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Navigation

Problem: Find a node that has a certain attribute.
In the classic Milgram experiment, subjects were faced with the
task of getting a letter to a particular person.
Other examples:

find a webpage with particular information on it;
find someone who knows how to perform a given task;
find a file-sharer that has a given file.

Relationship with diffusion:
Navigation: targeted decentralized search;

* An algorithm for searching to find a directed path from node s to
node t is decentralized if it only uses information about the
identities of the neighbors of s and their location, and the location
of node t.
Diffusion: wide-ranging diffusion (flood the network).
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Milgrom’s letter experiment

Recall Milgram’s small-world experiment, where the goal was to find
short chains of acquaintances (short paths) linking arbitrary pairs of
people in the US.

A source person in Nebraska is asked to deliver a letter to a target
person in Massachusetts.
This will be done through a chain where each person forwards the
letter to someone he knows on a first-name basis (表示双方互以
名字相称，即彼此很熟).
Over many trials, the average number of intermediate steps in
successful chains was found to lie between 5 and 6, leading to six
degrees of separation principle.
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Key finding

Milgram’s experiment has two fundamentally surprising discoveries.
First, such short paths exist in networks of acquaintances.

The small-world model proposed by Watts and Strogatz (WS) was
aimed at capturing two fundamental properties of networks: short
paths and high clustering.

Second, people are able to find the short paths to the designated
target with only local information about the network.
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Key finding (Cont.)

Milgram’s experiment has two fundamentally surprising discoveries.
First, such short paths exist in networks of acquaintances.
Second, people are able to find the short paths to the designated
target with only local information about the network.

If everybody knows the global network structure or if we can
“flood the network” (i.e., everyone will send the letter to all their
friends), we would be able to find the short paths efficiently.
With local information, even if the social network has short paths,
it is not clear that such decentralized search will be able to find
them efficiently.

* Example: In a large social-networking site, everyone was known
only by 9-digit pseudonyms. Then it is not easy to forward a letter
to user number 482285204, using only people you know on a
first-name basis.
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Navigation

One could just randomly navigate the network until one bumps
into the target node.
One could also take advantage of the structure of the network to
better search.

going to nodes that have more neighbors might save time, if such
nodes can also tell you something about their neighbors.
one might use information about the nodes themselves to help in
cases where nodes tend to be connected to other nodes with
similar attributes.

Question to be answered:
How do different search methods perform? Speed? Effectively?
How does search depend on the network structure?
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Navigation in a random network The environment without a network structure

Benchmark: Without a network structure

There is a network of n nodes.
We need to find a single target node in the network.
We can simply exhaustively visit the nodes one by one, picking the
order uniformly at random.
Here we do not use the network in any way.
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Navigation in a random network The environment without a network structure

Benchmark: Without a network structure (Cont.)

There is an equal chance that the desired node will be the first
node we visit, or the second, ... or the last.
The number of nodes we would have to visit under this method
follows a uniform distribution, where the probability of it taking k
nodes is simply 1

n .
The expected number of nodes we would have to visit is

1

n
+

2

n
+ · · ·+ k

n
+ · · ·+ n

n
=

n+ 1

2
.

With large numbers of nodes, this could be very time consuming
and inefficient—the expected speed is O(n).
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Navigation in a random network Search in a network

With a network structure

We use some aspects of the network structure as follows.
We begin by randomly picking a node.
If it is not the right node, then we randomly pick one of its
neighbors, and so forth.
We add a feature to the setting that makes search easier. When
visiting a node, in addition to being able to discern whether it is
the target node, we can also tell whether any of its neighbors is the
target node. For instance,

looking for a person: we can just ask the person we are visiting
whether he know the person we are looking for.
crawling the world-wide-web: when we visit a given page, its links
could be labeled in such a way that we can tell whether any of those
links point to our target page.
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Navigation in a random network Search in a network

With a network structure (Cont.)

We use some aspects of the network structure as follows.
We begin by randomly picking a node.
If it is not the right node, then we randomly pick one of its
neighbors, and so forth.
We add a feature to the setting that makes search easier. When
visiting a node, in addition to being able to discern whether it is
the target node, we can also tell whether any of its neighbors are
the target node.
In this case, when none of the neighbors of the node we are
currently visiting is our target node, select the next node to be
visited uniformly at random from the list of neighbors that we
have not yet visited.

Xiang Sun Social and Economic Networks 2019 Fall 15 / 106



Navigation in a random network Search in a network

Illustration: Regular network without overlap

Consider a regular network where each node has degree d.
On the first step, we randomly pick a starting node and search its
d neighbors.
On the second step, we randomly pick one neighbor and search its
neighbors except the starting node (d− 1 nodes), presuming that
the new nodes found do not overlap with previously visited nodes.
If overlap were never an issue, it would take us effectively ≈ n

d−1

steps to visit the whole network, not counting back-tracking if we
hit a dead end.
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Navigation in a random network Search in a network

Illustration: Regular network without overlap
(Cont.)

The probability that our target is the k-th node found is 1
n .

It takes approximately k
d−1

steps to find k nodes (or k-th node) if
there is no overlap.
The expected number of steps it would take us if there were no
overlap is approximated as

n∑
k=1

1

n
k

d− 1
=

n+ 1

2(d− 1)
.
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Navigation in a random network Search in a network

Illustration: Regular network with overlap

How overlap slows down searching?
Suppose that for the first half of the nodes searched the rate is only
d−1
2

new nodes found at each step, so that half of the nodes are
ones already visited.
Then for the next quarter of the nodes visited, the rate is d−1

4
and

so forth.
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Navigation in a random network Search in a network

Illustration: Regular network with overlap (Cont.)
If the node happens to be in the first half of the nodes searched,
then the expected time to find the node is

n
2
+ 1

2d−1
2

≈ n
2(d− 1)

.

If the node happens to be in the next quarter of nodes visited,
then the expected time is

n
2

d−1
2

+
n
4
+ 1

2d−1
4

≈ n
d− 1

+
n

2(d− 1)
.

If we continue in this manner, the expected time conditional on
the node being in the next eighth is

2n
d− 1

+
n

2(d− 1)

and so forth.
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Navigation in a random network Search in a network

Illustration: Regular network with overlap (Cont.)
The overall expected time to finding the node is then
approximately
∞∑
k=1

1

2k

[
(k− 1)n
d− 1

+
n

2(d− 1)

]
=

n
2(d− 1)

∞∑
k=1

k− 1
2

2k
=

3n
2(d− 1)

.

