
AdvancedMicroeconomics: Lecture Notes 2

Instructor: Xiang Sun

2021 Fall

1 Introduction of adverse selection

1 There are many choice situations where a principal delegates the completion of a task to an agent:

• A stockholder delegates the firm’s day-to-day decisions to a manager,

• A client delegates his defense to an attorney,

• The landlord delegates the cultivation of his land to a tenant,

• An investor delegates the management of his portfolio to a broker,

• A government procures vaccines from private companies.

2 Delegation can be motivated:

• either by the possibility of benefitting from some increasing returns associated with the division of tasks,

– e.g., the manager will be the only one to know the business conditions.

• or by the principal’s lack of time or lack of any ability to perform the task himself,

– e.g., the attorney knows better than the client how difficult the case will be.

• or by any other form of the principal’s bounded rationality when facing complex problems.

– e.g., the tenant will be the only one to observe the exact local weather conditions.

3 By the mere fact of this delegation, the agent may get access to information that is not available to the principal.

In other words, the agent may have or gain private information, which is hidden to the principal.

Some examples of pieces of information that may become private knowledge of the agent can be:

• The exact opportunity cost of this task,

• the precise technology used, and how good the matching is between the agent’s intrinsic ability and this tech-
nology.

In such cases, we will say that there is adverse selection.

4 In order to carry out the delegation of these tasks, the principal and the agent would sign a (bilateral) contract,
where the outcomes are verifiable and the consequences are enforceable by a benevolent court of law.

• The key common aspect of all those contracting settings is that the information gap between the principal and
the agent has some fundamental implications for the design of the bilateral contract they sign.
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• In order to reach an efficient use of economic resources, this contract must elicit the agent’s private informa-
tion.

• This can only be done by giving up some information rent to the privately informed agent, which is costly to
the principal.

– This information cost just adds up to the standard technological cost of performing the task and justifies
distortions in the volume of trade achieved under asymmetric information.

• The main objective is to characterize the optimal rent extraction-efficiency trade-off faced by the principal
when designing his contractual offer to the agent.

– The allocative and the informational roles of the contract generally interfere. At the optimal second-best
contract, the principal trades off his desire to reach allocative efficiency against the costly information
rent given up to the agent to induce information revelation.

5 We proceed in two steps:

• First, we describe the set of allocations (i.e., output to be produced and a distribution of the gains from trade)
that the principal can achieve (despite the information gap),

– incentive compatibility constraints (that are only due to asymmetric information),

– voluntary participation constraints that ensure that the agent wants to participate in the contract.

• Second, we proceed by optimizing the principal’s objective function within the set of incentive feasible allo-
cations.

6 Consequences of hidden information:

• In general, incentive constraints will be binding at the optimum,

– showing that adverse selection clearly affects the efficiency of trade.

• As such, the optimal second-best contract calls for

– a distortion in the volume of trade away from the first-best allocation,

– and for giving up some strictly positive information rents to the most efficient agents.

7 Implicit assumptions:

• We assume that the principal and the agent both adopt an optimizing behavior and maximize their individual
utility.

– In other words, they are both fully rational individualistic agents.

– Given the contract he receives from the principal, the agent maximizes his utility and chooses output
accordingly.

• The principal does not know the agent’s private information, but the probability distribution of this informa-
tion is common knowledge.

– There exists an objective distribution for the possible types of the agent that is known by both the agent
and the principal, and this fact itself is known by the two players.

• The principal is a Bayesian expected utility maximizer.

– In designing the agent’s payoff rule, the principal moves first as a Stackelberg leader under asymmetric
information anticipating the agent’s subsequent behavior and optimizing accordingly within the set of
available contracts.
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2 Model

8 Consider a consumer (the principal) who wants to delegate to an agent the production of q units of a good.

9 The value for the principal of these q units is S(q) where S′ > 0, S′′ < 0 and S(0) = 0.

The marginal value of the good is thus positive and strictly decreasing with the number of units bought by the
principal.

10 The production cost of the agent is unobservable to the principal, but it is common knowledge that the marginal
cost θ belongs to the set Θ = {θL, θH}.

The agent can be either efficient (θL) or inefficient (θH ) with respective probabilities λ and 1− λ. In other words,
he has the cost function

c(q, θL) = θLq with probability λ

or
c(q, θH) = θHq with probability 1− λ.

We denote by ∆θ = θH − θL > 0 the spread of uncertainty on the agent’s marginal cost.

11 The principal’s utility, if she purchases q units of the good and pays a monetary transfer t to the agent, is

S(q)− t,

and at this case the agent’s utility is
t− c(q, θ).

12 The economic variables are quantity produced q and the transfer t received by the agent.

These variables are both observable and verifiable by a third party such as a benevolent court of law. They can be
included in a contract which can be enforced with appropriate penalties if either the principal or the agent deviates
from the requested output and transfer.

Let A be the set of all feasible contract, that is,

A = {(q, t) | q ∈ R+, t ∈ R}.

3 Complete information—the first-best outcome

13 First suppose that there is no asymmetry of information between the principal and the agent.

14 The efficient production levels are obtained by maximizing the social value:

max
qi≥0

S(qi)− c(qi, θi) = max
qi≥0

S(qi)− θiqi.

