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Learning

People are influenced by others:
the opinions they hold,
the products they buy,
the political positions they support,
the activities they pursue,
the technologies they use,
and many other things.

It may be rational for an individual to imitate the choices of others
even if the individual’s own information suggests an alternative
choice.

Choosing a restaurant in an unfamiliar town.
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Learning (Cont.)

Social networks play a central role in the sharing of information and
the formation of opinions.

Providing information about scientific research and results.
Advising friends on which movies to see.
Relaying information about the abilities and profit of a potential
new employee in a firm.
Debating the relative merits of politicians.
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Learning (Cont.)

Given the role of social networks in the formation of opinions and
beliefs, and the subsequent shaping of behaviors, it is critical that we
have a thorough understanding of this how the structure of social
networks affects learning:

Whether individuals in a society come to hold a common belief or
remain divided in opinions.
Which individuals have the most influence over the beliefs in a
society.
How quickly individuals learn.
Whether initially diverse information scattered throughout the
society can be aggregated in an accurate manner.
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Two kinds of learning

(Bayesian) Observational learning
Individuals observe actions and results experienced by their
neighbors and the information in a sophisticated manner
(Bayesian update).
It provides conditions under which individuals come to act
similarly over time.

Communication learning
Individuals exchange information with their neighbors over time
and then update by taking some weighted average of what they
hear.
Non-Bayesian, myopic, rule of thumb.
Tractable, and allows us to incorporate rich network structures.
DeGroot model (1974).
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Observational learning Herding
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Observational learning Herding

Example

Milgram, Bickman, and Berkowitz in the 1960s.
There are several groups of people ranging in size from just one
person to as many as fifteen people.
In each round, each group of people stand on a street corner and
stare up into the sky.
They then observed how many passersby stopped and also looked
up at the sky.

With only one person looking up, very few passersby stopped.
If five people were staring up into the sky, then more passersby
stopped, but most still ignored them.
Finally, with fifteen people looking up, they found that 45% of
passersby stopped and also stared up into the sky.
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Observational learning Herding

Example (Cont.)

One interpretation: A social force for conformity grows stronger
as the group conforming to the activity becomes larger.
Another possible explanation: A possible mechanism gives rise to
the conformity observed in this kind of situation.

Initially the passersby saw no reason to look up (they had no
private or public information that suggested it was necessary).
But with more and more people looking up, future passersby may
have rationally decided that there was good reason to also look up
(since perhaps those looking up knew something that the
passersby didn’t know).

⇒ Information cascades may be at least part of the explanation for
many types of imitation in social settings.
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Observational learning Herding

Herding

Herding or information cascade:
people make decisions sequentially,
later people observe the actions of earlier people and infer
something about what the earlier people know.

Individuals in a cascade are imitating the behavior of others, but it
is not mindless imitation. Rather, it is the result of drawing
rational inferences from limited information.
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Observational learning Herding

Simple model

Consider a group of people (numbered 1, 2, 3, …) who will
sequentially make decisions—that is, individual 1 will decide first,
then individual 2 will decide, and so on.
Each individual make a decision: accepting or rejecting some
option:

whether to adopt a new technology, wear a new fashion, eat in a
new restaurant, commit a crime, vote for a particular political
candidate, or choose one route to a common destination rather
than an alternative route.
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Observational learning Herding

Simple model: State

At the start of everything, before any individual has made a
decision, we assume that the world is randomly placed into one of
two possible states:

it is either placed in a state in which the option is a good idea,
or a state in which the option is actually a bad idea.

G represents the state where the option is a good idea.
B represents the state where the option is a bad idea.
Prior probability: Prob(G) = p and Prob(B) = 1− p.
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Observational learning Herding

Simple model: State (Cont.)

