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A linear quadratic model

Network

Consider a game where N = {1, 2, . . . , n} is a finite set of agents in
network g.

gij = 1 if agent i is connected to agent j, and gij = 0 otherwise.
Links are taken to be reciprocal, so that gij = gji.
By convention, gii = 0.
We denote by G the n× n adjacency matrix with entry gij, which
keeps track of all direct connections.
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A linear quadratic model

Utility

Each agent i decides how much effort to exert, denoted by
xi ∈ R+.
The utility of each agent i providing effort xi in network g is given
by:

ui(xi, x−i, g) = αixi −
1

2
x2i︸ ︷︷ ︸

individual part

+ δ
n∑

j=1

gijxixj︸ ︷︷ ︸
local network effect

.

αi ≥ 0: intrinsic marginal utility.
* It represents the exogenous heterogeneity of agent i that captures

the observable characteristics of individual i (e.g., sex, race, age,
parental education).
δ > 0 (sufficiently small) is the intensity of interactions.
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A linear quadratic model

Utility (Cont.)

ui(xi, x−i, g) = αixi −
1

2
x2i︸ ︷︷ ︸

individual part

+ δ
n∑

j=1

gijxixj︸ ︷︷ ︸
local network effect

.

The second part, δ
∑n

j=1 gijxixj, corresponds to the local-aggregate
effect of peers since each agent i is affected by the sum of efforts of
the agents for which she has a direct connection.
Strategic complementary:

∂2ui(x, g)
∂xi∂xj

= δgij ≥ 0.

* Each player’s relative payoff to taking an action is increasing in the
set of neighbors who take this action.
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Equilibrium and Katz-Bonacich centrality

FOC

Player i’s utility

ui(xi, x−i, g) = αixi −
1

2
x2i + δ

n∑
j=1

gijxixj.

FOC:
∂ui
∂xi

= αi − xi + δ
n∑

j=1

gijxj ≤ 0

with equality whenever xi > 0.
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Equilibrium and Katz-Bonacich centrality

Heuristic analysis

If an interior equilibrium exists, it solves

αi − xi + δ
n∑

j=1

gijxj = 0 for each i.

We rewrite as:
α1

α2
...
αn

−


x1
x2
...
xn

+ δ


g11 g12 · · · g1n
g21 g22 · · · g2n
... ... . . . ...
gn1 gn2 · · · gnn



x1
x2
...
xn

 =


0
0
...
0


That is, α− x+ δGx = 0n or [In − δG]x = α.
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Equilibrium and Katz-Bonacich centrality

Heuristic analysis (Cont.)

We have
x = [In − δG]−1α,

if the matrix [In − δG] is invertible.
Since G is a nonnegative symmetric matrix, all eigenvalues are
real.
Let λ1(G), λ2(G), …, λn(G) be eigenvalues of G such that

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G).

Since each gii = 0,
∑n

i=1 λi(G) =
∑n

i=1 gii = 0.
⇒ As long as G is not zero matrix, λ1(G) > 0.

Clearly, if δλ1(G) < 1, then [In − δG] is invertible.
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Equilibrium and Katz-Bonacich centrality

Result
[In − δG]−1 is well-define and nonnegative iff δλ1(G) < 1.

G is symmetric, then it is diagonalizable:

PGP−1 =


λ1(G)

λ2(G)
. . .

λn(G)


Thus,

In − δG = P−1[In − δPGP−1]P

= P−1


1− δλ1(G)

1− δλ2(G)
. . .

1− δλn(G)

P
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Equilibrium and Katz-Bonacich centrality

Equilibrium

Theorem
If δλ1(G) < 1 and each αi > 0, there is a unique pure-strategy Nash
equilibrium x∗, which is interior and given by

x∗ = [In − δG]−1α.
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Equilibrium and Katz-Bonacich centrality

Uniqueness

The heuristic analysis has already established the existence and
uniqueness of an interior equilibrium.
We can show that a noninterior equilibrium fails to exist.

Let y be a noninterior equilibrium, where yi = 0.
Then FOC implies αi + δ

∑n
j=1 gijyj ≤ 0.