This has tripled the expected time to finding the node (than the
case without overlap).
This is not a precise calculation, since it presumes that the fraction
of new nodes found at a given step is roughly proportional to the
proportion of unmet nodes in network, which might be an over-
or under-estimate depending on the architecture of the network.
But at least it gives us the idea that while this slows down the
process, it changes it by a factor rather than by a power.
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Navigation in a random network Search in a network

Illustration: Network with degree distribution

A network with degree distribution P.
We randomly pick new nodes (neighbors of the starting point).
The degree of the new node has a distribution described by
P̃(d) = dP(d)

E[d] (degree distribution of neighbors).
Then, ignoring overlap, each new node visited through this search
process informs us about an expected number of additional nodes
given by ∑

d

(d− 1)
dP(d)
E[d]

=
E[d2]
E[d]

− 1.
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Navigation in a random network Search in a network

Illustration: Network with degree distribution
(Cont.)

Using the expression in place of the d− 1 from the analysis with a
regular network, we have that the expected number of steps until
we find our target is roughly

n+ 1

2(E[d
2]

E[d] − 1)
≈ 1

2

nE[d]
E[d2]

.

Ignoring overlap is a good approximation for many random
networks below a threshold where fixed-sized loops become
prevalent, but could lead to under-estimation above such
thresholds. Providing fully accurate estimates for rich models of
networks admitting nontrivial clustering is a difficult problem,
and there is little work on that subject.
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Navigation in a random network Search in a network

Illustration: Poisson random network

The expected number of steps until we find our target is roughly

n+ 1

2(E[d
2]

E[d] − 1)
≈ 1

2

nE[d]
E[d2]

.

For a Poisson random network, it is

nE[d]
E[d2]

=
n

E[d]
=

n
(n− 1)p

= O(n).

Thus, a searching through a Poisson network is quite similar to
searching through a regular network.

Xiang Sun Social and Economic Networks 2019 Fall 23 / 106



Navigation in a random network Search in a network

Illustration: Scale-free network

Consider a network that has a degree distribution approximated
by a power distribution, so that P(d) = cd−γ for some scalar c and
γ < 3, but such that the nodes’ degrees are independent. (for
example, generated by the configuration model)
Assume that the maximal degree in the distribution is M < n
(truncation).
E[d2] =

∑M
d=1 cd2d−γ ≈

∫ M
1
cd2−γ dd = c

3−γ
(M3−γ − 1), where

the second relation follows using an integral approximation.
Similarly, E[d] = c

2−γ
(M2−γ − 1).
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Navigation in a random network Search in a network

Illustration: Scale-free network (Cont.)

Thus, the expected time to finding the desired node in a power
distribution truncated at a maximum degree of M is proportional
to

nE[d]
E[d2]

≈ n(3− γ)M2−γ − 1

(2− γ)M3−γ − 1
.

For large M and 2 < γ < 3, this is proportional to

n
M3−γ

.
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Navigation in a random network Search in a network

Illustration: Scale-free network (Cont.)

Since a change in the truncation or maximum degree M, can lead
to dramatic changes in the calculation of E[d2] and other
moments, we find that it can lead to a significant change in the
expected time to finding the desired node.
There is no right or wrong way to do things here, as each
truncation leads to a valid degree distribution that approaches a
continuous power-distribution as the number of nodes expands.
But many finite distributions that approach continuous
power-distributions in the limit have different features.
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Navigation in a random network Search in a network

Illustration: Scale-free network (Cont.)

Cohen et al. suggest the setting the maximum on a discrete finite
approximate power-law distribution to be M = n

1
γ−1 .

It leads the expected number of steps to finding the desired node
to be proportional to

n
n

3−γ
γ−1

= n
2(γ−2)
γ−1 .

If γ = 2.5, then the expected time is n 2
3 , which is much more

efficient than the linear-in-n-time that we saw for the Poisson and
regular networks.
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Navigation in a random network Search in a network

Summary

For the regular and Poisson networks, the navigation speed is
O(n).
For the power distribution, the navigation speed is
O(lower power of n).
Networks that have larger tails in distribution lead to much more
effective search.
The degree distribution places more weight on higher degree
nodes.

⇒ We are more likely to find larger degree nodes through following
randomly chosen links.

⇒ We end up discovering more of the network by searching fewer
nodes.
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Navigation in a random network Variations on navigation techniques

Information of second neighborhoods
Consider a situation where instead of just getting information
about direct neighbors, a node can also report on second
neighbors.
At each step we learn about a new number of nodes which is
proportional to the size of the second neighborhood of a node
found by following a random link.
Without any overlap, and with independence in neighboring
nodes degrees, the size of the second neighborhood of a node
found through such search is simply

E[d2]
E[d]

− 1︸ ︷︷ ︸
direct neighbors

+

[
E[d2]
E[d]

− 1

]2

︸ ︷︷ ︸
expected number of second neighbors

=
E[d2]
E[d]

[
E[d2]
E[d]

− 1

]
.
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Navigation in a random network Variations on navigation techniques

Information of second neighborhoods (Cont.)

This roughly squares the number of nodes found at each step.
For the regular and Poisson networks, the expected times become
proportional to n

E[d]2 .
For the power distribution, it becomes proportional to

n
n2

3−γ
γ−1

= n
3γ−7
γ−1 .
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Navigation in a random network Variations on navigation techniques

Taking advantage of high-degree nodes

When a given node is not the desired node, and neither are its
neighbors, then instead of picking an unvisited neighbor
uniformly at random to move to next, one chooses the unvisited
neighbor with the highest degree.
As higher degree nodes have more neighbors, this not only leads
to observing more nodes on a given step, but also then leads to
improved opportunities (through more draws) of finding even
higher degree nodes.
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Navigation in a random network Variations on navigation techniques

Taking advantage of high-degree nodes (Cont.)

This process quickly results in searches in which most of the
nodes being searched are at the high end of the distribution.

* For instance, in the power network, after a few steps most of the
nodes examined have degree near M, and so a rough
approximation for the expected time of search is then n

M , which
for M = n

1
γ−1 becomes n

γ−2
γ−1 .