The state of the world is determined by some initial random event
that the individuals can’t observe.
The indivoduals will try to use what they observe to make
inferences about this state.
Example:

the world is either in a state where the new restaurant is good or a
state where it is bad;
the individuals in the model know that it was randomly placed in
one of these two states, and they’re trying to figure out which.
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Observational learning Herding

Simple model: Payoff
Each individual receives a payoff based on her decision to accept
or reject the option.
If the individual chooses to reject the option, she receives a payoff
of 0.
The payoff for accepting depends on whether the option is a good
idea or a bad idea:

If the option is a good idea, then the payoff is vg > 0.
If the option is a bad idea, then the payoff is vb < 0.

We will also assume that the expected payoff from accepting in the
absence of other information is equal to 0; in other words,

vgp+ vb(1− p) = 0.

* Before an individual gets any additional information, the expected
payoff from accepting is the same as the payoff from rejecting.
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Observational learning Herding

Simple model: Signal

Before any decisions are made, each individual gets a private
signal that provides information about whether accepting is a
good idea or a bad idea.

a review of the restaurants.
There are two possible signals:

a high signal (denoted H), suggesting that accepting is a good idea;
a low signal (denoted L), suggesting that accepting is a bad idea.

If accepting is in fact a good idea, then high signals are more
frequent than low signals: Prob(H | G) = q > 1

2
.

If accepting the option is a bad idea, then low signals are more
frequent: Prob(L | B) = q > 1

2
.
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Observational learning Herding

Individual decisions
Suppose that a person gets a high signal H.
This shifts their expected payoff from
vg Prob(G) + vb Prob(B) = 0 to

vg Prob(G | H) + vb Prob(B | H).

Bayes’ rule implies:

Prob(G | H) = Prob(G) · Prob(H | G)
Prob(H)

=
Prob(G) · Prob(H | G)

Prob(G) · Prob(H | G) + Prob(B) · Prob(H | B)

=
pq

pq+ (1− p)(1− q)
>

pq
pq+ (1− p)q

= p.
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Observational learning Herding

Individual decisions (Cont.)

As a result, the expected payoff shifts from 0 to a positive number,
and so they should accept the option.
Interpretation: A high signal is more likely to occur if the option
is good than if it is bad, so if an individual observes a high signal
they raise their estimate of the probability that the option is good.
A completely analogous calculation shows that if the individual
receives a low signal, they should reject the option.
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Observational learning Herding

Multiple signals

When the individuals get a sequence S of independently generated
signals consisting of a high signals and b low signals, interleaved in
some fashion, how do they act?

The posterior probability Prob(G | S) is greater than the prior
Prob(G) when a > b;
The posterior Prob(G | S) is less than the prior Prob(G) when
a < b;
The two probabilities Prob(G | S) and Prob(G) are equal when
a = b.
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Observational learning Herding

Multiple signals (Cont.)

Bayes’ rule imples

Prob(G | S) = Prob(G) · Prob(S | G)
Prob(S)

,

where S is a sequence with a high signals and b low signals.
The signals are generated independently.

⇒ Prob(S | G) = qa(1− q)b.

Prob(S) = Prob(G)Prob(S | G) + Prob(B)Prob(S | B)
= pqa(1− q)b + (1− p)(1− q)aqb.
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Observational learning Herding

Multiple signals (Cont.)

If a > b, then (1− p)(1− q)aqb < (1− p)qa(1− q)b.
⇒ Prob(S) < pqa(1− q)b + (1− p)qa(1− q)b = qa(1− q)b.
⇒ Prob(G | S) > Prob(G).
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Observational learning Herding and sequential decision-making
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Observational learning Herding and sequential decision-making

Sequential decision-making

When a given person decides whether to accept or reject the
option, they have access to their own private signal and also the
accept/reject decisions of all earlier people.
However, they do not see the actual private signals of any of these
earlier people.
Person 1 will follow his own private signal.
Person 2 will know that person 1’s decision reveals their private
signal, and so it’s as though person 2 gets two signals.

If these signals are the same, person 2’s decision is easy.
If they are different, then as we saw before, person 2 will be
indifferent between accepting and rejecting.
Here we will assume she follows her own private signal. Thus,
either way, person 2 is following her own signal.
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Observational learning Herding and sequential decision-making

Sequential decision-making (Cont.)

