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1 Three-type model

1 There are three types {θL, θM , θH} with θH − θM = θM − θL = ∆θ.

The respective probabilities are λL, λM , and λH with λL + λM + λH = 1.

2 As a benchmark, the first-best effort levels are respectively given by

S′(q∗L) = θL, S
′(q∗M ) = θM , S′(q∗H) = θH .

3 Principal would like to offer a menu of contracts {(qL, tL), (qM , tM ), (qH , tH)} hoping that

• θL agents will select (qL, tL),

• θM agents will select (qM , tM ),

• and θH agents will select (qH , tH).

4 IC constraints for {(qL, tL), (qM , tM ), (qH , tH)}:

tL − θLqL ≥ tM − θLqM , (ICLM )

tL − θLqL ≥ tH − θLqH , (ICLH )

tM − θMqM ≥ tH − θMqH , (ICMH )

tM − θMqM ≥ tL − θMqL, (ICML)

tH − θHqH ≥ tM − θHqM , (ICHM )

tH − θHqH ≥ tL − θHqL. (ICHL)

• 4 local IC constraints: involving adjacent types.

• 2 global IC constraints: involving nonadjacent types.

5 Monotonicity condition (or implementability condition): Constraints (ICLM ) and (ICML) imply that qL ≥ qM .
Constraints (ICMH ) and (ICHM ) imply that qM ≥ qH .

qL ≥ qM ≥ qH . (M)

6 Two local incentive constraints (ICLM ) and (ICMH ) lead to the global one (ICLH ) under qM ≥ qH .

Similarly, two local incentive constraints (ICML) and (ICHM ) lead to the global one (ICHL) under qL ≥ qM .

In summary, global IC constraints are guaranteed by local IC constraints.
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7 When (ICLM ) is binding, (ICML) and (M) are equivalent. Similarly, when (ICMH ) is binding, (ICHM ) and (M)
are equivalent. Once we know (ICLM ) and (ICMH ) are binding, (ICML) and (ICHM ) can be replaced by (M).

So we consider only (ICLM ), (ICMH ) and (M).

8 IR constraints for {(qL, tL), (qM , tM ), (qH , tH)}:

tL − θLqL ≥ 0, (IRL)

tM − θMqM ≥ 0, (IRM )

tH − θHqH ≥ 0. (IRH )

9 Clearly, (IRH ) and (ICMH ) imply (IRM ). Similarly, (IRH ) and (ICLH ) imply (IRL).

That is, given that IC constraints hold, IR constraints of all 3 types are satisfied as long as (IRH ) holds.

10 The principal’s problem is to solve

maximize
(qL,tL),(qM ,tM ),(qH ,tH)

λL

[
S(qL)− tL

]
+ λM

[
S(qM )− tM

]
+ λH

[
S(qH)− tH

]
subject to Constraints (ICLM ), (ICMH ), (M) and (IRH ).

11 As usual, constraints (ICLM ), (ICMH ) and (IRH ) should be binding at the optimum:

tL − θLqL = tM − θLqM , tM − θMqM = tH − θMqH , tH − θHqH = 0.

That is,

tH = θHqH ,

tM = tH + θMqM − θMqH = θHqH + θMqM − θMqH ,

tL = tM + θLqL − θLqM = θHqH + θMqM − θMqH + θLqL − θLqM .

Hence, the information rents are

UH = tH − θHqH = 0,

UM = tM − θMqM = θHqH − θMqH = ∆θqH ,

UL = tL − θLqL = ∆θqH +∆θqM .

12 The principal’s problem is rewritten as:

maximize
qL,qM ,qH

λL

(
S(qL)− θHqH − θMqM + θMqH − θLqL + θLqM

)
+ λM

(
S(qM )− θHqH − θMqM + θMqH

)
+ λH

(
S(qH)− θHqH

)
subject to Constraint (M).

13 Intuitively, more efficient types tend to claim to be less efficient. Momentarily, we ignore the incentive constraints
(ICML) and (ICHM ), or (M). Ignore constraint (M) first.

First order condition for qL:
S′(qSBL ) = θL.
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First order condition for qM :

S′(qSBM ) = θM +
λL

λM
(θM − θL) = θM +

λL

λM
∆θ.

