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1 We consider a simple case that the cost function g(e, 6) = fe.

o Op: high cost (low ability);
o 01 low cost (high ability), with probability A € (0, 1);

e Oy >0y,

Single crossing property still holds. We draw the indifference curves of a 61, -agent (heavy curves) and of a 67 -agent
(light curves) in the (e, w) space. The isoutility curves of both types correspond to increasing levels of utility when
one moves in the northwest direction. These indifference curves are straight lines with a slope 6 corresponding to

the agent’s type.

We assume @ = 0 for simplicity.
2 Principal’s income function is still 7(-), with 7(0) = 0, 7’(e) > 0,and 7"’ (e) < 0 for all e € [0, 0).
3 The first-best contracts {(e}, w7} ), (e}, wi) } are
e m(er) ="0r;
o w(eyy) = 0.
= e} > e sincen” < 0.
o wj =0rej.

o Wi =0peyy.



Shutdown

4 Proposition: Under asymmetric information, the optimal menu of contracts entails:
« No output distortion for the high-ability agent with respect to the first-best, e® = e%. A downward output

distortion for the low-ability agent, e5F < e3; with

A
71'/(6?11?) = 9H + ﬁ(eH — QL)

o The second-best wages are respectively given by
wy = 0Orep + e (0n —0r) > Orep = wi,
—_———
rH
Wi = 0geP < Opey = wy.
Moreover, wi® = e + €S20y — 01) = €320y + 01 (3B — e38) > wib.
o Only the high-ability agent gets a positive information rent given by

T’%B = 6%(01{ — QL)

5 Graphical illustration:

Starting from the complete information optimal contract (A*, B*) that is not incentive compatible, we can con-
struct an incentive compatible contract (B*, C') with the same effort levels by giving a higher wage to the agent

producing ¢j (Figure 1).

w

w— Ore = Afe};

w 9//( =0
Principal’s indifference
curve: w(e) —w = I}

w—0re =0

Principal’s indifference
curve: m(e) —w = II},

Figure 1: Rent needed to implement the first-best outputs

The contract C'is on the f,-agent’s indifference curve passing through B*. Hence, the 01, -agent is now indifferent
between B* and C. (B*, C') becomes an incentive-compatible menu of contracts. The rent that is given up to the

61,-agent is now Afe};.

Rather than insisting on the first-best production level e}, for an inefficient type, the principal prefers to slightly

decrease ey by an amount de.



« By doing so, expected efficiency is just diminished by a second-order term £ |7”(e};)|(de)? since e}; is the

first-best output that maximizes efficiency when the agent is inefficient.

o Instead, the information rent left to the efficient type diminishes to the first-order Af de.

Of course, the principal stops reducing the ineflicient type’s output when a further decrease would have a greater
efficiency cost than the gain in reducing the information rent it would bring about. The optimal trade-off finally

occurs at (ASB, BSB) as shown in Figure 2.
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Figure 2: Second-best contracts
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7 The above proposition holds when 7/ (e$¥) = 0 + 125 (0 — 0. has a positive solution.

If '(e$}) = 0m + 25 (0 — 01) has no positive solution (for example, when A is close to 1, or when 65 — 6,
is sufficiently large), e3? should be set at zero, and w$? will thus be set at zero as well—it is the special case of a

contract with shutdown.
8 When the shutdown of 0 agents occurs, the contract offered to 61, agents is

e =e3 and wiP = w3,

The information rent for 6, agents is zero.
9 HH

e RO, WHBIRAK OWELT D, RFR-—NFAHRAEEMR 5% 0y REFZ64, ZHFURER
O I EHE, NEAFFELAS 0, T L0 ELME, T principal I F X &,
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10 With such a policy, a significant inefficiency emerges because the inefficient type 6 does not make effort. The

benefit of such a policy is that no rent is given up to the efficient type 67,.
11 To guarantee the contracts without shutdown, we assume that
o 7'(0) = co (Inada condition).

3 / —
. elggow (e)e=0.

« Since 7/(0) = co and 7' (+00) = 0, 7' (e$f) = O + 125 (0n — 01.) has a positive solution.
o Besides, principal is not optimal to offer contracts with shutdown:

(1) The profit of principal for optimal contracts without shutdown is
M7(eP) — 0re — A0eR) + (1 — N)(m(eF) — Omel).
(2) The profit of principal for optimal contracts with shutdown is
Alm(er) —brer)-

(3) Since e} = eL , the difference is

(1= \)((eB) — OpeSE) — AAeeilB:a_A)[w( SB) _ (QH—i—li)\AQ)esﬂf]

—_———
! (e%)
(4) We can rewrite m(e%2) — (9 H+ 7 AG) eSP as
m(ex) — ' (ek)e
which is strictly positive since 7(e) — 7’ (e)e is strictly increasing with e and is equal to zero for e = 0.

(5) Hence, 7(e5F) — 7/(e3F)e}® > 0, and shutdown of 6 does not occur.