Person 3 knows that person 1 and person 2 both acted on their
private signals, so it is as though person 3 has received three
independent signals (the two he infers, and his own).
From the previous argument, we know that person 3 will follow
the majority signal (high or low) in choosing whether to accept or
reject.
If person 1 and person 2 made opposite decisions (i.e. they
received opposite signals), then

person 3 will use his own signal as the tie-breaker;
future people will know that person 3’s decision was based on his
own signal, and so they can use this information in their own
decisions.
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Observational learning Herding and sequential decision-making

Herding

On the other hand, if person 1 and person 2 made the same
decision (i.e. had the same signal), then

person 3 will follow this regardless of what his own signal says;
future people will know that person 3’s decision conveys no
information about his signal, and future people will all be in the
same position as person 3.
In this case, a cascade has begun. That is, we are in a situation
where no individual’s decision can be influenced by his own signal.
No matter what they see, every individual from person 3 on will
make the same decision that 1 and 2 made.
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Observational learning Herding and sequential decision-making

Sequential decision-making (Cont.)

Let’s now consider how this process unfolds through future people
(person N) beyond person 3.
Suppose that person N knows that everyone before her has
followed their own signal—that is, suppose the accept/reject
decisions of these earlier people exactly coincide with whether
they received a high or low signal, and person N knows this.
If the number of acceptances among the people before N is equal
to the number of rejections, then N’s signal will be the tie-breaker,
and so N will follow her own signal.
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Observational learning Herding and sequential decision-making

Sequential decision-making (Cont.)

If the number of acceptances among the people before N differs
from the number of rejections by one, then

either N’s private signal will make her indifferent,
or it will reinforce the majority signal.

Either way, N will follow her private signal (since we assume a
person follows their own signal in the case of indifference).
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Observational learning Herding and sequential decision-making

Herding (Cont.)

If the number of acceptances among the people before N differs
from the number of rejections by two or more, then however N’s
private signal turns out, it won’t outweigh this earlier majority.
As a result, N will follow the earlier majority and ignore her own
signal.
In this case, the people numbered N+ 1, N+ 2, and onward will
know that person N ignored her own signal (whereas we’ve
assumed that all earlier people were known to have followed their
private signals).
So they will each be in exactly the same position as N.
That is, each of them too will ignore their own signals and follow
the majority, and hence a cascade has begun.
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Observational learning Herding and sequential decision-making

Herding (Cont.)

As long as the number of acceptances differs from the number of
rejections by at most one, each person in sequence is simply
following their own private signal in deciding what to do.
But once the number of acceptances differs from the number of
rejections by two or more, a cascade takes over, and everyone
simply follows the majority decision forever.
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Observational learning Herding and sequential decision-making

Herding (Cont.)

It is very hard for this difference to remain in such a narrow
interval (between −1 and +1) forever.
Prob(herding) ≥ Prob(three people in a row get the same signal).
We divide the first N people into blocks of three consecutive
people each.
The people in any one block will receive identical signals with
q3 + (1− q)3.
The probability that none of these blocks consists of identical
signals is therefore

[1− q3 − (1− q)3]
N
3 .

As N goes to infinity this quantity goes to 0.
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Observational learning Learning from neighbors
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Observational learning Learning from neighbors

Bayesian learning

Individuals observe actions and results experienced by their
neighbors and the information in a sophisticated manner.
Conclusion: If agents can observe each other’s actions and
outcomes over time, and all agents have the same preferences and
face the same form of uncertainty, then they end up with similar
payoffs over time.
Idea: an agent who is doing significantly worse than a neighbor
must come to realize this over time, and will eventually change
actions and come to do as well as the neighbor.
This then implies that all connected agents must end up with the
same limiting payoffs.
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Observational learning Learning from neighbors

Bala-Goyal model

n players in an undirected connected network g.
Choose action A or B in each period t ∈ {1, 2, . . .}.
In each period agent gets a payoff based on choice:

action A results in a payoff of 1.
action B results in a payoff of 2 with probability p and 0 with
probability 1− p.

p is unknown taking on finite set of values.
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Observational learning Learning from neighbors

Bala-Goyal model (Cont.)