First order condition for qH :

S′(qSBH ) = θH +
λM

λH
(θH − θM ) +

λL

λH
(θH − θM ) = θH +

λM + λL

λH
∆θ.

14 Then check constraint (M):

• Clearly, qSBL > qSBM automatically.

• qSBM > qSBH iff S′(qSBM ) < S′(qSBH ) iff

θM +
λL

λM
∆θ < θH +

λM + λL

λH
∆θ,

which is equivalent to
λM > λLλH .

In this case, the information rents are

U SB
H = tSBH − θHqSBH = 0,

U SB
M = tSBM − θMqSBM = θHqSBH − θMqSBH = ∆θqSBH ,

U SB
L = tSBL − θLq

SB
L = ∆θqSBH +∆θqSBM .

15 On the other hand (if λM ≤ λLλH ), bunching (集束) result occurs:

(a) For a given λH , if λL is rather big and λM is small, then the information rent of θM agents is not too costly
but that of θL is much more.

(b) Therefore, reducing rents calls for strongly reducing qM , but a reduction in qH is less necessary.

(c) However, due to the implementability condition, qM cannot be reduced to be lower than qH .

(d) We thus have qM = qH at the optimum.

In this case, principal’s problem is rewritten as:

max
qL,qP

λL

[
S(qL)− θHqP − θLqL + θLq

P
]
+ λM

[
S(qP )− θHqP

]
+ λH

[
S(qP )− θHqP

]
.

First order condition for qP :

(λM + λH)S′(qP ) = λMθH + λHθH + λL(θH − θL).

That is,
S′(qP ) = θH +

λL

λM + λH
2∆θ.

16 Theorem:

• Constraints (ICLM ), (ICMH ) and (IRH ) are all binding.
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• When λM > λHλL, Constraint (M) is strictly satisfied. Optimal outputs are given by qSBL = q∗L, qSBM < q∗M
and qSBL < q∗L with

S′(qSBM ) = θM +
λL

λM
∆θ,

S′(qSBH ) = θH +
λM + λL

λH
∆θ.

• When λM ≤ λHλL, some bunching emerges. We still have qSBL = q∗L, but now qSBM = qSBH = qP < qSBL , with

S′(qP ) = θH +
λL

λM + λH
2∆θ.

17 To avoid bunching, modelers often chose to impose a sufficient condition on the distribution of types, the mono-
tonicity of the hazard rate.

Definition: A distribution of types satisfies the monotone hazard rate property if and only if

Prob(θ < θM )

Prob(θ = θM )
=

λL

λM
<

Prob(θ < θH)

Prob(θ = θH)
=

λL + θM
λH

.

18 The virtual costs of the different types, namely θL, θM + λL

λM
∆θ and θH + λM+λL

λH
∆θ, are ranked exactly as the

true physical costs.

The virtual surplus is maximized by a decreasing schedule of outputs (qSBL > qSBM > qSBH ). Asymmetric information
does not perturb the ranking of types.

2 Ex ante contract

19 So far, we have considered the case of contracts offered at the interim stage, i.e., once the agent already knows his
type θ ∈ {θL, θH}.

time
Nature randomly

determines agent’s type θ
Agent

discovers θ
Principal offers

a contract
Agent accepts or
rejects the contract

The contract
is executed

Figure 1: Timing

20 However, sometimes the principal and the agent can contract at the ex ante stage, i.e., before the agent discovers his
type θ.

time
Principal offers

a contract
Agent accepts or
rejects the contract

Nature randomly
determines type θ

Agent
discovers θ

The contract
is executed

Figure 2: Timing

We now characterize the optimal contract for this alternative timing under various assumptions about the risk
aversion of the two players.

21 The contract can only be written in terms of the verifiable variables. θ is not verifiable and cannot be written into a
contract.
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A menu {(qL, tL), (qH , tH)} is a feasible instrument.

• When facing the menu {(qL, tL), (qH , tH)}, agent accepts the menu itself or not.

• In contrast, in the standardmodel, agent chooses (qL, tL), (qH , tH), or neitherwhenhe faces amenu {(qL, tL), (qH , tH)}.

When agent accepts such a contract {(qL, tL), (qH , tH)}, the agent anticipates that

• his choice of outputs qL in state θL will satisfy the following interim constraint

tL − θLqL ≥ tH − θLqH .