2 Nonresponsiveness

12 We assume that the principal’s return 7 depends also on 6: (e, 6).
13 Assumptions:
o m(e,0) >0,
o Tee(e,0) <0,
o Teg(e,0) > 1: the marginal value of the principal increases faster than the type of agent.

14 The first-best efforts 87 and 67 are now given by

me(e},0r) = 0 and me (e}, 0n) = Og.
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Consider the first order condition 7. (e*(6),0) = 6. We have

de*(0)

Tee(€¥(6),0) 0

+ g (e (60),0) = 1.

It leads to
de*(0) 1 —meg(e*(0),0) “ 50
d9 Tee(€*(0),0) = '

Thus, e}; > e} —it does not satisfy the monotonicity condition for IC contracts.
Conflict:

« For efficiency, principal want 5 agents to produce more;

o For incentive compatibility, 87, agents has to produce (weakly) more (monotonicity constraint).
It is called a phenomenon of nonresponsiveness.

This phenomenon makes screening of types quite difficult.
Let e5® = e} and €3 be defined by

A
ﬂe(S%,QH) =0 + m(@}[ — QL)

By incentive compatibility, screening only possible when e3? > e32.

If \ is very small, e3P is very close to e};. We thus have e3¥ ~ e%; > e} = €SB
It means that the screening is impossible. It forces the principal to use a pooling contract.

The principal’s problem is to solve

maximize A(mw(e?,01) — w?) + (1 — A)(w(e”, ) — wP)

(e?,wP)

subjectto  w” — fre? > 0and w? — OyeP > 0.

Clearly, if w? — 0geP > 0, then w? — 0re? > 0.
Moreover, w? — Oy eP > 0 should be binding at the optimum.
The reduced problem is
mgx)m(ep, 0r) 4+ (L = XN)7(eP,0y) — OpeP.

Then eP is characterized by
Ame(eP,0r) + (1 — N7e(e?,0p) = 0p.

Since 7.9 > 0, we have that

Mre(€P,0r0) + (1 — Nme(e?,0n) = 0y = me(efy, 0n)
> Ame(ey, 0r) + (1 — N me(ely, 0m)-

Since m.. < 0, we have that e? < e};.

In summary, when nonresponsiveness occurs, the sharp conflict between the principal’s preferences and the incen-
tive constraints (which reflect the agent’s preferences) makes it impossible to use any information transmitted by

the agent about his type.



3 Three-type model
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There are three types {01, 0pr, 05 } with 0 — Oy = Oy — 0, = A6.

The respective probabilities are Az, Ays, and Ay with Ay, + Ay + A = 1.

As a benchmark, the first-best effort levels are respectively given by
w’(ez) = BL, 7T/(€*M) = 9]»[, 7Tl(€*H) = GH

Principal would like to offer a menu of contracts { (e, wr.), (enr, war), (em, wrr )} hoping that 8, agents will select

(er,wr), Oar agents will select (epr, wpr), and O agents will select (e, w).

IC constraints for {(eL,wL), (GM, wM), (EH,’LUH)}:

wy, —Orer, > wy — Oren, (ICLn)
wy, —Orep > wy —Orep, (ICLm)
wyr — Open > wy — Oyem, (ICnH)
wy — Open > wr, — Oper, (ICam1)
wy —Openy > wy — Openr, (ICuMm)
wy —Ogen > wr, — Oper. (ICuL)

o 4local IC constraints: involving adjacent types.

o 2 global IC constraints: involving nonadjacent types.

Monotonicity condition (or implementability condition): Constraints (ICz,»s) and (ICpsz) imply that er, > epy.
Constraints (ICps ) and (ICsrps) imply that ey, > egy.

er > ey > eq. (M)
Two local incentive constraints (ICy, /) and (IC ) lead to the global one (IC, i) under eps > eq.
Similarly, two local incentive constraints (ICjz,) and (IC /) lead to the global one (ICy ) under ef, > eyy.

Intuitively, more efficient types tend to claim to be less efficient. Momentarily, we ignore the incentive constraints
(ICwn1), ICHL) and (ICH ).

So we consider only (IC7as), ICas ) and (M).

IR constraints for {(er,, wr), (enr, war), (€, wr)}:

wr, —Orer >0, (IR)
wyr — Openr >0, (IRp)
wyg — ey > 0. (IRg)

Clearly, (IRg) and (ICyzr) imply (IRpy). Similarly, (IRf) and (ICy i) imply (IRz,).

That is, given that IC constraints hold, IR constraints of all 3 types are satisfied as long as (IR7) holds.



34 The principal’s problem is to solve

maximize )\L(w(eL) — ’LUL) + )\]y[(’/T(GM) — wM) + )\H(']T(eH) — wH)
(er,wr),(enr,wnr), (e, wr)
subject to Constraints (ICy,57), ICx ), (M) and (IRg ).

35 Asusual, constraints (ICzas), (ICxr ) and (IR ) should be binding at the optimum:

wyr, — 9L€L = Wprr — 9L6M, wp — 6MeM =wyg — HMeH, wg — HHeH =0.
That is,

wg = Omem,
wy = wH +0pmen —Oper =0pen +0pen — Oyen,

wr, = wy +0rer, —O0pen = O0pen +0pen — Oyen +0rer, —Orep.

