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Growing random networks

So far, we have focused on static random graph models in which
edges among fixed n nodes are formed via random rules in a static
manner.

Poisson random network has small distances, but low clustering
and a rapidly falling degree distribution.
Small-world model provides a tractable model that has small
distances and high clustering.
Configuration model generates arbitrary degree distributions.

Most networks form dynamically whereby new nodes are born
over time and form attachments to existing nodes when they are
born.
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Growing random networks (Cont.)

Most networks form dynamically whereby new nodes are born
over time and form attachments to existing nodes when they are
born.
Example: Consider the creation of web pages.

When a new web page is designed, it includes links to existing web
pages.
Over time, an existing page will be linked to by new web pages.

The same phenomenon is true in many other networks:
Networks of friendships, citations, professional relationships.

Evolution over time introduces a natural heterogeneity to nodes
based on their age in a growing network.
These considerations motivate dynamic or generative models of
networks.
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Growing random networks (Cont.)

When nodes are born we can consider different ways in which
they attach to existing nodes.
At one extreme, where newborn nodes pick nodes to link to
uniformly at random.

We will just have a growing variation on a Poisson random
network.

At the other extreme, where they pick nodes in proportion to the
current degrees of the existing nodes.

The older nodes have more chances to grow in degree and grow
faster than younger nodes who have lower degrees.
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Dynamic variation of Poisson random network Discrete model
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Dynamic variation of Poisson random network Discrete model

Discrete model

As nodes are born over time, index them by the order of their
birth.
Node i is born at date i, where i = 0, 1, 2, . . ..
A node forms links to existing nodes when the new node is born.
Let di(t) be the degree of node i (born at time i) at a time t.
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Dynamic variation of Poisson random network Discrete model

Discrete model

Consider a special case:
Start the network withm+ 1 nodes born at times {0, 1, . . . ,m},
each connected to each other.
The first newborn node that we consider is the one born at time
m+ 1.
Each newborn node randomly selectsm of the existing nodes and
links to them.
The specifics of this will not be of great consequence when we
look at limiting properties of the system, but it is helpful in order
to be able to properly analyze the system.
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Dynamic variation of Poisson random network Discrete model

Discrete model

At the end of timem+ 1,
the newest node will havem links,
m of them+ 1 pre-existing nodes will have new links and 1 of
them will not.
Each of the pre-existing nodes expects to gain m

m+1 links.
At the end of timem+ 2,

the newest node will havem links,
m of them+ 2 pre-existing nodes will have new links and 2 of
them will not.
Each of the pre-existing nodes expects to gain m

m+2 links.
And so on.
Probability: No longer binomial, as probabilities vary with time.
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Dynamic variation of Poisson random network Discrete model

Realized network

Depending on which 2 nodes do not gain a link we have different
possibilities for degree distributions that could be realized.
As we continue, the number of possible realizations of the degree
distribution grows.
While it is hard to keep track of the potential realizations and their
relative probabilities, we can do some more direct calculations.
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Dynamic variation of Poisson random network Discrete model

Discrete model: Expected degree

Form ≤ i < t, a node i born at time i has an expected degree at
time t of

m+ m
i+1

+ m
i+2

+ · · ·+ m
t .

Fact:
lim
n→∞

Hn − log n = γ,

where Hn =
∑n

k=1
1
k and γ ≈ 0.577 is Euler-Mascheroni constant.

For a large t,

m+ m
i+1

+ m
i+2

+ · · ·+ m
t = m(1 +Ht −Hi)

≈ m+m log t
i .
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Dynamic variation of Poisson random network Discrete model

Discrete model: Expected degree (Cont.)

For a large t, the nodes that have expected degree less than d are
(using the approximation) those such that

m+m log t
i < d.

We require that d < m+m log t
m—the largest possible degree.
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Dynamic variation of Poisson random network Discrete model

Discrete model: Expected degree (Cont.)
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Dynamic variation of Poisson random network Discrete model

Discrete model: Expected degree (Cont.)
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Dynamic variation of Poisson random network Discrete model

Discrete model: Expected degree distribution

We rewrite this as the nodes i such that

i > te−
d−m
m .