Players also observe neighbors’ choices.
Each player maximizes discounted stream of payoffs

E
[ ∞∑
t=1

δt · πit

]
,

where δ ∈ (0, 1) is a discount parameter and πit is the payoff that i
receives at time t.
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Observational learning Learning from neighbors

Bala-Goyal model: Challenges

Seeing that a neighbor chooses an action B might indicate that the
individual’s neighbors have had good outcomes from B in the past.
Beyond simply seeing actions and outcomes, an individual can
make inferences about outcomes of indirect neighbors by
observing the action choices of neighbors.
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Observational learning Learning from neighbors

Bala-Goyal model: Result

Proposition
If p is not exactly 1

2
, then with probability 1 there is a time such that all

agents lay just one action (and all play the same action) from that time
onward.
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Observational learning Learning from neighbors

Proof

Suppose contrary.
Some agent plays B infinitely often.
That agent will converge to true belief p by the law of large
numbers.
In order for agent to play B infinitely often, it must be that p > 1

2
,

otherwise agent would stop playing B.
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Observational learning Learning from neighbors

Proof (Cont.)

With probability 1, all agents who see B played infinitely often
converge to a belief that B pays 2 with probability p > 1

2
.

Neighbors of agent must play B, after some time, and so forth.
All agents must play B from some time on.
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Observational learning Learning from neighbors

Play the right action?

The fact that all agents end up choosing the same action does not
imply that they end up with the same limiting beliefs, nor does it
imply that they end up choosing the “right” action.
If B is the right action then play the right action if converge to it,
but might not.

* Each player starts with a low belief.
If A is the right action, then must converge to right action.
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Observational learning Learning from neighbors

Conclusions

Consensus action chosen.
Not necessarily consensus belief.
Speed of convergence?
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Observational learning Learning from neighbors

Limitations

Homogeneity of actions and payoffs across players.
What if heterogeneity?
Repeated actions over time.
Stationarity.
Networks are not playing role here.
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DeGroot model

DeGroot model

Repeated communication.
Information comes only once.
See how information disseminates.
Who has influence, convergence speed, network structure impact
…
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DeGroot model

Bounded rationality

Repeatedly average beliefs of self with neighbors.
Non-Bayesian if weights do not adjust over time.
Can under-weight neighbors (just as in experiments).
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DeGroot model

DeGroot model (Cont.)

Individuals {1, 2, . . . , n}.
Individuals in a society start with initial opinions on a subject.
Let these be represented by an n-dimensional vector of
probabilities, p(0) =

(
p1(0), p2(0), · · · , pn(0)

)
.

Each pi(0) lies in [0, 1], and might be thought of as the probability
that a given statement is true, or the quality of a given product, or
the likelihood that the individual might engage in a given activity,
etc.

Xiang Sun Social and Economic Networks 2019 Fall 46 / 75



DeGroot model

DeGroot model: Updating

The interaction patterns are captured through a possibly weighted
and directed n× n nonnegative matrix T (social influence matrix).
The interpretation of Tij is that it represents the weight or trust
that agent i places on the current belief of agent j in forming his or
her belief for the next period.

* Tij: agent j’s impact on agent i.
T: a (row) stochastic matrix, so that its entries across each row
sum to one.
Updating

pi(t) =
∑
j
Tij · pj(t− 1).
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DeGroot model

DeGroot model: Updating (Cont.)