Since αi > 0, the inequality does not hold.
If αi = 0 and gik = 0 for each k, then player i will choose 0 in an
equilibrium (corner equilibrium).
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Equilibrium and Katz-Bonacich centrality

Bonacich centrality

Recall Bonacich centrality:

h(g, a, b) = (In − bG)−1aG1,

where a > 0, b > 0, and b is sufficiently small such that the
expression is well defined.
adi(g) = (aG1)i is the base value for i.
b is the decay factor.

h(g, a, b) = (In − bG)−1aG1 =
[ ∞∑
k=0

bkGk
]
aG1.

Xiang Sun Social and Economic Networks 2019 Fall 15 / 50



Equilibrium and Katz-Bonacich centrality

Katz-Bonacich centrality
Katz-Bonacich centrality is defined as:

b(g, δ) = (In − δG)−11.

It is obtained from the original Bonacich centrality by an affine
transformation:

b(g, δ) = (In − δG)−11 =
[ ∞∑
k=0

δkGk
]
1 = 1+

[ ∞∑
k=0

δkGk
]
δG1︸ ︷︷ ︸

h(g,δ,δ)

.

Weighted Katz-Bonacich centrality is defined as:

b(g, δ,α) = (In − δG)−1α =
∞∑
k=0

δkGkα.
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Equilibrium and Katz-Bonacich centrality

Katz-Bonacich centrality (Cont.)
Katz-Bonacich centrality:

b(g, δ) = (In − δG)−11 =
∞∑
k=0

δkGk1.

The i-th component of b(g, δ) is
n∑

j=1

∞∑
k=0

δkgkij.

Agent i’s Katz-Bonacich centrality counts the total number of
paths (not just the shortest paths) in g starting from i, weight by a
decay factor δ that decreases with the length of these paths.
gkij ≥ 0 measures the number of paths of length k ≥ 1 in g from i
to j.
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Equilibrium and Katz-Bonacich centrality

Katz-Bonacich centrality (Cont.)

Weighted Katz-Bonacich centrality:

b(g, δ,α) = (In − δG)−1α =
∞∑
k=0

δkGkα.

The i-th component of b(g, δ,α) is

n∑
j=1

∞∑
k=0

δkgkijαj.

δkgkijαj measures the number of paths of length k ≥ 1 in g from i to
j, weight by αj relying on destinations and by a decay factor δ that
decreases with the length of these paths.
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Equilibrium and Katz-Bonacich centrality

Equilibrium

Theorem
If δλ1(G) < 1 and each αi > 0, there is a unique pure-strategy Nash
equilibrium x∗, which is interior and given by

x∗ = [In − δG]−1α = b(g, δ,α).

More central agents in the network will exert more effort.
This is intuitively related to the equilibrium behavior, as the paths
capture all possible feedbacks.
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Equilibrium and Katz-Bonacich centrality

Equilibrium payoff

For each agent i, the equilibrium utility is

ui(x∗, g) =
1

2
(x∗i )2 =

1

2

(
b(g, δ,α)

)2
i .

The equilibrium utility of each agent is proportional to the square
of her Katz-Bonacich centrality.
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Equilibrium and Katz-Bonacich centrality

Example: K2

1 2

K2: the complete graph with 2 nodes.
The adjacency matrix is

G =

(
0 1
1 0

)
.

By induction, for each k ≥ 1,

G2k =

(
1 0
0 1

)
and G2k+1 =

(
0 1
1 0

)
.
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Equilibrium and Katz-Bonacich centrality

Example: K2 (Cont.)

[I− δG]−1 is well-defined when δ < 1:

[I− δG]−1 = I2 + δG+ δ2G2 + · · ·

=
1

1− δ2

(
1 0
0 1

)
+

δ

1− δ2

(
0 1
1 0

)
=

1

1− δ2

(
1 δ
δ 1

)
.

Unique Nash equilibrium:

x∗ = [I− δG]−1α =

(
α1+δα2

1−δ2
α2+δα1

1−δ2

)
.
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Equilibrium and Katz-Bonacich centrality

Example Kn

The adjacency matrix is G = 1nn − In.
We can verify that

[In − δG]−1 =
1

1 + δ

[
In +

δ

1− (n− 1)δ
1nn

]
and is well-defined when δ < 1

n−1
.

In equilibrium, for each i,

x∗i =
1

1 + δ

[
αi +

δ
∑

j αj

1− (n− 1)δ

]
.

Clearly, x∗i ≥ x∗j iff αi ≥ αj.
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Equilibrium and Katz-Bonacich centrality

Example: Regular network with degree d

The adjacency matrix G satisfies:

G1n = d1n.