Hence, the information rents are

ry =wg —Ogey =0,
Tng = War — GMGM = HHEH — 0M6H = A@eH,

rp = wyp, — 0per, = AbBey + Abey,.

Note that constraints (ICy;7,) and (IC /) are satisfied at the optimum.

36 The principal’s problem is rewritten as:

maximize )\L(F(eL) — 0H€H — 9]\/161\/[ + 9M€H — 9L€L + 9L€M)
€rL,eM,eH

+ A (m(enr) — Omen — Orrens + Onen) + A (w(en) — Omen)

subjectto  Constraint (M).

37 Ignore constraint (M) first.

First order condition for ey,

W’(@SB) = QL.

First order condition for e;:

A A
w'(e?&) =0y + 7L(9M — QL) =0y + 7LA9.
A Am
First order condition for eg:
A A Av+ A
71'/(6%3) =0y + 7M(€H — GM) —+ 7L(9H — QM) =0+ MA@

38 Then check constraint (M):

o Clearly, e3® > €38 automatically.



o e > ePiff ' (e3B) < 7/ (e5F) iff

MAQ

AL
(% — A0 <0
M+ )\]V[ <0y + )\H ’

which is equivalent to
AM > ALAH.

In this case, the information rents are

TH:’U)H—(QHeH:O,
ra =wy — Oprens = Opeyg — Open = Abey,

rp, = wyp, — 0per, = Aley + Abeyy.

39 On the other hand (if Apy < ApAg), bunching (% %) result occurs:

For a given A, if Ay, is rather big and Ay is small, then the information rent of 6, agents is not too costly but
that of 67, is much more. Therefore, reducing rents calls for strongly reducing ey, but a reduction in ey is less
necessary. However, due to the implementability condition, e); cannot be reduced to be lower than ez. We thus

have e); = ey at the optimum.

In this case, principal’s problem is rewritten as:

max )\L(W(eL) — Oge? —Orer, + 9,;6”) 4+ A (W(ep) — 9Hep) + )\H(ﬂ(ep) — QHep).

€r,,€
First order condition for e?:
A+ A1) (€P) = A0 + A + A (0 — 01).

That is,
AL

—=—2A40.
A+ Mg

7' (eP) = 0y +
40 Theorem:

o Constraints (ICy, /), ICprm) and (IR ) are all binding.

« When Aj; > AgAp, Constraint (M) is strictly satisfied. Optimal outputs are given by e3f = e}, €35 < e,

and e}® < e} with

A
ﬂ'(e?@) =0y + 2L AG,
Aum
. A+ AL

7' (e%}) = 0n ¥

Af.

« When A\y; < Ag ), some bunching emerges. We still have e5® = e, but now €55 = 3 = P < €38, with

AL

——2A4.
Ar+ Am

7'(eP) =0y +

41 To avoid bunching, modelers often chose to impose a sufficient condition on the distribution of types, the mono-

tonicity of the hazard rate.
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Definition: A distribution of types satisfies the monotone hazard rate property if and only if

Prob(G < QM) AL Prob(G < QH) . AL+ 0n

Prob(0 = Oar) A Prob(0=0m)  Am

The virtual costs of the different types, namely 01, 6s + >/\\TL4A9 and 0 + %Aﬁ, are ranked exactly as the
true physical costs.

The virtual surplus is maximized by a decreasing schedule of outputs (e3® > €58 > €5F). Asymmetric information

does not perturb the ranking of types.

4 Summary
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When it comes to solving the screening problem, it is useful to start from the benchmark problem without adverse
selection, which involves maximizing the payoff of the principal subject to IR constraints. At the optimum, alloca-
tive efficiency is then achieved, because the principal can treat each type of agent separately and offer a type-specific

package.

In the presence of adverse selection, however, the principal has to offer all types of agents the same menu of options.
He has to anticipate that each type of agent will choose her favorite opinion. Without loss of generality, he can
restrict the menu to the set of opinions actually chosen by at least one type of agent. It reduces the program of the

principal to the maximization of his expected payoft subject to IC and IR constraints.

One can disregard the IC for low-ability agent and IR for high-ability agent. Contract then trades off optimally the

allocative inefficiency of the low-ability agent with the information rent conceded to the high-ability agent.

In contrast, there is no allocative inefficiency for the high-ability agent and no rent for the low-ability agent.

For generalizations to more than two types, IC constraints can often be replaced by fewer local IC constraints and

monotonicity condition. We have full separation under natural restrictions (monotone hazard rate).

In some cases, the distribution of types does not lead to full separation—for example, when there are intermediate
types that the principal considers to be of low probability. There would then be an incentive for the principal to
have severe allocative inefficiency for these types, in order to reduce the rents of adjacent types. But this incentive
conflicts with the monotonicity condition. In this case, a procedure of “bunching and ironing” has been outlined

to solved for the optimal contract. The monotonicity condition then binds for some types where bunching occurs.
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