Since S′′ < 0, the objective function is concave. Then the solution q∗i must satisfy the first order condition:

S′(q∗i )

≤ θi,

= θi, if q∗i > 0.
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15 The above equation may not have an interior solution.

• Suppose S′(qi) > θi for any qi ≥ 0. Then there is no solution for the maximization problem.

• Suppose S′(qi) < θi for any qi ≥ 0. Then the only solution is the boundary solution: q∗i = 0.

Hereafter, we assume that an interior solution q∗i exists (and hence it is unique) for both types.

Interpretation: The efficient production levels q∗i are obtained by equating the principal’s marginal value and the
agent’s marginal cost:

S′(q∗i ) = θi.

16 The complete information efficient production levels q∗L and q∗H should be both carried out if their social values are
non-negative,

W ∗
L = S(q∗L)− θLq

∗
L ≥ 0 and W ∗

H = S(q∗H)− θHq∗H ≥ 0.

Note that the social value W ∗
L is always greater than W ∗

H :

W ∗
L =

q∗L maximizes S(qL) − θLqL︷ ︸︸ ︷
S(q∗L)− θLq

∗
L ≥ S(q∗H)− θLq

∗
H ≥ S(q∗H)− θHq∗H︸ ︷︷ ︸
θL<θH

= W ∗
H .

For trade to be always carried out, it is thus enough that production be socially valuable for the least efficient type,
i.e., the following condition must be satisfied

W ∗
H = S(q∗H)− θHq∗H ≥ 0,

a hypothesis that we will maintain throughout this lecture.

3.1 Implementation—payment

17 We have determined the efficient production levels q∗i .

18 Since the principal cannot force the agent, he must convince the agent to accept the task.

For a successful delegation of the production, the principal must offer the agent a utility level that is at least as
high as the utility level that the agent obtains from outside opportunity. We refer to these constraints as the agent’s
individual rationality constraints or participation constraints.

Here we normalize to zero the agent’s outside opportunity utility level (i.e., his status quo utility level), these con-
ditions are written as

tL − θLqL ≥ 0 and tH − θHqH ≥ 0.

19 The sequence of play is as follows:

time
Nature randomly

determines agent’s type θ
Principal and agent

discover θ
Principal offers

a contract
Agent accepts or

rejects the contract
The contract
is executed

Figure 1: Timing

20 Obviously, the first-best contract menu {(q∗i , t∗i )}i=H,L satisfies these conditions, if we let t∗i = θiq
∗
i .
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21 To implement the first-best production levels q∗i , the principal can make the following take-it-or-leave-it offers to
the agent: If θ = θi, the principal offers the transfer t∗i for the production level q∗i with t∗i = θiq

∗
i .

Whatever his type, agent accepts the offer and makes zero utility. The complete information optimal contracts are
thus (q∗L, t∗L) if θ = θL and (q∗H , t∗H) if θ = θH .

22 Under complete information, delegation is costless for the principal, who achieves the same utility level that he
could get if he was carrying out the task himself (with the same cost function as the agent).

23 Alternative approach:

The principal try to maximize her utility subject to inducing the agent to accept the proposed contract. Clearly, the
agent obtains 0 if he does not take the principal’s contract. So the principal will solve the following problem:

maximize
(qi,ti)∈A

S(qi)− ti

subject to ti − c(qi, θi) ≥ 0.

In any solution, the IR constraint must bind; otherwise, the principal could lower the wage offered and still have
the agent accept the contract. Thus, the maximization problem becomes:

max
qi≥0

S(qi)− θiqi.

Clearly, S′′ < 0, and hence the objective function is concave. Then the solution must satisfy the first-order condi-
tion:

S′(q∗i )

≤ θi,

= θi, if q∗i > 0.

Assume there is an interior solution q∗i , i.e., S′(q∗i ) = θi. Then the payment is due to the binding IR constraint:
t∗i = θiq

∗
i .

3.2 The first-best contract

24 The complete information optimal contracts are thus (q∗L, t∗L) if θ = θL and (q∗H , t∗H) if θ = θH .

25 Every agent (no matter θL or θH ) obtains exactly 0 from principal, just balancing his reservation utility.

26 We denote by V ∗
H (resp. V ∗

L ) the principal’s level of utility when he faces the θH-(resp. θL-) type:

V ∗
i = S(q∗i )− θiq

∗
i = W ∗

i .

Interpretation: Because the principal has all the bargaining power (complete information) in designing the contract,
we have V ∗

i = W ∗
i under complete information.

27 Graphic illustration:

(a) Agent’s reservation utility is 0, which is equivalent to the contract O = (0, 0).

(b) Principal seeks to find the most profitable point on the isoutility curve with utility 0, i.e., through the point
O = (0, 0).
For the point, the strictly concave indifference curve of the principal is tangent to the zero rent isoutility curve
of the corresponding type.
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(c) For a θi agent, principal pays t∗i such that t∗i − c(q∗i , θi) = 0.

(d) For a θi agent, principal’s profit is V ∗
i = S(q∗i )− c(q∗i , θi).