Assume that αi = 1 for each i.
The equilibrium is

x∗ = [In − δG]−11n

= 1n + δG1n + δ2G21n + · · ·
= 1n + δd1n + δ2d21n + · · ·
= 1

1−δd1n,

when 1 > δd.
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Equilibrium and Katz-Bonacich centrality

Example: K1,2

12 2

K1,2: star network with center 1 and spokes 2 and 3.
The adjacency matrix is

G =

0 1 1
1 0 0
1 0 0

 .

By induction, for each k ≥ 1,

G2k =

2k 0 0
0 2k−1 2k−1

0 2k−1 2k−1

 and G2k+1 =

 0 2k 2k

2k 0 0
2k 0 0

 .
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Equilibrium and Katz-Bonacich centrality

Example: K1,2 (Cont.)

[In − δG]−1, well-defined when δ < 1√
2
, is

[In − δG]−1 = In +
∞∑
k=0

δ2k+1G2k+1 +
∞∑
k=1

δ2kG2k

=
1

1− 2δ2

1 δ δ
δ 1− δ2 δ2

δ δ2 1− δ2

 .
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Equilibrium and Katz-Bonacich centrality

Example: Kp,q

In a complete bipartite graph Kp,q, there are two disjoint groups P
and Q in Kp,q such that any node in P is connected to any node in
Q.
Let p = |P| and q = |Q|. Thus, the network size satisfies n = p+ q.

The adjacency matrix is G =

(
0pp 1pq
1qp 0qq

)
.
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Equilibrium and Katz-Bonacich centrality

Example: Kp,q (Cont.)

[In − δG]−1 is

[In − δG]−1 =

Ip + δ2q
1−δ2qp1pp

δ
1−δ2qp1pq

δ
1−δ2qp1qp Iq + δ2p

1−δ2qp1qq

 .

For each i,

x∗i = αi +
δ2q

1− δ2qp
∑
s∈P

αs +
δ

1− δ2qp
∑
t∈Q

αt.
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Key player and intercentrality

Key player problem

For criminal behaviors, it seems relatively natural to consider
games with strategic complementarities, since the higher are my
friends’ criminal efforts, the higher is my marginal utility of
exerting criminal effort.
One can apply the model that has been previously analyzed to
study the criminal behaviors in an equilibrium.
Question: Within a crime organization the police/government has
the ability to remove one player, who should it be?
That is, we want to find the player (criminal) such that removing
him reduces total activity (crime) in a network the most.
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Key player and intercentrality

Key player problem (Cont.)

The key player problem is formulated as follows:

argmax
i

[ n∑
k=1

bk(g, δ,α)−
∑
k̸=i

bk(g−i, δ,α−i)

]
.

g−i is the network when player i is removed, and G−i is its
adjacency matrix.

* G−i is obtained from G be setting to 0 all of its i-th row and
column coefficients.
α−i is obtained from α be setting to 0 of its i-th component.
The first term is the sum of total activities in the original network.
The second term is the resulting equilibrium total activity when i
is removed.
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Key player and intercentrality

Notation
Let M = [In − δG]−1.
mii(g, δ) =

∑∞
k=0 δ

kgkii:
the number of all loops from i to i, weighted by δk.
mij(g, δ) =

∑∞
k=0 δ

kgkij:
the number of all the outer paths from i to j ̸= i, weighted by δk.
Since b(g, δ) = [In − δG]−11n, we have

bi(g, δ) =
n∑

j=1

mij(g, δ) = mii(g, δ) +
∑
j ̸=i

mij(g, δ).

Similarly, b(g, δ,α) = [In − δG]−1α,

bi(g, δ,α) =
n∑

j=1

mij(g, δ)αj.
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Key player and intercentrality

Intercentrality

We still assume that δλ1(G) < 1.
The intercentrality (or key-player centrality) measure ci(g, δ) is
defined as follows:

ci(g, δ) =
bi(g, δ,α)bi(g, δ,1n)

mii(g, δ)
.
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Key player and intercentrality

Lemma

Lemma
Let M(g, δ) = [In − δG]−1 be well-defined and nonnegative. Then

mij(g, δ)mik(g, δ) = mii[mjk(g, δ)−mjk(g−i, δ)]

for all k ̸= i ̸= j.