This method is significantly quicker than simply following links
chosen uniformly at random.
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Navigation in a random network Variations on navigation techniques

Taking advantage of high-degree nodes (Cont.)

The size of improvement depends on γ:
If γ is close to 2, then higher-degree nodes have more weight in
the distribution.

⇒ One naturally finds the very largest degree nodes simply by
following random links.
If γ is close to 3, then higher-degree nodes are a bit rarer.

⇒ There is more of an improvement from following a degree-based
search algorithm.
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Tree-structure model and homophily

Milgram’s experiment

Navigating a network should take a time that is proportional to n
in a regular or Poisson network, and some lower power of n if the
network’s degree distribution follows a power law.
This seems inconsistent with the Milgram small-world
experiments.

In the experiment, people were able to get a letter to a target in a
median number of 5 steps, of those that were successful.
This was in a population on the order of hundreds of millions of
people, so that even the square root of n is on the order of 10,000.
Sending the letter to very highly connected individuals is not
enough to hit the median number of 5.
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Tree-structure model and homophily

Milgram’s experiment (Cont.)

It must be that the individuals in Milgram’s experiment were
taking advantage of additional structure of the network in order to
choose to whom to forward the letter.
The previous search algorithms that were based entirely on
network primitives without reference to any other characteristics
of the nodes.
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Tree-structure model and homophily

Homophily

Individuals would not just randomly choose a neighbor to send
the letter to, but would instead try to send the letter to someone
who has something in common with the target, or else to
someone who they think might be closer to someone who has
something in common with the target.
Evidence shows that people in small-world letter experiments are
primarily guided by occupation and/or geography in their choices
of whom to forward the letter to.
In situations where the formation of links is actually governed by
some sort of underlying social structure, there can be much more
efficient methods of navigation that use such social information.
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Tree-structure model and homophily Navigating in a binary tree

Binary tree

Consider a society of individuals who form a network that is described
by a hierarchy in the form of a binary tree as follows.

Each individual has a type/label.
The first group are of type 0. This group forms the root of the tree.
Next there are two groups, of types 00 and 01, which form the
second level of the tree.
Next there are four groups, of types 000, 001, 010 and 011, which
form the third level, etc.
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Tree-structure model and homophily Navigating in a binary tree

Binary tree (Cont.)

7.3. SEARCH AND NAVIGATION ON NETWORKS 275
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Figure 7.3.2. A Network Organized by Types, with 3 Agents of Each Type and a
Tree Structure Among Types.

the type immediately preceding them in the tree, and the two types that follow them

in the tree (unless they are at the last level of the tree). An example is pictured in

Figure 7.3.2.

The ìtreeî has K levels, so the vectors of types have length at most K.

We can think of types as specifying individuals by a list of attributes, which we can

think of as including all sorts of information such as their ethnicity, gender, profession,

education, physical attributes, hobbies, geographic location, favorite music, etc.; which

we code as vectors of 0 and 1ís.25

If there are m individuals of each type, then the society consists of

n = m
KX

k=0

2k = m
"
2K+1 ! 1

#
: (7.35)

individuals in total.

25While this may sound restrictive, it is also clear that we can arbitrarily closely approximate any

continuous variables by including a larger number of entries for a given attribute. It is important to

keep in mind how K will vary as we code individuals.
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Tree-structure model and homophily Navigating in a binary tree

Binary tree (Cont.)

A given individual is linked to all other individuals who are of the
same type, as well as all of those who are of a type that that differs
from the individual’s own type by the addition or deletion of one
terminal digit.

* So, someone of a type 0101 is connected to those with labels 010,
0101, 01010 and 01011.
They are connected to the individuals of the same type, as well as
the type immediately preceding them in the tree, and the two
types that follow them in the tree (unless they are at the last level
of the tree).
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Tree-structure model and homophily Navigating in a binary tree

Binary tree (Cont.)

We can think of types as specifying individuals by a list of
attributes, which we can think of as including all sorts of
information such as their ethnicity, gender, profession, education,
physical attributes, hobbies, geographic location, favorite music,
etc.; which we code as vectors of 0 and 1’s.
The “tree” has K levels, so the vectors of types have length at most
K.
If there are m individuals of each type, then the society consists of

n = m
K∑

k=0

2k = m(2K+1 − 1)

individuals in total.
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Tree-structure model and homophily Navigating in a binary tree

Binary tree (Cont.)

It takes at most 2(K− 1) links to get from one individual to
another.
Since n = m(2K+1 − 1), we have

K =
log(n+m)− logm

log 2
− 1.

Therefore, the maximum distance of 2(K− 1) is

2
log(n+m)− logm

log 2
− 3.

Thus, the maximum distance is growing proportionally to log n
for a fixed m.
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Tree-structure model and homophily Navigating in a binary tree

Binary tree (Cont.)

If the society has hundreds of millions of people, then the
maximum distance will be on the order of 10, and the median
distance even less.
This is much more in line with data from the Milgram
experiments, in which observed distances had a median of 5 and
maximum of 12 steps.
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Tree-structure model and homophily Navigating in a binary tree

Greedy algorithm

We pick an individual at random and give him/her a letter and
then ask him or her to get the letter to some other target agent in
the society with a known type.
For an individual with a type ℓ of length k:

If the target is a neighbor then send it directly.
If the target is not a neighbor, but has a type equal to ℓ plus some
additional entries (so lies further “down” the tree), then send it to
any acquaintance whose type has a (k+ 1)-st entry that matches
that of the target.
If the target is not a neighbor and has a type that does not match ℓ
in the first k entries, then send it to a neighbor who is “higher” in
the tree.
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Tree-structure model and homophily Navigating in a binary tree

Greedy algorithm: Remark

Implementing the algorithm only requires an individual to have
an idea of which neighbor lies closer to the target, rather than
having a full appreciation of the network structure.
The algorithm make use of the types of the individuals and the
underlying social structure that indicates where different
individuals appear in the tree.
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Tree-structure model and homophily Navigation with general homophily

Homophily

Let individuals be described by vectors of 0’s and 1’s, but such that
each type is exactly K entries long.

* This is equivalent to only considering the individuals whose types
lie at the leaves of the tree.
The social distance xij between two individuals i and j is defined as
follows.