Updating
pi(t) =

∑
j
Tij · pj(t− 1).

pi(t) =
∑
j
Tij · pj(t− 1) =

(
T · p(t− 1)

)
i.

p(t) =


p1(t)
p2(t)

...
pn(t)

 =


(
T · p(t− 1)

)
1(

T · p(t− 1)
)
2...(

T · p(t− 1)
)
n

 = T · p(t− 1) = Tt · p(0).
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DeGroot model

DeGroot model: Illustration 1
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DeGroot model

DeGroot model: Illustration 1 (Cont.)
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DeGroot model

DeGroot model: Illustration 2

1

2

3

1
3

1
3

1
3

1
2

1
2

1
4

3
4

⇐⇒ T =

1
3

1
3

1
3

1
2

1
2

0
0 1

4
3
4



Xiang Sun Social and Economic Networks 2019 Fall 51 / 75



DeGroot model

DeGroot model: Illustration 2 (Cont.)
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DeGroot model

DeGroot model: Illustration 3
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DeGroot model

DeGroot model: Illustration 4
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DeGroot model Convergence
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DeGroot model Convergence

Convergence

T converges if lim
t→∞

Tt · p(0) exists for all p(0).

T is aperiodic (非周期) if the greatest common divisor of its cycle
lengths is one.
Left: aperiodic; Right: periodic.
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DeGroot model Convergence

Convergence result

Suppose the network is strongly connected— there is a directed
path from any node to any other node.

* It is equivalent to assume the adjacency matrix T to be irreducible
(不可约).

Result
T is strongly connected/irreducible, then T is convergent if and only if
it is aperiodic.

Result: T is strongly connected/irreducible, then T is convergent if
and only if lim

t→∞
Tt = (1, 1, · · · , 1)ᵀ · s, where s is the unique left

eigenvector of T associated with the eigenvalue 1.
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DeGroot model Convergence

Proof: Sufficiency

Definition: T is primitive (素矩阵) if Tt
ij > 0 for all i and j after

some t.
Perkins (1961): If T is strongly connected and (row) stochastic,
then it is aperiodic if and only if it is primitive.
Meyer (2000): If T is strongly connected and primitive, then
lim
t→∞

Tt = (1, 1, · · · , 1)ᵀ · s, where s is the unique left eigenvector
of T associated with the eigenvalue 1.
So strongly connectness and aperiodicity imply convergence.
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DeGroot model Convergence

Proof: Necessity

Claim: If T is strongly connected, row-stochastic and convergent,
then it is primitive.
Since T is row-stochastic, Perron-Frobenius theorem implies that
1 is an eigenvalue of T and 1 ≥ |λ| for any other eigenvalues λ of
T.
Let S = lim

t→∞
Tt.

Then ST = lim
t→∞

TtT = S.

So each row is a left eigenvector of T with eigenvalue 1.
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DeGroot model Convergence

Proof: Necessity (Cont.)

Since T is irreducible and nonnegative, Perron-Frobenius theorem
implies that the eigenspaces associated with 1 is one-dimensional
and T is a positive eigenvector associated with 1.
Thus, each row of S can be taken to be positive.
Since S is all positive, T is primitive.
T is primitive then Perron-Frobenius theorem implies the
eigenvector is unique, and all rows of S are the same s.
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DeGroot model Convergence

Convergence

Aperiodicity is easy to satisfy.
Have some agent weight him or herself.

* If T is strongly connected and Tii > 0 for some i, then T is
aperiodic, and hence T is convergent.
Have at least one communicating dyad and a transitive triple.

* T is aperiodic if the greatest common divisor of its cycle lengths is
one.
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DeGroot model Consensus in beliefs

1 Observational learning
Herding
Herding and sequential decision-making
Learning from neighbors

2 DeGroot model
Convergence
Consensus in beliefs
Wise learning
Social influence

Xiang Sun Social and Economic Networks 2019 Fall 62 / 75



DeGroot model Consensus in beliefs

Consensus

Beyond knowing whether or not beliefs converge, we are also
interested in characterizing:

what beliefs converge to when they converge,
which agents have substantial influence in the society,
when it is that a consensus is reached.