Thus, the nodes with expected degree less than d are those born
after time te− d−m

m .
0 m i t

1− e− d−m
m

The fraction of nodes with expected degrees less than d is

Ft(d) = 1− e−
d−m
m .
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Dynamic variation of Poisson random network Discrete model

Discrete model: Expected degree distribution
(Cont.)

This is a variation of an exponential distribution (指数分布).
The faction of nodes with no more than some degree d is actually
the same over time.
The distribution is in fact independent of time t.
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Dynamic variation of Poisson random network Discrete model

Expected vs. actual degree distribution

The expected degree distribution is a good approximation for the
actual degree distribution in this particular model.
Issues:

The differences between the firstm nodes and other nodes.
The rounding the sum of the harmonic series.

The fraction of nodes whose ratios of realized to expected degrees
are off by more than a given amount is going to 0.
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Dynamic variation of Poisson random network Discrete model

Dynamic vs. static Poisson random networks

Each node starts with a given numberm of links. Then it is only
the additional links that are random.

⇒ An appropriate benchmark random network would not be the
Poisson random network, but instead a variation where there are t
nodes, and each picksm others at random to link to.

⇒ There each node would approximately have a degree ofm plus a
Poisson random variable with expectationm.
The exponential distribution has more of a spread to it:
The older nodes tend to have higher degrees and the younger
nodes have lower degrees.
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Dynamic variation of Poisson random network Continuous model
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Dynamic variation of Poisson random network Continuous model

Continuous model

A new node is born at time t. It formsm links by uniformly
randomly pickingm out of the t existing nodes.
Node i’s degree is thus described by

a starting condition of di(i) = m,
an approximate change over time of

d
dt
di(t) =

m
t
,

for each t > i.
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Dynamic variation of Poisson random network Continuous model

Continuous model (Cont.)

This differential equation has a solution

di(t) = m+m log t
i .

If a node born at i = i(d) has degree of exactly d, then

nodes whose expected degree≤ d = nodes born on or after i.

For any d and time t, we find the node i(d) such that di(d)(t) = d.
We solve for i(d) such that

d = m+m log t
i(d) ⇒

i(d)
t = e−

d−m
m .

Xiang Sun Social and Economic Networks 2019 Fall 22 / 57



Dynamic variation of Poisson random network Continuous model

Continuous model (Cont.)

We have i(d)
t = e− d−m

m .
The nodes that have degree of less than d are then those born after
i(d).
The fraction of nodes with expected degrees less than d is

Ft(d) = 1− i(d)
t = 1− e−

d−m
m .

This is a negative exponential distribution with support fromm to
infinity and a mean degree of 2m.
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Power law distribution

Power law distribution

In studies over many different Web snapshots taken at different
points in time, it has been observed that the degree distribution
obeys a power law distribution (幂律分布).

The fraction of web pages with k in-links (or out-links) is
approximately proportional to k−2.1 (or k−2.7).

Many social and biological phenomena also governed by power
laws.

Population sizes of cities observed to follow a power law
distribution.
Number of copies of a gene in a genome follows a power law
distribution.
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Power law distribution

Power law distribution (Cont.)

在抖音和快手上，有的短视频有几百万点击量，但绝大多数
短视频无人问津。
在微博/知乎上，大 V拥有成千上万的粉丝，但普通人的被关
注数却寥寥无几。
航空网中的超级节点/枢纽节点。

Xiang Sun Social and Economic Networks 2019 Fall 26 / 57



Power law distribution

Power law distribution (Cont.)

A nonnegative random variable X is said to have a power law
distribution if

Prob(X ≥ x) ∼ cx−α,

for constants c > 0 and α > 0. Here f(x) ∼ g(x) represents
lim
x→∞

f(x)
g(x) = 1.