This profit is exactly equal to the distance from the origin to the intersection point between the indifference
curve through (q∗i , t

∗
i ) and the vertical axis:

i. Principal’s indifference curve is of the form S(qi)− t = constant.

ii. The constant should be principal’s profit, which is V ∗
i .

iii. Letting qi = 0 in the indifference curve S(qi)− ti = V ∗
i , we have −ti = V ∗

i . It implies that V ∗
i > 0.

The complete information optimal contract is finally represented in the following figure by the pair of points
(A∗, B∗).

q

t

Principal’s indifference
curve: S(q)− t = V ∗

H

U∗
H = t− θHq = 0

Principal’s indifference
curve: S(q)− t = V ∗

L

U∗
L = t− θLq = 0

O

A∗

q∗L

t∗L

−V ∗
L

B∗

q∗H

t∗H

−V ∗
H

Figure 2: First-best contracts

Suppose instead the reservation utility is ū > 0, which is large enough.

• Then the tangent point and indifference curve will shift up, and hence the profit V ∗
i could be negative. In this

case, the principal will not provide such a contract—the shutdown occurs.

• Interpretation: If agent’s reservation utility is low, principal can attract him to accept some contract; otherwise,
agent will not accept any contract that is acceptable for principal.

28 We have S′(q∗i ) = θi. Since S′′ < 0 and θH > θL, we have

q∗L > q∗H ,

i.e., the optimal production of an efficient agent is greater than that of an inefficient agent.

29 In the figure, the payment t∗L is greater than t∗H , but we note that t∗L can be greater or smaller than t∗H depending
on the curvature of the function S, as it can be easily seen graphically.

Example: S(q) = − 4
q+1 + 4, θL = 1

4 , θH = 1. Then (q∗L, t
∗
L) = (3, 3

4 ), (q
∗
H , t∗H) = (1, 1), V ∗

L = 24
7 , V ∗

H = 1.
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q

t

Principal’s indifference
curve: S(q)− t = V ∗

L

U∗
L = t− θLq = 0

Principal’s indifference
curve: S(q)− t = V ∗

H

U∗
H = t− θHq = 0

O

A∗

q∗L

t∗L

B∗

q∗H

t∗H

Figure 3: t∗H > t∗L

30 The principal’s utility:
V ∗
L = W ∗

L > W ∗
H = V ∗

H .

From the figure, the indifference curves of the principal correspond to increasing levels of utility when one moves
in the southeast direction. Thus, the principal reaches a higher profit when dealing with the efficient type.

4 Incomplete information

31 Suppose that the marginal cost θ is the agent’s private information.

32 The sequence of play is as follows:

time
Nature randomly

determines agent’s type θ
Agent

discovers θ
Principal offers

a contract
Agent accepts or

rejects the contract
The contract
is executed

Figure 4: Timing

Note that contracts are offered at the interim stage; there is already asymmetric information between the contracting
parties when the principal makes his offer.

33 In the following figure, we draw the indifference curves of a θL-agent (heavy curves) and of a θH-agent (light curves)
in the (q, t) space.

The isoutility curves of both types correspond to increasing levels of utility when one moves in the northwest di-
rection. These indifference curves are straight lines with a slope θ corresponding to the agent’s type.
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q

t

UL = t− θLq = 0

UH = t− θHq = 0

θL
θH

Figure 5: Single-crossing property

Since θH > θL, the isoutility curves of the inefficient agent θH have a greater slope than those of the efficient agent.
Thus, the isoutility curves for different types cross only once. This property is called the single-crossing property
or Spence-Mirrlees property.

34 Consider the case where the principal offers the menu of contracts {(q∗L, t∗L), (q∗H , t∗H)} hoping that an agent with
type θL will select (q∗L, t∗L) and an agent with type θH will select instead (q∗H , t∗H).

From Figure 2, we see that B∗ is preferred to A∗ by both types of agents:

• The θL-agent’s isoutility curve that passes through B∗ corresponds to a positive utility level instead of a zero
utility level at A∗.

• The θH-agent’s isoutility curve that passes through A∗ corresponds to a negative utility level, which is less
than the zero utility level this type gets by choosing B∗.

Thus, offering the menu (A∗, B∗) fails to have the agents self-selecting properly within this menu. The efficient
type mimics the inefficient one and selects also contract B∗. The complete information optimal contracts can no
longer be implemented under asymmetric information.

35 A menu of contracts {(qL, tL), (qH , tH)} is incentive compatible when (qL, tL) is weakly preferred to (qH , tH) by
the type-θL agent and (qH , tH) is weakly preferred to (qL, tL) by the type-θH agent.

Mathematically,

tL − θLqL ≥ tH − θLqH , (ICL)

tH − θHqH ≥ tL − θHqL. (ICH )

36 A menu of contracts {(qL, tL), (qH , tH)} is individually rational if

tL − θLqL ≥ 0, (IRL)

tH − θHqH ≥ 0. (IRH )
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We do not require that (qL, tL) is acceptable for θH agent and (tH , qH) is acceptable for θL agent, once we assume
IC constraints.

37 Example: Pooling contract.

When the contracts targeted for each type coincide and both types of agent accept this contract, we have a pooling
contract.

qL = qH = qP and tL = tH = tP .