If two individuals are of the same type, let their distance be 1.
Two individuals who differ only in their last entry are at a distance
of 2.
Individuals whose first point of difference is their second to last
entry or later are at a distance of 4.
Individuals whose first point of difference is the third to last entry
are at a distance of 6, and so forth.
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Tree-structure model and homophily Navigation with general homophily

Homophily (Cont.)

The social distance keeps track of how many links one would have
to travel in the tree to get from one type at the bottom row to
some other type at a bottom row.
These distances are just “social” distances, which are some
measures of similarity, but do not yet correspond to actual
distances in the network.

Xiang Sun Social and Economic Networks 2019 Fall 50 / 106



Tree-structure model and homophily Navigation with general homophily

Random network

The random network is then formed as follows.
Uniformly at random pick a node i.
Next pick a distance of x ∈ {1, 2, 4, 6, . . . , 2(K− 1)}, where K is
the depth of the social tree, with probabilities ce−αx, where c
normalizes the probabilities to sum to one and α is a parameter
that adjusts how sensitive the link formation process is to
similarity.
Once x is chosen, then uniformly at random select a node j at that
distance x from i and connect those nodes (provided there is not
already a connection).
Repeat this process until some average number of links per node,
d, has been reached.
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Tree-structure model and homophily Navigation with general homophily

Random network (Cont.)

When α is high, then nodes will form most of their links to other
nodes that are more similar to themselves.
When α is low, then the links are formed more uniformly at
random.
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Tree-structure model and homophily Navigation with general homophily

Greedy algorithm

Since this is a random network, it is possible that there will not
exist a path between two nodes.
Nevertheless, individuals can still follow a greedy algorithm of
forwarding the letter to the neighbor who has a minimal social
distance xij to the target, although that might no longer be a fully
optimal algorithm given that the network structure is now
randomly determined.
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Simulation

Watts, Dodds and Newman construct such random networks
through simulation, and then examine the results of following the
above described algorithm for randomly selected pairs of nodes.
They set population size n = 108, average degree d = 300, the
“homophily parameter” α = 1, work with a tree with ten branches
at each level, and 100 individuals in each group at the leaf of a
hierarchy.
They then posit a probability of .25 that a message is lost during
any step, so that it is possible that some messages never reach their
targets.
Based on this, they measure the average distance of messages that
eventually reach their targets and find it to be about 6.7, which is
quite close to the 6.5 from the Milgram experiments.
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1 Navigation in a random network
The environment without a network structure
Search in a network
Variations on navigation techniques

2 Tree-structure model and homophily
Navigating in a binary tree
Navigation with general homophily
Search efficiency/navigation speed

3 Social structure and decentralized search
One-dimensional model
Two-dimensional model
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Efficiency of decentralized search

Kleinberg proves that there exist parameter values for which as n
grows, two nodes picked uniformly at random will be connected
at a distance of at most O(log n) with a probability of at least
1− ε(n) for some function ε(n) → 0.
Kleinberg also shows that it is critical for to be exactly 1 in order
for such a result to hold.

If becomes too small, then the network begins to resemble a
uniformly random network, which has a longer navigation time.
If is too large, then the network connections are only formed to
nearby nodes.
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Network with homophily

Consider a set of n nodes.
The primitive distances between nodes are described by a
hierarchical structure of a tree. The tree T has b ≥ 2 branches at
each level, and has n leaves.

* n = bK where K = logb n is the depth of the tree T.
The distance between two nodes i and j, denoted by xij, is half of
the distance in the tree between two nodes i and j.

⇒ xij corresponds to the depth of the smallest subtree that contains
both i and j.
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Network with homophily (Cont.)

xij is not the distance in the random network that will be formed
based on the tree, but just an auxiliary distance which might be
thought of as some primitive measure of how dissimilar two
nodes are.
For each node i, form d directed links, where the node at the other
end of a given link is formed is chosen independently at random
where the probability of choosing node j is proportional to b−αxij .
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Efficiency of decentralized search

Theorem (Kleinberg 2000)
If α = 1 and d ≥ c(logb(n))2 for some c > 0, then there exists a
decentralized algorithm for which search time is polylogarithmic
(with exponent 1).
If α ̸= 1, then there is no polylogarithmic degree for which there
exists a decentralized algorithm with a search time that is
polylogarithmic.

Let us say that the search time is polylogarithmic if there exists for
which a starting node and target node picked uniformly at random are
connected by a directed path of length at most O((log n)γ) with a
probability of at least 1− ε(n) for some function ε(n) → 0.
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Normalizing constant

In the construction of the random network, the neighbors at
different distances are assigned with different probabilities.
The normalizing constant of the distribution of distances over
nodes linked to by node i is

Z =
∑
j ̸=i

b−xij =

logb n∑
k=1

(b− 1)bk−1 · b−k =
b− 1

b
logb n ≤ logb n.

Xiang Sun Social and Economic Networks 2019 Fall 60 / 106



Tree-structure model and homophily Search efficiency/navigation speed

Subtree T′ and T′′

Uniformly at random select a starting node i and a target node j.
Let them be a “social” (not network) distance xij apart, which is
the depth of the smallest subtree T′ of the tree T that contains
them both.
Consider the subtree T′′ of depth (xij − 1) that contains j.
Since i is at a distance of xij from each leaf in T′′ and there are
bxij−1 leaves in T′′, the probability that i is not directedly linked to
any leaf in T′′ is(
1− bxij−1b−xij

Z

)d
≤

(
1− 1

logb n

)c(logb n)2 → e−c logb n = n−c/ log b.

* The probability that i fails to have a directed link to some node in
T′′ is at most n−c/ log b.
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Subtree T′ and T′′ (Cont.)

The probability that i fails to have a directed link to some node in
T′′ is at most n−c/ log b.
If there is a directed link to some node in T′′, take one to a node
(denoted by i′) in the smallest subtree possible that contains j.
This new tree has depth no more than xij − 1.
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Iteration

Repeat the argument starting from i′.
We will establish the same upper bound on the probability of
failure to find a new directed link to a further subtree.
Given the maximal depth of the tree T, it takes at most xij ≤ logb n
steps in this manner to reach the target j from the starting node i
and thus the search time is polyalgorithmic with exponent 1.
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Total time

The probability of a failure at any step is at most n−c/ log b.
So the overall probability of failing to find a directed path is at
most logb n · n−c/ log b, which converges to 0 as n grows.
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Interpretation

The size of the subtree is balanced by the probability that a link
goes to that subtree.