Roughly speaking, in a power law distribution, asymptotically, the
tails fall of polynomially with power α.
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Power law distribution

Power law distribution (Cont.)

Such a distribution leads to much heavier tails than other
common models, such as normal and exponential distributions.
One specific commonly used power law distribution is the Pareto
distribution, which satisfies

Prob(X ≥ x) = ( xt )
−α,

for some α > 0 and t > 0.
The Pareto distribution requires X ≥ t.
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Power law distribution History of power laws
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Power law distribution History of power laws

History of power laws

The earliest apparent reference is to the work by Pareto in 1897,
who introduced the Pareto distribution to describe income
distributions.

When studying wealth distributions, Pareto observed power law
features, where there were many more individuals who had large
amounts of wealth than would appear in normal or other
distributions.
二八定律

Power laws also appeared in the work of Zipf in 1916, in
describing word frequencies in documents and city sizes.

The empirical principle, known as Zipf ’s Law, states that the
frequency of the j-th most common word in English (or other
common languages) is proportional to j−1.
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Power law distribution History of power laws

History of power laws (Cont.)

These ideas were further developed in the work of Simon in 1955,
who showed that power laws arise when “the rich get richer”, when
the amount you get goes up with the amount you already have.

A city grows in proportion to its current size as a result of people
having children.
Gene copies arise in large part due mutational events in which a
random segment of the DNA is accidentally duplicated (a gene
which already has many copies more likely to be in a random
stretch of DNA).

All of these examples exhibit rich get richer effects.
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Power law distribution History of power laws

History of power laws (Cont.)

Rich get richer effects quite fragile, there is great sensitivity to
unpredictable initial fluctuations.

Empirically studied by Salganik, Dodds and Watts (2006): They
created a music download site with 48 obscure songs. A visitor to
the site can listen to the songs and also is shown the “current”
download count for each song.
Each visitor at random is assigned to 8 “parallel copies” of the site,
which started out identically.
Market share of different songs varied considerably across different
copies.
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Power law distribution History of power laws

History of power laws (Cont.)

In 1965, Price applied these ideas to networks, with a particular
focus on citation networks.
Price studied the network of citations between scientific papers
and found that the in degrees (number of times a paper has been
cited) have power law distributions.
His idea was that an article would gain citations over time in a
manner proportional to the number of citations the paper already
had.
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Power law distribution History of power laws

History of power laws (Cont.)

This is consistent with the idea that researchers find some article
(e.g. via searching for keywords on the Internet) and then search
for additional papers by tracing through the references of the first
article.
The more citations an article has, the higher the likelihood that it
will be found and cited again.
Price called this dynamic link formation process cumulative
advantage.
Today it is known under the name preferential attachment (优先
连接/偏好连接) after the influential work of Barabási and Albert
in 1999.
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Preferential attachment

Preferential attachment model

Nodes are born over time and indexed by their date of birth.
Assume that the system starts with a group ofm+ 1 nodes all
connected to one another.
Each node upon birth formsm edges with pre-existing nodes.
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Preferential attachment

Preferential attachment model (Cont.)

Instead of selectingm nodes uniformly at random, it attaches to
nodes with probabilities proportional to their degrees.

For example, if an existing node has 3 times as many links as some
other existing node, then it is 3 times as likely to be linked to by the
newborn node.

Thus, the probability that an existing node i receives a new link to
the newborn node at time t ism times i’s degree relative to the
overall degree of all existing nodes at time t:

m× di(t)∑t
j=1 dj(t)

.
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Preferential attachment

Preferential attachment model (Cont.)

Since there are roughly tm total links at time t in the system (if t is
large), it follows that

t∑
j=1

dj(t) = 2tm.