• his choice of outputs qH in state θH will satisfy the following interim constraint

tH − θHqH ≥ tL − θHqL.

These constraints are the same as the standard incentive compatibility constraints.

2.1 Risk-neutral agent and risk-neutral principal

22 If the agent is risk neutral, his ex ante participation constraint is now written as

λUL + (1− λ)UH ≥ 0,

where UL = tL − θLqL and UH = tH − θHqH respectively denote the information rents.

What matters now to ensure participation is that the agent’s expected information rent remains non-negative.

This ex ante participation constraint replaces the two interim participation constraints.

23 Note that the principal’s objective function is decreasing in the agent’s expected information rent.

λ
[
S(qL)− θLqL

]
+ (1− λ)

[
S(qH)− θHqH

]
−
[
λUL + (1− λ)UH

]
.

24 Ideally, the principal wants to impose a zero expected information rent to the agent and have the ex ante participa-
tion constraint, λUL + (1− λ)UH ≥ 0, be binding.

25 Moreover, the principal must structure the rents UL and UH to ensure that the wedge between those two levels is
such that the incentive constraints remain satisfied.

UL ≥ UH +∆θqH ,

UH ≥ UL −∆θqL.

26 An example of such a rent distribution that is both incentive compatible and satisfies the ex ante participation
constraint with an equality is

U∗
L = (1− λ)∆θq∗H > 0 and U∗

H = −λ∆θq∗H < 0.

(a) IC constraints imply
∆θqL ≥ UL − UH ≥ ∆θqH .
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(b) Let UL − UH = ∆θqH (θL-IC is binding).

(c) Since the agent is risk-neutral, the principal can costlessly structure the information rents UL and UH such
that the expected information rent will be zero. Therefore, λUL + (1− λ)UH = 0 (ex ante IR is binding).

(d) The maximization problem can be simplified to an unconstrained optimization problem of two choice vari-
ables

λ
[
S(qL)− θLqL

]
+ (1− λ)

[
S(qH)− θHqH

]
.

(e) So the solutions are the first-best allocations q∗L and q∗H .

(f) Then given θL-IC and ex ante IR, the payoffs are

U∗
L = (1− λ)∆θq∗H > 0 and U∗

H = −λ∆θq∗H < 0.

(g) Check θH-IC: U∗
L − U∗

H = ∆θq∗H ≤ ∆θq∗L.

In this contract, the agent is rewarded when he is efficient and punished when he turns out to be inefficient.

Remember, we could have come up with other transfers leading to the same outputs as the optimal solution. We
chose these transfers so to make the θL-IC binding.

27 There must be some risk in the distribution of information rents to induce information revelation, but this risk is
costless for the principal because of the agent’s risk neutrality.

28 Proposition: When the agent is risk neutral and contracting takes place ex ante, there exists an optimal incentive
contract which implements the first-best outcome.

• First-best outcome is achieved;

• Expected information rent is zero.

29 Principal’s utilities are

S(q∗L)− U∗
L − θLq

∗
L = S(q∗L)− θLq

∗
L − (1− λ)∆θq∗H ,

S(q∗H)− U∗
H − θHq∗H = S(q∗H)− θHq∗H + λ∆θq∗H ,

which are not the same. That is, principal’s utility has uncertainty.

30 We can also achieve this result by considering the following menu of contracts {(q∗L, t∗L), (q∗H , t∗H)} which satisfy
the incentive compatibility constraints as strict inequalities.

31 Let t∗L = S(q∗L)− T ∗ and t∗H = S(q∗H)− T ∗, with T ∗ being a lump-sum payment to be defined below.

32 This contract is incentive compatible since

t∗L − θLq
∗
L = S(q∗L)− T ∗ − θLq

∗
L > S(q∗H)− T ∗ − θLq

∗
H = t∗H − θLq

∗
H ,

t∗H − θHq∗H = S(q∗H)− T ∗ − θHq∗H > S(q∗L)− T ∗ − θHq∗L = t∗L − θHq∗L.

33 The fixed-fee T ∗ can be used to satisfy the agent’s ex ante participation constraint with an equality by choosing

T ∗ = λ
[
S(q∗L)− θLq

∗
L

]
+ (1− λ)

[
S(q∗H)− θHq∗H

]
.
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34 This implementation of the first-best outcome amounts to having the principal selling the benefit of the relationship
to the risk-neutral agent for a fixed up-front payment T ∗.