There are few nodes close-by in terms of social distance, but they
have a proportionally higher probability of being linked to;
There are more nodes that are further away in terms of social
distance and they have a proportionally lower probability of being
linked to.

When α = 1 the balance is just right so that we end up with a sort
of uniformity in the distribution over the “social distances” that
different links span.

Xiang Sun Social and Economic Networks 2019 Fall 65 / 106



Tree-structure model and homophily Search efficiency/navigation speed

α < 1

The normalizing constant Z is such that for large n

Z =
∑
j ̸=i

b−αxij =

logb n∑
k=1

(b− 1)bk−1b−αk ≥ n1−α

b
.

Consider a sub-tree T′ containing a target node j and having
between nγ and bnγ leaves, where 0 < γ < 1− α.
For any node i′ not in T′, the probability that i′ has any link into T′

is
1−

(
1− 1

Z
bnγ

)d
≤ d bnγ

n1−α/b
= dbnγ+α−1.
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α < 1 (Cont.)

For any polylogarithmic d, the expression nγ+α−1 dominates the
expression.

⇒ With a high probability, it will still take more than a
polylogarithmic number of draws of nodes before finding any one
with a link into T′.
In any decentralized algorithm, with high probability it will take
more than a polylogarithmic number of steps from a starting node
i outside of T′ before any link into T′ is found.
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α > 1

Z is larger than some constant Z0.
Consider a node i such that the distance of i to the target j is
logb n, so that the smallest subtree containing i and j is T.
Such a starting node and target will be selected with a
nonvanishing probability (in fact of just more than b−1

b ).
Let T′ be the tree of depth logb n− 1 that contains j.
Each of i’s directed out-links go to any given node in T′ with a
probability of no more than b−α logb n/Z0 = n−α/Z0.
Thus, the probability that any of i’s directed links goes to a node in
T′ is at most dnn−α

Z0
.

In any decentralized algorithm, with high probability it will take
more than a polylogarithmic number of steps from a starting node
i outside of T′ before any link into T′ is found.
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Interpretation

When α differs from 1, then the proportionality is upset and one
ends up with

(α < 1) either a limiting probability that almost all links span
socially dissimilar nodes, which makes it difficult to eventually
approach a node;
(α > 1) or else almost all links span socially similar nodes, which
makes it difficult to reach between distant nodes.
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Social structure and decentralized search

Watt-Strogatz model

Watt-Strogatz model:
lattice structure,
randomly rewiring (adding) links.

⇒ Short average path lengths and high clustering.

Xiang Sun Social and Economic Networks 2019 Fall 71 / 106



Social structure and decentralized search

Decentralized search inWatt-Strogatz model

There are n nodes.
We suppose that a starting node s is given a message that it must
forward to a target node t, passing it along edges of the network
(generated by Watt-Strogatz model).
Initially s only knows the location of t, but it does not know the
random edges out of any node other than itself.
Each intermediate node along the path has this partial
information as well, and it must choose which of its neighbors to
send the message to next.
These choices amount to a collective procedure for finding a path
from s to t.
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Social structure and decentralized search

Fail to search effectively
Let K be the set of all nodes within distance less than

√
n of the

target t.
With high probability, the starting point s of the search lies
outside K.

s

t distance
√
ndistance

√
n

K
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Social structure and decentralized search

Fail to search effectively (Cont.)

Because long-range contacts are created uniformly at random, the
probability that any one node has a long-range contact inside K is
equal to the size of |K|

n ≤ 2
√
n

n = 2√
n .

Therefore, any decentralized search strategy will need at least
√
n
2

steps in expectation to find a node with a long-range contact in K.
On the other hand, as long as it doesn’t find a long-range link
leading into K, it can’t reach the target in less than

√
n steps, since

it would take this long to “walk” step-by-step through K using
only the connections among local contacts.
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Fail to search effectively (Cont.)

From those, one can show that the expected time for any
decentralized search strategy to reach t must be at least
proportional to

√
n.

The decentralized search in the Watts-Strogatz model will
necessarily require a large number of steps to reach a
target—much larger than the true length of the shortest path.
Key: The long contacts that make the world small are “too
random” in this model.
The long contacts are completely unrelated to the similarity
among nodes that produces the homophily-based links, so they’re
hard for people to use reliably.
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Social structure and decentralized search One-dimensional model

1 Navigation in a random network
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Social structure and decentralized search One-dimensional model

Variant of WSmodel

We introduce one extra quantity that controls the “scales” spanned
by the long-range links.
We have nodes on a ring, and each node still has edges to each
other node within 1 steps.
Each node has 1 random edge that is generated in a way that
decays with distance, controlled by a clustering exponent α as
follows.

For two nodes v and w, let d(v,w) denote the number of steps
between them. (This is their distance if one had to walk along
adjacent nodes on the ring.)
In generating a random edge out of v, we have this edge link to w
with probability proportional to d(v,w)−α.
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Social structure and decentralized search One-dimensional model

Clustering exponent

The original model corresponds to α = 0, since then the links are
chosen uniformly at random.
When α is very small, the long-range links are “too random,” and
can’t be used effectively for decentralized search (as we saw
specifically for the case α = 0 above);
When α is large, the long-range links are “not random enough,”
since they simply don’t provide enough of the long-distance jumps
that are needed to create a small world.
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Social structure and decentralized search One-dimensional model

Efficiency of decentralized search

Theorem (Kleinberg 2000)
1 For α = 1, there is a decentralized algorithm so that the expected

delivery time is at most β1(log n)2 for some constant β1.
2 For α ∈ [0, 1), the expected delivery time of any decentralized

algorithm is at least βαn
1−α
2 for some constant βα.