Therefore, the probability that node i gets a new link in time t is

m× di(t)∑t
j=1 dj(t)

= m× di(t)
2tm = di(t)

2t .
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Preferential attachment

Preferential attachment model: Degree

Hence, we can write down the evolution of expected degrees in
continuous time as

d
dt
di(t) =

di(t)
2t

,

with initial condition di(m) = m (assuming degree is a
continuous variable).
This equation has a solution

di(t) = m( ti)
1
2 .
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Preferential attachment

Preferential attachment vs. uniform at random
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Preferential attachment Preferential attachment degree distribution

Preferential attachment degree distribution
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Preferential attachment Preferential attachment degree distribution

Preferential attachment degree distribution

As before, expected degrees of nodes are increasing over time.
Hence, to find the fraction of nodes with degrees below a certain
level d at time t, we need to identify which node is exactly at level
d at time t.
Let i(d) be the node that has degree d at time t, or di(d)(t) = d.
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Preferential attachment Preferential attachment degree distribution

Preferential attachment degree distribution (Cont.)

From the degree expression, this yields

i(d)
t = (md )

2.

The distribution function:

F(d) = 1− i(d)
t = 1− (md )

2.

The density function:

Prob(d) = f(d) = 2m2d−3.

Networks generated by preferential attachment look very different
from earlier models with similar average degree.
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Preferential attachment Preferential attachment degree distribution

Preferential attachment degree distribution (Cont.)

The density function:

Prob(d) = f(d) = 2m2d−3.

Log-log: log(Prob(d)) = log(2m2)− 3 log(d).
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Preferential attachment Barabási-Albert model

Barabási-Albert model

The Barabási-Albert model is an algorithm for generating random
scale-free networks using a preferential attachment mechanism.
BarabasiAlbertGraphDistribution[n,m] in Mathematica.
A Barabási-Albert graph distribution for n-vertex graphs where a
new vertex withm edges is added at each step.
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Preferential attachment Barabási-Albert model

Barabási-Albert model: Example
RandomGraph[BarabasiAlbertGraphDistribution[30, 2]]
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Preferential attachment Barabási-Albert model

Property

Degree distribution: P(d) ∼ d−3.
Average path length: ℓ ∼ lnN

ln lnN .
Clustering coefficient: C(k) = k−1.
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Hybrid models

Hybrid models

Many observed degree distributions match neither the
exponential process nor the preferential attachment process.
For example, consider the following degree distribution from the
co-authorship network.
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Hybrid models

Hybrid models (Cont.)
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Hybrid models

Hybrid models (Cont.)

Here we see a degree distribution that lies somewhere between the
two extremes of uniformly random link formation and
preferential attachment.
This suggests that a more general network formation model is
needed to match observed degree distributions.
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Hybrid models

Simple hybrid model

A newborn node meets existing nodes via two different processes,
where we combine the formation of links uniformly at random
with preferential attachment.
Each newborn node formsm links, with a fraction of α < 1 of
them formed to existing nodes selected uniformly at random, and
a fraction 1− α of them formed to existing nodes via preferential
attachment.
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Hybrid models

Simple hybrid model (Cont.)

The change in the degree of a node over time can be written as

d
dt
di(t) = α

m
t
+ (1− α)m di(t)∑t

j=1 dj(t)
= α

m
t
+ (1− α)

di(t)
2t

.

The first expression representing the chance of receiving one of
the αm links being formed by picking uniformly at random from
the t existing nodes.
The second expression has (1− α)m links being formed via
preferential attachment and node i having a probability of di(t)

2mt of
receiving any one of them.
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Hybrid models

Simple hybrid model: Degree

Solution:

di(t) =
(
d0 +

2αm
1− α

)(
t
i

) 1−α
2

− 2αm
1− α

,

where d0 is the initial number of links that a node has when it is
born.
Setting d0 = m, we have

Ft(d) = 1−

(
m+ 2αm

1−α

d+ 2αm
1−α

) 2
1−α

.
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Hybrid models

Simple hybrid model: Degree (Cont.)

When α = 0, this is the degree distribution 1− (md )
2, which is the

power distribution that we found in the case of pure preferential
attachment.
When α → 1, the limit is harder to see directly, but it approaches
the exponential distribution of F(d) = 1− e− d−m

m for the model
where links were formed uniformly at random.
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