35 The agent benefits from the full value of the good and trades off the value of any production against its cost just as
if he was an efficiency maximizer.

In this case, we say that the agent is residual claimant for the firm’s profit.

36 Principal’s utility is always T ∗ no matter the state is θL or θH .

2.2 Risk-neutral agent and risk-averse principal

37 Note that we have not identified whether the principal is risk-neutral or risk-averse.

In fact, this issue does not matter for the conclusion that the first-best can be implemented.

38 Consider now a risk-averse principal with a von Neumann-Morgenstern utility function v(·) defined on his mon-
etary gains from trade S(q)− t such that v′ > 0, v′′ < 0 and v(0) = 0.

39 Since the agent is risk-neutral, the principal can costlessly structure the information rentsUL andUH such that the
expected information rent will be zero. Thus, the optimal contract obviously calls for the first-best output q∗L and
q∗H being produced.

40 It also calls for the principal to be fully insured between both states of nature and for the agent’s ex ante participation
constraint to be binding. This leads to the following two conditions that must be satisfied by agent’s rents U∗

L and
U∗
H .

S(q∗L)− θLq
∗
L − U∗

L = S(q∗H)− θHq∗H − U∗
H and λU∗

L + (1− λ)U∗
H = 0.

(前者降低委托人的风险溢价至零，后者降低信息租金至零)

So

U∗
L = (1− λ)

[
S(q∗L)− θLq

∗
L − (S(q∗H)− θHq∗H)

]
,

U∗
H = −λ

[
S(q∗L)− θLq

∗
L − (S(q∗H)− θHq∗H)

]
.

41 Note that the first-best profile of information rents satisfies both types’ incentive compatibility constraints since

U∗
L − U∗

H = S(q∗L)− θLq
∗
L − (S(q∗H)− θHq∗H) > ∆θq∗H ,

U∗
H − U∗

L = S(q∗H)− θHq∗H − (S(q∗L)− θLq
∗
L) > −∆θq∗L.

42 Result: When the principal is risk-averse over themonetary gainsS(q)−t, the agent is risk-neutral, and contracting
takes place ex ante, the optimal incentive contract implements the first-best outcome.

• First-best outcome is achieved;

• Ex post full insurance for principal;

• Expected information rent is zero.

43 Take the lump-sum payment

T ∗ = λ
[
S(q∗L)− θLq

∗
L

]
+ (1− λ)

[
S(q∗H)− θHq∗H

]
,
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which allows the principal to make the risk-neutral agent residual claimant for the hierarchy’s profit, also provides
full insurance to the principal.

By making the risk-neutral agent the residual claimant for the value of trade, ex ante contracting allows the risk-
averse principal to get full insurance and implement the first-best outcome despite the informational problem.

2.3 Risk-averse agent

44 We have seen that when the agent is risk-neutral, then the first-best allocation can be implemented ex ante without
any cost to the principle.

However, we will now see that when the agent is risk-averse, then the first-best is no longer implementable.

45 Consider now a risk-averse agent with a utility function u(·) defined on his monetary gains t−θq, such that u′ > 0,
u′′ < 0 and u(0) = 0.

46 The incentive constraints are unchanged but the agent’s ex ante participation constraint is now written as

λu(UL) + (1− λ)u(UH) ≥ 0.

47 As usual, we guess a solution such that IC-θH is slack at the optimum, and we check this ex post. The principal’s
program reduces now to

maximize
(qL,UL),(qH ,UH)

λ
[
S(qL)− θLqL − UL

]
+ (1− λ)

[
S(qH)− θHqH − UH

]
subject to UL ≥ UH +∆θqH ,

λu(UL) + (1− λ)u(UH) ≥ 0.

48 With risk aversion, the principal can no longer costlessly structure the agent’s information rents to ensure the effi-
cient type’s incentive compatibility constraint, contrary to previous part.

49 Creating a wedge between UL and UH to satisfy θL-IC makes the risk-averse agent bear some risk.

To guarantee the participation of the risk-averse agent, the principal must now pay a risk premium.

Reducing this premium calls for a downward reduction in the inefficient type’s output (the difference between UL

and UH is at least∆θqH ) so that the risk borne by the agent is lower.