Agents reaches a consensus (共识) under T for an initial vector of
beliefs p(0) if lim

t→∞
pi(t) = lim

t→∞
pj(t) for each i and j.
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DeGroot model Consensus in beliefs

Consensus/convergence and aperiodicity
Theorem: Agents reaches a consensus for every initial vector of
beliefs under T if and only if T is aperiodic.
Necessity: Consensus ⇒ convergence ⇒ aperiodicity.
Sufficiency:

p(∞) = lim
t→∞

Tᵀp(0) =


1
1
...
1

(
s1 s2 · · · sn

)
p1(0)
p2(0)

...
pn(0)



=


s1p1(0) + · · ·+ snpn(0)
s1p1(0) + · · ·+ snpn(0)

...
s1p1(0) + · · ·+ snpn(0)

 =


s · p(0)
s · p(0)

...
s · p(0)

 .
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DeGroot model Consensus in beliefs

Consensus in beliefs

The agents reach a consensus whenever T converges.
The limit belief pi(∞) is s · p(0), where s is the left eigenvector of T
associated with eigenvalue 1.
The belief converges to (normalized) eigenvector weighted (s) sum
of original beliefs p(0).
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DeGroot model Wise learning

1 Observational learning
Herding
Herding and sequential decision-making
Learning from neighbors

2 DeGroot model
Convergence
Consensus in beliefs
Wise learning
Social influence
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DeGroot model Wise learning

Wise learning

Consensus is not necessarily a good thing.
In the herding example, there is consensus, but this could lead to
the wrong outcome.
We would like to consensus to be at

p(∞) =
1

n

n∑
i=1

pi(0) = θ,

so that individuals learn the underlying state.
If this happens, we say that the society is wise.
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DeGroot model Wise learning

Wise learning (Cont.)

Result
The society is wise if and only if T is doubly stochastic.

Intuition: Otherwise, there is no balance in the network, so some
agents are influential; their opinion is listened to more than they
listen to other people’s opinion.
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DeGroot model Social influence

1 Observational learning
Herding
Herding and sequential decision-making
Learning from neighbors

2 DeGroot model
Convergence
Consensus in beliefs
Wise learning
Social influence
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DeGroot model Social influence

Limiting beliefs

Limiting beliefs would be weighted averages of the initial beliefs.
The relative weights would be the influences that the various
agents have on the final consensus beliefs.
pi(∞) = s · p(0).
si =

∑
j sjTji.

⇒ High influence from being paid attention to by people with high
influence.
Related to eigenvector centrality (left eigenvector centrality).
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DeGroot model Social influence

Influential agents

A set of agents B is called an influential family if the beliefs of all
agents outside B is affected by beliefs of B (in finitely many steps).
The presence of influential agents implies no asymptotic learning:

The presence of influential agents is the same thing as lack of
doubly stochasticity of T.
Interpretation: Information of influential agents overrepresented.

Distressing result since influential families (e.g., media, local
leaders) common in practice.

Xiang Sun Social and Economic Networks 2019 Fall 71 / 75



DeGroot model Social influence

Stubborn agents

An agent who places high weight on self will maintain belief while
others converge to that agent’s belief.
Groups that are highly introspective will have substantial
influence.
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DeGroot model Social influence

Equal weights

Suppose equally weight connections.
Suppose also that Tij > 0 if and only if Tji > 0.
di is i’s degree.
So, Tij =

1
di for each i and j that i has a (directed) link to.

⇒ Weight friends equally.
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DeGroot model Social influence

Equal weights (Cont.)

Let D =
∑

k dk.
Claim: si = di

D for each i.
Verify: si =

∑
j sjTji =

∑
j : ji∈g

1
dj

dj
D = di

D (degree centrality).
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DeGroot model Social influence

周围的社会结构对于一个简单的决策会发挥决定性的作
用：“德格鲁特学习”模型，其最终的结果取决于每个节点的
初始估计数和特征向量中心度。
两种偏差：回声，重复计算（更广泛）。
如果满足几项关键条件，德格鲁特学习模型也能带来非常准
确的结果：多样性的观点，不能有系统性偏差，交流网络具
有良好的平衡性（每个人的特征向量中心度相对于其他人的
中心度之和而言足够小）。
选择性关注：网络结构失衡时，人们对小团体过度关注，形
成了“个别人物法则”。

* 互联网时代信息极大丰饶，但严谨的新闻调查的激励被削弱，
假新闻泛滥成灾。
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