• Incentive compatibility is trivially satisfied, but at the cost of an obvious loss of flexibility in allocations that
are no longer dependent on the state of nature.

• Only the participation constraints matter now; the hardest participation constraint to satisfy is that of the
inefficient agent. This is because Equation (IRH ) directly implies Equation (IRL) for a pooling contract, which
is efficient agent’s participation constraint.

38 Example: Shutdown contract.

When one of the contracts is the null contract (0, 0) and the nonzero contract (ts, qs) is only accepted by the
efficient type.

• Then, Equation (ICL) and Equation (IRL) both reduce to ts − θqs ≥ 0.

• The Equation (ICH ) reduces to 0 ≥ ts − θHqs. If this inequality is strict, only the efficient type accepts the
contract.

• With such a contract, the principal gives up production if the agent is a θH-type. Wewill say that it is a contract
with shutdown of the least efficient type.

{(q∗L, t∗L), (0, 0)} is a shutdown contract, where the contract (q∗L, t∗L) is only accepted by the efficient type.

39 If a menu of contracts {(qL, tL), (qH , tH)} is incentive compatible, then

By Equation (ICL)︷ ︸︸ ︷
θL(qH − qL) ≥ tH − tLθL(qH − qL) ≥ tH − tL ≥ θH(qH − qL)︸ ︷︷ ︸

By Equation (ICH )

,

and hence
qH − qL ≤ 0. (M)

It is called the monotonicity constraint.

Incentive compatibility alone (regardless of the principal’s preferences) implies that the production level requested
from a θH-agent cannot be higher than the one requested from a θL-agent.

40 A pair of outputs (qL, qH) is said to be implementable if it can be reached by an incentive compatible contract.

Implementability is equivalent to monotonicity constraint. Suppose qH − qL ≤ 0. For IC constraints to satisfy, we
should have

tL − θLqL ≥ tH − θLqH and tH − θHqH ≥ tL − θHqL.

Then we have
θL(qH − qL) ≤ tH − tL ≤ θH(qH − qL).

It is enough to take transfers (tL, tH) such that the above equation holds.
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4.1 Principal’s problem

41 Recall that under complete information, the principal is able to maintain all types of agents at their zero status quo
utility level. Their respective utility levels U∗

L and U∗
H at the first-best contracts satisfy

U∗
L = t∗L − θLq

∗
L = 0 and U∗

H = t∗H − θHq∗H = 0.

Generally this will not be possible anymore under incomplete information, at least when the principal wants both
types of agents to be active.

42 Take any IC and IR menu of contracts {(qL, tL), (qH , tH)}. Let

UL = tL − θLqL ≥ 0 and UH = tH − θHqH ≥ 0

denote the respective information rent (the utility in excess of the reservation utility) of each type.

(a) Consider the utility level that a θL-agent would get by mimicking a θH-agent. By doing so, he would get

tH − θLqH = tH − θHqH + θHqH − θLqH = UH +∆θqH .

(b) As such, even if the θH-agent utility level is reduced to its lowest utility level fixed at zero; that is, UH =

tH − θHqH = 0, the θL-agent benefits from an information rent (the utility in excess of the reservation
utility) ∆θqH coming from his ability to possibly mimic the less efficient type.

(c) So, as long as the principal insists on a positive output for the inefficient type, qH > 0, the principal must
give up a positive rent to a θL-agent. This information rent is generated by the informational advantage of the
agent over the principal.

(How about θH-agent mimicking θL-agent?)

The principal’s problem is to determine the smartest way to give up the rent provided by any given IC and IR menu
of contracts.

43 According to our timing of the contractual game, the principal must offer a menu of contracts before knowing
which type of agent he is facing.

Therefore, he will compute the benefit of any menu of contracts {(tL, qL), (tH , qH)} in expected terms.

The principal’s problem is to solve

maximize
(qL,tL),(qH ,tH)

λ
(
S(qL)− tL

)
+ (1− λ)

(
S(qH)− tH

)
subject to Constraints (ICL)–(IRH ).

44 Since UL = tL − θLqL and UH = tH − θHqH , we can replace transfers in the principal’s objective function as
functions of information rents and outputs so that the new optimization variables are now {(qL, UL), (qH , UH)}.
The focus on outputs allows us to analyze its impact on allocative efficiency and the overall gains from trade.

45 With this change of variables, the principal’s objective function can then be rewritten as

λ
(
S(qL)− θLqL

)
+ (1− λ)

(
S(qH)− θHqH

)︸ ︷︷ ︸
Expected social value/allocative efficiency

−
(
λUL + (1− λ)UH

)︸ ︷︷ ︸
Expected information rent

.
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This new expression clearly shows that the principal wishes to maximize the expected social value of trade minus
the expected rent of the agent.

There is a tradeoff between distortions away from efficiency in order to decrease the agent’s information rent.