50 Step 1: Form the following Lagrangian for the principal’s problem

L(qL, qH , UL, UH , γ, µ) = λ
[
S(qL)− θLqL

]
+ (1− λ)

[
S(qH)− θHqH

]
−
[
λUL + (1− λ)UH

]
+ γ [UL − UH −∆θqH ] + µ

[
λu(UL) + (1− λ)u(UH)

]
,

where γ is the multiplier of efficient type’s incentive compatibility constraint and µ is the multiplier of the ex ante
participation constraint.

51 Optimizing with respect to UL and UH yields respectively

−λ+ γ + µλu′(U SB
L ) = 0,

−(1− λ)− γ + µ(1− λ)u′(U SB
H ) = 0.
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52 Summing these two equalities, we obtain

µ
[
λu′(U SB

L ) + (1− λ)u′(U SB
H )

]
= 1.

Then µ > 0, and hence ex ante IR is binding.

53 Using the expression of µ above yields

γ =
λ(1− λ)

[
u′(U SB

H )− u′(U SB
L )

]
λu′(U SB

L ) + (1− λ)u′(U SB
H )

.

Moreover, θL-IC implies that U SB
L ≥ U SB

H and thus γ ≥ 0, with γ > 0 for a positive output qH .

54 Optimizing with respect to outputs yields respectively

S′(qSBL ) = θL,

and

S′(qSBH ) = θH +
γ

1− λ
∆θ = θH +∆θ

λ
[
u′(U SB

H )− u′(U SB
L )

]
λu′(U SB

L ) + (1− λ)u′(U SB
H )

.

If γ = 0, then the above equation implies that S′(qSBH ) = θ. Hence, qSBH = q∗ > 0 and γ > 0, which is a
contradiction.

Therefore, γ > 0 and θL-IC is binding.

55 Since θL-IC binds, U SB
L = U SB

H −∆θqSBH > UL −∆θqSBL . That is, θH-IC holds automatically.

56 To solve qSBH , U SB
H and U SB

L , we need to solve the equations

S′(qSBH ) = θH +∆θ
λ
[
u′(U SB

H )− u′(U SB
L )

]
λu′(U SB

L ) + (1− λ)u′(U SB
H )

,

U SB
L = U SB

H +∆θqSBH ,

λu(U SB
L ) + (1− λ)u(U SB

H ) = 0.

57 Result: When the agent is risk-averse and contracting takes place ex ante, the optimal menu of contracts entails:

• No output distortion for the efficient type qSBL = q∗L.

• A downward output distortion for the inefficient type qSBH < q∗H , with

S′(qSBH ) = θH +∆θ
λ
[
u′(U SB

H )− u′(U SB
L )

]
λu′(U SB

L ) + (1− λ)u′(U SB
H )

.

• Both θL-IC and ex ante IR are the only binding constraints.

• The efficient type gets a strictly positive ex post information rent, while the inefficient type gets a strictly
negative ex post information rent; that is, U SB

L > 0 > U SB
H .

58 Numerical example: S(q) = q
1
2 , θL = 1

3 , θH = 1
2 , λ = 1

2 , v(t− θq) = log(t− θq).

We have
q∗L = 9

4 , q
∗
H = 1, U∗

L = 1
12 , t

∗
L = 5

6 , U
∗
H = − 1

12 , t
∗
H = 5

12 ,
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where U∗
L − U∗

H = 1
6 = ∆θq∗H .

And

qSBL = q∗L = 9
4 , q

SB
H = 0.949422 < 1 = q∗H ,

U SB
L = 0.0822435 < 1

12 = U∗
L, U

SB
H = −0.0759935 > − 1

12 = U∗
H .

Clearly,
U SB
L − U SB

H = ∆θqSBH < ∆θq∗H = U∗
L − U∗

H .

U

agent’s utility

risk-neutral agent
risk-averse agent

U∗
LU∗

H

U SB
LU SB

H

Figure 3

3 Limited liability

59 Sometimes the set of incentive-feasible contracts is constrained by some exogenous limits on the feasible transfers
between the principal and the agent.

These exogenous financial constraints could reveal the existence of previous financial contracts that the agentmight
have already signed. Those constraints will of course affect the usual rent-efficiency trade-off.

