

E(xE) ≤ E(xS).

Since
L(xE) ≤ 2E(xE) and E(xS) ≤ L(xS),

we have
L(xE) ≤ 2E(xE) ≤ 2E(xS) ≤ 2L(xS).

The social cost of the equilibrium is at most twice the cost of the
social optimum.
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Pigou’s example and price of anarchy Price of anarchy

Bounds of price of anarchy

The coolest statement that might be true is that highly nonlinear
cost function are the only obstacle to a small price of anarchy.
That is, every selfish routing network with not-too-nonlinear cost
functions, no matter how complex, has price of anarchy close to 1.
The worse-case price of anarchy:

Description Typical representative Price of anarchy
Linear ax+ b 4

3

Quadratic ax2 + bx+ c 3
√
3

3
√
3−2

≈ 1.6

Cubic ax3 + bx2 + cx+ d 4 3√4

4 3√4−3
≈ 1.9

Quartic ax4 + bx3 + cx2 + dx+ e 5 4√5

5 4√5−4
≈ 2.2

Degree ≤ p
∑p

i=0 aixi
(p+1) p√p+1

(p+1) p√p+1−p ≈ p
ln p
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Braess’s paradox

Braess’s paradox
Consider the four-node network.

s t

v

w

c(x)
= x

c(x) = 1

c(x) = 1

c(x)
= x

There are two disjoint routes from s to t, each with combined cost
1 + x, where x is the amount of traffic that uses the route.
The routes are therefore identical, and selfish traffic should split
evenly between them.
There is one unit of traffic.
Then all users experience 3

2
units of cost in the selfish outcome.
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Braess’s paradox

Braess’s paradox (Cont.)

To decrease the cost encountered by the traffic, we build a short,
high-capacity edge connecting the midpoints of the two existing
routes.

s t

v

w

c(x)
= x

c(x) = 1

c(x) = 1

c(x)
= xc(

x)
=

0

How should selfish traffic react?
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Braess’s paradox

Braess’s paradox (Cont.)

s t

v

w

c(x)
= x

c(x)
= xc(

x)
=

0

c(x) = 1

c(x) = 1

As in Pigou’s example, the cost of the new route s → v → w → t is
never worse than that along the two original paths, and it is
strictly less whenever some traffic fails to use it.
All users will deviate to the new route.
All of the traffic now experiences two units of cost.

Xiang Sun Social and Economic Networks 2019 Fall 41 / 57



Braess’s paradox

Braess’s paradox (Cont.)

Braess’s paradox shows that the intuitively helpful action off
adding a new zero-cost edge can increase the cost experienced by
all of the traffic.
In Seoul, South Korea, a speeding up of traffic around the city was
seen when a motorway was removed as part of the
Cheonggyecheon (清溪川) restoration project.
In Stuttgart, Germany, after investments into the road network in
1969, the traffic situation did not improve until a section of newly
built road was closed for traffic again.
In 1990 the temporary closing of 42nd Street in New York City for
Earth Day reduced the amount of congestion in the area.
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Braess’s paradox

Braess’s paradox (Cont.)

In 2008 Youn, Gastner and Jeong demonstrated specific routes in
Boston, New York City and London where that might actually
occur and pointed out roads that could be closed to reduce
predicted travel times.
In 2009, New York experimented with closures of Broadway at
Times Square and Herald Square, which resulted in improved
traffic flow and permanent pedestrian plazas.
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Congestion game Potential game
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Congestion game Potential game

Potential games

A finite game (or a finite-player game with infinite strategies) is a
potential game if there exists a function Φ: S → R such that
Φ(si, s−i) gives information about ui(si, s−i) for each i.
If so, Φ is referred to as the potential function.
The potential function has a natural analogy to “energy” in
physical systems.
It will be useful both for locating pure-strategy Nash equilibria.
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Congestion game Potential game

Potentials

A function Φ: S → R is called an ordinal potential function for
the game if for each i ∈ I and all s−i ∈ S−i, for all x, z ∈ Si,

ui(x, s−i)− ui(z, s−i) ≥ 0 iff Φ(x, s−i)− Φ(z, s−i) ≥ 0,

and

ui(x, s−i)− ui(z, s−i) > 0 iff Φ(x, s−i)− Φ(z, s−i) > 0.

