
T-79.7003: Graphs and Networks Fall 2013

Lecture 2: September 20
Lecturer: Charalampos E. Tsourakakis Thresholds for subgraphs and connectivity

2.1 Thresholds

In the previous lecture we discussed the existence of thresholds of monotone properties. Let’s begin with a
formal definition of what we described the previous time.

Definition 2.1 (Threshold) A function p∗ = p(n) is a threshold for a monotone increasing property1 P
in G(n, p) if

lim
n→+∞

Pr [G(n, p) ∈ P] =

{
1 if p∗ = o(p)(p∗ � p)
0 if p = o(p∗)(p � p∗)

as n → +∞.

Last time, we discussed the existence of thresholds for various monotone properties. It is natural to ask
whether all monotone properties have a threshold. The answer is stated as a theorem without proof.

Theorem 2.2 Every non-trivial monotone property has a threshold.

Today, we will discuss two monotone increasing properties, which according to the above theorem have a
threshold: the appearance of a K4 and connectivity. Before we go into the main results of today’s class, we
will go over some basic tools.

2.2 Basic tools

We will use the following inequalities to bound the binomial coefficient
(
n
k

)
.

(n

k

)k

≤
(

n

k

)
≤
(en

k

)k

.

We will also need to be able to upper- and lower-bound certain expressions. Here are some useful inequalities.

(1− x)n ≥ 1− nx, ∀0 ≤ x ≤ 1.

ex ≥ x + 1, ∀x.

1Of course, in the case of monotone decreasing properties, the two cases above will be flipped.
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ex ≤ x2 + x + 1, ∀0 < |x| < 1.

log (1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . , ∀0 < |x| < 1.

( n∑
i=1

a2
i

)( n∑
i=1

b2
i

)
≥
( n∑

i=1

aibi

)2
.

The above inequality is the Cauchy-Schwartz inequality, which is a special case of Hölder’s inequality for
p = q = 2.

Theorem 2.3 (Hölder’s inequality) For any positive real numbers p, q such that 1
p + 1

q = 1

( n∑
i=1

|aibi|
)
≤
( n∑

i=1

|xi|p
)1/p( n∑

i=1

|xi|p
)1/p

.

The following inequalities are basic probabilistic tools.

Theorem 2.4 (Markov’s Inequality) Let X a be non-negative integer valued random variable. Then,

Pr [X ≥ t] ≤ E [X]
t

.

Proof:

E [X] =
∑
k≥1

kPr [X = k] ≥
∑
k=t

kPr [X = k] ≥ t
∑
k=t

Pr [X = k] = tPr [X ≥ t].

We will use this inequality in two ways in our class. First, it is the basis of the first moment method. In many
cases we will need to show that Pr [X > 0] = o(1), where X is a non-negative random variable of interest. It
turns out that computing E [X] can be much easier than directly computing Pr [X > 0] in numerous cases.
If E [X] = o(1) then by Markov’s inequality

Pr [X > 0] ≤ E [X]

we obtain that X = 0 whp . Furthermore, we will use Markov’s inequality to obtain probabilistic inequalities
for higher order moments. This is a special case of the following observation. If φ is a strictly monotonically
increasing function, then

Pr [X ≥ t] = Pr [φ(X) ≥ φ(t)] ≤ E [φ(X)]
φ(t)

.
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For instance, if φ(x) = x2, then we obtain Chebyshev’s inequality.

Theorem 2.5 (Chebyshev’s Inequality) Let X be any random variable. Then,

Pr [|X − E [X] | ≥ t] ≤ Var [X]
t2

.

A simple corollary of Chebyshev’s inequality is the following:

Corollary 2.6 (Second moment method) Let X be a non-negative integer valued random variable. Then,

Pr [X = 0] ≤ Var [X]
(E [X])2

.

For completeness, here is the proof.

Proof:

Pr [X = 0] ≤ Pr [|X − E [X] | ≥ E [X]] ≤ Var [X]
(E [X])2

.

The use of the above corollary is known as the second moment method. Here is how we will typically use it
in our class. Let the random variable X of interest be the sum of m indicator random variables X1, . . . , Xm,
where Pr [Xi = 1] = pi, i.e.,

X = X1 + . . . + Xm.