46 The incentive constraints and individual rationality constraints are rewritten as

UL ≥ UH +∆θqH , (IC′
L)

UH ≥ UL −∆θqL, (IC′
H )

UL ≥ 0, (IR′
L)

UH ≥ 0. (IR′
H )

4.2 Solving the principal’s problem

47 The major technical difficulty of principal’s problem, and more generally of incentive theory, is to determine which
of the many constraints imposed by incentive compatibility and participation are the relevant ones, i.e., the binding
ones at the optimum of the principal’s problem.

48 Let us first consider contracts without shutdown, i.e., such that qH > 0. The condition will be determined later.

49 Step 1: The constraint (IR′
L) is always strictly satisfied due to constraints (IC′

L) and (IR′
H ).

The ability of the θL-agent to mimic the θH-agent implies that the θL-agent’s participation constraint is always
strictly satisfied.

If a menu of contracts enables an inefficient agent to reach his status quo utility level, it will also be the case for an
efficient agent who can produce at a lower cost.

q

t

t− θHq = 0

t− θLq = 0

O

(qH , tH)

t− θLq = UL > 0

Figure 6: IR for θL

Graphic illustration:

(a) By Equation (IR′
H ), (qH , tH) must lie in the shaded region.

(b) By Equation (IC′
L), (qL, tL) must lie on or above the θL-indifference curve through (qH , tH).

(c) This implies that θL-agent’s utility is at least 0.

11



50 Step 2: The constraint (IR′
H ) is binding at the optimum, i.e., UH = 0.

Suppose that UH = ε > 0 at the optimum. Then the principal can decease UH by ε and consequently also UL by
ε and gain ε.

51 Step 3: The constraint (IC′
L) is binding at the optimum, i.e., UL = ∆θqH .

Suppose that UL −∆θqH = ε > 0 at the optimum. Then the principal can decrease UL by ε and gain λε.

52 IC for θH-agent seems irrelevant because the difficulty comes from a θL-agent willing to claim that he is inefficient
rather than the reverse.

We ignore this condition for now and then get a solution. We can verify whether the solution satisfies this condition.

Remark: When (IC′
L) is binding, (IC′

H ) is equivalent to (M):

tSBH − θHqSBH − tSBL + θHqSBL = ∆θ(qSBL − qSBH ).

53 Step 4: By Steps 2 and 3, we obtain a reduced program

maximize
qL,qH

λ
(
S(qL)− θLqL

)
+ (1− λ)

(
S(qH)− θHqH

)
− λ∆θqH .

Compared with the full information setting, asymmetric information alters the principal’s optimization simply by
the subtraction of the expected rent that has to be given up to the efficient type.

The inefficient type gets no rent, but the efficient type θL gets the information rent that he could obtain bymimicking
the inefficient type θH . This rent depends only on the level of production requested from this inefficient type.

54 Step 5: The first order condition on qL implies

S′(qSBL ) = θL, that is, qSBL = q∗L.

Hence, there is no distortion away from the first-best for the efficient type’s output. Here, the superscript SB means
the second-best.

The first order condition on qH implies

(1− λ)
(
S′(qSBH )− θH

)≤ λ∆θ,

= λ∆θ, if qSBH > 0.

We always assume the equation has a solution. We first assume there is an interior solution qSBH . This equation ex-
presses the important trade-off between efficiency and rent extraction which arises under asymmetric information.
The expected marginal efficiency gain (resp. cost) and the expected marginal cost (resp. gain) of the rent brought
about by an infinitesimal increase (resp. decrease) of the inefficient type’s output are equated.

At the second-best optimum, the principal is neitherwilling to increase nor to decrease the inefficient agent’s output.

55 Step 6: We have the following inequality
qSBL = q∗L > q∗H > qSBH︸ ︷︷ ︸

S′′<0

,

and hence
U SB
H = 0 > ∆θqSBH −∆θqSBL = U SB

L −∆θqSBL .
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That is, the constraint (IC′
H ) is strictly satisfied.

这点说明：向上的激励相容条件（upward incentive compatibility，低能力模仿高能力）不是问题。另一方
面，向下的激励相容条件（downward incentive compatibility，高能力模仿低能力）更为关键，需要谨慎处
理。

56 We have assumed qSBH > 0. That is, the equation (1− λ)
(
S′(qH)− θH

)
= λ∆θ has to admit an interior solution

(which is unique).

57 Theorem (Optimal contract without shutdown): Under asymmetric information, the optimal menu of contracts
entails:

• No output distortion for the efficient type with respect to the first-best, qSBL = q∗L.

• A downward output distortion for the inefficient type, qSBH < q∗H with

S′(qSBH ) = θH +
λ

1− λ
∆θ.

Here we have assumed that the equation above has positive solution. Otherwise qSBH should be set at zero, and
we are in the special case of a contract with shutdown.
Note that

qSBL = q∗L > q∗H > qSBH .

• Only the efficient type gets a positive information rent given by

U SB
L = ∆θqSBH .

• The second-best transfers are respectively given by

tSBL = θLq
∗
L +∆θqSBH > θLq

∗
L = t∗L and tSBH = θHqSBH < θHq∗H = t∗H .

Note that
tSBL = θLq

∗
L +∆θqSBH = θLq

∗
L + θHqSBH − θLq

SB
H = tSBH + θL(q

∗
L − qSBH ) > tSBH .