3 For α ∈ (1, 2), the expected delivery time of any decentralized
algorithm is at least βαnα−1 for some constant βα.
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Social structure and decentralized search One-dimensional model

Interpretation

One can show that for every exponent α ≠ 1, there is a constant
βα (depending on α), so that it takes at least proportional to nc
steps in expectation for any decentralized search strategy to reach
the target in a network generated with exponent α.
In the limit, as n becomes large, decentralized search with
exponent α = 1 requires time that grows like a polynomial in
log2 n, while decentralized search at any other exponent requires a
time that grows like a polynomial in n—exponentially worse.
The exponent α = 1 on the ring is optimally balanced between
producing networks that are “too random” for search, and those
that are not random enough.
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Social structure and decentralized search One-dimensional model

Myopic search

Myopic search: When a node v is holding the message, it passes it
to the contact that lies as close to t on the ring as possible.
Myopic search can clearly be performed even by nodes that know
nothing about the network other than the locations of their friends
and the location of t, and it is a reasonable approximation to the
strategies used by most people in Milgram-style experiments.
Result: Myopic search finds paths that are surprisingly short.
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Social structure and decentralized search One-dimensional model

Myopic search: Illustration
632 CHAPTER 20. THE SMALL-WORLD PHENOMENON
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Figure 20.15: In myopic search, the current message-holder chooses the contact that lies
closest to the target (as measured on the ring), and it forwards the message to this contact.

A. The Optimal Exponent in One Dimension

Here, then, is the model we will be looking at. A set of n nodes are arranged on a one-

dimensional ring as shown in Figure 20.14(a), with each node connected by directed edges

to the two others immediately adjacent to it. Each node v also has a single directed edge

to some other node on the ring; the probability that v links to any particular node w is

proportional to d(v, w)�1, where d(v, w) is their distance apart on the ring. We will call the

nodes to which v has an edge its contacts: the two nodes adjacent to it on the ring are its

local contacts, and the other one is its long-range contact. The overall structure is thus a ring

that is augmented with random edges, as shown in Figure 20.14(b). Again, this is essentially

just a one-dimensional version of the grid with random edges that we saw in Figure 20.5.1

Myopic Search. Let’s choose a random start node s and a random target node t on this

augmented ring network. The goal, as in the Milgram experiment, is to forward a message

from the start to the target, with each intermediate node on the way only knowing the

locations of its own neighbors, and the location of t, but nothing else about the full network.

The forwarding strategy that we analyze, which works well on the ring when q = 1, is a

1We could also analyze a model in which nodes have more outgoing edges, but this only makes the search
problem easier; our result here will show that even when each node has only two local contacts and a single
long-range contact, search can still be very e�cient.
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Myopic search: Illustration (Cont.)
The myopic path that would be constructed if we chose a as the
start node and i as the target node in the network.

Node a first sends the message to node d, since among a’s contacts
p, b, and d, node d lies closest to i on the ring.
Then d passes the message to its local contact e, and e likewise
passes the message to its local contact f, since the long-range
contacts of both d and e lead away from i on the ring, not closer to
it.
Node f has a long-range contact h that proves useful, so it passes it
to h. Node h actually has the target as a local contact, so it hands it
directly to i, completing the path in five steps.

Notice that this myopic path is not the shortest path from a to i. If
a had known that its friend b in fact had h as a contact, it could
have handed the message to b, thereby taking the first step in the
three-step a− b− h− i path.
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Phase j

The number of steps required by myopic search is a random
variable X, and we want to show that E[X] is relatively small.
As the message moves from s to t, we’ll say that it’s in phase j of the
search if its distance from the target is between 2j and 2j+1.
The number of different phases is at most log2 n.
We can write X as the total time taken by the search is simply the
sum of the times taken in each phase

X = X1 + X2 + · · ·+ Xlog2 n.

Thus,
E[X] = E[X1] + E[X2] + · · ·+ E[Xlog2 n].

We want to show that E[Xj] is at most proportional to log2 n.
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Phase j (Cont.)634 CHAPTER 20. THE SMALL-WORLD PHENOMENON
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Figure 20.16: We analyze the progress of myopic search in phases. Phase j consists of the
portion of the search in which the message’s distance from the target is between 2j and 2j+1.

We can write X, the number of steps taken by the full search, as

X = X1 + X2 + · · · + Xlog n;

that is, the total time taken by the search is simply the sum of the times taken in each phase.

Linearity of expectation says that the expectation of a sum of random variables is equal to

the sum of their individual expectations, and so we have

E [X] = E [X1 + X2 + · · · + Xlog n] = E [X1] + E [X2] + · · · + E [Xlog n] .

We will now show — and this is the crux of the argument — that the expected value of each

Xj is at most proportional to log n. In this way, E [X] will be a sum of log n terms, each at

most proportional to log n, and so we will have shown that E [X] is at most proportional to

(log n)2.

This will achieve our overall goal of showing that myopic search is very e�cient with the

given distribution of links: the full network has n nodes, but myopic search constructs a

path that is exponentially smaller: proportional to the square of log n.
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The normalizing constant
We’ve been saying all along that v forms its long-range link to w
with probability proportional to d(v,w)−α, but what is the
constant of proportionality (denoted by Z)?
There are two nodes at distance 1 from v, two at distance 2, and
more generally two at each distance d up to n

2
.

Therefore,
Z ≤ 2

(
1 +

1

2
+

1

3
+ · · ·+ 1

n/2

)
.

Since 1 + 1
2
+ 1

3
+ · · ·+ 1

k ≤ 1 +
∫ k
1

1
x dx = 1 + ln k, we have

Z ≤ 2(1 + ln(n
2
)) ≤ 2 + 2 log2(

n
2
) = 2 log2 n.

Thus, the probability v links to w is
1

Z
d(v,w)−α ≥ 1

2 log2 n
d(v,w)−α.
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Time spent in phase j
Consider a particular phase j of the search, when the message is at a
node v whose distance to the target t is some number d between 2j and
2j+1.

636 CHAPTER 20. THE SMALL-WORLD PHENOMENON
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Figure 20.18: At any given point in time, the search is in some phase j, with the message
residing at a node v at distance d from the target. The phase will come to an end if v’s long-
range contact lies at distance  d/2 from the target t, and so arguing that the probability
of this event is large provides a way to show that the phase will not last too long.

Plugging in k = n/2 to the expression on the right-hand side of inequality (20.1) above, we

get

Z  2(1 + ln(n/2)) = 2 + 2 ln(n/2).

For simplicity, we’ll use a slightly weaker bound on Z, which follows simply from the obser-

vation that ln x  log2 x:

Z  2 + 2 log2(n/2) = 2 + 2(log2 n)� 2(log2 2) = 2 log2 n.