We will be interested in showing that X > 0 whp . Even if E [X] will tend to +∞ this does not suggest
that X > 0 whp . In order to prove this kind of statement, we will use the second moment method.
Since Pr [X = 0] ≤ Var[X]

(E[X])2 it will suffice to prove that Var[X]
(E[X])2 = o(1). The problem therefore is reduced to

computing or actually upper-bounding the variance.

In our typical setting,

Var [X] =
m∑

i=1

Var [Xi] +
∑
i 6=j

Cov [Xi, Xj ] ≤ E [X] +
∑
i 6=j

Cov [Xi, Xj ] .

To see how we obtained the inequality, notice that Var [Xi] = pi(1−pi) ≤ pi = E [Xi]. Hence by the linearity
of expectation

∑
i Var [Xi] ≤

∑
i E [Xi] = E [X]. The covariance of two random variables A,B is defined as

Cov [A,B] = E [AB]− E [A] E [B] .

In the case of indicator random variables we obtain the following expression:

Cov [Xi, Xj ] = Pr [Xi = Xj = 1]−Pr [Xi = 1]Pr [Xj = 1].

So, when we apply the second moment, the hard part it to upper bound the sum of covariances. Section 2.3
illustrates a use of the first and second moment methods.
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2.3 Emergence of a K4 in G(n, p)

A K4 is a complete graph on four vertices. Let X be the number of K4s in G(n, p). We will show that the
threshold value p∗ is equal to n−2/3. The expectation of X

E [X] =
(

n

4

)
p6.2

Let’s see what happens to E [X] if p � p∗ or equivalently p = p∗

ω(n) where ω(n) is a function that tends to
+∞ as n → +∞.

E [X] =
(

n

4

)
p6 = Θ

(
n4
(n−2/3

ω(n)

)6
)

= Θ

(
1(

ω(n)
)6
)

= o(1).

Hence by the first moment method we can conclude that when p � n−2/3

Pr [X > 0] ≤ E [X] = o(1),

or equivalently X = 0 whp . Now, we will prove that X > 0 whp when p∗ � p or equivalently p = p∗ω(n)
where ω(n) is a function that tends to +∞ as n → +∞. Notice now that the expected value of K4s goes to
infinity, namely

E [X] =
(

n

4

)
p6 = Θ

(
n4
(
n−2/3ω(n)

)6) = Θ

(
(ω(n))6

)
→ +∞.

However, this does not suggest that X > 0 whp . We need to apply the second moment method. First, let’s
define an indicator variable Xi for the i-th labeled copy of K4 in Kn, i = 1, . . . ,

(
n
4

)
. We can write

X = X1 + X2 + . . . + X(n
4).

What is the covariance of two indicator variables here? Well, let’s see how dependencies kick in. When two
copies of K4 share no edge then the respective indicator variables are independent. To see why observe that
in this case

Cov [Xi, Xj ] = Pr [Xi = Xj = 1]−Pr [Xi]Pr [Xj ] = p12 − p6p6 = 0.

Equivalently, for the case of K4 this happens if two K4 copies intersect in 0 or 1 vertex. We are left with two
cases, which are shown in figure 2.1. Let’s consider the covariance for case (a). What is the probability that
the two indicator variables are both 1? Since the two copies have two vertices in common, or equivalently 1
edge, the total number of edges is 11. Hence we get that the covariance is

Cov [Xi, Xj ] = p11 − p12.

Similarly, for case (b), we obtain that

2The number of edges in K4 is
`4
2

´
= 6.
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Figure 2.1: The two cases we need to consider in the covariance estimation for K4s. Intersections of the
two copies are highlighted with a shaded blue area.

Cov [Xi, Xj ] = p9 − p12.

Now we have to count how many pairs of indicator variables fall into case (a) and case (b). In case (a) we
have

(
n
6

)
ways to choose 6 out of n vertices and

(
6

2,2,2

)
ways to choose the specific labeled configuration.

Similarly for case (b), we have
(
n
5

)(
5

3,1,1

)
such pairs of indicator variables. Putting everything together gives

Var [X] ≤
(

n

4

)
p6 +

(
n

6

)(
6

2, 2, 2

)
p11 +

(
n

5

)(
5

3, 1, 1

)
p9 = o(n8p12) = o

(
(E [X])2

)
.