58“顶部无扭曲”与“单向扭曲/向下扭曲”是两条最基本的规律。

• 对于高能力，不存在产出水平的扭曲（其产出水平与完全信息最优时的产出水平一致），但代价是
需要给其支付信息租金。

• 对于低能力，其付出的产出水平低于完全信息最优时的产出水平，但没有信息租金。

4.3 Graphic illustration

59 qSBH ≤ q∗H .

(a) Suppose qSBH > q∗H .

(b) Since θH-IR binds, (qSBH , tSBH ) lies on the indifference curve through (0, 0).

(c) To make θH-IC and θL-IC hold, (qSBL , tSBL ) lies in the shaded region.

(d) Principal can raise her profit by moving (qSBH , tSBH ) to (q∗H , t∗H): θH-IC and θL-IC still hold.

(e) Thus, qSBH > q∗H cannot be optimal.
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q

t

U∗
H = t− θHq = 0

O q∗H

t∗H
B∗

(qSBH , tSBH )

(qSBL , tSBL )

θL-agent’s isoutility curve through (qSBH , tSBH)

Figure 7: qSBH ≤ q∗H

60 qSBL = q∗L.

(a) Suppose that qSBH ≤ q∗H .

(b) To make θH-IC and θL-IC hold, (qSBL , tSBL ) lies in the shade region.

(c) Principal’s problem is to find the allocation of (qSBL , tSBL ) that maximizes her profit.

(d) The optimal solution occurs at a point of tangency between the indifference curve of θH-agent through
(qSBL , tSBL ) and an isoprofit curve for principal.

(e) All points of tangency between indifference curves of θH-agent and isoprofit curves of principal occur at q∗L.

q

t

U∗
H = t− θHq = 0

O q∗L

t∗L A∗

q∗H

t∗H
B∗

(qSBH , tSBH )

(q∗L, t̂L)
Principal’s indifference curve

Figure 8: qSBL = q∗L

61 Starting from the complete information optimal contract (A∗, B∗) that is not incentive compatible, we can con-
struct an incentive compatible contract (C,B∗) with the same production levels by giving a higher transfer to the
agent producing q∗L (Figure 9).
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q

t

Principal’s indifference
curve: S(q)− t = V ∗

H

U∗
H = t− θHq = 0

Principal’s indifference
curve: S(q)− t = V ∗

L

U∗
L = t− θLq = 0

Principal’s indifference curve:
S(q)− t = V C

L = V ∗
L −∆θq∗H

UL = t− θLq = ∆θq∗H

O q∗L

t∗L A∗

q∗H

t∗H
B∗

−V ∗
H

C

−V C
L

∆θq∗H

Figure 9: Rent needed to implement the first-best outputs

(a) The contract C is on the θL-agent’s indifference curve passing through B∗.

(b) Hence, the θL-agent is now indifferent between B∗ and C . (B∗, C) becomes an incentive-compatible menu
of contracts.

(c) The rent that is given up to the θL-agent is now ∆θq∗H .

62 Rather than insisting on the first-best production level q∗H for an inefficient type, the principal can slightly decrease
qH by a small amount.

q

t

Principal’s indifference
curve: S(q)− t = V ∗

H

U∗
H = t− θHq = 0

U∗
L = t− θLq = 0

UL = t− θLq = ∆θq∗H

O q∗L

t∗L A∗

q∗H

t∗H
B∗

−V ∗
H

C

B′

Principal’s indifference
curve: S(q)− t = V ′

H

−V ′
H

Figure 10: Profit loss in θH
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q

t

U∗
H = t− θHq = 0

U∗
L = t− θLq = 0

Principal’s indifference curve:
S(q)− t = V C

L = V ∗
L −∆θq∗H

UL = t− θLq = ∆θq∗H

O q∗L

t∗L A∗

q∗H

t∗H
B∗

C

−V C
L

B′

A′

−V ′
L

Figure 11: Profit gain in θL

(a) Principal firstly moves B∗ = (q∗H , t∗H) downwards along θH-agent’s indifference curve through (0, 0), for
example, to B′.

(b) This change lowers the profit that principal earns from θH agents: from V ∗
H to V ′

H < V ∗
H . (Figure 10)

(c) On the other hand, it relaxes θL-agent’s IC constraint.

(d) Principal then moves C to A′.

(e) This change increases the profit that principal earns from θL agents: from V C
L to V ′

L > V C
L . (Figure 11)

(f) Comparison: By slightly decreasing qH by an amount dq:

• By doing so, expected efficiency is just diminished by a second-order term 1
2 |S

′′(q∗H)|(dq)2 since q∗H is
the first-best output that maximizes efficiency when the agent is inefficient:

[
S(q∗H − dq)− θH(q∗H − dq)

]
−
[
S(q∗H)− θHq∗H

]
=

1

2
S′′(q∗H)(dq)2 + o

(
(dq)3

)
.

• Instead, the information rent left to the efficient type diminishes to the first-order term ∆θ dq:

[
∆θ(q∗H − dq)

]
−∆θq∗H = −∆θ dq.