Let gsj(ic)k denote the number of s-length paths from j to k that do
not pass i.
Let gsj(i)k denote the number of s-length paths from j to k that do
pass i.
Since G is symmetric, mjk(g, δ) = mkj(g, δ).
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Key player and intercentrality

Proof of Lemma

mii(g, δ)
[
mjk(g, δ)−mjk(g−i, δ)

]
=

∞∑
p=1

δp
∑
r+s=p
r≥0,s≥1

grii
[
gsjk − gsj(ic)k

]
=

∞∑
p=1

δp
∑
r+s=p
r≥0,s≥2

griigsj(i)k

=
∞∑
p=1

δp
∑

r′+s′=p
r′≥1,s′≥1

gr′ji gs
′

ik = mji(g, δ)mik(g, δ).
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Key player and intercentrality

Intercentrality (Cont.)

ci(g, δ) =
bi(g, δ,α)bi(g, δ,1n)

mii(g, δ)

= bi(g, δ,α) + bi(g, δ,α)
∑
j ̸=i

mij(g, δ)
mii(g, δ)

= bi(g, δ,α) +

[ n∑
k=1

mik(g, δ)αk

][∑
j ̸=i

mij(g, δ)
mii(g, δ)

]

= bi(g, δ,α) +
∑
j ̸=i

n∑
k=1

mij(g, δ)mik(g, δ)
mii(g, δ)

αk
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Key player and intercentrality

Intercentrality (Cont.)

ci(g, δ) = bi(g, δ,α) +
∑
j ̸=i

n∑
k=1

mij(g, δ)mik(g, δ)
mii(g, δ)

αk

= bi(g, δ,α) +
∑
j ̸=i

n∑
k=1

[
mjk(g, δ)−mjk(g−i)

]
αk

= bi(g, δ,α) +
∑
j ̸=i

[
bj(g, δ,α)− bj(g−i, δ,α−i)

]
Player i’s intercentrality is the sum of

i’s Katz-Bonacich centrality and
i’s contribution to the Katz-Bonacich centrality of every other
player j ̸= i.
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Key player and intercentrality

Remark

Clearly, δλ1(G−i) ≤ δλ1(G) < 1:

λ1(G−i) = max
|x|=1

xᵀ · G−i · x

= max
|x−i|=1

xᵀ−i · G−i · x−i

≤ max
|x|=1

xᵀ · G · x = λ1(G).

* It can be also proved by Cauchy interlacing theorem.
Then b(g−i, δ,α−i) = [In − δG−i]

−1α−i is well-defined.
⇒ bj(g−i, δ,α−i) is well-defined.
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Key player and intercentrality

Result

Theorem
A player i∗ solves the key-player problem iff i∗ is an agent with the
highest intercentrality in g.

If the police/government has the ability to remove one criminal, it
should remove the one with highest intercentrality.

Proof.

ci(g, δ) = bi(g, δ,α) +
∑
j ̸=i

[
bj(g, δ,α)− bj(g−i, δ,α−i)

]
=

n∑
k=1

bk(g, δ,α)−
∑
k ̸=i

bk(g−i, δ,α−i).
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Key player and intercentrality

Example

1

2

3

4

5

6

7

8

9

10

11

Player δ = 0.1 δ = 0.2
bi ci bi ci

1 1.75 2.92 8.33 41.67
2 1.88 3.28 9.17 40.33
3 1.72 2.79 7.78 32.67
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Key player and intercentrality

Example (Cont.)

Player 2 always displays the highest Katz-Bonacich centrality.
It has the highest number of direct connections.
Besides, it is directly connected to the bridge delinquent 1, which
gives them access to a very wide and diversified span of indirect
connections.

For low values of δ, the direct effect on delinquency reduction
prevails, and player 2 are the key player—with highest
intercentrality.
When δ is higher, though, the most active delinquents are no
longer the key players. Now, indirect effects matter a lot, and
eliminating delinquent 1 has the highest joint direct and indirect
effect on aggregate delinquency reduction.
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Key player and intercentrality

Remark

In key-player policy, the planner perturbs the network by
removing a delinquent and all other delinquents are allowed to
change their effort after the removal, but the network is not
“rewired,” that is, individuals do not optimally change their
relationships (links) with their friends.
First, it would be extremely difficult to solve a network formation
problem every time a player is removed.
Second, in the context of a short-term policy and because
friendship relationships take longer to adjust than the level of
criminal activity.
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