This concludes the proof that X > 0 whp when p∗ � p.

2.4 Connectivity

In this section we prove that the threshold p∗ for connectivity is log n
n . We break the proof of our main result

in small incremental steps. In Section 2.4.1 we simulate the transition using Matlab. I think it is a very good
practice to simulate certain properties you are interested into. It is not necessary but can help you see what
you will need to prove. For instance, in the case of connectivity, the simulation strongly indicates that as
we increase p and we get closer and closer to the connectivity threshold, the cause of G being disconnected
are isolated vertices.

In Section 2.4.2 we will discuss a crude way of upper bounding the expected number of connected components
of order k. Finally in Section 2.4.3 we prove our result. We break our proof into two parts:

• We prove that log n
n is the threshold for the existence of isolated vertices.

• Let Xk is the number of connected components of size k. We will prove that

Pr [X1 > 0] ≤ Pr [G is disconnected ] ≤ Pr [X1 > 0] + o(1).

2.4.1 Matlab simulation

Let’s use MATLAB to simulate what we are interested into. We will use David Gleich’s MATLAB BGL
library. You can find a link in the class Web page. When you download it, add it to your path.
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addpath(’C:\Users\tsourolampis\Libraries\Matlab\matlab_bgl’);
addpath(genpath(’C:\Users\tsourolampis\Libraries\Matlab\matlab_bgl’));

Let’s write a routine that creates a random binomial graph on n vertices.

function A = Gnp(n,p)

% Generates a random binomial graph on vertex set [n], edge probability p

A = double(rand(n) <= p);
A = triu(A,1);
A = A + A’;

Let’s search the threshold p∗.

n = 1000;
for p = 0 : 0.001 : 1

A = Gnp(n,p);
A = sparse(A);
if( max(components(A))== 1)

pstar = p;
break

end
end

When you run this little piece of code you will find a very good approximation of p∗ which is log n
n ≈ 0.007.

Let us look how the disconnected graph looks like when we are just below this threshold value.

A = Gnp(1000, 0.0068);
A = sparse(A);
[ci sizes] = components(A);
sizes

sizes =

998
1
1

This means that we have three connected components. Two vertices are isolated and all the rest are in the
same connected component. Let’s go a bit above p = 0.0068.

A = Gnp(1000, 0.00684);
A = sparse(A);
[ci sizes] = components(A);
sizes

sizes =
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999
1

Again, we see that the lack of connectivity is due to one isolated vertex. This is not a coincidence. It turns
out that as soon as isolated vertices disappear, the graph is connected whp . This is remarkable, as a simple
necessary condition for connectivity is sufficient. However at the same time, if you think a bit more about it,
it makes sense since the isolated vertices resist most to getting “swallowed” by the giant component (what
is more likely: a small or a large component will get “swallowed” by the giant component first? ).

2.4.2 Preliminaries

We will need to upper bound the expected number of connected components of size k in G(n, p).

Theorem 2.7 Let Xk be the number of connected components of order exactly k in G(n, p).

E [Xk] ≤
(

n

k

)
kk−2pk−1(1− p)k(n−k).

Proof: Consider a set of k vertices. There are
(
n
k

)
of them. What is the probability they form a connected

component? Well, the k vertices have to form a connected component, and at the same time there must
be no edge from that component to the rest of the graph. The first probability is upper bounded using a
simple union bound by the number of all spanning trees on k vertices which is kk−23 times pk−1 (k−1 is the
number of edges of a tree on k vertices). Finally, the probability that there is no edge from that connected
component to the rest of the graph is (1 − p)k(n−k) since there are k(n − k) possible edges between the
connected component and the rest of the graph, and none of them should exist.

2.4.3 Main result

Theorem 2.8 The threshold for the existence of isolated vertices is p∗ = log n
n .

Proof: Let X1 be the number of isolated vertices, i.e., vertices with degree 0. First, let’s write the number
of isolated vertices as a sum of indicator variables.

X1 = Z1 + . . . + Zn.

Here, Zi is 1 if vertex i has degree 0. This happens with probability (1−p)n−1. Now, we can use the linearity
of expectation to compute the expected value of X1. Specifically,

E [X1] =
n∑

i=1

E [Zi] =
n∑

i=1

Pr [deg(i) = 0] = n(1− p)n−1.