60 A first possible limit is that the net transfer of the agent, taking into account his own asset holding l, should not be
lower than zero.
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This leads to the following limited liability constraints on transfers:

tL ≥ −l and tH ≥ −l.

A possible motivation for this type of constraint is that the agent can use the transfer received from the principal to
cover a debt of level−l.

The production cost θq being already sunk, it does not enter into the left-hand sides of limited liability constraints.

61 A second limit on transfers arises when the agent’s information rent itself must be greater than an exogenous value
−l. This leads to the following limited liability constraints on rents:

UL ≥ −l and UH ≥ −l.

The production cost θq is now incurred when the transfer t takes place.

Again, the interpretation is that contracting with the principal may involve negative rentsUL orUH as long as those
losses can be covered by the agent’s own liabilities l.

62 To assess the impact of these limited liability constraints, let us go back to the framework of ex ante contracting.
When contracting takes place ex ante, we have seen that the first-best outcome can still be obtained provided that
the inefficient risk-neutral agent receives a negative payoff, U∗

H < 0. Obviously this negative payoff may conflict
with the constraint UH ≥ −l.

63 With ex ante contracting, we have already seen that the relevant incentive and participation constraints are, respec-
tively,

UL ≥ UH +∆θqH and λUL + (1− λ)UH ≥ 0.

64 Adding the limited liability constraints, the principal’s program is written as

maximize
(UL,qL),(UH ,qH)

λ[S(qL)− θLqL − UL] + (1− λ)[S(qH)− θHqH − UH ]

subject to UL ≥ UH +∆θqH ,

λUL + (1− λ)UH ≥ 0,either tL ≥ −l, tH ≥ −l,

or UL ≥ −l, UH ≥ −l.

65 We first focus on limited liability constraints on rents.

(a) θL-LL constraint is redundant: UL ≥ UH +∆θqH ≥ UH ≥ −l.

(b) Without θH-LL, the first-best allocations can be achieved, where IR always binds. In order to make θH-LL
easier to meet, we need UH to be as large as possible. Note that UL ≥ UH +∆θqH , the largest possible UH

is determined by UL = UH +∆θqH . So

UL
H = −λ∆θq∗H and UL

L = (1− λ)∆θq∗H .

(c) If l > λ∆θq∗H , θH-LL is redundant. The principal implements the first-best outcome by fixing the above UL
L

and UL
H .
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(d) Suppose l ≤ λ∆θq∗H . Then the above first-best outcome cannot be achieved. To reduce the expected infor-
mation rent, principal would first set UL

H = −l. Principal then set UL
L = UL

H + ∆θqH = −l + ∆θqH . He
can reduce qH from q∗H to reduce the information rent, but he has to satisfy ex ante IR.

(e) We ignore ex ante IR temporarily. Inserting UL
H = −l and UL

L = −l + ∆θqH into the principal’s objective
function and optimizing with respect qL and qH yields

S′(qLL) = θL and S′(qLH) = θH +
λ

1− λ
∆θ,

that is, qLL = q∗L and qLH = qSBH .

(f) This solution is valid as long as the agent’s ex ante IR constraint is strictly satisfied, i.e., λUL
L + (1− λ)UL

H =

−l + λ∆θqSBH > 0, or l < λ∆θqSBH .

(g) When λ∆θqSBH ≤ l ≤ λ∆θq∗H . Ex ante IR is not satisfied for the above solutions. We conjecture ex ante IR is
also binding. In this case, we have λUL

L + (1− λ)UL
H = −l + λ∆θqLH = 0, or λ∆θqLH = l. And qLL = q∗L.

66 Result: Assume ex ante contracting and limited liability on rents. Then, the optimal contract entails

• For l > ∆θq∗H , the first-best allocations can be achieved, no output distortion. Ex ante IR is binding, θL-IC
could be binding, and others are redundant.

• For λ∆θqSBH ≤ l ≤ λ∆θq∗H , θL-IC, ex ante IR, and θH-LL are binding.

qLL = q∗L and qLH = l
λ∆θ ∈ [qSBH , q∗H ].

• For l < λ∆θqSBH , only θL-IC and θH-LL are binding.

qLL = q∗L and qLH = qSBH .

67 A limited liability constraint on ex post rents may reduce the efficiency of ex ante contracting.

• If the limited liability constraint on the inefficient type is stringent enough, the principal must reduce the
inefficient agent’s output to keep the limited liability constraint satisfied. The agent is then subject to less risk
on the allocation of ex post rents.