(g) Of course, the principal stops reducing the inefficient type’s output when a further decrease would have a
greater efficiency cost than the gain in reducing the information rent it would bring about. The optimal trade-
off finally occurs at (ASB, BSB) as shown in Figure 12.

16



q

t

Principal’s indifference
curve: S(q)− t = V SB

H

U SB
H = t− θHq = 0

Principal’s indifference
curve: S(q)− t = V SB

L

U∗
L = t− θLq = 0

UL = t− θLq = ∆θq∗H

O q∗L = qSBL

t∗L

tSBL

A∗

C

ASB

−V SB
L

q∗H

t∗H

qSBH

tSBH

B∗

BSB

−V SB
H

Figure 12: Second-best contracts

63 配置效率与信息租金之间的权衡：

• 为了让 θL选择为其设计的产出水平，需要给他一定好处的信息租金；该信息租金取决于 θH 的产出
水平，以及 θL和 θH。

• 之所以降低 θH 的产出水平，是为了尽可能减少支付给 θL的信息租金。

• Principal扭曲的 θH 的产出水平，依赖于两种 agent之间的差异。

– 当 θH − θL → 0时，θL的信息租金趋于零，此时 θH 会趋于有效的产出水平 q∗H。

– 而当 θH − θL → ∞时，θL的信息租金趋于无穷大，此时 principal会采取将 θH 停工的排斥性合
约，以避免支付高额的信息租金。

4.4 Optimal contract with shutdown

64 Consider the first order condition of θH-agent:

(1− λ)
(
S′(qSBH )− θH

)≤ λ∆θ,

= λ∆θ, if qSBH > 0.

We have assumed S′(qSBH ) = θH + λ
1−λ∆θ has a positive solution.

65 Theorem (Optimal contract with shutdown).

(a) If the equation S′(qSBH ) = θH + λ
1−λ∆θ has no positive solution, qSBH should be set at zero.

(b) Then BSB coincides with O and ASB with A∗ in Figure 12.

(c) No rent is given up to the θL-agent by the unique non-null contract (t∗L, q∗L) offered and selected only by agent
θL.

(d) The shutdown of the agent occurs when θ = θL.
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With such a contract, a significant inefficiency emerges because the inefficient type does not produce. The benefit
of such a contract is that no rent is given up to the efficient type.

66 直觉：

• 如果 θL的比例很大（λ接近于 1），导致一阶条件没有正数解：若给 θH 提供非零合约，或者说提高
θH 的配置效率，则甄别中需要支付给 θL过多的信息租金，对于 principal并不划算。

• 如果两种 agent的差异较大（θH − θL很大），导致一阶条件没有正数解：若给 θH 提供非零合约，则
甄别中需要支付给 θL过多的信息租金，principal也会选择不给 θH 提供合约。

67 Numerical example: S(q) = log(q + 1), θH = 1
2 , θL = 1

3 , λ = 6
7 .

68 More generally, such a shutdown contract is optimal when

λ
(
S(q∗L)− θLq

∗
L

)
≥ λ

(
S(qSBL )− θLq

SB
L −∆θqSBH

)
+ (1− λ)

(
S(qSBH )− θHqSBH

)
or, noting that q∗L = qSBL , when

λ∆θqSBH ≥ (1− λ)
(
S(qSBH )− θHqSBH

)
.

• The left-hand side represents the expected cost of the efficient type’s rent due to the presence of the inefficient
one when the latter produces a positive amount qSBH .

• The right-hand side represents the expected benefit from transacting with the inefficient type at the second-
best level of output.

• Thus, shutdown for the inefficient type is optimal when this expected benefit is lower than the expected cost.

69 When Inada condition S′(0) = +∞ is satisfied and limq→0 S
′(q)q = 0, the shutdown is never desirable.

(1) qSBH defined by S′(qSBH ) = θH + λ
1−λ∆θ is necessarily strictly positive since S′(0) = +∞.

(2)
S(qSBH )−

(
θH +

λ

1− λ
∆θ

)
qSBH = S(qSBH )− S′(qSBH )qSBH

is strictly positive since S(q)− S′(q)q is strictly increasing with q and is equal to zero for q = 0. Hence,

λ∆θqSBH < (1− λ)
(
S(qSBH )− θHqSBH

)
and the shutdown of the least efficient type does not occur.

5 General utility function for the agent

70 Consider a general cost function C(q, θ) with the assumption

Cq > 0, Cθ > 0, Cqq > 0, Cqqθ > 0.

71 The generalization of the Spence-Mirrlees property used so far is now

Cqθ > 0.

This condition still ensures that the different types of the agent have indifference curves which cross each other at
most once.

18



(a) A typical indifference curve of θ-agent is t − C(q, θ) = constant, i.e., t = C(q, θ) + constant. Then, at any
(q, t), the marginal rate of substitution between transfers and outputs is

dt
dq

= Cq(q, θ),

which describes the slope of the indifference curve.

(b) The slope Cq(q, θ) is increasing in θ since Cqθ(q, θ) > 0. Thus, at a given point (q̂, t̂), for two indifference
curves passing it,

Slope of θL-indifference curve =
dt(q, θL)

dq

∣∣∣
(q̂,t̂)

= Cq(q̂, θL)

< Cq(q̂, θH) =
dt(q, θH)

dq

∣∣∣
(q̂,t̂)

= Slope of θH-indifference curve.