Thus, we now have an expression for the actual probability that v links to w (including its

constant of proportionality): the probability v links to w is

1

Z
d(v, w)�1 � 1

2 log n
d(v, w)�1

.
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Social structure and decentralized search One-dimensional model

Time spent in phase j (Cont.)

One way for phase j to come to an end immediately would be for
v’s long-range contact w to be at distance ≤ d

2
from t.

In this case, v would necessarily be the last node to belong to
phase j.
We want to show that this immediate halving of the distance in
fact happens with reasonably large probability.
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Time spent in phase j (Cont.)

Let I be the set of nodes at distance ≤ d
2
from t.20.7. ADVANCED MATERIAL: ANALYSIS OF DECENTRALIZED SEARCH 637

t

s

v

w
distance d/2distance d/2

distance d

there are d+1 nodes within distance 

d/2 of t, and each has prob. at least 

proportional to 1/(d log n)

Figure 20.19: Showing that, with reasonable probability, v’s long-range contact lies within
half the distance to the target.

Analyzing the Time Spent in One Phase of Myopic Search. Finally, we come to

the last and central step of the analysis: showing that the time spent by the search in any

one phase is not very large. Let’s choose a particular phase j of the search, when the message

is at a node v whose distance to the target t is some number d between 2j and 2j+1. (See

Figure 20.18 for an illustration of all this notation in context.) The phase will come to an

end once the distance to the target decreases below 2j, and we want to show that this will

happen relatively quickly.

One way for the phase to come to an end immediately would be for v’s long-range contact

w to be at distance  d
2 from t. In this case, v would necessarily be the last node to belong

to phase j. So let’s show that this immediate halving of the distance in fact happens with

reasonably large probability.

The argument is pictured in Figure 20.19. Let I be the set of nodes at distance  d
2 from
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Social structure and decentralized search One-dimensional model

Time spent in phase j (Cont.)

There are d+ 1 nodes in I: this includes node t itself, and d
2
nodes

consecutively on each side of it.
Each node w in I has distance at most 3

2
d from v: the farthest one

is on the “far side” of t from v, at distance d+ d
2
.

Therefore, each node w in I has probability at least

1

log2 n
d(v,w)−α ≥ 1

log2 n
1

3d/2
=

1

3d log2 n

of being the long-range contact of v.
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Social structure and decentralized search One-dimensional model

Time spent in phase j (Cont.)
Since there are more than d nodes in I, the probability that one of
them is the long-range contact of v is at least

d · 1
3d log2 n

= 1
3 log2 n

.

If one of these nodes is the long-range contact of v, then phase j
ends immediately in this step.
Therefore, in each step that it proceeds, phase j has a probability of
at least 1

3 log2 n
of coming to an end, independently of what has

happened so far.
To run for at least i steps, phase j has to fail to come to an end
(i− 1) times in a row, and so the probability that phase j runs for
at least i steps is at most

(1− 1
3 log2 n

)i−1.
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Social structure and decentralized search One-dimensional model

Time spent in phase j (Cont.)

We have

E[Xj] = 1·Prob(Xj = 1)+2·Prob(Xj = 2)+3·Prob(Xj = 3)+· · · .

It is equal to

Prob(Xj ≥ 1) + Prob(Xj ≥ 2) + Prob(Xj ≥ 3) + · · · .

Thus,

E[Xj] ≤ 1 +
(
1− 1

3 log2 n

)1

+
(
1− 1

3 log2 n

)2

+ · · ·

=
1

1− (1− 1
3 log2 n

)
= 3 log2 n.
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Social structure and decentralized search One-dimensional model

Total time spent in myopic search

E[X] = E[X1] + E[X2] + · · ·+ E[Xlog2 n] ≤ 3(log2 n)
2.
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Social structure and decentralized search One-dimensional model

0 ≤ α < 1

Let K be the set of all nodes within distance less than nγ of the
target t, where γ = 1−α

2
.

A node v forms a long-range link with node w with probability
proportional to d(v,w)−α. Here, the constant of proportionality is
1
Z with Z =

∑
d(v,w)−α.

A node has ≈ 2 neighbors at distance d from itself. This implies
that

Z =

n/2∑
d=1

2 · d−α ≈ d1−α = n2γ,

where the second relation follows using an integral
approximation.
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Social structure and decentralized search One-dimensional model

0 ≤ α < 1 (Cont.)

Hence, the probability that any one node has a long range contact
inside the arc satisfies ≤ nγ

n2γ = n−γ (since there are nγ nodes
inside the arc).
This shows that any decentralized search algorithm will need at
least nγ = n 1−α

2 steps in expectation to find a node with a
long-range contact in K.
On the other hand, as long as it doesn’t find a long-range link
leading into K, it can’t reach the target in less than nγ steps, since it
would take this long to “walk” step-by-step through K using only
the connections among local contacts.
From those, one can show that the expected time for any
decentralized search strategy to reach t must be at least
proportional to n 1−α

2 .
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Social structure and decentralized search One-dimensional model

α > 1

The proportionality constant Z = constant (independent of n) for
large n.
The expected length of a typical long-range contact is given by

E[length of a long-range contact] =
1

Z

n/2∑
d=1

d · d−α ≈ n2−α,

where the last relation follows by an integral approximation.
Hence, the expected time is at least n/2

n2−α ≈ nα−1.
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Social structure and decentralized search One-dimensional model

Interpretation

When α < 1, excessive search.
⇒ A set of nodes centered at t is somehow “impenetrable”—very

hard for the search to enter.
When α > 1, since even the long-range links are relatively short,
it takes a long time for decentralized search to find links that span
sufficiently long distances.

⇒ This makes it hard to quickly traverse the distance from the
starting node to the target
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Social structure and decentralized search Two-dimensional model

1 Navigation in a random network
The environment without a network structure
Search in a network
Variations on navigation techniques

2 Tree-structure model and homophily
Navigating in a binary tree
Navigation with general homophily
Search efficiency/navigation speed

3 Social structure and decentralized search
One-dimensional model
Two-dimensional model
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Social structure and decentralized search Two-dimensional model

Two-dimensional model

Kleinberg introduces a simple framework that encapsulates the
paradigm of WS—rich in local connections with a few long range
links.
The starting point is an n× n two-dimensional grid with directed
edges (instead of an undirected ring).
The nodes are identified with the lattice points, i.e., a node v is
identified with the lattice point (i, j) with i, j ∈ {1, . . . , n}.
For any two nodes v and w, we define the distance between them
d(v,w) as the number of grid steps between them,

d
(
(i, j), (k, ℓ)

)
= |k− i|+ |ℓ− j|.
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Social structure and decentralized search Two-dimensional model

Two-dimensional model (Cont.)