A function Φ: S → R is called an exact potential function for the
game if for each i ∈ I and all s−i ∈ S−i, for all x, z ∈ Si,

ui(x, s−i)− ui(z, s−i) = Φ(x, s−i)− Φ(z, s−i).
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Congestion game Potential game

Potential games

A finite game G is called an ordinal (exact) potential game if it
admits an ordinal (exact) potential.
In what follows, we refer to ordinal potential games as potential
games, and only add the “exact” qualifier when this is necessary.
A finite-player game G with infinite strategy space is a potential
game if it admits a continuous potential function.
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Congestion game Potential game

Pure-strategy Nash equilibria in potential games

Theorem
Every potential game has at least one pure strategy Nash equilibrium.

The global maximum of an ordinal potential function is a
pure-strategy Nash equilibrium.
Suppose that s∗ corresponds to the global maximum.
Then, for any i ∈ I, we have, by definition,
Φ(s∗i , s∗−i)− Φ(s, s∗−i) ≥ 0 for all s ∈ Si.
Since Φ is a potential function,

ui(s∗i , s∗−i)− ui(si, s∗−i) ≥ 0 for all s ∈ Si.

Thus, s∗ is a pure-strategy Nash equilibrium.
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Congestion game Potential game

Examples of ordinal potential games

Cournot competition.
Each of n firms chooses quantity qi ∈ (0,∞).
The payoff function for player i given by
ui(qi, q−i) = qi · (P(Q)− c).
We define the function

Φ(q1, . . . , qn) = (
n∏

i=1

qi)(P(Q)− c).

Note that for all i and all q−i, for all qi, q′i > 0,

ui(qi, q−i)− ui(q′i, q−i) > 0 iff Φi(qi, q−i)− Φi(q′i, q−i) > 0

Φ is therefore an ordinal potential function for this game.
Xiang Sun Social and Economic Networks 2019 Fall 50 / 57



Congestion game Potential game

Examples of exact potential games

Cournot competition (again).
Suppose now that P(Q) = a− bQ and costs ci(qi) are arbitrary.
We define the function

Φ∗(q1, . . . , qn) = a
n∑

i=1

qi − b
n∑

i=1

q2i − b
∑

1≤i<j≤n

qiqj −
n∑

i=1

ci(qi).

It can be shown that for all i and all q−i, for all qi, q′i > 0,

ui(qi, q−i)− ui(q′i, q−i) = Φ∗
i (qi, q−i)− Φ∗

i (q′i, q−i).

Φ is an exact potential function for this game.
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Congestion game Congestion game

Congestion model

Congestion model: C = ⟨I,R, (Si)i∈I, (cj)j∈R⟩ where
I = {1, 2, . . . , n} is the set of players.
R = {1, 2, . . . ,m} is the set of resources.
Si ⊆ M is the set of resource combinations (e.g., links or common
resources) that player i can take/use.
A strategy for player i is si ∈ Si, corresponding to the resources
that this player is using.
cj(k) is the benefit for the negative of the cost to each user who
uses resource j if k users are using it.
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Congestion game Congestion game

Congestion game

Define congestion game ⟨I, (Si), (ui)⟩ with utilities

ui(si, s−i) =
∑
j∈si

cj(kj),

where kj is the number of users of resource j under strategies s.

Theorem
Every congestion game is a potential game and thus has a pure-strategy
Nash equilibrium.

Xiang Sun Social and Economic Networks 2019 Fall 54 / 57



Congestion game Congestion game

Proof

For each j define k̄ij as the usage of resource j excluding player i,
i.e.,

k̄ij =
∑
i′ ̸=i

1j∈si′ ,

where 1j∈si′ is the indicator for the event that j ∈ si′ .
When others are using the strategy profile s−i, the utility
difference of player i from two strategies si and s′i is

ui(si, s−i)− ui(s′i, s−i) =
∑
j∈si

cj(k̄ij + 1)−
∑
j∈si′

cj(k̄ij + 1).
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Congestion game Congestion game

Proof (Cont.)

Now consider the function

Φ(s) =
∑

j∈∪i′∈Isi′

[ kj∑
k=1

cj(k)
]
.

We can also write

Φ(si, s−i) =
∑

j∈∪i′ ̸=isi′

[ k̄ij∑
k=1

cj(k)
]
+
∑
j∈si

cj(k̄ij + 1).
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Proof (Cont.)

Therefore,

Φ(si, s−i)− Φ(s′i, s−i) =
∑

j∈∪i′ ̸=isi′

[ k̄ij∑
k=1

cj(k)
]
+
∑
j∈si

cj(k̄ij + 1)

−
∑

j∈∪i′ ̸=isi′

[ k̄ij∑
k=1

cj(k)
]
−

∑
j∈s′i

cj(k̄ij + 1)

=
∑
j∈si

cj(k̄ij + 1)−
∑
j∈s′i

cj(k̄ij + 1)

= ui(si, s−i)− ui(s′i, s−i).
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