(c) The increasing rate of slope Cqq(q, θ) is increasing in θ since Cqqθ > 0.

q

t

O

indifference curve of θL
indifference curve of θH

q̂

t̂

Figure 13: Spence-Mirrlees property

72 It is obviously satisfied in the linear case C(q, θ) = θq that was analyzed before.

Economically, this Spence-Mirrlees property is quite clear; it simply says that a more efficient type is also more
efficient at the margin.

73 Incentive compatibility constraints are

tL − C(qL, θL) ≥ tH − C(qH , θL),

tH − C(qH , θH) ≥ tL − C(qL, θH).

Individual rationality constraints are

tL − C(qL, θL) ≥ 0 and tH − C(qH , θH) ≥ 0.
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74 IC constraints imply monotonicity constraint:

∫ qL

qH

Cq(q, θH) dq =

By θH -IC︷ ︸︸ ︷
C(qL, θH)− C(qH , θH) ≥ tL − tHC(qL, θH)− C(qH , θH) ≥ tL − tH ≥ C(qL, θL)− C(qH , θL)︸ ︷︷ ︸

By θL-IC

=

∫ qL

qH

Cq(q, θL) de,

and hence qL ≥ qH .

75 LetUL = tL−C(qL, θL) andUH = tH−C(qH , θH) denote information rents. Thenwe can rewrite the constraints
as:

UL ≥ UH +Φ(qH),

UH ≥ UL − Φ(qL),

UL ≥ 0,

UH ≥ 0,

where Φ(q) = C(q, θH) − C(q, θL). Then Φ′(q) = Cq(q, θH) − Cq(q, θL) > 0 and Φ′′(q) = Cqq(q, θH) −
Cqq(q, θL) > 0.

76 Following the same steps as before, the incentive constraint of an efficient type and the participation constraint for
the inefficient type in are the two relevant constraints for optimization.

77 These constraints are both binding at the second-best optimum, and so we have

UL = UH +Φ(qH) and UH = 0.

It leads to the following expression of the efficient type’s rent

UL = Φ(qH).

Since Φ′ > 0, reducing the inefficient agent’s output also reduces, as before, the efficient agent’s information rent.

78 Also, using the information rents and binding constraints, we can transform the principal’s objective function from

λ
[
S(qL)− C(qL, θL)

]
+ (1− λ)

[
S(qH)− C(qH , θH)

]
−

[
λUL + (1− λ)UH

]
to

λ
[
S(qL)− C(qL, θL)

]
+ (1− λ)

[
S(qH)− C(qH , θH)− λ

1−λΦ(qH)
]
.

79 With the assumptions made onC , one can also check that the principal’s objective function is strictly concave with
respect to outputs.

80 By ignoring θH-IC and the first order approach, optimal contract entails:

• No output distortion with respect to the first-best outcome for the efficient type, qSBL = q∗L with

S′(q∗L) = Cq(q
∗
L, θL).
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• A downward output distortion for the inefficient type, qSBH < q∗H with

S′(q∗H) = Cq(q
∗
H , θH)

and
S′(qSBH ) = Cq(q

SB
H , θH) +

λ

1− λ
Φ′(qSBH ).

• Only the efficient type gets a positive information rent given by U SB
L = Φ(qSBH ).

• The second-best transfers are respectively given by tSBL = C(q∗L, θL) + Φ(qSBH ) and tSBH = C(qSBH , θH).

81 The first order conditions characterize the optimal solution if the neglected θH-IC is satisfied.

(a) For this to be true, we need to have

tSBH − C(qSBH , θH) ≥ tSBL − C(qSBL , θH) = tSBH − C(qSBH , θL) + C(qSBL , θL)− C(qSBL , θH),

which amounts to
0 ≥ Φ(qSBH )− Φ(qSBL ).

(b) Since Φ′ > 0, it is equivalent to qSBH ≤ qSBL .

(c) We still have
qSBL = q∗L > q∗H > qSBH .

• S′(q∗L) = Cq(q
∗
L, θL) < Cq(q

∗
L, θH) because Cqθ > 0. Hence, using the fact that S(q) − C(q, θH) is

concave in q and maximum for q∗H , we have q∗L > q∗H .

• Φ′ > 0 implies that S′(qSBH ) > Cq(q
SB
H , θH). Thus, qSBH < q∗H .

(d) So the Spence-Mirrlees property guarantees that only the efficient type’s incentive constraint has to be taken
into account.

Task

• Reading: 2.1–2.6 and 2.10 in [LM] (required), 14.C in [MWG] (required), 2.2–2.3 in [S] (optimal).

• Understanding:

– 在逆向选择模型中，由于委托人与代理人之间的信息差异，可能对经济体的效率产生影响。

– 这时，委托人需要设计合约，诱导代理人真实反映其类型，自发选择为其定制的合约。

– 激励代理人这样做，是有成本的，从而无法实现完全信息时的最优结果，只能得到次优结果。

– 其中的基本问题在于信息租金的抽取和配置的效率之间进行权衡和取舍。
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