• When the limited liability constraint is even harder, the principal must give up his desire to hold the ex ante
participation constraint binding. The limited liability constraint then implies an ex ante information rent.

68 The limited liability constraint on rents plays a similar role as the agent’s risk aversion.

• In both cases, the principal finds it costly to create a wedge between UL and UH , and reducing this cost calls
for incentives that are lower powered than one would find with risk neutrality and unlimited transfers.

• More precisely, with a limited liability constraint on rents, everything happens as if the agent has an infinite
risk aversion below a wealth of−l.

69 Let us now turn to the case of limited liability constraints on transfers. Restricting the analysis to a few particular
cases, we have the following characterization of the optimal contract.

Assume ex ante contracting and limited liability on transfers. Then the optimal contract entails:

• For l > −[λθL + (1− λ)θH ]q∗H , only IR is binding and the first-best allocations can be achieved.
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• For−[λθL + (1− λ)θH ]q∗L ≤ l ≤ −[λθL + (1− λ)θH ]q∗H , θH-LL, θL-IC, and IR are binding. The efficient
agent produces effectively qLL = q∗L, and the inefficient agent’s production is distorted upwards from the first-
best, with

qLH = − l

λθL + (1− λ)θH
∈ (q∗H , q∗L).

• For l < −[λθL + (1 − λ)θH ]q∗L, there is bunching such that both types produce the same output qL and
θL-LL, θH-LL, θL-IC, and IR are all binding:

qL = − l

λθL + (1− λ)θH
.

70 The limited liability constraints on transfers give rise to allocative distortions that are rather different from those
highlighted in the proposition of rent.

• As the limited liability constraint tH ≥ −l is more stringent, it becomes quite difficult to create the wedge
between UL and UH that is necessary to ensure incentive compatibility.

• However, to relax the limited liability constraint tH ≥ −l, the principal now increases the inefficient type’s
output. Indeed, using the information rent to rewrite tH ≥ −l, we obtain

UH ≥ −l − θHqH .

• Therefore, distorting the inefficient type’s output upward relaxes this limited liability constraint.

• A limited liability constraint on transfers implies higher-powered incentives for the agent. It is almost the
same as what we would obtain by assuming that the agent is a risk lover.

• The limited liability constraint on transfers somewhat convexifies the agent’s utility function.

• Of course, the principal cannot indefinitively raise the inefficient agent’s output without conflicting with the
implementability condition.

• Hence, some bunching emerges. In this case, the agent receives a fixed payment that covers their cost in
expectation.

4 Summary

71 When it comes to solving the screening problem, it is useful to start from the benchmark problem without adverse
selection, which involves maximizing the payoff of the principal subject to IR constraints. At the optimum, alloca-
tive efficiency is then achieved, because the principal can treat each type of agent separately and offer a type-specific
package.

72 In the presence of adverse selection, however, the principal has to offer all types of agents the samemenu of options.
He has to anticipate that each type of agent will choose her favorite opinion. Without loss of generality, he can
restrict the menu to the set of opinions actually chosen by at least one type of agent. It reduces the program of the
principal to the maximization of his expected payoff subject to IC and IR constraints.

73 One can disregard the IC for low-ability agent and IR for high-ability agent. Contract then trades off optimally the
allocative inefficiency of the low-ability agent with the information rent conceded to the high-ability agent.

In contrast, there is no allocative inefficiency for the high-ability agent and no rent for the low-ability agent.
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74 For generalizations to more than two types, IC constraints can often be replaced by fewer local IC constraints and
monotonicity condition. We have full separation under natural restrictions (monotone hazard rate).

75 In some cases, the distribution of types does not lead to full separation—for example, when there are intermediate
types that the principal considers to be of low probability. There would then be an incentive for the principal to
have severe allocative inefficiency for these types, in order to reduce the rents of adjacent types. But this incentive
conflicts with the monotonicity condition. In this case, a procedure of “bunching and ironing” has been outlined
to solved for the optimal contract. The monotonicity condition then binds for some types where bunching occurs.

Task

• Reading: 2.11, 3.1, 3.5 in [LM] (required), Appendix 3.1–3.2 in [LM] (optional).

• Understanding:

• Homework:
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