Each node is connected to its 4 local neighbors directly—his local
contacts.
Each node also has a random edge to another node—his long
range contact.
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Social structure and decentralized search Two-dimensional model

Two-dimensional model (Cont.)

The model has a parameter that controls the “scales spanned by
the long-range links.”
The random edge is generated in a way that decays with distance,
controlled by a clustering exponent α: In generating a random
edge out of v, we have this edge link to w with probability
proportional to d(v,w)−α.

When α = 0, we have the uniform distribution over long-range
contacts—the distribution used in the model of WS.
As α increases, the long-range contact of a node becomes more
clustered in its vicinity on the grid.
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Social structure and decentralized search Two-dimensional model

Two-dimensional model (Cont.)
618 CHAPTER 20. THE SMALL-WORLD PHENOMENON

(a) A small clustering exponent (b) A large clustering exponent

Figure 20.5: With a small clustering exponent, the random edges tend to span long distances
on the grid; as the clustering exponent increases, the random edges become shorter.

We will evaluate di↵erent search procedures according to their delivery time — the expected

number of steps required to reach the target, over a randomly generated set of long-range

contacts, and randomly chosen starting and target nodes.

Unfortunately, given this set-up, one can prove that decentralized search in the Watts-

Strogatz model will necessarily require a large number of steps to reach a target — much

larger than the true length of the shortest path [248]. As a mathematical model, the Watts-

Strogatz network is thus e↵ective at capturing the density of triangles and the existence of

short paths, but not the ability of people, working together in the network, to actually find

the paths. Essentially, the problem is that the weak ties that make the world small are “too

random” in this model: since they’re completely unrelated to the similarity among nodes

that produces the homophily-based links, they’re hard for people to use reliably.

One way to think about this is in terms of Figure 20.4, a hand-drawn image from Mil-

gram’s original article in Psychology Today. In order to reach a far-away target, one must

use long-range weak ties in a fairly structured, methodical way, constantly reducing the dis-

tance to the target. As Milgram observed in the discussion accompanying this picture, “The

geographic movement of the [letter] from Nebraska to Massachusetts is striking. There is a

progressive closing in on the target area as each new person is added to the chain” [297]. So

it is not enough to have a network model in which weak ties span only the very long ranges;

it is necessary to span all the intermediate ranges of scale as well. Is there a simple way to

adapt the model to take this into account?

Left: A small clustering exponent
Right: A large clustering exponent
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Social structure and decentralized search Two-dimensional model

Efficiency of decentralized search

Theorem (Kleinberg 2000)
1 For α = 2, there is a decentralized algorithm so that the expected

delivery time is at most β2(log n)2 for some constant β2.
2 For α ∈ [0, 2), the expected delivery time of any decentralized

algorithm is at least βαn
2−α
3 for some constant βα.

3 For α ∈ (2, 3), the expected delivery time of any decentralized
algorithm is at least βαnα−2 for some constant βα.
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Social structure and decentralized search Two-dimensional model

From one-dimensional model

First, we use the structure when we determine the normalizing
constant Z.
Second, we use the structure to argue that there are at least d
nodes within distance d

2
of the target t.

⇒ This factor of d cancels the d−1 in the link probability.
⇒ The probability of halving the distance to the target in any given

step is at least proportional to 1
log2 n

, regardless of the value of d.
* With link probability d−1 on the ring, the probability of linking to

any one node exactly offsets the number of nodes close to t, and so
myopic search makes progress at every possible distance away
from the target.
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Social structure and decentralized search Two-dimensional model

From one-dimensional model (Cont.)

In a two-dimensional model, there are at least d2 nodes within
distance d

2
of the target.

⇒ To get the same nice cancellation property, we should have v link
to each node w with probability proportional to d(v,w)−2, and
this exponent −2 is what we will use.
A similarly direct adaptation of the analysis shows that
decentralized search is efficient for networks built by adding
long-range contacts to grids in D > 2 dimensions, when the
exponent α is equal to D.
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Social structure and decentralized search Two-dimensional model

Simulation
620 CHAPTER 20. THE SMALL-WORLD PHENOMENON
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Figure 20.6: Simulation of decentralized search in the grid-based model with clustering
exponent q. Each point is the average of 1000 runs on (a slight variant of) a grid with 400
million nodes. The delivery time is best in the vicinity of exponent q = 2, as expected; but
even with this number of nodes, the delivery time is comparable over the range between 1.5
and 2 [248].

large network size — than with any other exponent. But even without the full details of the

proof, there’s a short calculation that suggests why the number 2 is important. We describe

this now.

In the real world where the Milgram experiment was conducted, we mentally organize

distances into di↵erent “scales of resolution”: something can be around the world, across

the country, across the state, across town, or down the block. A reasonable way to think

about these scales of resolution in a network model — from the perspective of a particular

node v — is to consider the groups of all nodes at increasingly large ranges of distance from

v: nodes at distance 2-4, 4-8, 8-16, and so forth. The connection of this organizational

scheme to decentralized search is suggested by Figure 20.4: e↵ective decentralized search

“funnels inward” through these di↵erent scales of resolution, as we see from the way the

letter depicted in this figure reduces its distance to the target by approximately a factor of

two with each step.

So now let’s look at how the inverse-square exponent q = 2 interacts with these scales of

resolution. We can work concretely with a single scale by taking a node v in the network,

and a fixed distance d, and considering the group of nodes lying at distances between d and

2d from v, as shown in Figure 20.7.

Now, what is the probability that v forms a link to some node inside this group? Since

area in the plane grows like the square of the radius, the total number of nodes in this group

is proportional to d
2. On the other hand, the probability that v links to any one node in

the group varies depending on exactly how far out it is, but each individual probability

is proportional to d
�2. These two terms — the number of nodes in the group, and the

Each point is the average of 1000 runs on (a slight variant of) a
grid with 400 million nodes.
The delivery time is best in the vicinity of exponent α = 2, as
expected; but even with this number of nodes, the delivery time is
comparable over the range between 1.5 and 2.
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