When p∗ � p

3Cayley’s theorem
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n(1− p)n−1 ≤ ne−p(n−1) = o(ne− log n) = o(1).

Hence, by the first moment method Pr [X1 > 0] = o(1). To prove that when p � p∗ then X1 > 0 whp
, we need to apply the second moment method. First, let’s try to understand why two indicator variables
Zi, Zj are correlated always. If someone asks you what is the probability of vertex j being isolated given
that vertex i is isolated, then you have some information about vertex j. Specifically, you know that edge
(i, j) is not there, since if it were, i would not have been isolated. This fact introduces dependencies, but
they are weak. So, let’s compute the covariance of two indicator random variables.

Cov [Zi, Zj ] = Pr [Zi = Zj = 1]−Pr [Zi = 1]Pr [Zj = 1] = (1− p)2n−3 − (1− p)2n−2 = p(1− p)2n−3.

Combined with the fact that all
(
n
2

)
pairs are correlated, it is easy to check (fill in the details, as you read

the notes) that Var[X1]
(E[X1])2

= o(1). Therefore, X1 > 0 whp , concluding the proof that p∗ is the threshold for
the existence of isolated vertices.

Theorem 2.9 Let Xk be the number of connected components of size k in G(n, p). Then,

n/2∑
k=2

Pr [Xk > 0] = o(1).

Furthermore,

Pr [X1 > 0] ≤ Pr [G is disconnected ] ≤ Pr [X1 > 0] + o(1).

Proof:

Let G ∼ G(n, p). Notice that

Pr [G is disconnected ] = Pr
[
∪n/2

k=1

(
G(n, p) has a component of order k

)]
= Pr

[
∪n/2

k=1{Xk > 0}
]
.

By a union bound we obtain the following upper bound on the probability that G is disconnected.

Pr [G is disconnected ] ≤ Pr [X1 > 0] +
n/2∑
k=2

Pr [Xk > 0].

Also, it is clear that

Pr [G is disconnected ] ≥ Pr [X1 > 0].

We know how to deal with the Pr [X1 > 0] term. Specifically, from our analysis we already know that if
p � p∗, then there exist isolated vertices and therefore G is disconnected whp . We also know that if p∗ � p

then whp there are no isolated vertices. If we prove that
∑n/2

k=2 Pr [Xk > 0] = o(1), then we are done with
the proof.
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Using Markov’s inequality and Theorem 2.7

n/2∑
k=2

Pr [Xk > 0] ≤
n/2∑
k=2

E [Xk] ≤
n/2∑
k=2

(
n

k

)
kk−2pk−1(1− p)k(n−k) =

n/2∑
k=2

uk.

We will consider two different ranges for k in order to upper bound the uk terms that appear in the summation
2 ≤ k ≤ n/2. The reason why we do this is because the behavior of the binomial coefficient changes as k
varies and we need to take care of these different behaviors carefully enough in order to prove our desired

result4. Therefore, for 2 ≤ k ≤ 10 we can upper bound uk by a Θ

((
log n

n

)k−1
)

term using the very crude

upper bound
(
n
k

)
≤ nk. When k ≥ 10 we can use the upper bound

(
n
k

)
≤
(

en
k

)k

to upper bound uk by a

term which is Θ
(
n
(

log n√
n

)k). Therefore, we obtain that
∑n/2

k=2 uk = o(1) and

Pr [X1 > 0] ≤ Pr [G is disconnected ] ≤ Pr [X1 > 0] + o(1).

Therefore, we have obtained as a corollary that the threshold value for connectivity is p∗ = log n
n .

Corollary 2.10 The threshold for the connectivity of G(n, p) is p∗ = log n
n .

Exercise: Use the asymptotic equivalence of G(n, p) and G(n, m) to find the threshold m∗ for connectivity
of G(n, m).

4I am sure most of you are already familiar with this behavior due to the well-known birthday paradox. We are going to see
it in detail on the blackboard, but what it says is that enk = (1 − 1

n
) × . . . × (1 − k−1

n
) has constant value when k = Θ(

√
n)

and enk = 1− o(1) when k = o(
√

n). Notice now that
`n

k

´
= nk

k!
enk.
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